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The infinite-rangem-vector spin glass in the presence of a Gaussian random field~characterized by a mean
h0 and widthD! is investigated through the replica method. The phase diagram of the model, forh050 andD
finite, is obtained within replica-symmetry approximation. It is shown that the paramagnetic phase is enhanced,
contrary to what happens to the spin-glass, mixed-ferromagnetic, and ferromagnetic phases, for growing values
of D. For h0Þ0, the changes introduced in the Gabay-Toulouse line by finite values ofD are investigated. In
particular, it is shown that the critical exponent characteristic of the Gabay-Toulouse line is nonuniversal,
changing continuously with the distribution widthD. @S1063-651X~96!06205-8#

PACS number~s!: 05.50.1q, 64.60.2i, 75.10.Nr, 75.50.Lk

I. INTRODUCTION

Disordered magnetic systems became, in the past decade
or so, one of the most promising and exciting areas of phys-
ics. Among them, ferromagnets in the presence of random
fields and spin glasses have attracted the attention of many
workers.

The random-field problem has gained a lot of interest af-
ter the revelation of its physical realization as a diluted Ising
antiferromagnet in the presence of a uniform magnetic field
along the uniaxial direction@1# and that the static critical
properties in these two systems may be the same@2#. Since
then, a lot of effort has been dedicated to such systems, from
both theoretical and experimental points of view@3,4#. Most
of the theoretical work is based on the Ising model. Although
the Ising condition~i.e., the magnetic spins restricted to a
single direction! is never strictly satisfied in experimental
systems, materials with uniaxial anisotropy will normally ex-
hibit Ising behavior, allowing a confrontation between theory
and experiment. Among interesting questions related to this
problem, one may single out how continuousm-vector spin
systems shall behave in the presence of random fields and
which properties they shall have in common with spin
glasses@4,5#.

Since the proposal of Edwards and Anderson@6# of a
model to describe spin glasses@7,8#, this subject became one
of the most puzzling and controversial topics in statistical
physics. Today, the existence of a spin-glass phase for the
short-range three-dimensional Ising spin glass@9# is well ac-
cepted and its lower critical dimensiondl lies in the range
2,dl,3. However, the understanding of the nature of such a
phase is the point of an exciting dispute. The predictions of
the Ising mean-field theory, based on the infinite-range
model proposed by Sherrington and Kirkpatrick@10#, are as-
tonishing: the spin-glass phase is characterized by replica-
symmetry breaking, being properly described by an order-
parameter function@11#, i.e., an infinite number of order
parameters, which are organized in a hierarchical structure,
within an ultrametric space@12#. Another surprising result is
the existence of a phase transition in the presence of a uni-
form magnetic field, signaled by the Almeida-Thouless~AT!

line @13#. The rival picture@14,15#, called the droplet model,
is based on renormalization-group ideas, assuming that the
spin-glass phase is of the trivial sort, i.e., described by a
single order parameter. Their predictions differ radically
from those based on the Sherrington-Kirkpatrick~SK!
model, concluding that forany finite dimension, there is no
ultrametricity, or AT line. Although a lot of effort has been
dedicated to this question@16–26#, a definitive answer is still
missing. Numerical works done on hypercubic lattices with
dimensionsd.3 @18–22# find a picture compatible with
mean-field theory, suggesting the failure of the droplet
model. However, ford53 the situation remains unclear
@25,26#.

Much less is known for the continuousm-vector spin
glasses. Most of the numerical works done so far, for Heisen-
berg spins~m53! in three dimensions, suggest that there is
no isotropic spin-glass order@27–29#, although a small an-
isotropy is sufficient to induce a phase transition@28,30#. In
four dimensions, there is numerical evidence of a phase tran-
sition @31# and so the lower critical dimensiondl for the
short-range Heisenberg spin glass should satisfy 3,dl,4.
For XY spins ~m52! in three dimensions, two equally ac-
ceptable fits corresponding, respectively, to zero- and finite-
temperature phase transitions were found@32#; however, the
defect-energy method@28# gives no phase transition for the
three-dimensionalXY spin glass. Although one would expect
the same lower critical dimension for bothm52 and 3 cases,
such as in ferromagnetic systems, this should not necessarily
hold. Them-vector mean-field solution is also based on an
infinite-range model, presenting features similar to the SK
model @33#. In the presence of a uniform magnetic field,
there is a phase transition associated with the transverse de-
grees of freedom, signaled by the Gabay-Toulouse~GT! line
@34#. Below this line, replica-symmetry breaking is necessary
@35# for a proper description of the spin-glass phase. The GT
line has been observed recently in the Heisenberg spin glass
CuMn @36#, giving support to its mean-field theory.

The combination of spin-glass and random-field models
has been successful for the description of diluted antiferro-
magnets@37#, mixed hydrogen-bonded ferroelectrics, and an-
tiferroelectrics, i.e., proton and deuteron glasses@38# and ori-
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entational glasses@39#. The infinite-range Ising spin-glass
model in the presence of a Gaussian random field@37# was
able to describe several experimental results obtained for the
diluted antiferromagnet FexZn12xF2 ~0.25<x<0.40! @40#. In
particular, for a small width of the field distribution, a cross-
over between the random-field and spin-glass regimes was
verified @37#, which is in good agreement with the experi-
ments done on Fe0.31Zn0.69F2 @40,41#.

In this paper we consider the infinite-rangem-vector spin
glass in the presence of a Gaussian random field. Apart from
a generalization of the Ising case@37#, it represents a very
relevant system from the experimental point of view. We
investigate how the presence of the random field affects the
well-known phase diagrams of them-vector spin glasses and
in particular how the GT line is modified by a finite-width
distribution for the magnetic field. In Sec. II we define the
model and make use of the replica method to find its free-
energy functional. In Sec. III we present the phase diagrams
and the corresponding analytical results. Finally, in Sec. IV
we present our conclusions.

II. THE MODEL AND ITS FREE-ENERGY DENSITY

Let us consider them-vector spin glass in the presence of
an external random magnetic field~favoring the 1W direction!,
defined through the Hamiltonian

H52(
i , j

Ji j SW i•SW j2(
i
hiSi1 , ~2.1!

whereSW i ( i51,2,...,N) are classicalm-component spin vari-
ables

SW i[~Si1 ,Si2 ,...,Sim!, (
m51

m

Sim
2 5m. ~2.2!

The interactions are infinite-range-like, i.e., the sum(i , j ex-
tends over all distinct pairs of spins; the coupling constants
$Ji j % and the fields$hi% are quenched random variables, fol-
lowing independent Gaussian probability distributions

P~Ji j !5S N

2pJ2D
1/2

expF2
N

2J2 S Ji j2 J0
N D 2G , ~2.3!

P~hi !5S 1

2pD2D 1/2expF2
1

2D2 ~hi2h0!
2G . ~2.4!

For a given realization of the disorder~bonds$Ji j % and fields
$hi%!, one has the corresponding free energyF($Ji j %,$hi%);
for quenched systems, the average over the disorder@ #J,h
should be taken over the free energy

@F~$Ji j %,$hi%!#J,h5E )
i , j

@dJi j P~Ji j !#)
i

@dhiP~hi !#

3F~$Ji j %,$hi%!. ~2.5!

As usual, this average is computed by means of the rep-
lica trick @7,8#; one gets the free energy per spin

2b f5 lim
N→`

1

N
@ ln Z~$Ji j %,$hi%!#J,h

5 lim
N→`

lim
n→0

1

Nn
~@Zn#J,h21!, ~2.6!

whereZn is the partition function ofn replicas of the system
defined through~2.1!. The standard procedure leads to

b f5 lim
n→0

1

n
min g~xa,M1

a ,q1
ab ,qab!, ~2.7!

where

g~xa,M1
a ,q1

ab ,qab!

52 1
4 ~bJ!2nm1 1

2 ~bJ!2(
a

Fm~m21!

2
~xa!21mxaG

1
bJ0
2 (

a
~M1

a!21 1
2 ~bJ!2(

a,b
~q1

ab!21 1
2 ~m21!

3~bJ!2(
a,b

~qab!22 ln Traexp~Heff!, ~2.8a!

Heff5
1
2 ~bD!2(

a
~S1

a!21 1
2m~bJ!2(

a
xa~S1

a!2

1bJ0(
a

M1
aS1

a1~bD!2(
a,b

S1
aS1

b

1~bJ!2(
a,b

q1
abS1

aS1
b1~bJ!2(

a,b
(
mÞ1

qabSm
aSm

b

1bh0(
a

S1
a . ~2.8b!

In the equations above,a andb ~a,b51,2, . . . ,n! are replica
labelsm ~m51,2, . . . ,m! denote Cartesian components, Tra
is a trace over the spin variables for each replicaa, and(a,b
represent sums over distinct pairs of replicas. The extrema of
the functionalg(xa,M 1

a ,q 1
ab ,qab) give us the equations of

state

~m21!xa5^~S1
a!2&21, ~2.9a!

M1
a5^S1

a&, ~2.9b!

q1
ab5^S1

aS1
b& ~aÞb!, ~2.9c!

qab5
1

m21 (
mÞ1

^Sm
aSm

b& ~aÞb!, ~2.9d!

where the angular brackets denote thermal averages with re-
spect to the ‘‘effective Hamiltonian’’Heff in ~2.8b!.

The analytic continuationn→0 in ~2.7! may be easily
carried ~see the Appendix! if one considers the replica-
symmetry approximation@10#
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xa5x, M1
a5M1 ;a

~2.10!
q1

ab5q1 , qab5q ;a,b.

The region in the phase diagram where this replica-
symmetric solution is valid is obtained through the stability
analysis of~2.7! around~2.10!. Using the ansatz~2.10!, the
replica-symmetric phase diagram for continuousm-vector
spins may be constructed@34,35#. In the case of no external
magnetic field andJ0.0, the relevant parameters for the de-
scription of the system areM1, q1, andq @33,34#, whereas if

J050, the presence of a uniform magnetic field~in the 1W

direction! induces the parametersx, M1, and q1, allowing
for a phase transition in the transverse spin-glass order pa-
rameterq, signaled by the Gabay-Toulouse line@34#. Analo-
gous to the Almeida-Thouless line@13# for the Ising case, the
GT line is also associated with replica-symmetry breaking
@35#, playing a similar role form-vector spin glasses. Now,
in the case of a random external magnetic field, as defined by
~2.4!, the width of the distribution~DÞ0! induces the param-
etersx and q1. Therefore, ifh050 andJ0.0, the relevant
parameters areM1 andq, whereas ifJ050 andh0.0, there
is still a GT line in the planeh0 versus temperature. The
changes in the GT line, as well as in the phase diagram for
J0.0, due to the Gaussian random field of widthD, is the
subject we will discuss in the next section.

III. RESULTS

A. CaseJ050

For the random-field distribution given in~2.4!, with non-
zero mean and width~h0,D.0!, the only possible transition
is the one associated with the transverse spin-glass order pa-
rameterq. The Gabay-Toulouse line is obtained by solving
the set of equations~A9!–~A11! ~see the Appendix!.

Analytical results for the GT line may be obtained in two
regimes, namely, low fields (h0 ,D!J), as well as high fields
and low temperatures~h0@J, T!J, and anyD!. In the first
case, Eqs.~A9!–~A11! may be expanded in power series to
give the induced parameters

q1>
1

&
F S h0J D 21S D

J D 2G1/2, x>
1

4 F S h0J D 21S D

J D 2G
~3.1!

and the GT line

T

J
>
T̃

J
2
m214m12

4~m12!2 S h0J D 2, ~3.2!

whereT̃ denotes the temperature at which the GT line meets
the axish050,

T̃

J
>12

m214m12

4~m12!2 S D

J D 2. ~3.3!

For high fields and low temperatures, one gets the usual ex-
ponential decay

T

J
>S 2p D 1/2 11m

@m1~D/J!2#1/2
expH 2

~h0 /J!2

2@m1~D/J!2# J .
~3.4!

For all other situations, Eqs.~A9!–~A11! are solved nu-
merically. The search for the solutions of such nonlinear
equations was done through IMSL SubroutineZSYSTM,
whereas all integrals were evaluated by using Simpson’s
rule. Although the Gaussian integrals are defined from2` to
1`, we have chosen the limits24 and 14; apart from
avoiding the numerical difficulties present in broader ranges,
this choice captures approximately 99.98% of the total area
in the corresponding integral. The inner integrals@functions
Pnk in Eq. ~A12!# present, within Simpson’s rule, a better
convergence whenever the integration limits are integer
numbers; our numerical analysis was carried form54, in
which case such limits are22 and12. This choice does not
change the qualitative behavior of our phase diagrams, as
will be discussed at the end of this section. In both cases
~Gaussian integrals and functionsPnk!, the corresponding
range of integration was divided into 400 segments for the
application of Simpson’s rule. A solution was accepted when
the left- and right-hand sides of all three equations agreed
within differences less than or equal to 1023.

In Fig. 1 we present the GT line for a typical value ofD
~D/J52!. One sees that the low-field part of the GT line
moves to the left asD increases, i.e., the width of the distri-
bution favors the longitudinal degrees of freedom forh0!J
and so the transverse ordering becomes more difficult. This
fact is seen analytically, where the temperatureT̃ @Eq. ~3.3!#
is shifted by the introduction of a small widthD. One also
observes that the exponential decay, for high fields and low
temperatures@Eq. ~3.4!#, is weakened by a finite widthD.
The strongly polarized state, characterized by the prevalence
of the longitudinal degrees of freedom, gets diminished by
the presence of a finiteD. Whereas a large meanh0 together
with a small temperature~h0@J andT!J! produce a freez-
ing of spins in the positive 1W direction, the widthD allows for

FIG. 1. Gabay-Toulouse line for them-vector spin glass in the
presence of a Gaussian random field~meanh0 and widthD; D/J
52!. The dashed curve represents the GT line in the case of a
uniform field ~D/J50!.
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fluctuations of the spins along the 1W axis in both positive and
negative directions. Such fluctuations produce a weakening
in the longitudinal degrees of freedom. Therefore, the overall
effect of the widthD in the GT line is to enhance the longi-
tudinal ~transverse! degrees of freedom in the low-mean
~high-mean and low-temperature! regime. This explains the
intersection of the two GT lines~corresponding toD/J50
and 2! exhibited in Fig. 1.

In Fig. 2 we present a three-dimensional plot representing
the evolution of the GT line withD. As discussed above, the
low- and high-field parts of the curve move oppositely asD
departs from zero. AsD becomes large, the GT line tends to
a straight line, parallel to theh0/J axis, joining this axis as
D→`. The sector associated with replica-symmetry breaking
~phase to the left of the GT line! decreases for increasingD.

In the low-mean regime (h0!J), one may define the criti-
cal exponentf,

T̃

J
2
T

J
;S h0J D f

. ~3.5!

A uniform field ~D50! yields T̃/J51 andf52 @34#; if a
small width D is introduced, our lowest-order calculation
shows thatT̃/J is shifted to the left@Eq. ~3.3!#, whereas the
exponentf remains unchanged@Eq. ~3.2!#. However, Figs. 1
and 2 show clearly that the exponentf changes for higher
values ofD. We computed the exponentf for increasing
values ofD and verified itsnonuniversal character; in fact, it
varies continuously withD @f5f~D!#. This aspect is pre-
sented in Fig. 3, where the exponentf is shown to vary
continuously betweenf52 ~for D50! to f51 ~for D→`!.
The breakdown of universality has already been found in
Ising spin glasses for both infinite-@37# and short-range@42#
interactions. In the latter case it was shown that the shape of
the $Ji j % probability distribution influences the critical expo-
nents.

B. Caseh050

A finite random-field width~DÞ0! induces the parameters
x andq1 such that the relevant parameters are nowM1 andq.
Four phases are possible in this case, namely, the paramag-
netic (P) (M15q50), the spin-glass~SG! ~M150, qÞ0!,
the ferromagnetic (F) ~M1Þ0, q50!, and the mixed-

ferromagnetic~F8! ~M1Þ0, qÞ0! phases. TheF8 phase was
encountered by Gabay and Toulouse@34# and is character-
ized by the coexistence of both ferromagnetic and transverse
spin-glass orderings.

As usual, the equilibrium equations@Eqs. ~A6!# present
the symmetryh0→J0M1 and so some of the results obtained
in the previous case may be trivially translated to the present
one. As an example, the phase transitionP-SG occurs at the
same temperatureT̃, at which the GT line meets the axis
h050 in Sec. III A @see Eq.~3.3!#.

Let us restrict ourselves, for the moment, to small
random-field widths~D!J!. The multicritical point, where
all four critical lines meet, is located at

J̃0
J

>11
1

&

D

J
,

T̃

J
>12

m214m12

4~m12!2 S D

J D 2. ~3.6!

This shows that a finite random-field width favors the para-
magnetic phase~with induced parametersx andq1!; all other
phases are reduced due toD.0. The critical frontierP-F
deviates from the straight line characteristic of the caseD50
@34#; indeed, near the multicritical point it is given by

T

J
>
J0
J

2
1

&

D/J

J0 /J
, ~3.7!

whereas in the high-temperature limit one finds

T

J
>
J0
J

2F 3

m12
1

~J0 /J!2

~J0 /J!221G ~D/J!2

J0 /J
. ~3.8!

The phase transition associated with the transverse degrees
of freedom@similar to the GT line of Sec. III A# is the critical
frontier F-F8. Near the multicritical point, this line is given
by

T̃

J
2
T

J
>
m214m12

2~m12!2
F S J0J 21D 22S J̃0J 21D 2G , ~3.9!

whereas in theJ0→` limit, one gets a similar exponential
decay@cf. Eq. ~3.4!#

FIG. 2. Evolution of the Gabay-Toulouse line asD varies [z51/
(11D/J)]. FIG. 3. The exponentf characteristic of the Gabay-Toulouse

line in the low-mean regime (h0!J) is nonuniversal, depending on
the width of the random field~D!.
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T

J
>S 2p D 1/2 11m

@m1~D/J!2#1/2
expH 2

m~J0 /J!2

2@m1~D/J!2# J ,
~3.10!

which is valid for anyD.
For all other situations, the critical frontiers are obtained

by numerically solving the set of equations~A6! using the
same procedure applied for the caseJ050 @Eqs. ~A9!–
~A11!#, as described previously. For the SG-F8 critical fron-
tier, we have adopted the Parisi-Toulouse hypothesis@43#,
according to which such a frontier should be a vertical
straight line. The phase diagram of them-vector spin glass in
the presence of a Gaussian random field~meanh050, width
D/J52! is shown in Fig. 4. By comparing it with the case
D/J50 @33,34# one concludes the following.

~i! The paramagnetic portion (P) of the phase diagram,
characterized by the induced parametersx andq1, increases
due to the random field; this is a consequence of the fact that
such induced parameters make it harder for the ferromag-
netic orderings~F andF8! and spin glass to occur.

~ii ! The critical frontierP-F is no longer a straight line, as
already shown for small values ofD @cf. Eqs. ~3.7! and
~3.8!#.

~iii ! The critical frontierF-F8 near the multicritical point
is expected to behave as

T̃

J
2
T

J
;S J0J 2

J̃0
J D f8

. ~3.11!

Similarly to what was found for the GT line in the previous
case ~J050!, one should have a nonuniversal exponent
f85f8~D!. This is clearly observed in the two corresponding
critical frontiers shown in Fig. 4@D/J50 ~dashed! and
D/J52 ~full line!#.

~iv! The sector of the phase diagram associated with
replica-symmetry breaking~phases SG andF8! get dimin-
ished asD increases, similar to what happens for the Ising
spin glass in a random field@37#.

Finally, it should be said that our phase diagrams were
obtained form54, whereas the most interesting physical
situation corresponds tom53 ~Heisenberg spins!. The
choicem54 was a mere numerical convenience, but the
qualitative behavior of our results should hold for any finite
m ~m>2!, such as in the case of a uniform magnetic field
@34,35#, where no new qualitative features are expected for
varyingm. Although the location of the critical frontiers may
change with the value ofm, e.g., the temperature at which
the GT line meets the axish050 in Fig. 1, or the position of
the multicritical point in Fig. 4, as already seen for the case
D!J @cf. Eqs.~3.3! and ~3.6!#, the qualitative shapes of the
critical frontiers remain unaltered. As a consequence of this,
the critical exponents do not change. In particular, the non-
universal exponentf~D!, shown in Fig. 3, is expected to vary
continuously in the range fromf52 ~for D50 @34#! to f51
~for D→`, at which limit the GT line, forT̃/J→0, should
meet theh0/J axis as a vertical straight line in Fig. 2!, for all
values ofm.

IV. CONCLUSION

We have studied them-vector spin glass in the presence
of a Gaussian random field of meanh0 and widthD. The
phase diagrams in the casesh0Þ0 andh050 were analyzed
for different values ofD. It was shown that the sectors of the
phase diagrams associated with replica-symmetry breaking
decrease asD increases; a similar effect has already been
observed for the Sherrington-Kirkpatrick model in the pres-
ence of a Gaussian random field@37#. It was observed that
one of the effects produced by a finite widthD on the Gabay-
Toulouse line is to enhance the longitudinal degrees of free-
dom in the low-field regime~h0 small!, whereas in the high-
field regime~h0 large!, the opposite behavior was verified,
i.e., the longitudinal degrees of freedom were weakened by
the presence of the random field. In both types of phase
diagrams, a nonuniversal behavior was found, either in the
GT line ~h0Þ0! or in the ferromagnetic–mixed-
ferromagnetic~h050! critical frontier. To our knowledge,
this is the first time that a breakdown of universality has been
reported form-vector spin glasses. For the moment, we are
not aware of any measurements to support our results. We
believe that Heisenberg-like diluted antiferromagnets are
good candidates; they should, at least qualitatively, present
some of the characteristics predicted in the present work.
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APPENDIX

In this appendix we consider them-vector spin glass, as
defined through~2.1!, within the replica-symmetry approxi-
mation; the equations and notation herein closely follow
those of Ref.@35#. Considering choice~2.10!, the free energy
per spin@Eq. ~2.7!# becomes

FIG. 4. Phase diagram of them-vector spin glass in the presence
of a Gaussian random field of widthD ~D/J52!, showing the para-
magnetic (P), ferromagnetic (F), spin-glass~SG!, and mixed-
ferromagnetic~F8! phases. The dashed lines represent the critical
frontiers in the caseD/J50.
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b f52 1
4 ~bJ!2m1 1

2 ~bJ!2Fm~m21!

2
x21mxG1

bJ0
2

M1
2

2 1
4 ~bJ!2q1

22 1
4 ~m21!~bJ!2q21 1

2m~bJ!2q

2E
2`

`

)
m51

m
dvm

~2p!1/2
expS 2 (

m51

m

vm
2 /2D ln Z̃, ~A1!

where

Z̃5Tr expS (
m51

m

amSm1bS1
2D , ~A2!

a15bJ0M11bJFq11S D

J D 2G1/2v11bh0 , ~A3!

am5bJqm
1/2vm , mÞ1 ~A4!

b5 1
2 ~bJ!2@mx2~q12q!#. ~A5!

The parameters in Eqs.~2.9! may be expressed in terms ofZ̃,

~m21!x115K 1
Z̃

]2Z̃

]a1
2L

v

, ~A6a!

M15K 1
Z̃

]Z̃

]a1
L
v

, ~A6b!

q15K S 1
Z̃

]Z̃

]a1
D 2L

v

, ~A6c!

q5
1

m21
(
mÞ1

K S 1
Z̃

]Z̃

]am
D 2L

v

, ~A6d!

where ^ &v represents the Gaussian averages that appear in
~A1!. The trace in~A2! is an integral over anm-dimensional
hypersphere and may be expressed as

Z̃5 1
2 ~2p!~m21!/2r ~32m!/2E

2Am

Am
dS1exp~a1S11bS1

2!

3~m2S1
2!~m23!/4I ~m23!/2„r ~m2S1

2!1/2…, ~A7!

where

r5~a2
21a3

21•••1am
2 !1/2 ~A8!

and I k(z) are modified Bessel functions of the first kind, of
orderk.

The Gabay-Toulouse line, which signals the onset of the
transverse degrees of freedom, is obtained from Eqs.~A6! in
the limit q→0,

~m21!2S TJ D
2

5E
2`

` dv1
~2p!1/2

exp~2v1
2/2!~P20/P00!

2,

~A9!

11~m21!x5E
2`

` dv1
~2p!1/2

exp~2v1
2/2!@m2~P20/P00!#,

~A10!

q15E
2`

` dv1
~2p!1/2

exp~2v1
2/2!~P01/P00!

2, ~A11!

where

Pnk5E
2Am

Am
dS1exp~a1S11b0S1

2!~m2S1
2!~m231n!/2S1

k ,

~A12!

with

a15bJFq11S D

J D 2G1/2v11bh0 , ~A13!

b05
1
2 ~bJ!2~mx2q1!. ~A14!
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