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Expressions for the thermal noise strength in stochastic amplitude equations of quasi-one-
dimensional hydrodynamic systems near a pattern-forming instability are given in a generally ap-
plicable form. The expressions can be evaluated for any system where the macroscopic equations
of motion and the entropy production in terms of generalized forces and fluxes are known and the
linear stability analysis can be performed. We apply the results mainly to the Taylor-Couette system
(with corotating cylinders) and derive an approximate analytic expression for the noise strength of
the amplitude equation near the 6rst threshold. An analytical expression is given also for the mean
kinetic energy of the velocity fluctuations. The analytic formulas are easy to evaluate and are of
second order in the gap width; their deviation from numerical results is less than 2.5'Fo for a radius
ratio of 0.738 and all (co)rotation rates of the outer cylinder. By comparing the mean energy of the
fluctuations with the equipartition theorem, we separate equilibrium from nonequilibrium effects.

PACS number(s): 47.20.—k, 05.40.+j, 05.70.Ln

I. INTRODUCTION

Near primary instabilities of pattern-forming nonequi-
librium systems, the intensity and the correlation lengths
and times of thermal fluctuations of the Beld variables
increase, similar to an equilibrium system near a con-
tinuous phase transition. Although the eKect is very
small (in equilibrium, the energy contained in. the fluc-
tuations has to be compared with k~T, where k~ is the
Boltzmann constant), it is experimentally accessible and
has been measured directly in electrohydrodynamic con-
vection [1,2] and recently in Rayleigh-Benard convection
(RBC) in gasses at elevated pressures [3] and in a narrow
channel containing a binary mixture with a negative sep-
aration ratio [4]. In addition, fluctuations were measured
indirectly, either with the help of a temporal control-
parameter ramp [5,6] in RBC in a simple fluid or using
noise amplification in the convectively instable regime in
RBC in binary mixtures [7] and in Taylor-Couette flow
(TCF) with through flow [8—10].

In all relevant systems, the size in at least one direc-
tion is so small that in this direction only one mode is
slow and has large fluctuations near threshold; the sys-
tems are at most quasi-two-dimensional. If the width
m in one of the remaining directions, say, y, becomes
comparable to (or smaller than) the correlation length of
the two-dimensional (2D) patterns, the system becomes
quasi-one-dimensional, i.e. , only one y mode is slow and
has large fluctuations near threshold [ll]. This is the case
in the long and narrow cells used in the binary-mixture
experiments, where m/d = 2 in Ref. [7] and tv/d = 0.5 in
Ref. [4]. In TCF, the transition to one dimension corre-
sponds to considering only fluctuations of the azimuthal
modes with the lowest threshold, which are the axisym-
metric modes for not too large through flow [12,13].

In the theoretical work for RBC in simple fluids [14—16]

and binary mixtures [17], and recently for electroconvec-
tion [18] and TCF [19,20], one always starts from the
basic macroscopic equations that are supplemented with
Langevin-noise terms with a noise strength determined
from stochastic hydrodynamics [21]. Near threshold one
can then derive stochastic amplitude equations with b-
correlated noise strength. Stochastic hydrodynamics in
its original formulation by Landau and Lifshitz pertains
to equilibrium fluctuations. In fact, all theoretical work
is based on the assumption that the system, while being
far from its global equilibrium, is nevertheless everywhere
near local equilibrium.

Despite the smallness of thermal noise, it is crucial
to understand the fundamental issue of how nonequi-
librium fluctuations near a dissipative pattern-forming
transition, or in general in extended. nonlinear systems,
are related to equilibrium fluctuations near phase tran-
sitions. Can the assumption of local equilibrium be ver-
ified? If so, is there an equivalent to the equipartition
theorem? Especially puzzling is the fact that theory
agrees reasonably with the direct experiments while in
the experiments [5,6] using time ramps the fluctuation
intensities are about four orders of magnitude larger and
in the experiments using noise amplification in the con-
vectively unstable regime the discrepancy is about two
orders of magnitude. The latter experiments pertain all
to quasi-one-dimensional systems while the theoretical
work treated either 2D systems or 1D systems [15,17],
where the fields have no variations in the direction y of
the width. This corresponds to periodic lateral boundary
conditions (BCs) and is equivalent to replacing b(y —y )
by 1/tv in the b-correlated noise strength of the 2D am-
plitude equation. While this is obviously true for TCF,
the nonslip BCs of the velocities in the convection ex-
periments [7,4] are expected to play an important role,
especially because there ve is of the order of d. Clearly a
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proper 1D treatment is necessary for a quantitative com-
parison.

The main purpose of this paper is to clarify in. a spe-
ciBc system the relation between nonequilibrium fluc-
tuations near a pattern-forming transition and Huctua-
tions near equilibrium transitions by providing for the
Taylor-Couette system analytic expressions for the noise
strength in the amplitude equation and for the kinetic en-
ergy of the Huctuating Taylor vortices. As a by-product
we obtain analytic expressions also for the threshold and
the deterministic parameters of the amplitude equation
and we start with a general expression for the noise
strength that can be applied easily to the above con-
vection experiments for physical (no-fiux) BCs.

In Sec. II we give general expressions for the noise
strength of amplitude equations for effectively one-
dimensional systems in terms of the linear operators of
the basic equations, the constitutive relations between
the generalized forces and fiuxes (making up the en-
tropy production), and the eigenfunctions of the criti-
cal mode. For illustrative purposes we apply the expres-
sion for the noise strength to a model system (stochas-
tic Swift-Hohenberg equation) and then to TCF with
axisymmetric vortices. The latter result coincides with
that obtained recently by Swift, Babcock, and Hohenberg
(SBH) [19] and, with physically plausible assumptions,
with that of Deissler [20].

Section III contains the main results. We give for ax-
isymmetric Taylor vortices analytic expressions for the
rotation rate at threshold of the inner cylinder (the can-
trol parameter) and for the determiiiistic and stochastic
coefBcients of the amplitude equation. These formulas,
given in terms of the radius ratio Bi/B2 of the cylin-
ders and the (co)rotation 02 of the outer cylinder, are
easy to evaluate with a pocket calculator. They are of
second order in the gap width and deviate by less than
2.5'%%uo from the results obtained numerically by SBH in
the range 02 ) 0 and Ri/B2 ) 0.738. The analytic
approximations used by SBH exhibit errors up to about
20Pp. We use our expressions to separate out the difer-
ent physical effects leading to noise in the TCF system
and to derive an analytic formula for the kinetic energy
contained in stationary Huctuations. In Sec. IV we com-
pare the expression for the energy with that derived from
the equipartition theorem and with the corresponding
expressions for RBC and electrohydrodynamic convec-
tion (EHC). It is concluded that the energy of stationary
Buctuations behaves in analogy to equilibrium systems if
one macroscopic Beld relaxes much slower than all other
Belds. In contrast, if there is a coupling to a similarly
slow relaxing field, the fluctuations and dissipations are
no longer balanced.

II. STDCHASTIC AMPLITUDE EQUATIDNS
FOR, QUASI-DNE-DIMENSIDNAL SV'STEMS

A. General expressions

Stochastic hydrodynamics [21] relates thermal noise
to fluctuations of the Belds of the Onsager currents

(stresses) J(r, t) = ( J(r, t)) +J (r, t), where () is an en-
semble average characterizing the deterministic, macro-
scopic Beld and the Gaussian distribution function of the
Huctuations is characterized by

( J(r, t)J (r', t') ) = k&(M + M~)h(r —r')b(t —t').

(1)

The Onsager matrix M, given by the (linear) constitu-
tive material equations, relates the currents to the forces,
where the forces (strains) are defined by the condition
that the sum of the currents times the forces are the local
density of the entropy production [22]. Since M + M
pertains to the dissipative part of the material equations,
Eq. (1) is called the fiuctuation-dissipation theorem.

An example is dissipation due to viscosity. The cor-
responding Onsager currents and forces can be identi-
fied, respectively, as the dissipative part of the stress
tensor a and the velocity gradients divided by the tem-
perature (Oi, vi + Dive, )/(2T) For i.sotropic, incompress-
ible fluids, the Onsager matrix takes the form M;~ I, ~

——

Tp~v(h;i, hei + h;ihzy) and Eq. (1) reproduces the well-
known Landau-Lifshitz noise terms [21]

( o,, (r, t) o.gi (r', t') )

= 2k~Tp v(h;kb i + b, ih k) h(r —r')h(t —t'), (2)

where v is the kinematic viscosity and p the mass den-
sity.

We consider 1D systems that are infinite and trans-
lationally invariant in z and bounded, with a cross sec-
tion C, in the complementary two transverse directions
r~ ——(r~i, r~2). The r~ coordinates are allowed to be
curvilinear, for instance r~ = (r, P) in the Taylor system
in cylindrical coordinates (r, P, z). Further, we consider
fluctuations below the threshold of a hydrodynamic in-
stability where a linear description is valid and restrict
ourselves to autonomous systems where the linear part
of the basic macroscopic equations for the Huctuations
u(r, t) can be written in the symbolic form

[9 (V', r~)Bi+ L (V, r~)]m( t)r= 17(V')J(r, t). (3)

The components u of m represent the deviations of the
macroscopic fields (velocity components, pressure, tem-
perature, etc.) from the unstructured state. The lin-

ear matrix-differential operators S and L depend on
a control parameter B and, in general (for example, in
TCF or non-Boussinesq RBC), on the transverse posi-
tion r~. The stochastic terms contain the Huctuations of
the Onsager currents in the form 13t, where l7 is typ-
ically proportional to a matrix-differential operator for
conservation laws and a matrix for balance equations of
nonconserved quantities such as the director field [18,23].
For the Navier-Stokes equations this term is V'cr; see Eq.
(10).

If the bifurcation to a pattern with critical wave vector
k (in the infinite direction) and critical frequency cu, is
continuous and nondegenerate, the physical fields can be
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described near threshold by a slowly varying amplitude
A(z, t),

u(r, t) = A(z, t)f (r~)e'~"" '~ + c.c.
+(higher-order terms), (4)

where f (r~)e'~" 'il is the eigenfunction of the crit-
ical mode. Below threshold e:= R/B, —1 ( 0, but
neither too far (—1 (( e) nor too close (e ( —eNi„where
eNI. is some positive quantity characteristic of nonlinear-
ities "at" threshold [24] that can be set equal to zero for
all practical purposes), the amplitude obeys the linear
stochastic amplitude equation

rp(8, + v, B,)A(z, t) = (e + P'0.')A(z, t) + rp~Q I'(z, t),

(5)

1 [ft, O(Vg, ik„rg) ft]
& ([ft) S (V~, ik„r~)f](' ' (6)

where the correlation length (p ——ReP. The deterministic
coefficients 7'p ——B,ReA, vg

——Ohio, and Q = —zrpB&A
(rp and (p can be complex) come from the expansion
of the linear modal growth rate A(e, k) = ReA(e, k)—
iiv(e, k) around the threshold values e = 0 and k = k,
with A(0, k, ) = in, . The—complex, Gaussian unit-noise
source I'(z, t) satisfies (I') = (I"I') = (r*I'*) = 0 and
(r*(,t)r( ', t') ) = a( —z')s(t —t').

An adaptation to one dimension of the derivation of
the noise intensity Q along the lines of Ref. [18] leads to

independent of the normalizations of both f and f t

and also independent of dilations or contractions of the
cross section (as long as the system remains quasi-one-
dimensional) . This means that cross-section-integrated
fluctuation intensities, leading with (4) and ( ~A~ ) oc Q
to such expressions, are independent of the transverse
size, as in equilibrium systems. An example is the line
density of the mean kinetic energy of the velocity Huctu-
ations 8, ( E) = p /2 J&d r~ ( v ), which is proportional
to [f„,f„]Q and will be calculated for TCF in Sec. III.

A trivial application of Eq. (6) consists of deriving the
noise term of the amplitude equation from the stochastic
Swift-Hohenberg equation

0&@(z,y, t) = [e —(p (k, + V'2) ]g + rps ((z, y, t),

(&(»»t)&(z' y' t')) = Q'"~(z —z')~(y —y')~(t —t')

as basic "macroscopic" equation for the scalar field g
where V& ——0 + 0„. Since there is only one ba-
sic field, the quantities f, L, etc. , have only one com-
ponent. Assuming a width m in y with periodic BCs
and the "transverse" mode k„= 0, we have C = m,
O = (rp ), S = rp, f = ft = 1, and the scalar
product [@,Q] = P'g, which yields Q = Q H/iv for
the amplitude equation (5). The amplitude is defined
by (4), Q(z, y, t) = A(z, t)e'"" + c.c. Furthermore, the
growth rate A(e, k) = [e—(p (k, —k ) ]/rp yields the well
known relations for the deterministic coefficients v~ = 0,

where the noise-correlation matrix O(V~, ik, r~) of the
stochastic forces D(V') J in the basic equations for modes
k is given by B. Application to the Taylor-Couette system

O(VJ, Ek)rJ ) —k&D(V&, ik)(M+ M )D (Vz, ik).

The square brackets in (6) denote the scalar product

[4,4]:=~ d'r~ P*(r~)@ (r~) (8)

for vector fields P and Q defined in the cross section C of
the system (summation over doubly occurring indices is
implied here and in the following). The Hermitian conju-
gate D ~ of D and all following Hermitian conjugates are
defined with respect to this scalar product. The functions
f (r~) and ft(r~) are the transverse parts of the eigen-
functions of the deterministic problem (3) at threshold
and of its adjoint, respectively.

Equations (6) and (7) for the thermal noise of the am-
plitude equation (5) for 1D systems with nondegenerate
bifurcations are the main results of this section and will
be used throughout the rest of this paper. Boundary
conditions and an eventual through How are contained
implicitly via the eigenfunctions and the specific form
of I . Multiplying (6) with any scalar product [f,fp]
of the components of the transverse eigenfunctions, or
linear combinations thereof, makes the right-hand side

Now we illustrate the above scheme in a nontrivial case
and provide the starting point for the analytic calcula-
tions to be carried out in Sec. III by calculating the noise
term in the amplitude equation of TCF. The expressions
obtained are equivalent to the results recently published
by SBH, but more suitable for the subsequent calcula-
tions.

The system consists of two concentric cylinders of inner
and outer radii Bi and B2 and infinite length, rotating
at angular frequencies Oi and 02, respectively. The ba-
sic equations are the NS equations for the Huid velocities
and the pressure together with the incompressibility con-
dition V' . e = 0. In view of the mapping to RBC it is
favorable to scale lengths by the gap width d = B2 —Bi
and time by the radial viscosity-difFusion time d /v. I.in-
earization of the scaled stochastic NS equations around
the basic Couette flow Uy(r)@ with the Couette profile
U~(r) from [12] gives (without through flow)

B,v = 2cu(r)rvp+ 2 @v„+V2v —Vp+ Vo,
1 —92

(10)

where v(r, t) is the deviation of the velocities from the
basic flow, w(r) = Uy(r)/r is the angular velocity of the
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basic flow, wi ——Aid /v and w2 ——02d /v are the di-
mensionless cylinder rotations, g = Bi/B2 is the radius
ratio, and i and @ are, respectively, the unit vectors in
the radial and azimuthal directions.

We consider a range of the control parameters (co-
rotation), where the first instability with respect to the
main control parameter u~ is axisymmetric and well sepa-
rated &om the instabilities of the other nonaxisymmetric
modes [12,13]. In this case, the r component of the curl
of the curl of (10) and the P component of (10) in cylin-
drical coordinates (r, P, z) represent a 2 x 2 system for v
arid vy)

(, 1)
8, —V'2 ——~v, + V' —— v, + 2(u(r)O, vp

I

= [V x (V x Vo)]„—= Di, i,o,i„. .

'g Cd i —(d2 / 2 1
Bevy —2 v~ — V ——

~
vy

'r -(ft*(k.' —~.~.*)f.+ J'~*A)

w here r q and r 2 are the scaled radii and C = 2' r with
P = (Ri + R2)/(2d) is the scaled cross section. Note that
in the narrow-gap limit the factor r/P approaches unity.
Equations (16) and (17) are equivalent to the result Eqs.
(2.12)—(2.14) of SBH, which can be seen by identifying
I"~ in their work with QTp/(2(p), using 8„f, + ik, f, =
0, B„*ft + ik, ft = 0, and taking care of the difFerent
scalings [25]. It is also equivalent to the result of Deissler,
Eq. (8) in [20], if one assumes in Deissler's formula a ratio
of the second (or bulk) viscosity to the usual viscosity of
2/3 [26].

Expression (16) is valid also for nonzero through flow
since the through How changes neither S nor the stochas-
tic forces in (11). The actual value of Q, however, changes
because the through How changes I and thus the trans-
verse eigenfunctions.

III. ANALYTIC EXPRESSIONS FOR THE
TAYLOR-COUETTE SYSTEM

= [V'o)]p = D2, i, cr,i„(ll)

1(B„,ik, r) = 2k2cu(—r) )
k —O, ct„* )

' (12)

where V = B„*B„+0, with 0„* = r B„r. The matrix-
diKerential operator 13 with the components D, ~k is de-
fined consistently with Eq. (3) by above identities.

This system is very similar to the basic Boussinesq
equations of RBC for the vertical velocity and the tem-
perature deviation and will be the starting point for the
mapping to RBC in Sec. III. It is of the form (3) with
the deterministic operators

In this section we derive for the above TCF system
approximate analytic expressions for the rotation of the
outer cylinder at threshold, for the coeKcients ip, (p, and
Q of the stochastic amplitude equation, and for the mean
kinetic energy contained in the fI.uctuating vortices, all as
functions of g, ~2, and Qp. This is performed by mapping
the system to second order in the relative gap width onto
the much simpler RBC system with a Prandtl number
P = 1 (Sec. III A), which allows us to express everything
in terms of the fixed RBC values for k„B„7p,(p, and
Q (Sec. III B). In Sec. III C we insert the RBC values
for rigid (no-flux) BCs and compare the approximations
with numerically obtained results.

(13)

with the small dimensionless parameter

0—

A straightforward insertion of (13) and (14) in (6) gives
the noise strength of the amplitude equation for axisym-
metric Taylor vortices

Qp

+f~~*(k.' —8„0„*)f~t),

(ft*k (k —B„B„*)ft

(16)

The details of calculating the correlation matrix 0 with
Eq. (7) can be found in the Appendix. The result is

A. Approximate mapping onto the RBC system

It is well known [27] that in the narrow-gap limit g m 1
and for nearly equal rotation rates p:= w2/cui -+ 1 with

p/q ( 1, the dynamics of axisymmetric Taylor vortices
becomes equivalent to that of RBC rolls with the wave
number restricted to one direction. Starting from this
limiting case SBH gave expressions for the critical inner
rotation wq with w2 Axed and for the coefBcients of the
amplitude equation. Their expressions are of erst order
in (1 —g) and the relative error with respect to their
numerical results is of the order of 10% for g = 0.738; see
Fig. 3 of SBH.

We give now second-order expressions by mapping the
Taylor system to this order onto the Boussinesq equations
for RBC. To make the notation consistent, we take in
the RBC system m as the vertical direction and restrict
the modes to be parallel to e. When we compare the
noise strength of the amplitude equations, we consider
explicitly a quasi-one-dimensional RBC system with a
width zo and periodic BCs in the y direction.
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The x component of the curl of the NS equation in the
Boussinesq approximation and the conservation of heat
energy represent two coupled equations for the vertical
velocity v and the temperature deviation 0 from the
conductive state [16]. The linear part of the stochastic
equations is of the form (3) with

0. 95

0. 9

0. 85+
0. 8

CO 0.75

38

@=0.5
L( )(c) ik) =

~

k2 —02g(RBC) (g k)

k —0
0 l
P)l

(18)

(19)

0.7

0. 65
I
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and Eq. (7) for the noise correlation leads to

O(RBc) (g k)

( k2(k2 g2)2= 2Qo
I

(, 0
l0

~~(RBC) (k2 g2) I
. (20)

Lengths are scaled by the cell thickness d, time by d /v,
and temperature by PAT/A, where AT = Tb tt
Tt p is the applied temp erat ure difference . The Rayleigh
number R with the critical value A, = 1708 (for rigid
BCs) and the Prandtl number P are defined as usual
[28]. The stochastic force of the velocity equation is the
same as in the first equation of (ll), so Oii ——Oii,(RBC)

expressed in Cartesian coordinates. The stochastic force
of the temperature equation is the divergence of the heat
current (the Onsager current in this case) and leads to the
component 022 [16], where a( ) = p oTgd/(c„AT)
is usually negligible (for ideal gases it is the ratio of the
potential energy to elevate the gas to a height d and
the thermal energy to heat the gas by AT). Since the
corresponding term in TCF is not negligible, we will keep
this contribution.

In the above-mentioned limit the rotations wq, w2, and
cu(r) all become equal and c)„* -+ 8„; the TCF system
can be mapped exactly onto RBC. This means that the
Taylor number T can be defined in a way [see Eq. (23) in
the above limit] that the corresponding matrix operators
can be made identical by multiplying lines and columns.
The analytic expressions of SBH for small 1 —g and wq &
0 are based on a mapping with the approximation w(r)
(tui+w2)/2, c)„* = c) . This approximation is of first order
in (1—r)) and becomes exact for all w2 in the limit r) ~ 1.

M2( Vt d 2)

FIG. l. Ratio of the second-order approximation u(r)
used in this work and u(r) = (~i + w2)/2 used in Ref. [19] as
a function of the dimensionless outer rotation u2 = B2d /v.
The parameter is the radius ratio with values g = 0.99 (top
curve), 0.9, 0.738, and O.S.

We propose the approximation c)„* ~ c)„and &u(r) -+
wo, where

(21)~o ——(~i + ~2)/2 —(~i —~2) 8/2,

8 = —(1 —rl).
3

(22)

This means essentially that the Couette profile u(r) is
approximated by its value in the middle of the gap,
w(r) = no+ 0(1—r)), instead of the average of the cylin-
der rotations. Figure 1 shows this difference at thresh-
old. The rationale why w(r) is a better approximation
than (wi + w2)/2 is that, due to the no-fiux BCs, the dy-
namics of the velocity fields is mainly determined by the
volume elements near the middle of the gap. Examining
the Couette profile together with approximate symmetry
properties of the eigenfunctions shows that, apart from
a term with negligible prefactor [29], this approximation
yields linear growth rates A(e, k) that difFer only in second
order of (1 —r)) from the exact solutions. Since the deter-
ministic coeKcients of the amplitude equation are given
in terms of Taylor-expansion coefficients of A(~, k), their
approximations are second order as well. With these ap-
proximations, the deterministic RBC and TCF operators
become equivalent by relating the geometries, fields, and
parameters of the two systems according to Table I and

TABLE I. Mapping of the Taylor system to thermal convection.

System properties
coordinates

size and BC in the
transverse directions

fields
considered modes
control parameter

distance from threshold

relative noise contribution
of the second field

RBC with P = 1

(x, y, z)
thickness d, rigid BC in x
width m, periodic BC in y

(v, t))
ky ——0

R
R ] . (RBC)

R

(a.Bc)

TCF
(" 4' z)

gap d, rigid BC in r
circumference 2mr in P

(V„, 2(dp V 4, )
axisymmetric

T
T ] 1 j

(TCF) 4~O
CI Rc



582 MARTIN TREIBER 53

defining the Taylor number T as

4(77 &y —Cd2)
(23)1-9'

Since also the BCs are the same (rigid BCs for the tem-
perature correspond to ideaHy conducting plates), the
linear analysis gives the same growth rates A(e, k), eigen-
vectors, and critical parameters at threshold. The cor-
relation operator of the stochastic forces of TCF in the
mapped variables v„and 2upv@ has the same functional
dependence on r and difI'ers from that of RBC only in the
scalar prefactor of the component 02~, which is n(
instead of n( ). In contrast to the negligible contribu-
tion of the temperature Buctuations, n( ) is not neg-
ligible and becomes even dominant for large corotations;
see the discussion after Eq. (31). The RBC operators
have the same form for one and two dimensions (provided
that k„= 0 and there are periodic BCs in y), so the above
considerations hold for both cases. The noise strength Q
in the amplitude equations, however, depends on the di-
mensionality and the transverse size. In summary, the
Inapping procedure in Table I ensures that the threshold
values for k, and B,(T,) and the deterministic coefficients
of the respective amplitude equations difI'er only to sec-
ond order in the gap width, while the noise strength has
a contribution proportional to n(RBC) (n(TcF) ), which de-
pends on the system parameters.

B. Analytic expressions

The critical inner rotation wqc(q, w2) can be calculated
from Eq. (23) by inserting for T the critical value T, = B,
and solving for wq. For resting outer cylinder we obtain

both systems.
In 1D systems, flluctuations of the amplitude are usu-

ally proportional to QTo/(o. To compare the results, we
follow SBH and give expressions for the dimensionless
noise strength

7 p

2 p
(27)

rather than for Q itself. Since the operators and eigen-
functions in Eq. (6) are the same for RBC and the
mapped Taylor system, the noise strength Q is that of
RBC with n( ) replaced by n( ), provided that
the amplitudes are related to equivalent physical fields
and the cross sections are the same. While the defini-
tion T/T, —1 for the threshold distance would lead to

with n( ) replaced by n( ), the ac-
tual use of Eq. (25) leads with (26) to

[f., f.lF.
[f,f ]F~~

) (P = 1, tv = 27rr)

1+n
7 p

(28)

As discussed in Sec. II, the scalar products in front of
I"~ and FA ensure independence from the normal-(RBC)

izations of the eigenvectors and can be set to one by a
corresponding choice of the normalizations.

Finally, we calculate from Eq. (28) the average line
density of the kinetic energy (energy per unit length) of
the velocity fIuctuations. The result in physical units is

R, (1 —q')
~j.c(tv2 = 0) =

2 2(1 p)
. (24)

c)( E) p
Bz 2

d r~(v„+ v~2+ v~)

) q, ws ——const
(25)

as the relevant
BA BT 1

«H C')
Tp

distance from threshold. With
BA BR OA BA

«~~), and = = &, one obtains

(RBC) (((RBC) )i

T. (aT i
(Rug)

TJ ) CcP2

The first equality follows from the fact that the dift'usion
constant go2/wo = ——c)&2% does not depend on e (at lowest
order) and thus is, for any definition of e, the same in

The analytic expressions for u2 g 0 are given in Eq. (Bl)
in Appendix B.

The definition in Table I for the threshold distance
in the Taylor system implies that one increases the con-
trol parameter by simultaneously increasing both cylin-
der rotations with the ratio kept constant. Experimen-
tally, however, it is more favorable to increase only the
rotation of the inner cylinder and to define, in accordance
with SBH,

~(TCF)

(R")
~&,

~ )
1+

(1 + ~(TCF) q
x

/ ~(TCF) )
(29)

where ( = d(o~e~ ~ is the actual correlation length of
the fj.uctuating pattern and Ap is the equilibrium relax-
ation rate (T = 0) of the critical mode with ~AO ~wo

(RBC)

2.95 for rigid BCs and ~%0~&0
——2 for free BCs. The(RBC)

result is obtained by expressing the projection integrals
of the linear operators in Eq. (6) in terms of Ao and

7'0 and using e/e( ) = 'ro/'ro . Note that the(RBC) RBC (RBC)

natural distance from threshold seems to be r( ) rather
than t . The first factor leads to the equipartition result
(E) = kBT/(2~a( )

~) per degree of freedom if one de-
fines as a dynamically active degree of freedom a Quid
element with the volume C times the double correlation
length. Note that with this definition of the volume ele-
ment, its energy is the same as that of the critical Fourier
mode in A: space.
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C. Results for rigid boundary conditions

As already mentioned, the threshold values are (within
the approximation) the same as in RBC. For rigid BCs
we have T = B = 1708 and k = k = 3.117,
remarkably independent of g and u2. The numerical re-
sults for ~2 ——0, q = 0.738, and without through flow are
[8,30] k, = 3.136 and 7, = 2131.8, where 7, = T /(1 —8);
the definition of the Taylor number in Ref. [8] is, in our
approximation, equal to 2126. Figure 2(a) shows that
the deviation of the threshold formula (Bl) with respect
to the numerical results of SBH is less than 0.3% for

g = 0.738 and all u2 & 0. For w2 ~ oo the asymptotes
are given by ul, ——u2/rI, i.e. , instability sets in as soon
as Rayleigh's stability criterion B,(r w) ) 0 [12] for an
inviscid fluid is violated (Euler limit). The approxima-
tions (and also the approximation of SBH) become exact
in this limiting case.

The deterministic coefFicients of the amplitude equa-
tion are, with (26) and (23),

0.0769
70

0.148 (1—
~o

+ 1+ (1+h)~2 l
(1 —b)(ul. )

(30)

E

O

s

3

0
—0.01
—0.02
—0.03
-0.04
—0.05

a)

Yj=0.738

first order [19]
Eq. {81)

0

8 —0.02
C)

-0.04-
o

-0.06 .
-

b) first order

Eq. (30}

0.2
t 0.15

0.1
«c

0.05
0
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40

first order
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100
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FIG. 2. Comparison of analytic approximations for the co-
eKcients of the stochastic amplitude equation mith numerical
results for a radius ratio rl = 0.738: (a) critical outer rota-
tion ural„(b) time constant To, and (c) noise strength FA of
the amplitude equation. Plotted are the relative deviations

(&approx &num)/2lnum~ where & = ~lc, ro& ol FA& for the
approximations of this work, Eqs. (Bl), (30), and (31), re-
spectively (straight lines), and for the approximations of Ref.
[19] (broken lines) as a function of the dimensionless outer
rotation cu2.

For zero outer rotation, 7.o ——ro /2 = 0.0385 and(RBe)

/2 = 0.074 are, in our approximations, inde-(RBC)2

pendent of q. The numerical results of [19] for ll = 0.738
are ro ——0.0379 and (o ——0.0725. Figure 2(b) shows the
deviation of Eq. (30) from the numerical values for the
same gap width as a function of the corotation u2. The
magnitude of the relative error is less than 1.3% for all
w2 ) 0 and becomes asymtotically 0.3% for large u2.

To calculate the noise strength, we relate the ampli-
tude fluctuations ( ~A~ ) = Qro/(8(o~~c~) to the cross-
section-averaged fluctuations (v2) of the radial velocity,
which with (4) is equal to [f„,f„]F&/(2~~a~). This cor-
responds to relating the RBC amplitude to the cross-
section-averaged fluctuations of the vertical velocity and

[f„,f,]FA to [f,f ]FA ——0.39Qo, the usual result for
2D RBC. Inserting this into Eq. (28) leads, with (26), to

(TCF)
0.0769 (31)

Expression (31) is, together with (29), the main analytic
result of this paper. It is the same for the different scal-
ings of SBH and in this paper [31]. If f is normalized
to [f„,f„] = r f rdr~f„~ = 1, then the right-hand side
gives directly the noise strength PA. In Fig. 2(c) the
comparison of the analytic expression (31) with numeri-
cal results [19]shows that the relative error is about 2.5%
for w2 ——0. Moreover, the error decreases for increasing
~2 and approaches asymptotically about 0.3%%uo, while a
residual error of about 20% remains in the first-order ap-
proximation [Fig. 3(c) of SBH].

The result is very intuitive. The erst factor
0.39Qo/(2vrr) is the noise strength for 1D RBC with a
width equal to the circumference of the Taylor system
in the middle of the gap. The second factor is due to
the nonequivalent definitions of the threshold distances
in the two systems. The third factor gives the increase of
the fluctuations due to the v@ fluctuations. The relative
contribution of the vy fluctuations cl( ) = 4wo/1708
has its origin in the Coriolis force 2wvyv"', which leads
in the equation for the radial velocity to a stochastic
force proportional to 4wo2( v&2). It vanishes in the narrow-
gap limit but is nonzero otherwise, even for u2 ——0,
where n( ) = (1 —rl )(1 —h)/2ll . For large
where wl, (cu2, ll) approaches the Euler limit ul, ~ w2/rI,
o.( ) is proportional to ~z. Figure 3 gives F~ as a
function of u2 for different values of q. In the limit of
large w2, the factor ro/ro decreases proportionally(RBc)

to 1/w2, making EA proportional to w2.
The influence of the v@ field is also reflected in the ki-

netic energy (29). The terms in parentheses increase the
equilibriumlike fluctuations of the first factor, especially
in the Euler limit of large w2 (n( ) )) 1) or for small
gaps (cl( ) (( 1). Both cases involve high rotation
rates. For large ~2, the main effect is the Coriolis force
as described earlier. For small gaps the magnitude of the
v@ component in the critical mode is much larger than
that of v„and v; the measurable fluctuations of the ra-
dial velocities remain small, as seen from Eq. (31). For
the parameters in the experiment of Ref. [8], Eq. (29)
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gives, in physical units (el l = 2e for ~2 ——0),

8( E) kIBT k~T
((u2 ——0, rl = 0.738) = 0.385 = 1.00 . (32)

clz

IV. CONCLUSION

FIG. 3. Cross-section-integrated noise intensity
2mF[l„, f„]F~ ——J d ri ~f„j F~ as a function of cu2 with the
radius ratio g as parameter. The cross-section-integrated fluc-
tuations of the radial velocity in scaled units are (2v e)
times this quantity.

the coupling of the director field to the electrical degrees
of freedom (charge-density fluctuations) increases the di-
rector Huctuations [18]. ln other cases, as in RBC with
I g 0, the coupling of the velocities to the temperature
field decreases the Huctuation energy [23]. When the re-
laxation of the main field (director field in EHC, vertical
velocity in RBC) becomes much slower than that of any
coupled field (small Prandtl number in RBC, thick cells
in EHC), fluctuations and dissipations remain balanced.

The crucial point in our work is the assumption of local
equilibrium, which allows us to start with the stochastic
hydrodynamics of Landau and Lifshitz [21]. This ansatz
seems to describe correctly the stationary fluctuations
observed in the direct experiments [1,3,4]. A preliminary
estimate starting from Eq. (6) for realistic rigid lateral
BCs [32] leads in the geometry of the Ref. [4] to a de-
crease of the theoretical noise strength by about a factor
of 2 with respect to the case of periodic lateral BCs; this
agrees at least semiquantitatively with the observations
in [4].

In contrast, in the indirect experiments using convec-
tive instabilities or time ramps that measure nonstation-
ary Huctuations (for convective instabilities nonstation-
ary with respect to the frame moving with the group
velocity), the measured noise intensities were two to four
orders of magnitude larger than predicted. This seems to
indicate that in nonequilibrium systems the assumption
of stochastic hydrodynamics in the usual form is valid
only in stationary situations.

The mean kinetic energy of the Huctuating Taylor vor-
tices per (suitably defined) dynamically active degree of
freedom was found to be k~T/(2~el +

l~) times a fac-
tor [the two terms in parentheses in (29)] that is usually
of the order of unity in a wide range of the parameters
Ri/B2 and 02. This looks remarkably similar to equipar-
tition Huctuations in equilibrium systems. Indeed, the
energy of the Huctuations in equilibrium systems (such
as director Huctuations of a nematic liquid crystal in a
long and narrow cell near the Freedericksz transition) and
interestingly also in RBC with P = 0 and in EHC in the
thick-cell limit is exactly k~T/(2~e~) per an equivalently
defined degree of freedom [23]. The factor comes from
the dynamics of the azimuthal velocity field vy and makes
the Huctuations diferent from equilibrium Huctuations.
Specifically, it increases the energy for large corotations,
which could be explained by the Coriolis force exerted by
the v@ in the radial direction.

This can be put into a broader context. Since the
dynamics of vy contains not only fluctuations but also
dissipations, the coupling of the radial velocity v„ to vy
can be seen as a macroscopic analog of the coupling
to microscopic degrees of freedom. While the micro-
scopic coupling described by the Huctuating forces of
the Huctuation-dissipation theorem (1) leads in equilib-
rium systems always to macroscopic fluctuations in ac-
cordance with the equipartition theorem, the fluctuations
and dissipations of the macroscopic coupling of fields in
nonequilibrium systems are generally no longer balanced.
In some cases, the coupling increases the Huctuations as
shown for the Taylor system, but also in EHC, where
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APPENDIX A: CALCULATION OF THE NOISE
STKENCTH IN THE STOCHASTIC

AMPLITUDE EQUATION FOR AXISVMMETRIC
TCF VORTICES

The only source of dissipation and thus the only noise
source comes from the viscous stress tensor n;~. The
Onsager matrix in the scaled units of Sec. II is

(A1)

The stochastic forces V'a. of the Navier-Stokes equations
are in cylindrical coordinates [21]

1 1
(%a); = 8,k —B~'r + —8k2(6, 28, i —8,,8,2) o-, k, (A2)
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1 1
cigr—+ —~pi

lr r (A4)

where e,jk is the totally antisymmetric unit tensor. The
Hermitian conjugates with respect to the scalar prod. uct
(8) are

D.k g
= &2lkzj lr + ~j2~k22 ) 'T r (A5)

2jk & „2 (Afi)

Equation (7) for the correlation matrix of the stochastic

where all indices take the values r, P, and z. With this,
the components of D, defined in (11), read explicitly

1. . 12
D1,jk ~2lk~zl jr + ~j2~k2 z &r ' ' r

forces has the explicit form

&', = ka D*,~ I (~~A:, im + W, ~i ) (& ), (A7)

leading to the correlation matrix (14) in the main text.

APPENDIX 8: OUTER CYLINDER ROTATION
AT THRESHOLD

Inserting T, = R = 1708 (rigid BC) in (23) gives a
quadratic equation in ~~ with the solution

~i, (~2, il) = P+ QP2+ U,
1 —q' —(1 + q')h

2@2(1 —h)

(1 + 8)~,' + 854(1 —rI')
il2(1 —b)
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