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We use a discrete approximation of quantum mechanics called the quantum random walk to study diffusion
in one-dimensional crystalline nanostructures. There, intense fluctuations in the density are a consequence of
quantum interference. As the size of the crystal increase, relative quantum fluctuations decrease and, if a
coarse-grained averaging is taken, interference may be neglected. When this happens, we describe a far-from-
equilibrium, classical, dynamic mesoscopic diffusion regime. In this regime, diffusion equations are given by
a persistent-random-walk process. Density becomes a second-order Markov process, and in the continuum
limit, the current satisfies the non-Fickian Maxwell-Cattaneo relationship. The generalized diffusion equation
in the telegraphist’s equation.@S1063-651X~96!10005-6#

PACS number~s!: 05.40.1j, 05.70.Ln, 03.65.Sq

I. INTRODUCTION

An atomistic kinetic-theory approach to diffusion in a lat-
tice is the stochastic process called the random-walk~RW!
@1,2#. The traditional model of diffusion using RW is afirst-
orderMarkov process in configuration space. Let us interpret
P(x,t), as the probability distribution of the positionx
(x[0,6 l ,62l , . . . ) for a diffusive particle at time t
(t[0,t,2t, . . . ). Assuming a simple~nonbiased! RW in a
lattice, the probabilityP(x,t) satisfies the simple recurrence
formula

P~x,t1t!5
1

2
P~x2 l ,t !1

1

2
P~x1 l ,t !. ~1.1!

Here, t and l are the ‘‘jump time’’ and ‘‘jump length,’’
respectively. The factors12 in Eq. ~1.1! are the isotropic jump
probabilities for moving right or left. The continuum version
of ~1.1!, called the Fokker-Planck equation is a parabolic
differential equation
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]t
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]2P

]x2
, ~1.2!

where D[ l 2/2t5v0
2t/2 is the diffusion coefficient, and

v0[ l /t is the mean velocity of the particles.
From the point of view of kinetic theory, the most pecu-

liar property ofP(x,t) in the above process is the fact that
the probabilitydoes notdepend on the momentum of the
diffusive particles. This is due to the underlying condition
that the diffusive particles described by Eq.~1.2! are as-
sumed to be inthermal equilibrium. This assumption, called
the hydrodynamic regime, implies that the one-body distri-
bution functionf (x,p,t) must be written as

f ~x,p,t !5feq~p!P~x,t !5exp@2p2/2MkBT#P~x,t !.
~1.3!

whereM is the mass of the particles,kB Boltzmann’s con-
stant, andT the temperature. In this near-equilibrium regime,
the time scales associated with diffusion in a solid are enor-
mous. For example, the timet between jumps may be of the
order of weeks or even months@3#. The distancesl associ-
ated with this process are also much greater than the mean
free pathl. In other words, Eq.~1.2! describes diffusion in a
sample ofmacroscopic size.

Our main question is the following one. If we consider a
diffusive regime in which the momentum variablep has not
reached thermal equilibrium and, further, if the momentum
variable has not even reached statistical independence from
the position variablex, then what is the generalized diffusion
equation? To answer this question, first we go as far away
from the equilibrium regime as we can: the time-dependent
quantum process. There, we know that the Schro¨dinger equa-
tion is the diffusion equation. In particular, for crystalline
nanostructures, a discrete approximation of quantum me-
chanics, called quantum random walk~QRW!, has been ap-
plied to study tunneling diffusion@4,5#. Second, using diffu-
sive currents, we give an example where we show that for a
large enough size of the crystal, quantum interference effects
may be neglected. Third, after taking a coarse-grained aver-
aging in the quantum probabilities, we can neglect quantum
interference and, as a consequence, we destroy the time-
reversal invariance of the original QRW process. We arrive
at a classical, irreversible, mesoscopic diffusive process.
Fourth, under this approximation the mesoscopic process is
described by persistent-random-walk equations. Conse-
quently, in this regime, the probability density becomes a
second-orderMarkov process, and in the continuum limit the
generalized diffusion equation becomes the telegraphist’s
equation@6#.

II. THE QUANTUM RANDOM WALK

In this section we show a summary of results above QRW
that were obtained in previous papers@4,5#. Tunneling diffu-
sion in a one-dimensional~1D! periodic lattice ~Kronig-
Penney model! has been studied using a microscopic, coher-
ent ~having interference!, diffusive process called quantum
random walk. In this quantum process, particles described by
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wave packets move freely in the potential valleys, and from
each valley to the next by quantum scattering. In this model,
let us denote cellm as the valley bounded by two potential
barriers at positions x5(m21)l and x5ml
(m50,61,62, . . . ; l is the lattice constant!. The QRW pro-
cess defines at each cellm, and at each discrete timet5nt
(n is a positive integer andt is a characteristic jump time!, a
wave functioncm(x,t5nt) that describes a pair of modu-
lated wave packets centered at the middle of the cell. The
two wave packets have a sharp distribution of wave numbers
around k0 and an average momentum6\k0 that makes
the packets move in opposite directions. The function
cm(x,t5nt) is defined by

Cm~x,t5nt![Cm
1~x,nt!1Cm

2~x,nt!

[@A~ml,nt!e1 ik0x1B~ml,nt!e2 ik0x#

3GFx2Sm2
1

2D l1v0nt,t5nt G .
~2.1!

Here, (ml,nt) denote the cell coordinate (ml) and discrete
time (nt) dependence of the amplitudesA andB for right-
and left-moving wave packets, respectively. The modulating
functionG is defined by

G~x,t ![
1

A2p
E
0

`

dk g~k!e2 iv~k!te1 i ~k2k0!x, ~2.2!

wherev(k)[\k2/2m. We may assume the functiong(k) to
be a real, peaked function atk5k0 ~the average wave num-
ber! with spreading Dk. Packets have velocities
v056\k0 /m and average energy«05\v(k0). The
G(x,t) function depends on the particular form ofg(k), for
example if ug(k)u2 is a Gaussian, thenuG(x,t)u2 is also a
spreading moving Gaussian centered atx5v0t @7#. If
uG(k)u2 is normalized ink space, thenuG(x,t)u2 is also nor-
malized inx space.

To facilitate the mathematics, QRW neglects more than
one cell spreading of the packets. That is, at all times the
wave packets are assumed to be bounded to asingle cell. In
other words, in the QRW model the time dispersion of the
wave packets beyond a single cell is neglected. Under this
assumption, every wave packet has no overlapping to neigh-
boring cells. Normalization ofug(k)u2 and nonoverlapping
demand.

E
cell5m

uCm
1~x,nt!u2dx5uA~ml,nt!u2,

E
cellÞm

Cm
1~x,nt!dx50, ~2.3a!

E
cell5m

uCm
2~x,nt!u2dx5uB~ml,nt!u2,

E
cellÞm

Cm
2~x,nt!dx50. ~2.3b!

In conclusion, QRW assumes a total wave function
C(x,t) for the whole crystal as a superposition of nonover-
lapping cell waves:

C~x,t5nt![ (
m52`

1`

@Cm
1~x,nt!1Cm

2~x,nt!#. ~2.4!

In the QRW theory the amplitudesA(ml,nt) and
B(ml,nt) in ~2.1! are the only functions that describe the
time evolution for both packets. The amplitudesA and B
satisfy, for arbitrary lattice valleym, the recursive equations
~for simplicity l5t51),

S B@m,n11#

A@m11,n11#D 5s~k0 ,m!S A@m,n#

B@m11,n#D , ~2.5!

wheres(k0 ,m) denotes the scattering matrix associated with
the potential barrier located at the boundary between them
andm11 cells. If we demand for every scattering process~i!
conservation of probability, ~ii ! time-reversal invariance,
and we assume~iii ! symmetric potentials, thes(k0,0) matrix
has to beunitary andsymmetric~with symmetryS115S22).
Since the matrixs(k0 ,m) is shifted to positionx5ml, it may
be parametrized as@8#

s~k0 ,m!5eia~k0!S ARe1 ik02m iAT
iAT ARe2 ik02mD , ~2.6!

whereT(k0) andR(k0) are the transmission and reflection
coefficients, respectively (T1R51). The common phase
a(k0) may be neglected later on in the probability, as we
will see in Sec. III.

Equation~2.5!, which, forcomplexamplitudes (A,B), has
the same time dependence as atwo-stateMarkov random-
walk process, defines the basic dynamic equations of the
QRW model.

III. QUANTUM CONCENTRATION OF MASS

Next, we want the total probabilityP(m,n) of finding at
time t5n a particle at an arbitrary lattice cellm. Since the
packets do not overlap, we can integrate the probability den-
sity uC(x,n)u2 along a single cellm,

P~m,n![E
cell5m

uC~x,n!u2dx

5E
m

uCm
1~x,n!1Cm

2~x,n!u2dx. ~3.1!

Substituting from Eq.~2.1!, we have

P~m,n!5uA~m,n!u21uB~m,n!u2

1S E
m

Cm
1~x,n!Cm

2~x,n!* dx1 c.c.D .
~3.2!

The last integral is an inference contribution produced by the
total superposition, at the same cellm, of two wave packets
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moving in oppositedirections. After some elementary inte-
grations the explicit value of this integral is given by

E
m

Cm
1~x,n!Cm

2~x,n!* dx

5AB* exp~ i2\k0
2n/m!

3E
2`

`

dk g~k!g* ~k12k0!e
i\2k0kn/m. ~3.3!

The last integral has one function,g(k), centered atk0
and the other,g(k12k0), centered at2k0 . Since by hy-
pothesis we have a sharp distribution of momenta around
k0 so thatDk!k0 , the twog functions do not overlap and

the integral is negligible. As we will see, the only interfer-
ence will come from packets superposing in the same valley
and traveling in thesamedirection. The final result for~3.2!
is that the total probability at each lattice cell is an incoherent
superposition of two probabilities, one for each opposite
moving wave packet:

P~m,n![P1~m,n!1P2~m,n!5uA~m,n!u21uB~m,n!u2.
~3.4!

So far, this looks like a classical result. However, notice that
according to Eq.~2.5! both A(m,n) andB(m,n) are given
by a coherent superposition of two amplitudes, currently
traveling in thesamedirection, but evaluated at a previous
time. This will produce a quantum interference, as we show
next. Substituting Eq.~2.5! into Eq. ~3.4!, we find

P1~m,n![uA~m,n!u25TP1~m21,n21!1RP2~m,n21!1ATR@ iA~m21,n21!B* ~m,n21!e1 ik02m1c.c.#, ~3.5a!

P2~m,n![uB~m,n!u25RP1~m,n21!1TP2~m11,n21!1ATR@ iA* ~m,n21!B~m11,n21!e2 ik02~m11!1c.c.#. ~3.5b!

Notice that the interference contributions become directly
responsible for intense quantum fluctuations in the probabil-
ity. These fluctuations can be readily appreciated from Fig.
1, where numerical values were obtained from the analytic
solution forA(m,n) andB(m,n) given in Ref.@5#. The am-
plitudesAB* of the interference terms are of the same order
of magnitude as the probabilitiesP1 andP2 . Both interfer-
ence and probabilities oscillate in space. Probabilities oscil-
late between positive values, but interference terms oscillate
between positive and negative values. Therefore, for a large
enough solid, if we define a coarse-grained distribution
P6(x,t) by averaging the quantum distributionP6 for a
small number of cellsDm in coordinate space,

P6~x,t ![
1

Dm (
m5~x21!Dm

xDm

P6~m,t !,

x5 integer number

then, after a coarse-grained averaging, the interference terms

may be neglected from the probabilities~3.5!. Consequently,
we arrive at a classical~incoherent! persistent-random-walk
~PRW! equation@6#, namely,

P1~x,t !5TP1~x21,t21!1RP2~x,t21!, ~3.6a!

P2~x,t !5RP1~x,t21!1TP2~x11,t21!. ~3.6b!

We will return to these classical equations later on.
Notice that time reversal was a built-in condition in our

QRW process~ s-matrix was unitary and symmetric!. We
had initially, in Eqs.~3.5! for QRW probabilities, a fully
reversible quantum process@12#. However, Eqs.~3.6! for
PRW areirreversible. That is, by eliminating the interfer-
ence terms, we introduced irreversibility in the microscopic
diffusive process.

IV. THE DIFFUSION CURRENTS

In the next two sections, we show with a particular ex-
ample, using diffusive currents, that if the size of a solid is
great enough, then the effects of quantum interferences may
be neglected.

Let us now calculate the quantum probability current den-
sity J(m,n) at each lattice cellm.

J~m,n!5E
cell m

\

2Mi S C* ~x,n!
dC~x,n!

dx

2C~x,n!
dC* ~x,n!

dx Ddx. ~4.1!

Substituting from Eq.~2.1! and following the same proce-
dure we used to calculate the probabilityP(m,n), after some
elementary algebra we obtain

FIG. 1. Total probabilityP(x,t) for quantum QRW~solid! and
classical PRW~broken!. Quantum and classical initial conditions:
A(x,0)5dx,0, B(x,0)50, P1(x,0)5dx,0 andP2(x,0)50. Numeri-
cal results are obtained from Ref.@4#.
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J~m,n!5
\k0
M

@ uA~m,n!u22uB~m,n!u2#

5v0@P1~m,n!2P2~m,n!#. ~4.2!

As expected, the probability current density at each cell is
just the current density moving right minus the current den-
sity moving left. Substituting from the QRW probability
~3.5! into ~4.2!, we have

J~m,n!/v05$T@P1~m21,n21!2P2~m11,n21!#1R@P2~m,n21!2P1~m,n21!#%

1 iATR$A~m21,n21!B* ~m,n21!e1 i2k0m2A* ~m,n21!B~m11,n21!e2 ik02~m11!2c.c.%. ~4.3!

By inspection, we can separate the total currentJ(m,n) into an incoherentJinc(m,n) and a coherentJcoh (m,n) component:

J~m,n![Jinc~m,n!1Jcoh~m,n!, ~4.4!

where

Jinc~m,n![v0$T@P1~m21,n21!2P2~m11,n21!#1R@P2~m,n21!2P1~m,n21!#%, ~4.5a!

and

Jcoh~m,n![ iv0ATR$A~m21,n21!B* ~m,n21!e1 i2k0m2A* ~m,n21!B~m11,n21!e2 i2k0~m11!2c.c.%. ~4.5b!

Notice that the coherent currentJcoh in Eq. ~4.5b! is made of nothing but pure quantum interference contributions in the
probabilities. In other words,Jcoh contains the source of quantum fluctuations as we have discussed previously in Eqs.~3.5!.
On the other hand, the incoherent currentJinc contains only the incoherent addition of probabilities without interference terms.
The incoherent current~4.5a! could also be derived from a classical theory such as the PRW Eq.~3.6! and the result would be
the same.

One way to find the dynamic microscopic diffusion coefficient is to take a continuum approximation. First, we assume the
distancel between adjacent lattice cells to be very small; then we can make a first-order Taylor expansion around the position
m of the functionsP(m6 l ,n), A(m6 l ,n), andB(m6 l ,n). While keeping the interference terms, this expansion breaks the
time-reversalinvariance of the microscopic current and introduces irreversibility in the resulting equations. Second, to make
things easy, we may assume a long time; here we assume that a quasistationary state has been reached
P*(m,n)>(m,n2t)[P(m), which we may write independent of time. Under these two assumptions, we obtain, after a
first-order Taylor expansion,

Jinc~m!/v0>~T2R!@P1~m!2P2~m!#2T
d

dm
@P1~m!1P2~m!#

5~T2R!J~m!/v02T
d

dm
P~m!, ~4.6!

and

Jcoh~m!/v0>2ATRie1 i2k0mSA* ~m!
d

dm
B~m!1B* ~m!

d

dm
A~m!2c.c.D

1 iATR2$e1 i2k0mA~m!B* ~m!2c.c.%. ~4.7!

Substituting these two results into Eq.~4.4!, we have, after some algebraic simplifications, the following irreversible current:

J~m!>2v0
T

2R

d

dm
P~m!2

v0
2 S TRD 1/2i S e22ik0mA* ~m!

d

dm
B~m!1e1 i2k0mB* ~m!

d

dm
A~m!2c.c.D

1v0S TRD 1/2i $e1 i2k0mA~m!B* ~m!2c.c.%. ~4.8!
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By inspection, we can now identify the microscopic diffu-
sion coefficients. The results for the linear density current are
as follows~for clarity we rewritelÞ1).

~1! We have an incoherent current

Jinc~m![2v0l
T

2R

d

dm
P~m!. ~4.9!

As expected, this diffusive current is nothing but the dy-
namic microscopic version of Fick’s law. QRW shows that
the dynamic diffusion coefficient is given by the microscopic
Landauer result@9#:

D5v0l
T

2R
5v0

2t
T

2R
,

l

t
[v0. ~4.10!

We stress the fact that~4.9! was obtained using the pure
incoherent current~4.6!. However, if, instead of using the
quantum equations~2.5!, we had taken the classical
persistent-random-walk equations~3.6!, we would have ob-
tained the same result. This suggests that Fick’s law is a
classical result~incoherent!. It seems that we do not need a
quantum theory to obtain Landauer’s result. A suitable inco-
herent theory such as the Boltzmann or Fokker-Planck equa-
tions will get the same result with painless mathematics@10#.

~2! We have a coherent current contribution:

Jcoh~m!52v0l S TRD 1/2i2S e2 i2k0mA* ~m!
d

dm
B~m!

1e1 i2k0mB* ~m!
d

dm
A~m!2c.c.D . ~4.11!

This diffusive current has a pure quantum origin: the inter-
ference contributions in probability. It depends on the gradi-
ents ofcomplex amplitudes. There is no way we can obtain
this contribution from a classical theory. The associated co-
efficient that depends on the microscopic properties of the
lattice will be called thecoherent diffusion coefficient C,

C[v0l S TRD 1/2. ~4.12!

As we will show in next section, the root square inC will
make this coefficient vanish as the size of the material in-
creases.

~3! Finally, we have another coherent contribution:

J~m!5v0l S TRD 1/2i $e1 i2k0mA~m!B* ~m!2c.c.%.

~4.13!

This quantum interference current comes from the ballistic
motion of the amplitudes in our model. Since this is not a
diffusive current, we may forget about it in the present con-
text of transport theory.

V. THE BULK LIMIT

The present QRW, so far, represents a microscopic diffu-
sion theory. However, the ratioR/T ~Landauer’s resistance!
@9# has only a technical meaning and is not a physically

accessible quantity. Next, we proceed to show how the mi-
croscopic coefficientsT andR are related to the correspond-
ing measurable coefficientsT andR of a whole sampleof
total lengthL5Nl made ofN identical successive cells.

Assuming a unitary incoming probability upon a sample
of total lengthL5Nl, and addingincoherently~the waves
arrive at different times! the infinite series of partial reflect-
ing and transmitting outgoing probabilities, we easily arrive,
after straightforward algebra, at the well known results@5#:

T 5
T

11~N21!R
, R5

NR

11~N21!R
. ~5.1!

Next, taking the ratio of both macroscopic coefficients in
~5.1!, we have

T

R
5N

T

R
. ~5.2!

Substituting~5.2! into the diffusion coefficientsD in ~4.10!
andC in ~4.12!, we have

D5v0lN
T

2R
5v0L

T

2R
, ~5.3!

C5v0l SNTR D 1/25v0L
1

AN
S T
R

D 1/2. ~5.4!

In the bulk limit, where l!1, N@1 such that
Nl5L→constant, we see that the incoherent Landauer dif-
fusion coefficientD in ~5.3! remains unchanged. However,
the coherent diffusion coefficientC in ~5.4! goes to zero like
(N)21/2. This dependence is the same for relative fluctua-
tions of any additive quantity in equilibrium statistical me-
chanics@13#.

This is a key result. As the size of the crystal increases,
quantum diffusion tends to decrease the quantum fluctuation
effects. We use this property to move from the reversible
quantum regime to the irreversible classical mesoscopic re-
gime of diffusion.

VI. CLASSICAL MESOSCOPIC DIFFUSION

As we saw in the preceding sections, as we keep increas-
ing the sizeL of any nanostructure sample, the quantum
interference effects keep decreasing monotonically. If we
have a microscopic material, and we increase its size to the
point where we can confidently neglect quantum fluctua-
tions, we call such a material aclassical mesoscopicsample.
A classical mesoscopic sample is then, by definition, an in-
coherent system, but a very small one. So small, in fact, that
the times involved in diffusing through such materials are
not long enough for the momentum variablep to reach sta-
tistical independence from the position variablex, even less
to reach thermal equilibrium.

Diffusion in classical mesoscopic materials can be de-
scribed with any incoherent kinetic theory. The only condi-
tion is that the one-body distribution function must be a joint
distribution function f (x,p,t) of position and momentum.
Both variables (x,p) will depend on time and will be corre-
lated. QRW predicts in the coarse-grained distributions Eqs.
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~3.6! one discrete stochastic process model PRW which can
be satisfied by the one-body distribution functionf (x,p,t) in
a 1D mesoscopic system:

P1~x,t !5TP1~x21,t21!1RP2~x,t21!, ~6.1a!

P2~x,t !5RP1~x,t21!1TP2~x11,t21!. ~6.1b!

Equations~6.1! describe a classical system where all par-
ticles have the same average speedv0[ l /t. The effect of
elastic collisions is simply to change their directions of mo-
tion. In a 1D lattice, the momentum will have only two val-
ues: p56up0u. For simplicity we have defined
P1(x,t)[ f (x,1up0u,t) and P2(x,t)[ f (x,2up0u,t), re-
spectively.P1 andP2 describe the joint probability of find-
ing the particle at positionx at time t with positive and
negative velocities. The constantsT and R denote, classi-
cally, the forward and backward scattering probabilities, re-
spectively. UsuallyT.R, and they express the inertia of
particles under scattering. The conditionT1R51 guaran-
tees the conservation of particles in every scattering process.

The PRW process~6.1! describes in phase space a Mar-
kovian random walk withinternal degrees of freedom@11#.
Each individual probabilityP1 and P2 in Eq. ~6.1! is a
second-order Markov process@6#.

Starting from a reversible quantum process QRW and
moving toward the irreversible direction, our classical PRW
process lands in a region long before the hydrodynamic re-
gime. Since PRW is a classical Markov process, a dynamical
microscopicH theorem is satisfied@13#, and eventually, for
long enough times, the system must evolve toward the hy-
drodynamic Gaussian solution~central limit theorem! @12#.

Finally we ask: In configuration space, what is the gener-
alized diffusion equation~continuum! associated with a
PRW process? The answer is well known in the literature
@6#. For arbitrary values of the coefficients (R,T) the con-
tinuum limit (l ,t)→(0,0) of a PRW process~6.1! does not
exist! However, if the coefficientsR andT satisfy the par-
ticular relations

R[
t

2u
;0, T512R;1, ~6.2!

whereu is a characteristic time, only in this particular case
will PRW give the following continuum equations relating
the total probability P(x,t)[P11P2 and current
J(x,t)/v0[P12P2 @6#: ~i! local conservation of mass:

]P~x,t !

]t
52

]J~x,t !

]x
; ~6.3!

~ii ! the dynamic non-Fickian Maxwell-Cattaneo relationship
@14–16#:

J~x,t !52D
]P~x,t !

]x
2u

]J~x,t !

]t
, ~6.4!

where, as we expected,D[v0
2tT/2R;v0

2u is the Landauer
diffusion coefficient derived in Eq.~4.10! and associated
with the incoherent part of the QRW process. Combining
Eqs. ~6.3! and ~6.4!, we have the generalized mesoscopic
diffusion equation for PRW: the hyperbolictelegraphist’s
equation@6,17#:

1

v0
2

]2P~x,t !

]t2
1

1

D

]P~x,t !

]t
5

]2P~x,t !

]x2
. ~6.5!

The velocityv0[ l /t is the mean velocity of the particles,
not the speed of sound. Sound is a macroscopic concept that
does not occur in very small materials and very small times.
Equation~6.5! describes diffusion where density wave sig-
nals are propagated with finite velocity@6,18,19#.

To better understand the origin of the second-order time
derivative in the telegraphist’s equation~6.5!, we show next
how the total probability densityP(x,t) is described by a
second-order Markovprocess. Using straightforward alge-
bra, from Eqs.~6.1! the following property can easily be
proved: The total probabilityP(x,t) satisfies, forarbitrary
values of (R,T), the recursion equation

P~x,t12!5T@P~x21,t11!1P~x11,t11!#

1~R2T!P~x,t !. ~6.6!

Equation~6.6! shows clearly that ifT5R5 1
2 ~isotropic scat-

tering!, we recover afirst-order random walk given by Eq.
~1.1!. But, as long as we keep some record of inertia
~memory! in scattering processes (TÞR), P(x,t) satisfies a
second-orderMarkov equation. Assuming (TÞR), the prob-
ability P(x,t) defines a process that relates probabilities at
threeconsecutive times. Therefore, time derivatives only up
to asecond-orderare allowed in the Taylor series expansion
associated with the continuous time. Clearly, the Maxwell-
Cattaneo relationship~6.4! and the second-order time deriva-
tive in the telegraphist’s equation~6.5! are a consequence of
this second-order Markovproperty of the diffusion process
in configuration space.

Since for arbitrary values of (R,T), the discrete equation
~6.6! does nothave any continuous equivalent, this gives us
an additional clue to the range of applicability of PRW equa-
tions. The size of the solid and times of diffusion are still so
small that a continuum description is not even allowed.
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