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The infinite-rangem-vector spin glass in the presence of a Gaussian random(fietdacterized by a mean
hy and widthA) is investigated through the replica method. The phase diagram of the modej=6randA
finite, is obtained within replica-symmetry approximation. It is shown that the paramagnetic phase is enhanced,
contrary to what happens to the spin-glass, mixed-ferromagnetic, and ferromagnetic phases, for growing values
of A. Forhg#0, the changes introduced in the Gabay-Toulouse line by finite valuAsaoé investigated. In
particular, it is shown that the critical exponent characteristic of the Gabay-Toulouse line is nonuniversal,
changing continuously with the distribution width [S1063-651X96)06205-9

PACS numbg(s): 05.50+q, 64.60—i, 75.10.Nr, 75.50.Lk

[. INTRODUCTION line [13]. The rival picturg 14,15, called the droplet model,
is based on renormalization-group ideas, assuming that the
Disordered magnetic systems became, in the past decadpin-glass phase is of the trivial sort, i.e., described by a
or so, one of the most promising and exciting areas of physsingle order parameter. Their predictions differ radically
ics. Among them, ferromagnets in the presence of randorfrom those based on the Sherrington-Kirkpatri¢BK)
fields and spin glasses have attracted the attention of manyiodel, concluding that foany finite dimensionthere is no
workers. ultrametricity, or AT line. Although a lot of effort has been
The random-field problem has gained a lot of interest af-dedicated to this questiqd6—26, a definitive answer is still
ter the revelation of its physical realization as a diluted Isingmissing. Numerical works done on hypercubic lattices with
antiferromagnet in the presence of a uniform magnetic fieldlimensionsd>3 [18—22 find a picture compatible with
along the uniaxial directiofl] and that the static critical mean-field theory, suggesting the failure of the droplet
properties in these two systems may be the sf@heSince  model. However, ford=3 the situation remains unclear
then, a lot of effort has been dedicated to such systems, frofi25,26.
both theoretical and experimental points of vig3y4]. Most Much less is known for the continuous-vector spin
of the theoretical work is based on the Ising model. Althoughglasses. Most of the numerical works done so far, for Heisen-
the Ising condition(i.e., the magnetic spins restricted to a berg spinsim=3) in three dimensions, suggest that there is
single direction is never strictly satisfied in experimental no isotropic spin-glass ord¢27-29, although a small an-
systems, materials with uniaxial anisotropy will normally ex- isotropy is sufficient to induce a phase transitj@8,30d. In
hibit Ising behavior, allowing a confrontation between theoryfour dimensions, there is numerical evidence of a phase tran-
and experiment. Among interesting questions related to thisition [31] and so the lower critical dimensiod, for the
problem, one may single out how continuausvector spin  short-range Heisenberg spin glass should satisfyl 34.
systems shall behave in the presence of random fields arfébr XY spins(m=2) in three dimensions, two equally ac-
which properties they shall have in common with spinceptable fits corresponding, respectively, to zero- and finite-
glassed4,5]. temperature phase transitions were foi82]; however, the
Since the proposal of Edwards and Andergéh of a  defect-energy methofR8] gives no phase transition for the
model to describe spin glasgés8], this subject became one three-dimensionaX spin glass. Although one would expect
of the most puzzling and controversial topics in statisticalthe same lower critical dimension for batii=2 and 3 cases,
physics. Today, the existence of a spin-glass phase for th&uch as in ferromagnetic systems, this should not necessarily
short-range three-dimensional Ising spin glg&sis well ac-  hold. Them-vector mean-field solution is also based on an
cepted and its lower critical dimensiah lies in the range infinite-range model, presenting features similar to the SK
2<d,<3. However, the understanding of the nature of such anodel [33]. In the presence of a uniform magnetic field,
phase is the point of an exciting dispute. The predictions ofhere is a phase transition associated with the transverse de-
the Ising mean-field theory, based on the infinite-rangegrees of freedom, signaled by the Gabay-Tould@&¥) line
model proposed by Sherrington and Kirkpatrjdd], are as-  [34]. Below this line, replica-symmetry breaking is necessary
tonishing: the spin-glass phase is characterized by replicd35] for a proper description of the spin-glass phase. The GT
symmetry breaking, being properly described by an orderline has been observed recently in the Heisenberg spin glass
parameter functiorf11], i.e., an infinite number of order CuMn [36], giving support to its mean-field theory.
parameters, which are organized in a hierarchical structure, The combination of spin-glass and random-field models
within an ultrametric spacfgl2]. Another surprising result is has been successful for the description of diluted antiferro-
the existence of a phase transition in the presence of a unmagnetg§37], mixed hydrogen-bonded ferroelectrics, and an-
form magnetic field, signaled by the Almeida-Thoul¢s3) tiferroelectrics, i.e., proton and deuteron glag&8§ and ori-
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entational glassef39]. The infinite-range Ising spin-glass

model in the presence of a Gaussian random figij was —pf=Im = [In Z({ ik Ahib) Ion

able to describe several experimental results obtained for the N N

diluted antiferromagnet E&n, _,F, (0.25<x=<0.40 [40]. In 1

particular, for a small width of the field distribution, a cross- =lim lim — ([Z"];— 1), (2.6
over between the random-field and spin-glass regimes was N—e n—o NN '

verified [37], which is in good agreement with the experi-

ments done on ke:Zng ¢d~, [40,41. whereZ" is the partition function of replicas of the system

In this paper we consider the infinite-rangevector spin  defined through2.1). The standard procedure leads to
glass in the presence of a Gaussian random field. Apart from
a generalization of the Ising ca§87], it represents a very
relevant system from the experimental point of view. We
investigate how the presence of the random field affects the
well-known phase diagrams of time-vector spin glasses and
in particular how the GT line is modified by a finite-width
distribution for the magnetic field. In Sec. Il we define theg(xa Mg ,q°f)
model and make use of the replica method to find its free- e
energy functional. In Sec. Ill we present the phase diagrams

1
Bf=1lim - min g(x*,M{,q# ,q%P), 2.7

n—0

where

and the corresponding analytical results. Finally, in Sec. IV _ —~1(8) nm+2(,8J)22 -1 (x%)24+mx
we present our conclusions.
- ’8_ a2, 1 2 aBN2 Lo
Il. THE MODEL AND ITS FREE-ENERGY DENSITY > 2 (MH2+3(BI2Y (q7#)2+5(m—1)
a a,pB

Let us consider then-vector spin glass in the presence of

an external random magnetic figfidvoring the 1direction, X(BIZD, (q*F)2—In Tr expl He), (2.89
defined through the Hamiltonian a.pB

7=-2 3;S-S— 2 hiSy, 2.0 Ter=3(BA)2D (S))?+3m(BI)?D x(SF)>
1,] I [ o

whereéi (i=1,2,...N) are classicam-component spin vari- AR MfoJF(BA)ZE sysf
ables a a.p

" u +(BI)2D qifSiSi+ (B2 D q*PSiS)

S=(S1,S2,....5m), El S,=m. (2.2) ap oy R wh

=

The interactions are infinite-range-like, i.e., the sbim ex- +’8h°§ St (2.8

tends over all distinct pairs of spins; the coupling constants

{Jij} and the fielddh;} are quenched random variables, fol- In the equations above,andg (a,8=1,2, . . . n) are replica

lowing independent Gaussian probability distributions labels u (#=1,2, ... m) denote Cartesian components,, Tr
is a trace over the spin variables for each repticand>,, 5

N |12 N Jo\ 2 represent sums over distinct pairs of replicas. The extrema of
POUip=|572] eR-53z(di=| | @3  the functionalg(x*,M ¢,q%#,q*#) give us the equations of
State
1 1/2 1 X o w2
P(h))= m ex _W(hi_hO) . (2.9 (m—1)x _<(Sl) >_11 (2.9a
For a given realization of the disordéonds{J;;} and fields Mz=(SD, (2.99
{hi}), one has the corresponding free eneFgyJ;;},{h;}); . N
for quenched systems, the average over the disdrdigt ai’=(SiS) (a#p), (2.99

should be taken over the free energy

2 (sish) (a#B),  (29d
(a0 Lo | TT (0,P@ T tene(n))
’ where the angular brackets denote thermal averages with re-
XF{Jij{hi}). (2.5  spect to the “effective Hamiltonian’7 in (2.8D).
The analytic continuatiom—0 in (2.7) may be easily
As usual, this average is computed by means of the repezarried (see the Appendixif one considers the replica-
lica trick [7,8]; one gets the free energy per spin symmetry approximatiohl0]
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X*=x, M{=M; Va 5
(2.10 1
ai’=a1, g*f=q Va,B.

The region in the phase diagram where this replica-

symmetric solution is valid is obtained through the stability 3
analysis 0f(2.7) around(2.10. Using the ansat#2.10, the h /7
replica-symmetric phase diagram for continuausvector 0
spins may be construct¢84,35. In the case of no external 21

magnetic field andy>0, the relevant parameters for the de-
scription of the system ad ;, q;, andq [33,34], whereas if

Jo=0, the presence of a uniform magnetic fidid the 1
direction induces the parameterss M, andq,, allowing
for a phase transition in the transverse spin-glass order pa- 0 . . . .

rameterqg, signaled by the Gabay-Toulouse lifg4]. Analo- 02 04 OLSF/J 08 10

gous to the Almeida-Thouless lifig3] for the Ising case, the

GT line is also associated with replica-symmetry breaking FIG. 1. Gabav-Toul line for the-vect i alass in th
35), playig a simiar ol fom-vectorspin glasses,Now, [ - S208/Touowse e 7 o vestr s goss 1 e

in the case of a random external magnetic field, as defined t&z) The dashed curve represents. the G% line in the ’Case of a
(2.4), the width of the distributiorfA#0) induces the param- uniférm field (A/J—0) P

etersx and q;. Therefore, ifhy,=0 andJ,>0, the relevant '

parameters ar#l, andq, whereas ifJ,=0 andhy>0, there 2 )

is still a GT line in the planeh, versus temperature. The I: E 1+m _ (ho/J)

changes in the GT line, as well as in the phase diagram for J~ \ 7/ [m+(A/J)Z]72 ex 2[m+(A/1D)?] |

Jo>0, due to the Gaussian random field of width is the

subject we will discuss in the next section.

For all other situations, Eq$A9)—(A11) are solved nu-

Il. RESULTS merically. The search for the solutions of such nonlinear
equations was done through IMSL Subroutineystm,
A. CaseJy=0 whereas all integrals were evaluated by using Simpson’s

For the random-field distribution given {&.4), with non-  rule. Although the Gaussian integrals are defined fremto
zero mean and widtth,,A>0), the only possible transition 1%, we have chosen the limits-4 and +4; apart from
is the one associated with the transverse spin-glass order pavoiding the numerical difficulties present in broader ranges,
rameterq. The Gabay-Toulouse line is obtained by solvingthis choice captures approximately 99.98% of the total area
the set of equationéA9)—(A11) (see the Appendix in thg corresponding mtegral: The inner integrilenctions

Analytical results for the GT line may be obtained in two Pnk in Ed. (A12)] present, within Simpson’s rule, a better
regimes, namely, low fieldshg,A<J), as well as high fields convergence whenever the integration limits are integer
and low temperaturef,>J, T<J, and anyA). In the first ~numbers; our numerical analysis was carried fio+4, in
case, Eqs(A9)—(A11) may be expanded in power series to Which case such limits are 2 and+2. This choice does not

give the induced parameters change the qualitative behavior of our phase diagrams, as
will be discussed at the end of this section. In both cases

1 [/hg\%2 [A\?]*? 1[(ho\? [A\? (Gaussian integrals and functioi,,), the corresponding
%EE (7) + j) , X= 2 [(7 + K] } range of integration was divided into 400 segments for the

application of Simpson'’s rule. A solution was accepted when
the left- and right-hand sides of all three equations agreed
within differences less than or equal to f0

In Fig. 1 we present the GT line for a typical value of
(A/J=2). One sees that the low-field part of the GT line
ho\? moves to the left ad increases, i.e., the width of the distri-
3/ (3.2 bution favors the longitudinal degrees of freedom ligr<J
and so the transverse ordering becomes more difficult. This
;act is seen analytically, where the temperaftrEq. (3.3)]
is shifted by the introduction of a small width. One also
observes that the exponential decay, for high fields and low
temperature$Eq. (3.4)], is weakened by a finite widti.

and the GT line

T~"I: m2+ 4m-+ 2

J - J  4(m+2)?

whereT denotes the temperature at which the GT line meet
the axishy=0,

I: B m?+4m+2 é)z 3.3 The strongly polarized state, characterized by the prevalence
J 4(m+2)2 \J ' of the longitudinal degrees of freedom, gets diminished by

the presence of a finitd. Whereas a large medm together
For high fields and low temperatures, one gets the usual ex¥ith a small temperaturgh,>J andT<J) produce a freez-
ponential decay ing of spins in the positive direction, the widthA allows for
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T/

0 1 2 3
) ] ) A/Y
FIG. 2. Evolution of the Gabay-Toulouse line avaries =1/

(1+4/9)]. FIG. 3. The exponent characteristic of the Gabay-Toulouse
line in the low-mean regimehp<<J) is nonuniversal, depending on

fluctuations of the spins along theakis in both positive and  the width of the random fieldA).

negative directions. Such fluctuations produce a weakenin

in the longitudinal degrees of freedom. Therefore, the overaferromagnetidl:’) (M1#0, q#0) phases. Th&' phase was
effect of the widthA in the GT line is to enhance the longi- €ncountered by Gabay and Touloysd] and is character-

tudinal (transversg degrees of freedom in the low-mean ized by the coexistence of both ferromagnetic and transverse

(high-mean and low-temperatreegime. This explains the SPin-glass orderings.

intersection of the two GT linegcorresponding taA\/J=0 As usual, the equilibrium equatiori&gs. (A6)] present
and 2 exhibited in Fig. 1. the symmetnh,—JyM; and so some of the results obtained

In Fig. 2 we present a three-dimensional plot representinéj“ the previous case may be trivially tfanslated to the present

the evolution of the GT line with. As discussed above, the ON€- AS an example, the phase transitii$G occurs at the
low- and high-field parts of the curve move oppositelytas Same _temperatur§, at which the GT line meets the axis
departs from zero. A4 becomes large, the GT line tends to No=0 in Sec. lll A[see Eq(3.3)].
a straight line, parallel to thiy/J axis, joining this axis as L€t us restrict ourselves, for the moment, to small
A—. The sector associated with replica-symmetry breaking@ndom-field widths(A<J). The multicritical point, where
(phase to the left of the GT linelecreases for increasing &/l four critical lines meet, is located at

In the low-mean regimeh;<<J), one may define the criti- ~

cal exponenip Jo 1A T m?+4m+2 (A\?
| _ 35 2T Y amepz |7 G
T T [ho|?
3 3 \73) - (3.9 This shows that a finite random-field width favors the para-

magnetic phaséwith induced parametersandq;); all other
A uniform field (A=0) yields T/J=1 and $=2[34]; if a phases are reduced due 45-0. The critical frontierP-F
small width A is introduced, our lowest-order calculation deviates from the straight line characteristic of the das®
shows thafT/J is shifted to the lef{Eq. (3.3)], whereas the [34]; indeed, near the multicritical point it is given by
exponenip remains unchangddq. (3.2)]. However, Figs. 1
and 2 show clearly that the exponefitchanges for higher T Jo 1 A3
values of A. We computed the exponemt for increasing 177 EJOT 3.7
values ofA and verified itsxonuniversal characteiin fact, it
varies continuously withA [¢=¢(A)]. This aspect is pre- \yhereas in the high-temperature limit one finds
sented in Fig. 3, where the exponefitis shown to vary
continuously betweep=2 (for A=0) to ¢=1 (for A—o). T Jo
The breakdown of universality has already been found in 35 3
Ising spin glasses for both infinit€37] and short-rangf42]
interactions. In the latter case it was shown that the shape
the{J;;} probability distribution influences the critical expo-

(3.9

3 . (Jo/d)? ] (A13)?
m+2  (Jp/d)2—1| Jo/d °

%he phase transition associated with the transverse degrees
of freedomsimilar to the GT line of Sec. Ill Ais the critical

nents. frontier F-F’. Near the multicritical point, this line is given
by
B. Casehy=0
= 2 it 2
A finite random-field width(A#0) induces the parameters T T_m’+4m+2[(J, 1) [y 3.9
x andq, such that the relevant parameters are hdyandg. J J 2(m+2)? J J B

Four phases are possible in this case, namely, the paramag-
netic (P) (M;=qg=0), the spin-glas§SG) (M;=0, q#0), whereas in thel;—x limit, one gets a similar exponential
the ferromagnetic ) (M;#0, q=0), and the mixed- decay[cf. Eq.(3.4)]
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p Finally, it should be said that our phase diagrams were

/ obtained form=4, whereas the most interesting physical

A= / situation corresponds tan=3 (Heisenberg spins The

- AlI=0 e choice m=4 was a mere numerical convenience, but the

3 // qualitative behavior of our results should hold for any finite

v m (m=2), such as in the case of a uniform magnetic field

T/ -~ [34,35, where no new qualitative features are expected for

21 P -~ varyingm. Although the location of the critical frontiers may

’ change with the value ah, e.g., the temperature at which

J F the GT line meets the axis,=0 in Fig. 1, or the position of

1 =~ the multicritical point in Fig. 4, as already seen for the case

G N A<] [cf. Egs.(3.3) and(3.6)], the qualitative shapes of the

F NI critical frontiers remain unaltered. As a consequence of this,

0 1 2 3 4 the critical exponents do not change. In particular, the non-
I, universal exponenb(A), shown in Fig. 3, is expected to vary

continuously in the range frormd=2 (for A=0[34]) to ¢=1
FIG. 4. Phase diagram of tle-vector spin glass in the presence (for A—eo, at which limit the GT line, forT/J—0, should

of a Gaussian random field of width (A/J=2), showing the para- Meet thehy/J axis as a vertical straight line in Fig),Zor all

magnetic P), ferromagnetic k), spin-glass(SG), and mixed- Values ofm.

ferromagnetic(F') phases. The dashed lines represent the critical

frontiers in the cas&/J=0.

IV. CONCLUSION

1/2 2
I;(E) 1+m —1p exp[ — m(Jo/J) . ] We have studied then-vector spin glass in the presence
J o \m) [m+(AN)7] 2[m+(A/9)7] of a Gaussian random field of medy and widthA. The
phase diagrams in the cades#0 andh,=0 were analyzed

for different values ofA. It was shown that the sectors of the
phase diagrams associated with replica-symmetry breaking
decrease ad increases; a similar effect has already been
observed for the Sherrington-Kirkpatrick model in the pres-
ence of a Gaussian random figl8l7]. It was observed that
one of the effects produced by a finite widtton the Gabay-
Toulouse line is to enhance the longitudinal degrees of free-
dom in the low-field regiméh, small), whereas in the high-
field regime(h, large, the opposite behavior was verified,
i.e., the longitudinal degrees of freedom were weakened by
the presence of the random field. In both types of phase
diagrams, a nonuniversal behavior was found, either in the

(i) The paramagnetic portiorP) of the phase diagram, GT line (ho#0) or in the ferromagnetic—mixed-
characterized by the induced parameteandq;, increases ferromagnetic(hy=0) critical frontier. To our knowledge,
due to the random field; this is a consequence of the fact thdhis is the first time that a breakdown of universality has been
such induced parameters make it harder for the ferromagdeported form-vector spin glasses. For the moment, we are
netic ordering<F andF’) and spin glass to occur. not aware of any measurements to support our results. We

(i) The critical frontierP-F is no longer a straight line, as believe that Heisenberg-like diluted antiferromagnets are

already shown for small values af [cf. Egs. (3.7) and good candidates; they should, at least qualitatively, present
(3.9]. some of the characteristics predicted in the present work.

(iii ) The critical frontierF-F’ near the multicritical point
is expected to behave as

which is valid for anyA.

For all other situations, the critical frontiers are obtained
by numerically solving the set of equatiof&6) using the
same procedure applied for the ca3g=0 [Egs. (A9)—
(A11)], as described previously. For the $G-critical fron-
tier, we have adopted the Parisi-Toulouse hypothpts,
according to which such a frontier should be a vertical
straight line. The phase diagram of tlmevector spin glass in
the presence of a Gaussian random fightanh,=0, width
A/J=2) is shown in Fig. 4. By comparing it with the case
A/J=0[33,34] one concludes the following.
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Similarly to what was found for the GT line in the previous

case (J,=0), one should have a nonuniversal exponent

¢'=¢'(A). This is clearly observed in the two corresponding APPENDIX
critical frontiers shown in Fig. 4A/J=0 (dashedl and
A/J=2 (full line)]. In this appendix we consider thra-vector spin glass, as

(iv) The sector of the phase diagram associated witldefined through2.1), within the replica-symmetry approxi-
replica-symmetry breakingphases SG ané’) get dimin-  mation; the equations and notation herein closely follow
ished asA increases, similar to what happens for the Isingthose of Ref[35]. Considering choic€2.10, the free energy
spin glass in a random fiel®7]. per spin[Eq. (2.7)] becomes
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B - Jm
m(rT12 1) % M2 Z:%(Zﬂ_)(m—l)/zr(s—m)/zj ﬁdslexﬁalsl+ bs?)

—3(BI)*m+3(BI)? X2+ mx|+

— 3(BI)29E—5(m—1)(BI)?q>+3m(BI)%q X (M=S) ™3 (1_5)2(r (M= S) ™), (A7)

h
H —,;exp( E 2/2)InZ (A1) wnere

Teest r=(as+a3+---+a2)? (A8)
where
andl(z) are modified Bessel functions of the first kind, of
- m orderk.
Z=Tr ex Zl a,S,+ be ) (A2) The Gabay-Toulouse line, which signals the onset of the
a transverse degrees of freedom, is obtained from Ef). in
27112 the limit q—0,
a1=,8J0M1+,8J ql+ - Ul+ﬁh0, (AS)
J 2 T 2 «© dUl 2 2
2, (m=1)% 3] = Wexﬁ—vl/z)(on/Poo) :
a,=BIq%,, p#*l (A4) - (2w
(A9)
b=3(B3)[mx—(aq;—q)]- (A5) g
~ *® U1
The parameters in Eq€2.9) may be expressed in termsof ~ 1+(m—1)x= fﬁ 2m " exp( —v5/2)[Mm—(P/Poo) ],
1 072’2’ (AlO)
(m—l)x+1: =73/ (A6a)
Z é,al * dUl 2 2
0= | (2m)™ exp(—v1/2)(Por/Poo)®,  (All)
M 7 A6b
=\ 5 o] (ASD) " here
v
~\ 2 Jm
(L2 Po= | _dSiexp(@,S;+boSt) (m— )™ M72sy,
1=\ |=— , (A6C) —Jm
Zoay) | (A12)
1 19Z\° with
q=— =— , (A6d)
m—1 u#1 Z da, 211/2
i i a]_:BJ q1+ - Ul+ﬂh0, (A13)
where (), represents the Gaussian averages that appear in
(Al). The trace inA2) is an integral over am-dimensional
hypersphere and may be expressed as bo=3(BJ)2(Mx—q;). (A14)
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