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This paper is devoted to the calculation of the density expangimnfixed non-zero temperatyref the
thermodynamic functions for quantum plasmas. The Maxwell-Boltzmann forms of these expansions have been
studied in two previous papers. Here we include the exchange contributions due to Fermi or Bose statistics, via
a perturbative scheme where the reference ingredients are computed in the framework of Maxwell-Boltzmann
statistics. The whole scheme is based on the Feynman-Kac path integral representation which amounts to
introducing classical auxiliary systems made of extended objects, the filaments. The quantities of interest are
then evaluated by applying familiar diagrammatical methods of classical statistical mechanics. The exact
density expansions of the free energy and of the pressure are explicitly calculated up {@8idehe density
p. The corresponding expressions include, in a systematic and coherent way, the contributions of various
physical effects such as screening, diffraction, recombination, scattering, and exchange. Ap’prater
recover the expansions obtained via the effective-potential method. Our terms op¥taerrectly reproduce
results which are known in some particular limits. Moreover, the high-temperature expansions which can be
easily inferred from our virial expansions do coincide with those obtained from the Feynman graphs in the
usual many-body theoryS1063-651X96)04205-5

PACS numbg(s): 05.30—d, 05.70.Ce, 52.25.Kn

[. INTRODUCTION summed bonds. This provides a well-behaved diagrammatic
representation for the particle correlations.of where the
This paper is the third of a series devoted to the study ofntegrability of each graph is guaranteed by a sufficiently fast
the density expansions of the thermodynamic quantities fodecay of the resummed bonds. We stress that some re-
guantum plasmas. We consider a multicomponent system summed bonds decay only algebraically, in agreement with
made of electrons and nuclei which are assumed to be poitihe absence of exponential screening in the quantum case
particles. Each particle has a massand carries a charge, [9-12.
and a spirno,, wherea is a species index which specifies the  In a second papdr3], the above diagrammatical repre-
nature of the particle. The Hamiltonian .6f is nonrelativis-  sentation was used for studying the density expansions of the
tic and only involves two-body Coulomb interactions of the Maxwell-Boltzmann (MB) thermodynamic functions(at
form e,eg/r for two charges separated by a distamcdt  fixed inverse temperaturg) in a systematic way. On the
does not depend on the spins of the particles. Such a purebasis of simple scaling arguments, we have shown that the
Coulombic description of matter is well suited for a very virial expansions involve half-integer powers of the densities
large variety of physical situations. Besides their own con-and integer powers of the logarithm of the densitigse
ceptual interest, the virial expansions are useful in practicgresence of logarithmic terms was conjectured by Friedman
for studying regimes where the density is not too high and14]). We also gave detailed prescriptions for selecting the
the temperature is not too lo¢for instance, these conditions graphs(in finite numbey which contribute to a given order in
are met in the core of the sun pVB, where pMB is a generic notation for the MB particle
In a first papef1], we derived a diagrammatic represen- densities. This allows us to recover the known results up to
tation for the particle correlations of”in the framework of order(/)MB)z, and to calculate exactly the next term of order
Maxwell-Boltzmann statistics. As in the work by Ginibre (pVB)>2.
[2], the application of the Feynman-Kac formul3] to the As announced previouslyl], the above expansions are
density matrix leads to the introduction of an auxiliary clas-term to term well defined despite the macroscopic collapse of
sical system¥* made of closed filaments. Since the fila- the Maxwell-Boltzmann systerfil5]. In the present paper,
ments interact via two-body forces, all the familiar diagram-the exchange contributions due to Fermi or Bose statistics
matical methodg4] can be applied to*. However, the are now evaluated via a perturbative scheme, in which the
corresponding Mayer-like graphs diverge because of th&B quantities are the reference ingredients. A brief descrip-
long-range Coulombic nature of the interaction potential betion of this scheme has already been given in a Léft6}, as
tween two filaments. These long-range divergencies are ravell as the complete form of the virial expansion up to order
moved via the chain resummations introduced by Mdgér  p°2
and Salpetef6] for classical point charges. In fact, inspired  The present paper is organized as follows. In Sec. Il we
by the works of Meerori7] and Abe[8] for classical Cou- define the model and recall the theorems which guarantee the
lomb systems, we have shown that the whole set of Mayeexistence of the thermodynamic limit. In Sec. Il we write
graphs defining the correlations of* can be transformed the Slater expansion of the grand-partition funct®m con-
exactly into a new set of prototype grapHsbuilt with re-  figuration and spin spaces. Such an expansion is organized
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with respect to the numbar of exchanged particles. The Kirkwood %2 corrections[22] to the classical quantities for
term n=0 corresponds to Maxwell-Boltzmann statistics, the one-component plasma. By the way, we also do recover
while the terman=2 describe exchange effects due to Fermithe virial expansion for the classical one-component plasma
or Bose statistics. calculated by Cohen and Murphig3].

As shown in Sec. IV, the application of the Feynman-Kac Another possible approach is based on the standard many-
formula to the spatial matrix elements of the quantum Gibbd0dy perturbative expansions with respect to the Coulomb
factor allows expression of each exchange contributiof to interaction potentialv(r)=1/r in the framework of the
in terms of quantities relative to opened filaments7 im-  grand-canonical ensemble. These expansions can be written
mersed in a large syste* made of closed filamentg. N terms of graphs similar to those which appear in field

This inhomogeneous situation can be dealt with via a pertur?heor.y' Whgre fermionic or bosonic loops associa;ed 0
bative scheme, where the equilibrium correlations of the holmaginary-time .free propagators are c'onngcted at different
mogeneous systerr* (without any opened filamenare the times by an arbitrary nur_nber of mteractlon I.'m?S[ZA']' The

key ingredients. As described in Sec. V, the density expreé_ong-range Coulomb divergencies are eliminated via the

sions of the thermodynamic functions.ef are then derived weII—kr_10wn ring_resummationE;25,26|. Tc.) our knowledge,
by taking advantage of our knowledge.@® [1,13]. In par- analytic evaluations of the corresponding Feynman graphs

ticular, once the MB densities have been eliminated in favopavet bee2n5 restrclic;[e?hto gheh rllgh-den?ty rlt_aglgrr;e gt ZErO tem-
of the real densitiep, these expansions reduce to doublePE"® urg 25], and to the high-temperature linfi27—-29. Ex-

integer series im2 and Ip. Such a nonanalytical structure plicit calculations of the virial coefficients at finite nonzero

. . temperature should also be possible by following Rogers’s
trg]lects the collective screening of the bare Coulomb pOtenidea[BO]. This author proposed a classical treatment of the

In Sec. VI the density expansion of the pressure is calcu[ing resummations combined with a proper account of th_e
lated explicitly up to ordepsB. For this, in the above Slater ladder graphs that describe quantum effects at short dis-
expansion with respect to the numbv.n,.lof exchanged par- tances. In this procedure, some terms are left over since they
ticles, it is sufficient to keep only the MBn=0) and the are expectgd to be quantitatively_small in the physic.al re-
two-body exchangén=2) contributions. The density expan- gimes considered by the authi@l] (i.e., at moderately high

sions of the other thermodynamic functions are then readil ensities where Comp"?x entities made of several charges
obtained through thermodynamic identities. ay be formefl A detailed control of these terms should

The physical nature of the various contributions to theallow recovery of the virial expansions calculated by the

density expansions is discussed in Sec. VII. There are pureg.b%v(ta formalltsms. At the_mom?nt, we hE}ve C][‘f?c_kef tgat the
classical terms which arise from Debye screening at larg Igh-lemperature expansions ot our virial Coetlicients do co-

distances. The short-range quantum effects associated Wi'rﬂC'de with the. terms found by DeWif28] and more re-
bound and scattering states enter in suitably truncated tracggntly by DeWittet al. [29].
of the quantum Gibbs factors for a finite number of charges.
There are diffraction terms which appear as quantum correc-
tions to a classical treatment of the long-range part of the
interactions. Eventually, the exchange contributions are ex- \ve consider a multicomponent syster with an arbi-
pressed in terms of off-diagonal matrix elements of therary number of species made of point particles. Each particle
n-body density matrix. All these physical effects should beof speciesy (an electron or a nuclei in practical applicatipns
coupled together at higher orders in the density. has a massn, and carries a charge, and a spino,,. Two
Also in Sec. VII, comparisons to previous results andchargese, and e, separated by a distanceinteract instan-
checkings are also decribed. Of course, the virial expansiongneously via the usual two-body Coulomb potential

First, the effective-potential method formulated by Morita for N particles enclosed in a box with volurdeis

[17] for quantum systems with two-body interactions has

been applied to the present Coulomb case by Ebeliad

This method consists in introducing classical equivalent sys- 52

tems made of point objects with second-, third-, and higher- Hu=—3 A+ 1 &e
order many-body effective interactions. In practice, only N To2m ' 2
two-body effective potentials have been retain@é8—20Q.

This amounts to considering well-behaved classical systems

with two-body Coulomb interactions that are regularized atwherei=[%] is a double index, whil& runs from 1 to the
short distancegsquantum effects smooth out the singularity numberN, of charges of species, and« runs from 1 to the

of 1/r at the origin. The corresponding calculatiof$9,20 numberng of species =X _N_,). The boundary conditions
provide the exact form of the virial expansions up to orderwhich defineH,, are of the Dirichlet type, i.e., the eigen-
p?, which is indeed recovered by our formaliga6]. How-  wave-functions oH,, vanish at the surface of the box. This
ever, the expressions proposed for #1& term[20] are not  nonrelativistic Coulomb Hamiltonian is well suited for prac-
complete because the three-body effective potentials do comical applications where the mean velocity of the particles is
tribute at this ordef21]. Our formalism allows a precise small compared to the speed of light.

evaluation of this missing contribution which is of the dif- Let the system be in thermal equilibrium at temperature
fraction type. We stress that the presence of this additional (8= 1/kgT). The grand-partition function of the finite sys-
diffraction term is crucial for recovering the Wigner- tem reads

Il. THE MODEL

j
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. part of the matrix elements contributes the degeneracy factor

EA:TrAex;{ —,3( HN_EL:‘ waN, } (2.2 z{giz}Hi(alz/)a(MaiZ) which only depends on the permutations

wherepu,, is the chemical potential of species In the defi- The Slater-sum representatigB.1) of =, provides a

nition (2.2), the trace Tx is taken over all the states satisfy- natural perturbative scheme for treating the exchange contri-

ing the above boundary conditions and symmetrized accordautions. The term wherg’, reduces to the identity for any

ing to the statistics of each species. Note that the total charggbviously corresponds to Maxwell-Boltzmann statis{it$

=.£.N, carried by each of these states may be different fromAll the other terms describe exchange effects associated with

zero. Fermi or Bose statistics. They can be reorganized with re-
Lieb and Lebowitz[15] have shown that the thermody- spect to the number of exchanged particles, i.e., the num-

namic limit (TL) of the present system exists if and only if at ber n of indexesi such that7’,(i)#i. This allows us to

least one species obeys Fermi statist@se also Lielj32], rewrite (3.1) as

Dyson and Lenard33]). The TL is defined as the infinite

volume limit (A—), while the chemical potentigk, and

the temperaturd are kept fixed. The existence of the TL 2,=2E+> 20, (3.2
means that the thermodynamic quantities relative to the infi- n=2
nite system have the right extensive properties. In particular, o

terms in(3.1) with n exchanged particles.
The first term(n=0) in (3.2 which corresponds to MB

1 o
P=lim — InE 213 statistics readfl]
ﬁ . A A ( )
o0 zNa
is a well-behaved function of the intensive parametess =MB _ E H “ (2g.+1)Na
and B which does not depend on the shapes of the finite Ao e NG “

boxes considered in the TL. If the fugacities=exp(Bu,)
are small enougkat given temperatujethe system surely is XJ di.(Rulexo — BHO IR 33
in a fluid phase. The local density of any specieshen ANl_i[ (Rulexet=AHWIR), (33
becomes uniform in the TL and reduces to R
with |Ry)=®;|r;). Each spin degeneracy factor relative to
speciesa reduces to (&,+1)N« and the matrix element
(2.9

g (Rulexp(— BHy »)IRy) (3.4
Furthermore, the infinite system is locally neutral, i.e.,

J li ! InZ
=Z, — |IIm —Ing
Pa @ (9Za . A A

is diagonal with respect to all the positions

The second termin=2) in (3.2) is obtained by collecting
2 e,p,=0 2.5 the contributions to(3.1) of all the sets of permutations
i ' which exchange two given indexes associated to the given
speciesy and leave unchanged the remaining ones. For each

for any set of fugacities. speciesy, there areN (N ,—1)/(2!) such sets of permutations
which give identical contributions. The corresponding spin
Il. SLATER EXPANSION degeneracy factor now reduces too(2+ 1)N«"1! because
OF THE GRAND-PARTITION FUNCTION the product of(a,zf)a(i)wiz) is different from zero only when

the two exchanged particles are in the same spin state; the
other degeneracy factors for#a are obviously equal to
(20,+1)V7 as in the MB case. We then obtain

The trace(2.2) defining the grand-partition function can
be taken over the symmetrized Slater sums built with one
body stategro?) which describe a particle localized at
with the projection of its spin along a giveraxis equal tar”

1]. This gives Zi
e EP=2 (-1)¥(20,+1) 5
- HQZS“ o No—2
EA: E | 2 H 6a(;/7)a)2 H <0-Z//a(|)|o-lz> Zaa N —2
N,=0 Ha ar Py« {‘Tiz} i XNQ:z m (20‘a+ 1)"e
o0 N
X dri(r, iy ®ilexp(— BHY)|®i|ri). (3.1 oL
fANH |< ./a(|)| || Xp(— B N)| || |> (3.0 « yFacy (20_y+ l)NY
Ny=0 IL,24(Ny!)
In 3.2, 2, is a permutation of (1,...,N,), . R .
7,(1)=(7,(K),a), and e,(7,) is either 1 if the particles of X f drydi,dRy_o(Mar 1Ry o€ AN Ry L),

speciesy are bosonso, intege) or the signaturé+1) of 7,
in the fermionic caséo, half integej. Notice that the spin (3.5
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wherer, andr, are the positions of the two particles of
speciesa which are exchanged anBy_, is a collective
notation for the(N—2) positions of the other particles. The
matrix element

(Far1Ry—2le PN Ry - o) (3.9

is off diagonal with respect to the positions of the two ex-
changed particles and diagonal with respect to the positions

of the (N—2) other particles.

Expressions similar t¢3.5 can be easily found for the
otherE \’s (n=3). In particular, the spin degeneracy factors
are readlly evaluated by identifying the spins of the ex-
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exd — (r;—F])2/(2x?)]
(27T)\i2)3/2

<[ 11 &) exp[——E

*
1
xfods ve[|[(1=9)(ri—T))

(Rulexd — BHulIRu) =11

+s(F =)+ E(S)—NE(9)]]].

4.3

In (4.3, the Gaussian prefactors arise from the kinetic

changed particles which are involved in a given cyclic per-contribution to the actionS of the free motion part

mutation (any permutation oh objects is a product op
cycles. Moreover, like (3.6), the matrix elements of
exp(— BHy) are off diagonal with respect to the positions of
the n exchanged particles and diagonal with respect to th
positions of the N—n) other particles.

The perturbative representati@B.2) is particularly well

[(1—s)r;+sT/] of ri(t). The corresponding kinetic factor

exd—3/ads Ez(s)] associated with eacE is absorbed in a
ormalized Gaussian measurg ¢) which defines the func-
ional integration over all the Brownian bridge$s) sub-

jected to the constrairﬁ(O) E(l) 0. This measure is in-

suited for calculating the first terms in the density expansiondinsic, i.e., independent of all the physical parameters, and

of the thermodynamic quantities.
diagonal matrix elements of exp(BH,) are short ranged,
the contributions to intensive quantitiéike the pressureof
eachZ (" are at least of ordep”, roughly speakind34].
Therefore, at a given order ip, only a finite nhumber of
terms in(3.2) must be retained.

IV. FEYNMAN-KAC REPRESENTATION
A. The Feynman-Kac formula for the density matrix

According to the original path integral formulation intro-
duced by Feynman and Hib§85], the matrix elements of
exp(— BHy) in configuration space read

exp( —S{;Zi(t)}),

4.1

(Rilexd — BH\IIRy)= >,
all paths

whereS{r;(t)} is the classical action

>

m; [dri(t)]?
T~ 2

. Bh
s [ 3 5|
1 - -
+§2 eiercHri(t)_rj(t)l]] (4.2
i#]

for pathsri(t) going fromr; to r{ in a “time” Bh. The
summation in4.1) is taken over all such paths. The variable
changest=sg# and ri(t)=(1—s)r;+sr +\;&(s) with
£(0)=&,(1)=0 in (4.1 and (4.2 lead to the so-called
Feynman-KadFK) formula[3]

|ndeed since the oﬁJtS covariance is glven by

s=<t
t<s.

s(1-1),

(1-g) (4.4

f/(f)fﬂ(s)fv(t) OunX

Eventually, the Boltzmann-like factors obviously arise from
the potential part of the actio8.

B. The Maxwell-Boltzmann term

As shown in Ref[1], use of the FK formuld4.3) for the
diagonal matrix elemen(B.4) leads to the introduction of an
auxiliary classical systen¥™* made of closed filaments in-
teracting via two-body forces. Each filament is characterized
by its spatial positiom and two internal degrees of freedom,
the dimensionless patk(s) associated with its shape, and
the species index which specifies its spatial extensiarg,
and the strengtle, of its coupling with the other filaments.
We denote byr=(a,r,£) the state of such a filament. Two
filaments in stateg and#” interact via the two-body poten-
tial e, e,v(#,2") with

1 N -
v(£,87)= JO dS v [T+ NG E(S)—F' =A@ &' (5)]].
(4.5

Defining the phase-space measul€ for a filament such
thatd=dadrZ(¢) (da means a discrete summatjcand
setting z(#)= (20, +1)z,/(2m\%)*? for its fugacity, we find
that the MB grand-partition function given H.3) is iden-
tical to the grand-partition function of™* [1],

ENT=EA()
o 1 N
=2 mf I1 dza(z
N=0 N: k=1
B _
X| =5 2 et (FA) | (49
27 kA
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C. Bxchange temms ()= (1= )T+ ST+ N, &(S). .7

First, we consider the two-body exchange tdB1). It is
quite natural to interpret the FK representati@nd) of the
off-diagonal matrix element3.6) in terms of two opened The closed filament& are associated with th&\—2) unex-
filaments.7 %, and.7%; immersed in a bath of closed fila- changed particle¢see Fig. 1L All the opened and closed
ments. Each opened filamenty; describes the exchange of filaments interact via the two-body potentials of the type
a particlea from the positionr, to the positionr; and its  (4.5). Inserting the FK representation of the matrix element
shape is parametrized by (3.6) into the expressiofi3.5, we then obtain

_ 1 Zi . e _(Fz_Fl)z o
B =31 2 (1) (20,+1) FENE fAzdrldrz f :%(goz%(gz)exp[T—ﬁeﬁv(.%lz,.le>

e 1 N 7 7 ) ) B )
X —fﬂ dZZ( £ ) eXH — B, V(T 15, Z1) — BB v (751,410 16X — = X, €4 eav(Z, 4|
N=o N! J k=1 k k 2 7 kY

4.9

where the phase-space meastifeand the fugacity(#) for the closed filaments are defined as above. The 3, . . . in
the right-hand side of4.8) is nothing but the grand-partition functid, (V|7 1,,7 5, of the systems™ in the presence of
the external one-body potentiale, [v(715,&")+v(75,£")] created by the two opened filaments.

It is convenient to rewrites (/|7 15,7 %) as

—

1
EA(-V*|-7‘1“21-?731)=EA(&”)GXP( —Bfo dgf d?/f'Pg(?f’|71i‘2,-‘7§‘1)eaea/[v(-/71112,?5”)+v(!7§‘1ff5')]] , (4.9

which follows from a standard coupling-parameter integration techniqu@.® py(~"|7 15,731 is the one-body density of

the inhomogeneous systef™ when the external potential due to the opened filaments is multiplied by the dimensionless
coupling constang [the fugacityz(#) and the temperature being kept fixetMoreover,= (™), which corresponds to the
cageg=0, reduces to the grand-partition function of the homogeneous system introduced in Sec. IV B. The replacgyent of
(745,75, by (4.9 in (4.9 then gives

EQ=E\(sMEPR, (4.10

where the two-body exchange fac®f? reads
(2) 1 20 i > > 3 3 _(FZ_Fl)Z 2 PR
EQ =5 2 (~1)¥e(20,+1) Bmp fAzdrldrzf AEV A Eexy —— 7= Felp( 710,78

1
Xexp[ —Bfo dgf dg"ﬁg((@”|-771fzy-ﬁl)eaear[v(-ﬁz,?f")+v(71211,?5”)]] : (4.1D

Starting from the FK formula4.3) for the off-diagonal and
matrix elements of expftBH,) and following the same
methods as above, we readily find for amy3

1
20=E,(EY, (412 ex‘{—ﬁ Jo80] ooy i) S e“e“’”(?’gy)}'

where the exchange fact&"’ can be expressed in terms of (4.13b
n opened filaments7; similarly to (4.11). Apart from

simple permutation, spin, ard factors,E(A”_) reduces 10 in- The first one(4.133, corresponds to the exchangeropar-
tegrals over the opened-filament extremities and shapes %Ies in the vacuum. The second or(d,13b, takes into
the product of the two exponentials account the presence of the surrounding particles which are
8 described by MB statistics. This many-body effect on the
exg — > r3/2\2—2 > e v(7.T7) exchange is entirely determined by the one-body density
T 2 S pg(2"{7}) of the inhomogeneous systeni™ submitted to
(4.133  the external potentiagd= -e,e, v (7,&").




53 VIRIAL EXPANSIONS FOR QUANTUM PLASMAS: FERM! . .. 5719

the grand-partition function can be foufi86,37] by starting
also from the FK expressio@.3). Since any permutation of
@ n objects is the product op cycles, any set oh opened
& filaments7 7§, can be viewed as a collection pfloops. Each
& loop #(¥ is made ofg opened filaments involved in a given
cyclic permutation. For instance, the two opened filaments
F¥ 7%, and.7%, constitute a single loopZ?. Within this inter-
pretation, the whole Slater expansi@j) of =, is identified
FE¥ to the grand-partition function of a mixture of classical loops
D with q=1,2,3 . . .. The loopsZ? are the closed fila-
ments & of ./*. The activities of the loopsZ(? for q=2
& & incorporate self-energy terms arising from the two-body in-
teractions between thg opened filaments which constitute
29 as well as permutation and spin factors which may be
negative in the fermionic case. In this approach, the MB and
& exchange contributions are treated on an equal footing, at
least at a formal level. In the following, we shall only use the
perturbative representatiqd.14).

FIG. 1. The two opened filament&?, and.#5; immersed in a
bath of closed filamentg.. The black circles denote either the V. DENSITY EXPANSIONS
extremities of the opened filaments or the positions of the closed OF THE THERMODYNAMIC QUANTITIES
ones. The curves represent the shapes of the filaments. )
A. Slater expansion of the pressure
D. The grand-partition function In the present approach, it is quite convenient to derive
first the density expansion of the pressBravhich is directly

Inserting the FK expressior(d.6) and(4.12 of EX® and  ajated to the grand-partition function via

=, respectively, into the serig8.2), we find

1
- BP=lim - InZ, . (5.0
EA=EA(.V*)[1+2 E<A“>}. (4.14 n
n=2

Use of the representatioi@.14) for =, in (5.1) provides a
similar series forBP, i.e.,

In this representation, the systeni™ of closed filaments

naturally appears as a reference system. Indeed, as described %

above, the evaluation of the collective part of each exchange BP=pBPMBL > gp(M, (5.2

factor #" amounts to considering an inhomogeneous situ- n=2

ation wheren impurities (the opened filamenksare im-

mersed iny™. where BP(™ is the contribution ofn exchanged particles.

Eventually, let us mention that another representation ofthe MB pressure naturally comes out from the term

@
é{ﬁ
e

FIG. 2. Two loops#{? and #{? immersed

in a bath of closed filamentg’. Each loop de-
scribes the exchange of two particles of the same
é species. The black circles and the curves have the

' same meaning as in Fig. 1.

o 9D @ A
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E,(7*)=ENB which is factored in(4.14). The other terms 1,
in (5.2 arise from the expansion BP®)=lim N E®, (5.4b
TL
S (n) o CDPS (n) ’
Inf1+> EM[=> ———— > EY (5.3 1 [EP72
n=2 =1 P =2 BPW=lim | E{)— : (5.49
TL A 2

Each P(™ corresponds to the sum of all the products

q (MK Wi q = i i iaht- _ .
I [E} ] with = npy = n which appear in the right The general structure of tH™'s is, of course, similar to

hand side of5.3). The firstP’s obviously read that of theE™’s studied is Sec. IV C. In eacR™, homo-
1 geneous monomials of degraen the z's can be factored in
pP@=lim — E®, (5.49 front of integrals oven opened filaments with one of their
A extremities fixed. In particular, we easily infer frof@#.12)

1 z, - N —(F—F)? o —a
BPP=77 3 (1) (20,+1) 2mIp? JAdrz J '5”(51)@(52)”‘{—@ ~Belv (7. 75
1 ) y
Xexp{ —ﬁfo ng dh”pg(g’|.7§‘2,.7§1)eaea,[v(.7j‘2,%5”)+v(.7§‘1,25’)]]. (5.5
|
The convergence of the integrals involved in tA&’s is C. Exchange contributions

ensured by the combination of two mechanisms. As quoted gq, expanding the exchange contributiggB™, we con-

in Sec. IV D, each set af opened filaments can be decom- sider the expressions of the tyf&5). In the latter, the non-
posed inp loops. The Gaussian measures in &% as well  trivial density dependence is entirely contained in the fila-
as the Gaussian factors éxir /(2\)], control the integra-  ment density,('[{.7}) of the inhomogeneous systef in

bility with respect to the sizes of the loops. In addition, thethe presence of the external potentgl ,e,e,v(7,%”).
sufficiently fast decay with respect to the relative distancesuch a quantity may be represented by a perturbative series
between the loops results from the truncated structure of thia terms of the external potential

corresponding integrands and from screening. In particular,

in the case oP“, the contributiong4.133, (4.13h associ-

ated with the two loops#'? drawn in Fig. 2 and which arise (L UTH=02 eseqv(T,E").

from bothEY) and—[E?1%/2, do cancel in an integrable way 7
for large separations of the'?’s (see Sec. V €

The first terms reafi38]

B. The MB contribution pg( &’

{7 =p(2") (5.73
In the first two papers of the present serjdsl3], we
have studied the expansion of the MB pressa®® with

respect to the MB densitigs,'° . These densities are those _'Bf 4" o 2717
calculated from the MB grand-partition function for the 9
ngaCltleSZa, l.e., X[pT( g/, c/l)_’_p(b/r)&(;/ﬂ/_ gl)] (57b)
6In =8
MB_ . i A
pa Z(II!I_T 5Za(I?) (56) +
z,(N=z2,

In (5.7), p(#") is the one-body density of the homogeneous

system.”” associated with the MB contributions, while
They are, of course, different from the real densigsal-  pr(%’,#") is the corresponding truncated two-body density.
culated from(2.4) for the same fugacities, because of the Similarly, the terms of ordespg (n=2), which are not writ-
nonvanishing exchange contributio$ to =, . The density  ten explicitly in(5.7), involve combinations of the fully trun-
expansion of the pressure is obtained by starting from a diacatedp-body densities of the previous system witkk@<n
grammatical representation of the filament correlations of thet 1. These combinations have the same structure as that of
homogeneous systenf” [1]. A scaling analysis with respect the(n+1) point charge correlations for an ordinary Coulomb
to kB shows that3PM® reduces to a double integer series system with point chargdgor instance, see the combination
with respect ta(p&)¥2 and Inp“e. for n=1 in (5.7b)].
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When inserting the perturbative seri¢S.7) into the  wheregf{p,} is the free energy per units of volume akylr .
many-body screening factof4.13h, the contribution of A straightforward manipulation of the relatid.9) and of
(5.73 reads(in the exponent the standard formula

1
v} lv=) a7 ! &
_ﬁ; eajodgf dZ'ep(& v (7, &) ﬂng paﬁﬁf{py}lﬁ_ﬂf{py} (5.10

1 - -
=2mp2 €. ey Jods f AENPa(ENE(T then shows that
(5.9

J
where the Taylor expansion of.7,#") with respect to\,, Pa=8a Ja, BP{als- (5.13
the rotational invariance g, (¢'), and Poisson’s equation
for 1/r have been usefhotice that(5.8) does not depend on
the shapes of the opened filament§. The density expan-
sion of (5.8) immediately follows from that of the transla-
tionally invariant density(%")=p,(¢') derived in Ref[1]. It
takes the form of a double integer series (p\')*? and
In pMB, similarly to the expansion g8PE. aV®{pMBr=a,. (5.12
For studying the contributions {@.13b of the next terms 7
of orderqbg (n=1) in (5.7), we replace all the correlations of
the homogeneous systeat by series of prototype graphs o
similar to those which define the correlations between twoy
filaments[1]. All these prototype graphs are built with the
same resummed bon@s"® as those introduced for the two-

body correlations. The previous contributions are then "Sion (5.2, we are left with the functiorP{ay}. A simple

eréten as 'lnlteggli/,ov_ﬂl pLOthCt§ of risummed bOEHEMB inversion of (5.11) then gives the pressure in terms of the
and potentials (7,£"). The behavior with respect to the real densities,, only, as required.

densities of these integrals can be studied by techniques
similar to those introduced in Ref13] for evaluating the
purely MB contributions. Here, we do not reproduce the de- E. General structure of the density expansions

tails of the analysis, but just mention the basic mechanisms As shown in Secs. V B and V G3PM® is represented by
which control the behaviors of interest. In the zero-densityy double integer series ip"8)*2 and Ip™®, while gP™
limit, the larger divergencies arise from integer inverse aiso reduces to similar series multiplied by prefactaPs
powers ofr. The many-body screening effects, which re-This general structure, involving half-integer powers and
move these divergencies, amount to scalingith respectto  |ogarithms, is conserved through the elimination {p}'®}

the MB Debye |€‘ngthMB);l- Conse'&éjently, screening gen- and{a,} in favor of{p,}, as a consequence of the low-density
erates integer powers a'® and In«M® (the logarithms are pehaviors

linked to the presence ofiftails which are at the borderline
for integrability). The structure of the expansion @.13h is (20,+1)
then quite similar to that of the MB pressure itself. The pa~p';"5~“—23/2aa, (5.13
former is not affected by the integration over the opened- (27\5)

filament degrees of freedom with the weighting self-factor

(4.133. Indeed, each piece ¢4.133 associated with a given when all thea,’s go to zero. Eventually, the density expan-
loop is short ranged, while two of these pieces are linked bysion of the pressure reads

Coulomb-like interactions which are again ultimately

screened on a range™®) 1 [39]. It results that, apart from a

2
trivial z" prefactor, 8P reduces to a double integer series p— 2 |
A = + A 4 e
in (p"8)"2 and Inp"®, as gPME, B % Pa I;p {pat Wﬁ% aPa

Our method provides a perturbative representation of the
pressure in terms of the activities and of the MB densities

MB H
p, - Which are such that

Our knowledge of the MB thermodynamic quantities al-
ws us to determine first the functioms,>{p’'®} from the
efinitions (5.9), and consequently to exprep¥® in terms
of thea,’s by inverting(5.12. Once the MB densities have
been eliminated in favor of the,’s in the Slater-like expan-

D. Elimination of the fugacities and of the MB densities X InP

4B eipa) : (5.14
Once the above expansions@®"® and 3P have been ¢

performed, it still remains to eliminate the fugacities and the here.7 h | ials of deates
MB densities in favor of the real densities. The thermody-Whereé7iip,; are homogeneous polynomials of degtei

namical activitya,, of speciesw is defined through the ther- e densities, with coefficients depending on the tempera-
modynamical relgtion ture whilel,n,p are relative integers such thet2, p=0,

andl+n/2=% (n may take negative valugs

p Using (5.14) in the thermodynamic relatiofb.10), we see

Ina,=-— BH{p,}4, (5.9  that the expansion of the free energy must exhibit a structure
e similar to that of the pressure, i.e.,
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2\ 2)32 VI. EXPLICIT CALCULATIONS UP TO ORDER pS/2
( a) (23
(20,+1)
n/2
InP

-1

pi=2 pa[ln(

+I,§n,:p Ql{pa}

The general scheme described in the preceding section is
now apglied to the calculations of the virial coefficients up to
5 order p°2. According to the low-density behavio(§.13),
4mB2 &Pl 519 this requires the evaluation of the MB pressure up to order

“ (pMB)%2, At the same time, only the two-body exchange con-

W|th the same Constraints dm,p as above_ Moreover, the tribution BP(Z) haS to be taken intO account. A” the Other
homogeneous po'ynomia@l are eas”y Computed in terms eXChange ContrlbutlonBP(n) W|th n=3 are at |eaSt Of Ordel’
of the 7}’s by an identification method. The expansions of” [40].
all the other thermodynamic functions can be inferred from
(5.14) or (5.19 by combining thermodynamic identities and

X

4B, €2p,

A. The MB pressure

relations between Jacobians. As B.14 and (5.15), their The expansion in thgM®'s of 3PMB has been calculated
generic terms reduce to polynomials in #hgs multiplied by in Ref. [13] within the diagrammatical method briefly out-
integer powers ok and Inx with xk=(47B3 e2p,)"2. lined in Sec. V B. We find
|
(«kMB) 1
MB _ MB_ o 1ln3+ = 3.3,.3 MB _MB
ﬂP ; pa 2471, 3 C |n3 2 ;B B eaeﬁpa pﬁ

) . Be.y BeleE
(2777\2,3)3/2<r|eXp(—,3ha/3)|r>_1+%—72—13

R— o

1
_ - 2 MB _MB |; 2|
2 a,pB Pa pB fim r J‘r<Rdr

2 1 C
3.3 4 4 MB MB 3.4.3 -1 _MB _MB MB
+5 E3eaeB|n(KMBR)}+7T 3 §—|n2) Eaﬁ Breqesx"Coy p +Cla2B735eaeﬁey(KMB) YoutplopY

3
33,343 -3 _MB_MB _MB MB MB _MB
+Cp X Bseaeﬁeyeﬁ(KMB) *pu Pg Py Ps -= 2> :BeaeBKMBpa Pg
a,B,y,6 4 a,B

X lim “ dr|
R—® r<r
1 B*h%e?
162 m

2,2 52
Beaeﬁ_ B eae,B

r 2r2

(2705 p) X(Flexp(— Bhg)[F)— 1+ .

2
+3 ,6’3e§ef3ln(;<MBR)]

(kMB)3pMP+O((pMB)3 InpMB). (6.1

a

where the pure numerical constaftg andC, have been estimated &5~15.201+0.001 andC,~—14.734+-0.001, whileC

is the Euler-Mascheroni constait~0.577. . . . Moreover,h 4 is the one-body Coulomb Hamiltonian of the relative particle
with reduced masmali: m,mg/(m,+mg) is the potentiake,eg/r, and\,; is the corresponding thermal de Broglie wave-
length, \ 5= (8h%m, )"

B. The two-body exchange contribution

Thea'}/lfépﬂzefactors inBP@ are at least of ordes?. Thus the many-body screening factdr13b has to be evaluated up to
order(p"")"<. -

The contribution(5.8) to (4.13b of (5.7a is obviously of ordep™® sincep,(¢') reduces tp"® at lowest ordef1]. The
leading contribution t¢4.13b of (5.7b) arises from the simplest Debye prototype graph inliheepresentation of(£",£"),
ie.,

eX[:(—KMB|F"—F’|)

Par(E)par(€)(— By —— (6.2

|r//_rr|

In addition, it is legitimate to replace ea@lg(é) by pMB according to[1]
Pa(£)=pi®+0((p"®)?). 6.3

This gives for the previous contributidin the exponent 0f4.13h]

2 2
%ezuz_ 2 J df" (& )eqv (77,2 pyr f AP AEN 2 egu (7], 2")

1

VB exq_KMB“"//_F/D

X| — Beqr€urp T 8 S(T"—T)S(E"—E)|, (6.4)
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with 7,=7%, and.7,=7%,. In (6.4), the integral over finite distances is of orderp“® at least. The remaining integral over
large distances’~(«xM®) ! may be estimated, at lowest ordergdt®, by replacing each potential.7; ,#) by its monopole-
monopole asymptotic form

v(7, ) =1k +0(1/?). (6.5

The integrals over the filament shapé’s{s) and 5”(5) are then easily performed and the low-density limit form(64)
reduces to

o EX0— K87 )

Ear =1 ’
_Bea/eanpa,, |F”—F,| + 5aua/5(r —-r )

r"

- €a’ .
2%z [ 0P S U 5 [ 0P'S

2
e €ar exp(—«MBr)

:2’32e(21f dF/Z Par 7 ;

a

=2Be2kMB. (6.6)

In deriving the second line dB.6), we have used thgtdr”... is nothing but the electrostatic potential at the origin created by
a point chargee, atr’ plus its Debye screening cloud, i.e, exp(—«"Br’)/r’.

The expressiofi6.6) constitutes the leading contribution @.7) to the exponent of4.13h. The corrections t96.6) are at
least of ordep™® [41], as shown by a scaling analysis with respeck'f§ similar to that of Ref[13]. Thus the many-body
screening facto(4.13h reads

1
ex;{—ﬁf dgf d&’ pg(&’
0

This simple result, which does not depend on the shapes of the filamgrasd.” >, is easily recovered as follows. In the
low-density limit, the characteristic sizes of the opened and closed filaments become small compared to the mean distance
between these objects. As far as many-body effects on the two-body exchange are concerned, the physical
picture which emerges is that of a classical point charge impustyidimersed in a mixture of classical point charges.

The corresponding screening factor has the same structure (4a83h with the substitutions &' —r”,

2
T1.72) 2 €,euv(T77,2") | =1+2Be2kMB+0O(p™B In pMB). (6.7
i=1

pg(&’ .71,.72)—>ng%(¢(’,?), 2 je,e,v(7;,&)—2e,e,/r'. In addition, the inhomogeneous densﬁiyged(a’,F’) of
speciese’ in the presence of the impurityg2, fixed at the origin, is given at lowest order by Debye mean-field theory,
exp(— «MBr")
-4 MB MB
Page (@ F)=pi —2BYe.Ca Py ——— (6.8

The first term in(6.8) does not contribute to the screening factor by virtue of the neutrality condition. The contribution of the
second term is identical t(%.6) and we indeed recove6.7).
Inserting the expansio(6.7) in (5.5, we find

F 2

1 a2 . . . Fo—r
BPO=3 S (—1¥u(20,+1) sy | 0f | A | é/(@)exp[—(zx—zl)—ﬁeivcffz,@}

[e3

X {1+2Be2kMB+O(pVEInMB)}

h? h? e?
ex;{ _'8[_ 2m, A~ 2m, Aot [F—r

1 R RN
=35 > (—1)%%a(20,+ 1)a[21f dr2< rory
x{1+28e%kMB+0(pMBInpMB)}

2
a

1 a I .
=5 ; (—1)%«(20,+1) (m—i)w[uzﬁeiwﬁ‘]f dr{—rlexp(— Bh,,) )+ 0(p3lnp). (6.9
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The second line of6.9) follows by applying backwards the FK formuld.3) with N=2, |R,)=|f1F,), and(Ry|=(F,r],
while in the final result, the trivial kinetic contribution of the center of mass of the two particiesfactored out.

C. Activities and MB densities

Now we express the activities, and the MB densitie;a’\y’IB in terms of the real densitigs,, according to the prescriptions
derived in Sec. V D. At the present ordet?, only the termsBP™E and 8P have to be retained in the seriés?), i.e.,

BP=pBPYE+ gP2+0(p3). (6.10

Using (6.10 in (5.11), we find
Jd J
Pa=8q 5 BPMB+a, a BP@+0(p3)

d
=P+, o BPP+0(p?), (6.1

where the second line results from the combinatiofbatl) and(5.12) (for the MB quantities The relation(6.11) shows that
p,, differs from p™E by terms which are of ordes? at least. This general featutaot specific to Coulomb systemallows
further simplifications in the elimination process.

The MB activitiesa¥® are readily obtained in terms of the MB densitj by inserting into the definitiong5.9) the
expansion of the MB free energy which is explicitly known up to or¢#?)>?[13]. In the corresponding relation, we may
substitutea,, for a¥& by virtue of (5.12. It is also legitimate, up to ordes®’? to replacep® by p, because the difference
(p,—pMP) is of orderp? at least. This gives

(2m\3)%  (2m\d)¥? )
3= 25 +1) P 2(20.+1) Bekp.+O(p©inp), (6.12

which is sufficient for our purpose.
When using the expressid6.9) of BP? in (6.11), we can replaca™® by k,={47 B3 e2[(20,+1)/(2m\ 2)¥Fa 12
with the result

20,1t1 N
Pa=py +(—1)% % ag(1+ zﬁei"a)j dr(—r|e™ANaa|r)
(7\%)
1 (20.,+1) A7 Be’(20,+1) L R
- _1\20 Y 2na2 a _ -ph 3
+3 Ey (=1)%7» (2 ayﬁey( 2\, a, fdr( rle”#"|r)+0O(p°Inp). (6.13

Use of(6.12 in (6.13 leads to the required expressionmf®

MB (-1t 2 \312,2 2 > 2 —ph 2
P :pa+ (20_ +1) (277)\010() pa(1+zﬂeaK)fdr<—r|e B aa|r>
(_1)2074—1

1 47 Be’
- 2 V32,2 n.2 a 2/ 2l ph [P 3
+ 5 Ey (20,+1) (2mN\5,)"p3BE;, - paj dr{—rle A"|ry+O(p°Inp). (6.19

D. Final form of the virial expansions

The final expression of the pressure is obtained @10 where 3PM® and P are replaced by6.1) and (6.9,
MB»

respectively, while at the same time thg's andp,,"'s are eliminated in favor of the,'s according t0(6.12 and(6.14. A
straightforward calculation gives
Beaeﬁ_ BZEiez

r 2r?

(27N2 ) 3% Flexp( — Bhp) 1) — 1+

3
K 1 ) N
BP=2 Pa™ 347 5 2 Pap M [ LR‘“

R— o0

+2—7Tﬂ3e3e3 In(«R) +32 —(_1)2%“(2 N2 Zde(—Flexq—Bh )IF)
3 a~ B K 2 = (20_a+1) TN qo Po aa
w 1 3 _ 1 B*h%e?
-3 C+In3+ > a};} ,B?’eiezpapﬁ— 7 a};; Be.EsKpapp Iilmoc{H-}-l— 16 Eaz m. x3p,
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3 1)20’ +1
Zz (2 1) (ZW)\ia)SlzﬁeiKpif dr{—r|exp(—Bh,.) F)+77

1 C
== ——In 2)2 Be? eBKpa,pB

+ Cla%:y Boelesedk 1pppp,t Co. ;7 ) peeleledelk 2 .ppp pstO(p°Inp). (6.15
The structure of the expansidf.15 is indeed that of5.14) predicted on the basis of the general scaling arguments. The
expansions of the other thermodynamic functions are easily inferred @diB as explained in Sec. V E.

VIl. COMMENTS AND COMPARISONS

For the present discussion, it is sufficient to consider a given thermodynamic quantity, for instance, the free energy.
Moreover, it is useful to rewrite the truncated tracedim.f,-gdr. . . appearing in the density expansi@nil5 in terms of the
so-called quantum second-virial coefficient introduced by Ebeling,

31/2R ic
Nog '

Q(X,5)= ; lim {f dr
“ (V2@ B) R— o0 <R
(7.1

with X, 5= —Vv2l ,5/\ s andl , ;= Be e, (this quantity is the analog of the usual second-virial coefficient for quantum systems
with short-range forcgs The dimensionless functio@ defined by(7.1) depends on the temperature and on the charges and
masses of the particles via the sole dimensionless paramgteSimilarly, it is also useful to introduce the dimensionless
exchange integral

2

242
Beaeﬁ ﬁ eae,B B3 3

r 22

(272 0) ¥4 |e” Phas|F) — 1+

X, = (2:(7) [ di(—fle M), 7.2

which only depends or,,=—v2l,,/\,,. We write the virial expansion of the free energy as

(2m\) ¥,
pI=2 o '”( 20, 1)

3
K ar
- 1} 1% |n2a2ﬁ Belelpaps— 7 E PPN sQ(Xap)

~ T 88 popseded In(kh )+ — S Pt p2\3 E(x,.)+
3 avﬁPaPﬁaB ap) s (20,+1) Paltaa="aa

a

1 1
3~ In2vL In3 E Breieikpapp

2 2
3 3 3.3.3 3
+3C1 2 Boelefeln tpappp,t 3 Co 2 Boelefelei Spapspyps — s Be.8sKPap s\ apQ(Xap)
a,B,y a,B,7,8 V2 ap

BZﬁZ 2
m

— 23 pletel IN(KA ) + — > ﬂﬁe 3 E(Xpa)+ 2
3 avﬁ @ BKpapﬁ’ K CZB ‘/2 (20. +1) Kpa aa 24

K3p,+0(p%Inp).

a a

(7.3

Most virial coefficients in(7.3) are explicitly computed and exhibit simple power-law dependences with respect to the
inverse temperatur@=1/kgT. The functionsQ(x) andE(x) can be determined with a good numerical accur@gj. The
small- and largec expansions of these functions have also been derived in the litef@Qfewhile a simple integral
representation dE(x) is given in Ref[42] [similar useful representations Qf(x) might be found by exploiting recent exact
results on the two-body Coulomb density mafé3]].

The expressioli7.3) is valid for any multicomponent system made of mobile point particles, where at least two species with
positive and negative charges are present in order to satisfy charge neutrality. For our purpose, it is useful to write the specific
form of the virial expansions for the one-component plag®@P. This model is made of identical particles with chaege
moving in a neutralizing rigid background with charge densitp if p is the density of particles. The expansiongff°cis

( N )3/2 K3 T (_1)20'+1
OCP_ 2y 3 2 _ _ p3x6,.2 2y 3 _ 2
Bt =p In( 2o+ 1) —-1|- om —2mpN>Q(— Be‘IN) 3 B°e’pIn(k\)+ 27 2o+ 1) P NE(—Be/N)
mp*h%ep* 2, 2,3 2 T 4.8, 2 CD* L, s 2
+3—m—277,38 kp\°Q(— Be /)\)—5,8 e“kp In(K)\)+2mee kpN°E(— Be“/\)
wB3h2e*kp? C; 2| 48 o 3
+ G—m [— (1-2 In2+|n3)+ 2477 —|B*€°kp°+O(p°Inp), (7.4

with A=(BA%m)*? and k= (4w Be?p)*2.
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As already mentioned in Ref16], all the terms in the ex- wB3e*kp?h?
pansion(7.3) coincide with those calculated by Ebeling and —
co-workers[20] via the effective-potential method, except
the diffraction term of ordep®? proportional to%? which is
missing in their expressions. This discrepancy, as well a C ! ' .
other checkings against known results in some particula§On Ferm(?.?_b), which is the strict analog 7.59), is crucial
limits, are discussed in the following. We consider succes’" this checking.
sively the four kinds of terms which arise from classical
screening, quantum diffraction, recombination or scattering, C. Recombination and scattering
and exchange. At the end of the section, we also discuss the The o2 term

high-temperature expressions which can be readily derived

from (7.3) as a by-product.

om (7.7b

ancel out. We stress that the presence of the purely diffrac-

o
3
- papﬁ)\a Q(Xa,B) (78)
A. Classical terms V2 A

First, in(7.3), there appears a class of terms which do not I .
depend on Planck’s constant. These purely classical tern] the total contribution from both bound and scattering states

arise from large distance configurations for which the Coul two ﬁharggs' eci] gnd eig.7 lehef_ truncation of
lomb interactions are screened on a rargé. These terms (rlexp(— 8 aﬂ)|r> n the mt_egr_a_( a © mmgQ(_xaﬁ_) en-
are also present in the expressigid) specific to the OCP sures that this contribution is finite. This regularization is not
The result of Cohen and Murphyé] for the classical OCP’ an arbitrary mathematical artifact and is directly related to

: : i the truncated structure of the bofid which is introduced in
Eggﬁ;g?gtg’eirr?gokveeprfgxg)é taking the | O (all other the MB diagrammatic§l,13]. It reflects the screening of the

Coulomb interaction at large distances.

For opposite charges such thefe;<0, one may extract
from Q(x,p) a contribution of the bound states which re-

For the general multicomponent system, the contributiorduces to the familiar Planck-Brillouin-LarkitPBL) sum
of quantum diffraction appears only at orgéf’ and reduces
to w

2 a @
L e ngl N exp — Berf)— 1+ Betf], (7.9

<pg.- (7.5

B. Quantum diffraction

24 <3 m,

where e 7#=—e2eZm,,/(24°n%) are the energy levels of

This term is linked to the quantum fluctuations of the par—ﬂlﬁ h)éd:cpg?nmd fa:ﬁmbwnh d H?T'lton'?hgﬂti Howevet:, ,
ticles which cannot be entirely neglected at large distances. (?r %'fn' Ir?(n7$1§)b et outnh ‘;a? contri ltj.'ons% fr?nt € in-
These fluctuations induce multipolelike interactiams the roduced from 7. 1) by using the basic properties ot e trace.

FK representation the amplitudes of which are controlled For instance, as shown by Boll4s], there exists an infinite

by A, while the corresponding nonintegrable parts areSet of arbitrary decompositions in terms of bound and scat-

screened on a range *. tengg confmbunort].?. of the PBL sumtljtselfi Stcr)] a;stfalr as :h(;r—
Like the classical contributions, the diffraction terms maymo ynamic quantiiés are concerned, only the total contribu-

be tested in the particular case of the OCP. In that case, {Hien of both bound and scattering states is an unambiguous

guantum corrections to the classical virial coefficients can bguantlty.

calculated by inserting int¢7.4) the asymptotic behaviors of

Q(x) andE(x) whenx— —o [20]. The#? correction to the D. Exchange
OCP

classical virial coefficient of ordes?® in Bf S reads The contribution

’7T,82e2p2h2 ar (_1)20’a+1

6m ! (76) i)\iaE(Xaa) (710

v 2a,+1) P
which is identical to the fulti? correction tof 95, calcu-
lated by Pollock and Hansef22] within the Wigner-
Kirkwood method. Since the result of these authors is vali
for any density, all thé&? corrections in the virial coefficients
of order higher tharp? must vanish. This remarkable prop-
erty is indeed satisfied by the’? term in (7.4) because both
#2 contributions of

arises from the exchange of two charggsn the vacuum. It
Ois finite, independently of any screening effect, because the
off-diagonal matrix elementé—r|exp(— Bh,,)|r) are short
ranged. The magnitude of this contribution is smaller than
that of free particles because the repulsive potergfalr
inhibits the exchange.
Similarly to what happens for the contributions of bound
and scattering states, at the or@&?, the many-body effects
—27Be?kp®\3Q(x) (7.78  on the two-particle exchange lower the repulsive barrier
e?/r by the constant-e?«. In the OCP case, the total ex-
and change contribution up to order’? does coincide with the
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expression derived by Jancovig#2]. Moreover, in the ocp K3 (—1)%*1 s e S
classical limit A—0, this contribution vanishes as Bfex =— o7 " p BEN"+ —— p~BoeN
2/ T (20+1) 4
exp(—const#??) [42].
77.3/2 (_1 20+1 I
E. High-temperature expansions = (In2) (20+1) P peX
Eventually, high-temperature series can be deduced from 732 (—1)20+1

(7.3) by expanding the virial coefficients in powers @f

Since the dimensionless parametgyg are proportional to
Y, the B expansions 0R(X,z) andE(X,,) coincide with
their Taylor series in powers of [20],

T
2 2 3_ 22,4 2
2 (204 1) p BeE KA 6p,88K7\
(_1)20'+l

— T (20_—+1) p23264K)\2+ tee

(7.19
Notice that the OCP expansigii.14) coincides exactly with
the pure contribution of one given species to the multicom-
ponent expressiofi7.13 [in other words,(7.14) is the par-
ticular form taken by(7.13 when the species summations
are restricted to only one specjes

Since the high-temperature series involve increasing pow-
ers of the charges, they may also be directly obtained from
the standard many-body perturbation theory where these
) ) ) ) charges constitute the natural expansion parameter. The first
Inserting(7.11) and(7.12) into (7.3, we find a series repre- |culations in this spirit have been done by DeViatt, 2,
sentation of the f_r<_ae energy in powers of the inverse temperayho retained contributions arising from the ring and
ture B, the densitiesp, and the charges [46]. The terms g2 oxchange graphs only. These results have been completed
wh|ch do not d_epend on the charges c_or_respond to the €¥ecently by DeWittet al. [29], who included higher-order
pansion of the ideal part g8f. The remaining terms define contributions, in particular those from the*exchange

Xap

T2 3

and

VT Xeq N In2

E(Xaa):T+ 2 + 2

X2, +0(x3,). (7.12

the excess part which reads

. gt - K3 o (_1)20a+l
Blex= Bt = Blig= 27 2% (20.41)

2325 s 2325
8 aEB PaPpB €N apt —7—

2 2y 2
paﬁea)\aa

+

(_ 1)21)’a+1 77_3/2‘/2
e PN

X InZE

z (20,1t1)

(_ 1)20’a+l

<2

2 2 3
2 (20,51) PaPeuNu

™ 22 .2
12 aEB pap,BBZeaeBK)\aB
(_ 1)(20'a+1)

B e T S
22 (2o PPNt

(7.13

All the terms which are omitted ifi7.13 have orders which
are higher thang”? p®2 or €% A similar expansion for

BfSCPis easily derived fron(7.4),

graph. Their expression for the OCP excess pressure is iden-
tical to that derived from our expansidii.14 of the OCP
excess free energy,

d
BPOS = BPOCP— gP3P=p W Bfod — Bioa

3 _ 20+1 3/2

_ Z'Zl_w_w%pzﬁez)\z_’_T
x| 1+ 2(In2) ((_2(17)—:;1 p2B2e*\
3 (D e T
4 (2o+1) PPERNTY

X 1+6% p2BPe* kN2

(7.195

This perfect agreement between independent calculations
based on completely different formalisms is a quite satisfac-
tory test for the reliability of the results.
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