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From the quantum random walk to classical mesoscopic diffusion in crystalline solids
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We use a discrete approximation of quantum mechanics called the quantum random walk to study diffusion
in one-dimensional crystalline nanostructures. There, intense fluctuations in the density are a consequence of
quantum interference. As the size of the crystal increase, relative quantum fluctuations decrease and, if a
coarse-grained averaging is taken, interference may be neglected. When this happens, we describe a far-from-
equilibrium, classical, dynamic mesoscopic diffusion regime. In this regime, diffusion equations are given by
a persistent-random-walk process. Density becomes a second-order Markov process, and in the continuum
limit, the current satisfies the non-Fickian Maxwell-Cattaneo relationship. The generalized diffusion equation
in the telegraphist’'s equatiofiS1063-651X96)10005-4

PACS numbg(s): 05.40+j, 05.70.Ln, 03.65.Sq

[. INTRODUCTION whereM is the mass of the particlekg Boltzmann’s con-
stant, andl the temperature. In this near-equilibrium regime,
An atomistic kinetic-theory approach to diffusion in a lat- the time scales associated with diffusion in a solid are enor-
tice is the stochastic process called the random-wiBW) mous. For example, the timebetween jumps may be of the
[1,2]. The traditional model of diffusion using RW isfast-  order of weeks or even montti8]. The distance$ associ-
order Markov process in configuration space. Let us interpretated with this process are also much greater than the mean
P(x,t), as the probability distribution of the position  free path\. In other words, Eq(1.2) describes diffusion in a

(x=0,x1,x21,...) for a diffusive particle at timet  sample ofmacroscopic size

(t=0,7,27, ...). Assuming a simplgnonbiased RW in a Our main question is the following one. If we consider a
lattice, the probabilityP(x,t) satisfies the simple recurrence diffusive regime in which the momentum varialpgehas not
formula reached thermal equilibrium and, further, if the momentum

variable has not even reached statistical independence from

the position variable, then what is the generalized diffusion
P(x,t+7)=5P(X=1,)+ 5P(x+1.0). (1) equation? To answer this question, first we go as far away
from the equilibrium regime as we can: the time-dependent
guantum process. There, we know that the Sdimger equa-
tion is the diffusion equation. In particular, for crystalline
nanostructures, a discrete approximation of quantum me-
chanics, called quantum random wa&RRW), has been ap-
plied to study tunneling diffusiof4,5]. Second, using diffu-
sive currents, we give an example where we show that for a
large enough size of the crystal, quantum interference effects
may be neglected. Third, after taking a coarse-grained aver-
aging in the quantum probabilities, we can neglect quantum
interference and, as a consequence, we destroy the time-
where DEI2/27=US7-/2 is the diffusion coefficient, and reversal invariance of the original QRW process. We arrive
vo=I/7 is the mean velocity of the particles. at a classical, irreversible, mesoscopic diffusive process.

From the point of view of kinetic theory, the most pecu- Fourth, under this approximation the mesoscopic process is

liar property of P(x,t) in the above process is the fact that described by persistent-random-walk equations. Conse-
the probabilitydoes notdepend on the momentum of the quently, in this regime, the probability density becomes a
diffusive particles. This is due to the underlying condition second-ordeMarkov process, and in the continuum limit the
that the diffusive particles described by Ed..2) are as- generalized diffusion equation becomes the telegraphist’'s
sumed to be inhermal equilibrium This assumption, called equation[6].
the hydrodynamic regime, implies that the one-body distri-
bution functionf(x,p,t) must be written as Il. THE QUANTUM RANDOM WALK

Here, 7 and | are the “jump time” and “jump length,”
respectively. The factorsin Eq.(1.1) are the isotropic jump
probabilities for moving right or left. The continuum version
of (1.1), called the Fokker-Planck equation is a parabolic
differential equation

_aZP 1o
Dot ol (1.2

f(X,p,1) = ged P)P(X,1) =X — p212MkgT]P(X,t). In this section we show a summary of results above QRW
(1.3)  that were obtained in previous pap@4s5]. Tunneling diffu-
sion in a one-dimensionallD) periodic lattice (Kronig-
Penney modeglhas been studied using a microscopic, coher-
“On leave from Facultad de Ciencias, UNAM, Meo, 04510 ent (having interference diffusive process called quantum
D.F., Mexico. random walk. In this quantum process, particles described by
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wave packets move freely in the potential valleys, and from In conclusion, QRW assumes a total wave function
each valley to the next by quantum scattering. In this model (x,t) for the whole crystal as a superposition of nonover-
let us denote celin as the valley bounded by two potential lapping cell waves:

barriers at  positions x=(m-—1)I and x=ml
(m=0,%x1,=2,...;l is the lattice constaptThe QRW pro-
cess defines at each cell and at each discrete tinieenr
(n is a positive integer and is a characteristic jump timea
wave functiony,(x,t=n7) that describes a pair of modu- In the QRW theory the amplitude®\(ml,n7) and
lated wave packets centered at the middle of the cell. Th8(ml,n7) in (2.1) are the only functions that describe the
two wave packets have a sharp distribution of wave numbersme evolution for both packets. The amplitudasand B
aroundky and an average momentumh#k, that makes satisfy, for arbitrary lattice valleyn, the recursive equations
the packets move in opposite directions. The function(for simplicity |=7=1),

Um(X,t=n7) is defined by

+ oo

W (x,t=n7)= Z (W (x,nT)+ ¥, (x,n7)]. (2.4

B[m,n+1]

Alm,n]
A[m+1,n+1]) =9(ko,m)

B[ m+ 1,n]) , (29

V(xt=n7)=V(x,n7)+¥_(x,n7)

=[A(ml,n7)et kx4t B(ml,nr)e kox . . . .
[AC ™ ( ) ] wheres(ky,m) denotes the scattering matrix associated with

the potential barrier located at the boundary betweemthe
andm+ 1 cells. If we demand for every scattering procégs
conservation of probability (i) time-reversal invariance
and we assum@ii) symmetric potentialghe s(ky,0) matrix
has to beunitary and symmetric(with symmetryS;;=S,,).
Since the matrixs(ky,m) is shifted to positionk=ml, it may
9i)e parametrized 8]

XG

1
X—|m-5

5 |+vgnr,t=nrt

(2.9

Here, (ml,n7) denote the cell coordinaten() and discrete
time (n7) dependence of the amplitudésandB for right-
and left-moving wave packets, respectively. The modulatin
function G is defined by

\/§e+ik02m Iﬁ
, (2.9

1 s(ko,m)=ei"‘(k0)( i\T  JRe ikom
G(x,t)E\/?fo dk g(k)e Teigtitk=kox (2 9)
i whereT(ky) and R(ky) are the transmission and reflection
wherew(k)=%k?/2m. We may assume the functigifk) to  coefficients, respectivelyT+R=1). The common phase
be a real, peaked function kit=k, (the average wave num- a(ko) may be neglected later on in the probability, as we
bep with spreading Ak. Packets have velocities Will see in Sec. lIl.
vo==*hko/m and average energyso=%w(ko). The Equation(2.5), which, forcomplexamplitudes A,B), has
G(x,t) function depends on the particular formgfk), for ~ the same time dependence asw®-stateMarkov random-
example if|g(k)|2 is a Gaussian, the[G(x,t)|2 is also a Walk process, defines the basic dynamic equations of the
spreading moving Gaussian centered xatvot [7]. If ~ QRW model.
|G(k)|? is normalized irk space, thenG(x,t)|? is also nor-
malized inx space. Ill. QUANTUM CONCENTRATION OF MASS

To facilitate the mathematics, QRW neglects more than
\?vgi ec|ealz|;1 Cskrggaglggag;g% dp?g IBeetst.) ozziltegs}h?;igncglrln I?]S thef\ime t=n a particle at an arbitrqry lattice cath. Since_ .the
other words, in the QRW model the time dispersion of thep."’lcke'[S do nzot overlap,_we can integrate the probability den-
wave packets beyond a single cell is neglected. Under thi§Ity ¥ (x,n)|* along a single celin,
assumption, every wave packet has no overlapping to neigh-
boring cells. Normalization ofg(k)|? and nonoverlapping P(m,n)EJ’ | (x,n)|?dx
demand. cell=m

Next, we want the total probabiliti?(m,n) of finding at

J |W - (x,n7)|2dx=|A(ml,n7)|?, =J’m|\lf;(x,n)+\lfr;(x,n)|2dx. 39
cell=m

Substituting from Eq(2.1), we have

J Vn(x,n7)dx=0, (2.33 P(m,n)=|A(m,n)[2+|B(m,n)|?
cell#m
+ f P (x,mW¥_(x,n)*dx+ c.c.|.
f |- (x,n7)|2dx=|B(ml,n7)|2, m " "
cell=m
3.2
f W (x,n7)dx=0. (2.3b The last integrg] is an inference contribution produced by the
cell=m total superposition, at the same cel] of two wave packets
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moving in oppositedirections. After some elementary inte- the integral is negligible. As we will see, the only interfer-
grations the explicit value of this integral is given by ence will come from packets superposing in the same valley
and traveling in thesamedirection. The final result fo(3.2)

is that the total probability at each lattice cell is an incoherent
superposition of two probabilities, one for each opposite
moving wave packet:

P(m,n)=P_,(m,n)+P_(m,n)=|A(m,n)|?+|B(m,n)|2.
(3.9

So far, this looks like a classical result. However, notice that
according to Eq(2.5 both A(m,n) and B(m,n) are given

The last integral has one functiog(k), centered ak, by a coherent superposition of two amplitudes, currently
and the otherg(k+2kg), centered at-ky. Since by hy- traveling in thesamedirection, but evaluated at a previous
pothesis we have a sharp distribution of momenta arountdme. This will produce a quantum interference, as we show
ko so thatAk<k,, the twog functions do not overlap and next. Substituting Eqg(2.5) into Eq. (3.4), we find

f W (x,n) W (X,n)*dx
m
= AB* exp(i 2 k2n/m)

X J dk g(k)g* (k+ 2kg)e'f2kokn/m, (3.3

P, (mn)=|A(mn)|2=TP,(m-1n—-1)+RP_(m,n—1)+ JTRIA(m—1n—1)B*(m,n—1)e* %2+ cc], (3.5a

P_(m,n)=|B(m,n)|2=RP,(mn—1)+TP_(m+1n—1)+JTRIIA*(m,n—1)B(m+1n—1)e k&M Dt cc]. (3.5

Notice that the interference contributions become directlymay be neglected from the probabiliti€s5). Consequently,
responsible for intense quantum fluctuations in the probabilwe arrive at a classicdincoherenk persistent-random-walk
ity. These fluctuations can be readily appreciated from Fig(PRW) equation[6], namely,

1, where numerical values were obtained from the analytic

solution forA(m,n) andB(m,n) given in Ref.[5]. The am- P.(x,t)=TP,(x—1t—1)+RP_(x,t—1), (3.63
plitudesAB* of the interference terms are of the same order
of magnitude as the probabilitiés, andP_. Both interfer-
ence and probabilities oscillate in space. Probabilities oscil-
late between positive values, but interference terms oscillate
between positive and negative values. Therefore, for a largé/e will return to these classical equations later on.
enough solid, if we define a coarse-grained distribution Notice that time reversal was a built-in condition in our
P.(x,t) by averaging the quantum distributidd. for a QRW procesy s-matrix was unitary and symmetjicWe

P_(x,t)=RP,(x,t—1)+TP_(x+1t—1). (3.6b

small number of cellddm in coordinate space, had initially, in Egs.(3.5 for QRW probabilities, a fully
reversible gquantum proce$42]. However, Eqgs.(3.6) for
xAm PRW areirreversible That is, by eliminating the interfer-
P.(X,t)=— E P.(m,t), ence terms, we introduced irreversibility in the microscopic
AMn=("1am diffusive process.

x=integer number IV. THE DIFFUSION CURRENTS

then, after a coarse-grained averaging, the interference terms /N the next two sections, we show with a particular ex-
ample, using diffusive currents, that if the size of a solid is

great enough, then the effects of quantum interferences may

P(x,7) be neglected.
Let us now calculate the quantum probability current den-
T=R=05 sity J(m,n) at each lattice celin.
r__’// "\\\\_ . J _ f h \I,* d\If(X,n)
/ 0.1 (m,n)= el m2MT (X,H)T
A\ ’ N

— N N. Y., N % d¥*(x,n)
-6 2 0 2 7 —\P(x,n)T dx. 4.1

FIG. 1. Total probabilityP(x,t) for quantum QRWsolid) and
classical PRWbroken. Quantum and classical initial conditions: Substituting from Eq(2.1) and following the same proce-
A(x,0)= 8, 0, B(x,0)=0, P, (x,0)= 8, andP_(x,0)=0. Numeri-  dure we used to calculate the probabilRym,n), after some
cal results are obtained from Ré#]. elementary algebra we obtain
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ko ) ) As expected, the probability current density at each cell is
J(m,n)= V[IA(m,n)I —[B(m,n)|“] just the current density moving right minus the current den-
sity moving left. Substituting from the QRW probability

— 0[P (M) —P_(m,n)]. 4.2 (3.5 into (4.2), we have

J(m,M)/ve={T[P,(m—1n-1)-P_(m+1n-1)]+RP_(mn—-1)-P,.(mn-1)]}
+iVTRIA(M=1n—1)B*(m,n—1)e*Zom— A* (m n—1)B(m+1n—1)e kM _ccl (4.3

By inspection, we can separate the total curm,n) into an incohereng;,.(m,n) and a coherenl.,, (m,n) component:

J(m,n)=J;,(M,N)+Jeo(M,N), (4.4

where

Jindmn)=vo{T[P.(Mm—1n-1)—-P_(m+1n-1)]+RP_(mn-1)-P,(m,n—-1)]}, (4.59

and

JeoMN)=ivoVTRIA(M—1n—1)B*(m,n—1)e* M- A*(mn—1)B(m+1n—1)e ZMV_ccl  (4.5h

Notice that the coherent curredt,, in Eg. (4.5b is made of nothing but pure quantum interference contributions in the
probabilities. In other words].,, contains the source of quantum fluctuations as we have discussed previously {8.5gs.
On the other hand, the incoherent currépt contains only the incoherent addition of probabilities without interference terms.
The incoherent currerit.53 could also be derived from a classical theory such as the PRW3HE).and the result would be
the same

One way to find the dynamic microscopic diffusion coefficient is to take a continuum approximation. First, we assume the
distancd between adjacent lattice cells to be very small; then we can make a first-order Taylor expansion around the position
m of the functionsP(m=1,n), A(m=I,n), andB(m=1,n). While keeping the interference terms, this expansion breaks the
time-reversalinvariance of the microscopic current and introduces irreversibility in the resulting equations. Second, to make
things easy, we may assume a long time; here we assume that a quasistationary state has been reached
P*(m,n)=(m,n— 7)=P(m), which we may write independent of time. Under these two assumptions, we obtain, after a
first-order Taylor expansion,

d
Jind(M/vo=(T=R)[P.(M)=P_(mM)]=T—[P.(m+P_(m)]
d
=(T=R)I(M)/vo—T 7—P(m), (4.6)

and

. d d
Jeor{M/vo=— JTRie*2kom A* (m) g B(M)+B*(m) T_A(m)-c.c.

+iTR2{e"ZMA(m)B* (m)—c.c}. 4.7

Substituting these two results into E¢.4), we have, after some algebraic simplifications, the following irreversible current:

Jm=—v liP(m)—@ I l/zi e‘z”‘OmA*(m)iB(m)+e+‘2k0”‘B*(m)iA(m)—cc
92R dm 2R dm dm -

T 1/2 )
+vg ﬁ) i{e"2komA(m)B* (m)—c.c}. 4.9
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By inspection, we can now identify the microscopic diffu- accessible quantity. Next, we proceed to show how the mi-
sion coefficients. The results for the linear density current areroscopic coefficient§ andR are related to the correspond-

as follows(for clarity we rewritel #1). ing measurable coefficients and.72 of a whole sampleof
(1) We have an incoherent current total lengthL =NI made ofN identical successive cells.

Assuming a unitary incoming probability upon a sample
of total lengthL=NI, and addingincoherently(the waves
arrive at different timesthe infinite series of partial reflect-
ing and transmitting outgoing probabilities, we easily arrive,
As expected, this diffusive current is nothing but the dy-after straightforward algebra, at the well known res{iks
namic microscopic version of Fick’s law. QRW shows that
the dynamic diffusion coefficient is given by the microscopic T NR

d
P(m). 4.9

Jind(M)=—vol 52 5

Landauer resulf9]: T= IT(N-DR’ K= T+ (N-DR" (5.2
T L Next, taking the ratio of both macroscopic coefficients in
| —2 L ,
D_U°|2R VoTor 7 Vo (4.10 (5.1), we have
We stress the fact tha.9) was obtained using the pure I_NZ -
incoherent current4.6). However, if, instead of using the R .7 (5.2

guantum equations(2.5, we had taken the classical

persistent-random-walk equatiof3.6), we would have ob- Substituting(5.2) into the diffusion coefficient® in (4.10
tained the same resultThis suggests that Fick's law is a andC in (4.12, we have

classical resultincoherent It seems that we do not need a

guantum theory to obtain Landauer’s result. A suitable inco- D=0uIN o N T 5.3
herent theory such as the Boltzmann or Fokker-Planck equa- 0N 2% Vo2 '
tions will get the same result with painless mathemdtl€s.
(2) We have a coherent current contribution: N7\ 172 1 [.7\12
Jeor(M)=—vyl <§> E( e~ 12koMA* (m) gmBm
In the bulk limit, where <1, N>1 such that

, d NI=L—constant, we see that the incoherent Landauer dif-
+e+'2k0mB*(m)d—mA(m)—c.c.>. (4.12)  fusion coefficientD in (5.3) remains unchanged. However,
the coherent diffusion coefficied in (5.4) goes to zero like
This diffusive current has a pure quantum origin: the inter-(N) 2. This dependence is the same for relative fluctua-
ference contributions in probability. It depends on the graditions of any additive quantity in equilibrium statistical me-
ents ofcomplex amplitudesThere is no way we can obtain chanics{13]. _ _
this contribution from a classical theory. The associated co- This is a key result. As the size of the crystal increases,
efficient that depends on the microscopic properties of th&uantum diffusion tends to decrease the quantum fluctuation

lattice will be called thecoherent diffusion coefficient,C effects. We use this property to move from the reversible
gquantum regime to the irreversible classical mesoscopic re-
T\ 12 gime of diffusion.
C=uvgl R 4.12

VI. CLASSICAL MESOSCOPIC DIFFUSION

As we will show in next section, the root square @nwill A i th di . K .
make this coefficient vanish as the size of the material in- > W€ Sawin the preceding Sections, as we keep increas-
creases. ing the sizeL of any nanostructure sample, the quantum

(3) Finally, we have another coherent contribution: interferenpe effech keep.decreasing. monotonical[y. If we
have a microscopic material, and we increase its size to the
12 point where we can confidently neglect quantum fluctua-
i{e*12koMA(m)B* (m)—c.c}). tions, we call such a materialciassical mesoscop&gample.
413 A classical mesoscopic sample is then, by definition, an in-
' coherent system, but a very small one. So small, in fact, that

This quantum interference current comes from the ballistidhe times involved in diffusing through such materials are
motion of the amplitudes in our model. Since this is not anot long enough for the momentum varialpeto reach sta-
diffusive current, we may forget about it in the present con-tistical independence from the position variakleeven less

text of transport theory. to reach thermal equilibrium.
Diffusion in classical mesoscopic materials can be de-

scribed with any incoherent kinetic theory. The only condi-
tion is that the one-body distribution function must be a joint
The present QRW, so far, represents a microscopic diffudistribution functionf(x,p,t) of position and momentum.
sion theory. However, the ratiB/T (Landauer’s resistange Both variables X,p) will depend on time and will be corre-
[9] has only a technical meaning and is not a physicallylated. QRW predicts in the coarse-grained distributions Egs.

J(m)=vol(§

V. THE BULK LIMIT
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(3.6) one discrete stochastic process model PRW which calfii) the dynamic non-Fickian Maxwell-Cattaneo relationship
be satisfied by the one-body distribution functidx, p,t) in [14-14:

a 1D mesoscopic system:
dP(x,t) 0&J(x,t)

P.(x,t)=TP,(x—=1t—1)+RP_(x,t—1), (6.13 I =-D—0r0 P (6.4

P_(x,t)=RP,.(x,t—1)+TP_(x+1t—1). (6.1  where, as we expecte®=v3a7rT/2R~v36 is the Landauer

) _ ) diffusion coefficient derived in Eq(4.10 and associated
Equations(6.1) describe a classical system where all par-yjith the incoherent part of the QRW process. Combining
ticles have the same average spege:l/7. The effect of Egs. (6.3 and (6.4), we have the generalized mesoscopic

elastic collisions is simply to change their directions of mo-giffusion equation for PRW: the hyperboliglegraphist's
tion. In a 1D lattice, the momentum will have only two val- equation[6,17):

ues: p==|po]. For simplicity we have defined

P (x)=1(x+|pol.)_and P_(x0)=1(x,~|pol.0), re- L IR0 LR _TPOD g g
spectively.P, andP_ describe the joint probability of find- v a2 D ot ox* '

ing the particle at positiorx at timet with positive and
negative velocities. The constarifsand R denote, classi- The velocityvo=I/7 is the mean velocity of the particles,
cally, the forward and backward scattering probabilities, re.not the speed of soun&ound is a macroscopic concept that
spectively. UsuallyT>R, and they express the inertia of does not occur in very small materials and very small times.
particles under scattering. The conditidn-R=1 guaran- Equation(6.5 describes diffusion where density wave sig-
tees the conservation of particles in every scattering proces§als are propagated with finite velocit§,18,19. .
The PRW proces$6.1) describes in phase space a Mar- 10 pettgr understand the origin o_f the second-order time
kovian random walk withinternal degrees of freedofii1]. ~ derivative in the telegraphist's equatiéB.5), we show next
Each individual probabilityP, and P_ in Eq. (6.1) is a how the total probability density(x,t) is described by a
second-order Markov proce$]. second-order Markowrocess. Using straightforward alge-
Starting from a reversible quantum process QRW andfa, from Egs.(6.1) the following property can easily be
moving toward the irreversible direction, our classical PRWProved: The total probability>(x,t) satisfies, forarbitrary
process lands in a region long before the hydrodynamic revalues of R, T), the recursion equation

gime. Since PRW is a classical Markov process, a dynamical P(xt+2)=TTP(x—1t+1)+ P(x+1t+1
microscopicH theorem is satisfiefil3], and eventually, for (X, J=TIPX=1t+ D+ P(x+1t+1)]
long enough times, the system must evolve toward the hy- +(R=T)P(x,t). (6.6)

drodynamic Gaussian solutidnentral limit theorem[12].

Finally we ask: In configuration space, what is the generEquation(6.6) shows clearly that iff =RR= 3 (isotropic scat-
alized diffusion equation(continuum) associated with a tering, we recover dirst-order random walk given by Eg.
PRW process? The answer is well known in the literatur1.1). But, as long as we keep some record of inertia
[6]. For arbitrary values of the coefficient®,T) the con- (memory in scattering processed ¢ R), P(x,t) satisfies a
tinuum limit (1,7)—(0,0) of a PRW procest.1) does not  second-ordeMarkov equation. Assumingl(# R), the prob-

exist! However, if the coefficient®R and T satisfy the par- ability P(x,t) defines a process that relates probabilities at
ticular relations three consecutive times. Therefore, time derivatives only up

to asecond-orderre allowed in the Taylor series expansion
associated with the continuous time. Clearly, the Maxwell-
Cattaneo relationshi6.4) and the second-order time deriva-
tive in the telegraphist’s equatigf.5) are a consequence of
where 6 is a characteristic time, only in this particular casethis second-order Markoywroperty of the diffusion process
will PRW give the following continuum equations relating in configuration space.

the total probability P(x,t)=P,.+P_ and current Since for arbitrary values ofR,T), the discrete equation
J(x,t)/vg=P,—P_ [6]: (i) local conservation of mass: (6.6) does nothave any continuous equivalent, this gives us
an additional clue to the range of applicability of PRW equa-
tions. The size of the solid and times of diffusion are still so
small that a continuum description is not even allowed.

.
R=5;~0, T=1-R~1, (6.2)

ﬁP(x,t)_ dI(x,t)
at ax

(6.3
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