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This paper is devoted to the calculation of the density expansions~at fixed non-zero temperature! of the
thermodynamic functions for quantum plasmas. The Maxwell-Boltzmann forms of these expansions have been
studied in two previous papers. Here we include the exchange contributions due to Fermi or Bose statistics, via
a perturbative scheme where the reference ingredients are computed in the framework of Maxwell-Boltzmann
statistics. The whole scheme is based on the Feynman-Kac path integral representation which amounts to
introducing classical auxiliary systems made of extended objects, the filaments. The quantities of interest are
then evaluated by applying familiar diagrammatical methods of classical statistical mechanics. The exact
density expansions of the free energy and of the pressure are explicitly calculated up to orderr5/2 in the density
r. The corresponding expressions include, in a systematic and coherent way, the contributions of various
physical effects such as screening, diffraction, recombination, scattering, and exchange. At orderr2, we
recover the expansions obtained via the effective-potential method. Our terms of orderr5/2 correctly reproduce
results which are known in some particular limits. Moreover, the high-temperature expansions which can be
easily inferred from our virial expansions do coincide with those obtained from the Feynman graphs in the
usual many-body theory.@S1063-651X~96!04205-5#

PACS number~s!: 05.30.2d, 05.70.Ce, 52.25.Kn

I. INTRODUCTION

This paper is the third of a series devoted to the study of
the density expansions of the thermodynamic quantities for
quantum plasmas. We consider a multicomponent systemS

made of electrons and nuclei which are assumed to be point
particles. Each particle has a massma and carries a chargeea
and a spinsa , wherea is a species index which specifies the
nature of the particle. The Hamiltonian ofS is nonrelativis-
tic and only involves two-body Coulomb interactions of the
form eaeb/r for two charges separated by a distancer . It
does not depend on the spins of the particles. Such a purely
Coulombic description of matter is well suited for a very
large variety of physical situations. Besides their own con-
ceptual interest, the virial expansions are useful in practice
for studying regimes where the density is not too high and
the temperature is not too low~for instance, these conditions
are met in the core of the sun!.

In a first paper@1#, we derived a diagrammatic represen-
tation for the particle correlations ofS in the framework of
Maxwell-Boltzmann statistics. As in the work by Ginibre
@2#, the application of the Feynman-Kac formula@3# to the
density matrix leads to the introduction of an auxiliary clas-
sical systemS * made of closed filaments. Since the fila-
ments interact via two-body forces, all the familiar diagram-
matical methods@4# can be applied toS * . However, the
corresponding Mayer-like graphs diverge because of the
long-range Coulombic nature of the interaction potential be-
tween two filaments. These long-range divergencies are re-
moved via the chain resummations introduced by Mayer@5#
and Salpeter@6# for classical point charges. In fact, inspired
by the works of Meeron@7# and Abe@8# for classical Cou-
lomb systems, we have shown that the whole set of Mayer
graphs defining the correlations ofS * can be transformed
exactly into a new set of prototype graphsP built with re-

summed bonds. This provides a well-behaved diagrammatic
representation for the particle correlations ofS , where the
integrability of each graph is guaranteed by a sufficiently fast
decay of the resummed bonds. We stress that some re-
summed bonds decay only algebraically, in agreement with
the absence of exponential screening in the quantum case
@9–12#.

In a second paper@13#, the above diagrammatical repre-
sentation was used for studying the density expansions of the
Maxwell-Boltzmann ~MB! thermodynamic functions~at
fixed inverse temperatureb! in a systematic way. On the
basis of simple scaling arguments, we have shown that the
virial expansions involve half-integer powers of the densities
and integer powers of the logarithm of the densities~the
presence of logarithmic terms was conjectured by Friedman
@14#!. We also gave detailed prescriptions for selecting the
graphs~in finite number! which contribute to a given order in
rMB, whererMB is a generic notation for the MB particle
densities. This allows us to recover the known results up to
order ~rMB!2, and to calculate exactly the next term of order
~rMB!5/2.

As announced previously@1#, the above expansions are
term to term well defined despite the macroscopic collapse of
the Maxwell-Boltzmann system@15#. In the present paper,
the exchange contributions due to Fermi or Bose statistics
are now evaluated via a perturbative scheme, in which the
MB quantities are the reference ingredients. A brief descrip-
tion of this scheme has already been given in a Letter@16#, as
well as the complete form of the virial expansion up to order
r5/2.

The present paper is organized as follows. In Sec. II we
define the model and recall the theorems which guarantee the
existence of the thermodynamic limit. In Sec. III we write
the Slater expansion of the grand-partition functionJ in con-
figuration and spin spaces. Such an expansion is organized
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with respect to the numbern of exchanged particles. The
term n50 corresponds to Maxwell-Boltzmann statistics,
while the termsn>2 describe exchange effects due to Fermi
or Bose statistics.

As shown in Sec. IV, the application of the Feynman-Kac
formula to the spatial matrix elements of the quantum Gibbs
factor allows expression of each exchange contribution toJ
in terms of quantities relative ton opened filamentsF im-
mersed in a large systemS * made of closed filamentsE .
This inhomogeneous situation can be dealt with via a pertur-
bative scheme, where the equilibrium correlations of the ho-
mogeneous systemS * ~without any opened filament! are the
key ingredients. As described in Sec. V, the density expres-
sions of the thermodynamic functions ofS are then derived
by taking advantage of our knowledge ofS * @1,13#. In par-
ticular, once the MB densities have been eliminated in favor
of the real densitiesr, these expansions reduce to double
integer series inr1/2 and lnr. Such a nonanalytical structure
reflects the collective screening of the bare Coulomb poten-
tial.

In Sec. VI the density expansion of the pressure is calcu-
lated explicitly up to orderr5/2. For this, in the above Slater
expansion with respect to the numbern of exchanged par-
ticles, it is sufficient to keep only the MB~n50! and the
two-body exchange~n52! contributions. The density expan-
sions of the other thermodynamic functions are then readily
obtained through thermodynamic identities.

The physical nature of the various contributions to the
density expansions is discussed in Sec. VII. There are purely
classical terms which arise from Debye screening at large
distances. The short-range quantum effects associated with
bound and scattering states enter in suitably truncated traces
of the quantum Gibbs factors for a finite number of charges.
There are diffraction terms which appear as quantum correc-
tions to a classical treatment of the long-range part of the
interactions. Eventually, the exchange contributions are ex-
pressed in terms of off-diagonal matrix elements of the
n-body density matrix. All these physical effects should be
coupled together at higher orders in the density.

Also in Sec. VII, comparisons to previous results and
checkings are also decribed. Of course, the virial expansions
can be studied by using other first-principles formalisms.
First, the effective-potential method formulated by Morita
@17# for quantum systems with two-body interactions has
been applied to the present Coulomb case by Ebeling@18#.
This method consists in introducing classical equivalent sys-
tems made of point objects with second-, third-, and higher-
order many-body effective interactions. In practice, only
two-body effective potentials have been retained@18–20#.
This amounts to considering well-behaved classical systems
with two-body Coulomb interactions that are regularized at
short distances~quantum effects smooth out the singularity
of 1/r at the origin!. The corresponding calculations@19,20#
provide the exact form of the virial expansions up to order
r2, which is indeed recovered by our formalism@16#. How-
ever, the expressions proposed for ther5/2 term @20# are not
complete because the three-body effective potentials do con-
tribute at this order@21#. Our formalism allows a precise
evaluation of this missing contribution which is of the dif-
fraction type. We stress that the presence of this additional
diffraction term is crucial for recovering the Wigner-

Kirkwood \2 corrections@22# to the classical quantities for
the one-component plasma. By the way, we also do recover
the virial expansion for the classical one-component plasma
calculated by Cohen and Murphy@23#.

Another possible approach is based on the standard many-
body perturbative expansions with respect to the Coulomb
interaction potentialvc(r )51/r in the framework of the
grand-canonical ensemble. These expansions can be written
in terms of graphs similar to those which appear in field
theory, where fermionic or bosonic loops associated to
imaginary-time free propagators are connected at different
times by an arbitrary number of interaction linesvc @24#. The
long-range Coulomb divergencies are eliminated via the
well-known ring resummations@25,26#. To our knowledge,
analytic evaluations of the corresponding Feynman graphs
have been restricted to the high-density regime at zero tem-
perature@25#, and to the high-temperature limit@27–29#. Ex-
plicit calculations of the virial coefficients at finite nonzero
temperature should also be possible by following Rogers’s
idea @30#. This author proposed a classical treatment of the
ring resummations combined with a proper account of the
ladder graphs that describe quantum effects at short dis-
tances. In this procedure, some terms are left over since they
are expected to be quantitatively small in the physical re-
gimes considered by the author@31# ~i.e., at moderately high
densities where complex entities made of several charges
may be formed!. A detailed control of these terms should
allow recovery of the virial expansions calculated by the
above formalisms. At the moment, we have checked that the
high-temperature expansions of our virial coefficients do co-
incide with the terms found by DeWitt@28# and more re-
cently by DeWittet al. @29#.

II. THE MODEL

We consider a multicomponent systemS , with an arbi-
trary number of species made of point particles. Each particle
of speciesa ~an electron or a nuclei in practical applications!
has a massma and carries a chargeea and a spinsa . Two
chargesea andeb separated by a distancer interact instan-
taneously via the usual two-body Coulomb potential
eaebvc(r ) with vc(r )51/r . The corresponding Hamiltonian
for N particles enclosed in a box with volumeL is

HN52(
i

\2

2mi
D i1

1

2 (
iÞ j

eiej
urW i2rW j u

, ~2.1!

where i5@a
k# is a double index, whilek runs from 1 to the

numberNa of charges of speciesa, anda runs from 1 to the
numberns of species (N5(aNa). The boundary conditions
which defineHN are of the Dirichlet type, i.e., the eigen-
wave-functions ofHN vanish at the surface of the box. This
nonrelativistic Coulomb Hamiltonian is well suited for prac-
tical applications where the mean velocity of the particles is
small compared to the speed of light.

Let the system be in thermal equilibrium at temperature
T(b51/kBT). The grand-partition function of the finite sys-
tem reads
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JL5TrLexpF2bSHN2(
a

maNaD G , ~2.2!

wherema is the chemical potential of speciesa. In the defi-
nition ~2.2!, the trace TrL is taken over all the states satisfy-
ing the above boundary conditions and symmetrized accord-
ing to the statistics of each species. Note that the total charge
(aeaNa carried by each of these states may be different from
zero.

Lieb and Lebowitz@15# have shown that the thermody-
namic limit ~TL! of the present system exists if and only if at
least one species obeys Fermi statistics~see also Lieb@32#,
Dyson and Lenard@33#!. The TL is defined as the infinite
volume limit ~L→`!, while the chemical potentialma and
the temperatureT are kept fixed. The existence of the TL
means that the thermodynamic quantities relative to the infi-
nite system have the right extensive properties. In particular,
the bulk pressureP given through

bP5 lim
TL

1

L
lnJL ~2.3!

is a well-behaved function of the intensive parametersma
and b which does not depend on the shapes of the finite
boxes considered in the TL. If the fugacitiesza5exp~bma!
are small enough~at given temperature!, the system surely is
in a fluid phase. The local density of any speciesa then
becomes uniform in the TL and reduces to

ra5za

]

]za
F lim
TL

1

L
lnJLGU

b

. ~2.4!

Furthermore, the infinite system is locally neutral, i.e.,

(
a

eara50 ~2.5!

for any set of fugacities.

III. SLATER EXPANSION
OF THE GRAND-PARTITION FUNCTION

The trace~2.2! defining the grand-partition function can
be taken over the symmetrized Slater sums built with one-
body statesurWsz& which describe a particle localized atrW
with the projection of its spin along a givenz axis equal tosz

@1#. This gives

JL5 (
Na50

` Paza
Na

PaNa!
(
Pa

)
a

ea~P a!(
$s i

z%
)
i

^sPa~ i !
z us i

z&

3E
LN)i drW i^rWPa~ i !u ^ i uexp~2bHN!u ^ i urW i&. ~3.1!

In ~3.1!, P a is a permutation of ~1, . . .,Na!,
P a( i )5„P a(k),a…, andea~P a! is either 1 if the particles of
speciesa are bosons~sa integer! or the signature~61! of P a
in the fermionic case~sa half integer!. Notice that the spin

part of the matrix elements contributes the degeneracy factor
($s i

z%P i^sPa( i )
z us i

z& which only depends on the permutations

P a .
The Slater-sum representation~3.1! of JL provides a

natural perturbative scheme for treating the exchange contri-
butions. The term whereP a reduces to the identity for anya
obviously corresponds to Maxwell-Boltzmann statistics@1#.
All the other terms describe exchange effects associated with
Fermi or Bose statistics. They can be reorganized with re-
spect to the numbern of exchanged particles, i.e., the num-
ber n of indexes i such thatP a( i )Þ i . This allows us to
rewrite ~3.1! as

JL5JL
MB1 (

n52

`

JL
~n! , ~3.2!

where eachJ L
(n) denotes the whole contribution of all the

terms in~3.1! with n exchanged particles.
The first term~n50! in ~3.2! which corresponds to MB

statistics reads@1#

JL
MB5 (

Na50

`

)
a

za
Na

Na!
~2sa11!Na

3E
LN)i drW i^RW Nuexp~2bHN!uRW N&, ~3.3!

with uRW N&5 ^ i urW i&. Each spin degeneracy factor relative to
speciesa reduces to (2sa11)Na and the matrix element

^RW Nuexp~2bHN,L!uRW N& ~3.4!

is diagonal with respect to all the positionsrW i .
The second term~n52! in ~3.2! is obtained by collecting

the contributions to~3.1! of all the sets of permutations
which exchange two given indexes associated to the given
speciesa and leave unchanged the remaining ones. For each
speciesa, there areNa~Na21!/~2!! such sets of permutations
which give identical contributions. The corresponding spin
degeneracy factor now reduces to (2sa11)Na21 because
the product of̂ sPa( i )

z us i
z& is different from zero only when

the two exchanged particles are in the same spin state; the
other degeneracy factors forgÞa are obviously equal to
(2sa11)Ng as in the MB case. We then obtain

JL
~2!5(

a
~21!2sa~2sa11!

za
2

2!

3 (
Na52

` za
Na22

~Na22!!
~2sa11!Na22

3 (
Ng50

` PgÞazg
Ng

PgÞa~Ng! !
~2sg11!Ng

3E drW1drW2dRW N22^rW2rW1RW N22ue2bHNurW1rW2RW N22&,

~3.5!
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where rW1 and rW2 are the positions of the two particles of
speciesa which are exchanged andRW N22 is a collective
notation for the~N22! positions of the other particles. The
matrix element

^rW2rW1RW N22ue2bHNurW1rW2RW N22& ~3.6!

is off diagonal with respect to the positions of the two ex-
changed particles and diagonal with respect to the positions
of the ~N22! other particles.

Expressions similar to~3.5! can be easily found for the
otherJ L

n ’s ~n>3!. In particular, the spin degeneracy factors
are readily evaluated by identifying the spins of the ex-
changed particles which are involved in a given cyclic per-
mutation ~any permutation ofn objects is a product ofp
cycles!. Moreover, like ~3.6!, the matrix elements of
exp(2bHN) are off diagonal with respect to the positions of
the n exchanged particles and diagonal with respect to the
positions of the (N2n) other particles.

The perturbative representation~3.2! is particularly well
suited for calculating the first terms in the density expansions
of the thermodynamic quantities. Indeed, since the off-
diagonal matrix elements of exp(2bHN) are short ranged,
the contributions to intensive quantities~like the pressure! of
eachJ L

(n) are at least of orderrn, roughly speaking@34#.
Therefore, at a given order inr, only a finite number of
terms in~3.2! must be retained.

IV. FEYNMAN-KAC REPRESENTATION

A. The Feynman-Kac formula for the density matrix

According to the original path integral formulation intro-
duced by Feynman and Hibbs@35#, the matrix elements of
exp(2bHN) in configuration space read

^RW N8 uexp@2bHN#uRW N&5 (
all paths

expS 2S$rW i~ t !%

\ D ,
~4.1!

whereS$rW i(t)% is the classical action

S$rW i~ t !%5E
0

b\

dtH(
i

mi

2 FdrW i~ t !dt G2
1
1

2 (
iÞ j

eiejvc@ urW i~ t !2rW j~ t !u#J ~4.2!

for paths rW i(t) going from rW i to rW i8 in a ‘‘time’’ b\. The
summation in~4.1! is taken over all such paths. The variable
changes t5sb\ and rW i(t)5(12s)rW i1srW i81l ijW i(s) with

jW i(0)5jW i(1)50W in ~4.1! and ~4.2! lead to the so-called
Feynman-Kac~FK! formula @3#

^RW N8 uexp@2bHN#uRW N&5)
i

exp@2~rW i2rW i8!2/~2l i
2!#

~2pl i
2!3/2

3E )
i
D~jW i !expF2

b

2 (
iÞ j

eiej

3E
0

1

ds vc@ u~12s!~rW i2rW j !

1s~rW i82rW j8!1l ijW i~s!2l jjW j~s!u#G .
~4.3!

In ~4.3!, the Gaussian prefactors arise from the kinetic
contribution to the actionS of the free motion part
@(12s)rW i1srW i8# of rW i(t). The corresponding kinetic factor

exp@2 1
2*0

1ds jẆ2(s)# associated with eachjW is absorbed in a
normalized Gaussian measureD(jW ) which defines the func-
tional integration over all the Brownian bridgesjW (s) sub-
jected to the constraintjW (0)5jW (1)50W . This measure is in-
trinsic, i.e., independent of all the physical parameters, and
its covariance is given by

E D~jW !jm~s!jn~ t !5dmn3 H s~12t !,
t~12s!,

s<t
t<s. ~4.4!

Eventually, the Boltzmann-like factors obviously arise from
the potential part of the actionS.

B. The Maxwell-Boltzmann term

As shown in Ref.@1#, use of the FK formula~4.3! for the
diagonal matrix element~3.4! leads to the introduction of an
auxiliary classical systemS * made of closed filaments in-
teracting via two-body forces. Each filament is characterized
by its spatial positionrW and two internal degrees of freedom,
the dimensionless pathjW (s) associated with its shape, and
the species indexa which specifies its spatial extensionla ,
and the strengthea of its coupling with the other filaments.
We denote byE5~a,rW,jW ! the state of such a filament. Two
filaments in statesE andE8 interact via the two-body poten-
tial eaea8v~E ,E8! with

v~E ,E8!5E
0

1

ds vc@ urW1lajW~s!2rW82la8j
W8~s!u#.

~4.5!

Defining the phase-space measuredE for a filament such
that dE5dadrWD(jW ) ~da means a discrete summation! and
settingz~E!5~2sa11!za/~2pla

2!3/2 for its fugacity, we find
that the MB grand-partition function given by~3.3! is iden-
tical to the grand-partition function ofS * @1#,

JL
MB5JL~S !!

5 (
N50

`
1

N! E )
k51

N

dEkz~Ek!

3F2
b

2 (
kÞ l

eak
ea l

v~Ek ,E l !G . ~4.6!
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C. Exchange terms

First, we consider the two-body exchange term~3.5!. It is
quite natural to interpret the FK representation~4.3! of the
off-diagonal matrix element~3.6! in terms of two opened
filamentsF 12

a and F 21
a immersed in a bath of closed fila-

ments. Each opened filamentF kl
a describes the exchange of

a particlea from the positionrWk to the positionrW l and its
shape is parametrized by

vW kl
a ~s!5~12s!rWk1srW l1lajW k~s!. ~4.7!

The closed filamentsE are associated with the~N22! unex-
changed particles~see Fig. 1!. All the opened and closed
filaments interact via the two-body potentials of the type
~4.5!. Inserting the FK representation of the matrix element
~3.6! into the expression~3.5!, we then obtain

JL
~2!5

1

2! (a ~21!2sa~2sa11!
za
2

~2pla
2 !3

E
L2
drW1drW2E D~jW1!D~jW2!expF2~rW22rW1!

2

la
2 2bea

2v~F 12
a ,F 21

a !G
3H (

N50

`
1

N! E )
k51

N

dEkz~Ek!exp@2beaeak
v~F 12

a ,Ek!2beaeak
v~F 21

a ,Ek!#expF2
b

2 (
kÞ l

eak
ea l

v~Ek ,E l !G J ,
~4.8!

where the phase-space measuredE and the fugacityz~E! for the closed filaments are defined as above. The sum(N50
` . . . in

the right-hand side of~4.8! is nothing but the grand-partition functionJL~S !uF 12
a ,F 21

a ! of the systemS ! in the presence of
the external one-body potentialeaea8@v~F 12

a ,E8!1v~F 21
a ,E8!# created by the two opened filaments.

It is convenient to rewriteJL~S !uF 12
a ,F 21

a ! as

JL~S !uF 12
a ,F 21

a !5JL~S !!expH 2bE
0

1

dgE dE8rg~E8uF 12
a ,F 21

a !eaea8@v~F 12
a ,E8!1v~F 21

a ,E8!#J , ~4.9!

which follows from a standard coupling-parameter integration technique. In~4.9!, rg~E8uF 12
a ,F 21

a ! is the one-body density of
the inhomogeneous systemS ! when the external potential due to the opened filaments is multiplied by the dimensionless
coupling constantg @the fugacityz~E! and the temperature being kept fixed#. Moreover,JL~S !!, which corresponds to the
cageg50, reduces to the grand-partition function of the homogeneous system introduced in Sec. IV B. The replacement ofJL

~S !uF 12
a ,F 21

a ! by ~4.9! in ~4.8! then gives

JL
~2!5JL~S !!EL

~2! , ~4.10!

where the two-body exchange factorEL
~2! reads

EL
~2!5

1

2! (a ~21!2sa~2sa11!
za
2

~2pla
2 !3

E
L2
drW1drW2E D~jW1!D~jW2!expF2~rW22rW1!

2

la
2 2bea

2v~F 12
a ,F 21

a !G
3expH 2bE

0

1

dgE dE8rg~E8uF 12
a ,F 21

a !eaea8@v~F 12
a ,E8!1v~F 21

a ,E8!#J . ~4.11!

Starting from the FK formula~4.3! for the off-diagonal
matrix elements of exp(2bHN) and following the same
methods as above, we readily find for anyn>3

JL
~n!5JL~S !!EL

~n! , ~4.12!

where the exchange factorE L
(n) can be expressed in terms of

n opened filamentsF kl
a similarly to ~4.11!. Apart from

simple permutation, spin, andzn factors,E L
(n) reduces to in-

tegrals over the opened-filament extremities and shapes of
the product of the two exponentials

expF2(
F

r kl
2 /2la

22
b

2 (
F ÞF 8

eaea8v~F ,F 8!G
~4.13a!

and

expF2bE
0

1

dgE dE8rg~E8u$F %!(
F

eaea8v~F ,E8!G .
~4.13b!

The first one,~4.13a!, corresponds to the exchange ofn par-
ticles in the vacuum. The second one,~4.13b!, takes into
account the presence of the surrounding particles which are
described by MB statistics. This many-body effect on the
exchange is entirely determined by the one-body density
rg~E8u$F %! of the inhomogeneous systemS ! submitted to
the external potentialg(F eaea8v~F ,E8!.
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D. The grand-partition function

Inserting the FK expressions~4.6! and~4.12! of JL
MB and

J L
(n), respectively, into the series~3.2!, we find

JL5JL~S !!H 11 (
n52

`

EL
~n!J . ~4.14!

In this representation, the systemS ! of closed filaments
naturally appears as a reference system. Indeed, as described
above, the evaluation of the collective part of each exchange
factor E L

(n) amounts to considering an inhomogeneous situ-
ation wheren impurities ~the opened filaments! are im-
mersed inS !.

Eventually, let us mention that another representation of

the grand-partition function can be found@36,37# by starting
also from the FK expression~4.3!. Since any permutation of
n objects is the product ofp cycles, any set ofn opened
filamentsF kl

a can be viewed as a collection ofp loops. Each
loopL (q) is made ofq opened filaments involved in a given
cyclic permutation. For instance, the two opened filaments
F 12

a andF 21
a constitute a single loopL~2!. Within this inter-

pretation, the whole Slater expansion~3.1! of JL is identified
to the grand-partition function of a mixture of classical loops
L(q) with q51,2,3, . . .,̀ . The loopsL~1! are the closed fila-
mentsE of S !. The activities of the loopsL(q) for q>2
incorporate self-energy terms arising from the two-body in-
teractions between theq opened filaments which constitute
L (q), as well as permutation and spin factors which may be
negative in the fermionic case. In this approach, the MB and
exchange contributions are treated on an equal footing, at
least at a formal level. In the following, we shall only use the
perturbative representation~4.14!.

V. DENSITY EXPANSIONS
OF THE THERMODYNAMIC QUANTITIES

A. Slater expansion of the pressure

In the present approach, it is quite convenient to derive
first the density expansion of the pressureP which is directly
related to the grand-partition function via

bP5 lim
TL

1

L
lnJL . ~5.1!

Use of the representation~4.14! for JL in ~5.1! provides a
similar series forbP, i.e.,

bP5bPMB1 (
n52

`

bP~n!, ~5.2!

wherebP(n) is the contribution ofn exchanged particles.
The MB pressure naturally comes out from the term

FIG. 1. The two opened filamentsF 12
a andF 21

a immersed in a
bath of closed filamentsE . The black circles denote either the
extremities of the opened filaments or the positions of the closed
ones. The curves represent the shapes of the filaments.

FIG. 2. Two loopsL a
(2) andL b

(2) immersed
in a bath of closed filamentsE . Each loop de-
scribes the exchange of two particles of the same
species. The black circles and the curves have the
same meaning as in Fig. 1.
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JL~S !!5JL
MB which is factored in~4.14!. The other terms

in ~5.2! arise from the expansion

lnF11 (
n52

`

EL
~n!G5 (

p51

`
~21!p11

p F (
n52

`

EL
~n!G p. ~5.3!

Each P(n) corresponds to the sum of all the products
Pk51

q @EL
(nk)#pk with ( k51

q nkpk5n which appear in the right-
hand side of~5.3!. The firstP(n)’s obviously read

bP~2!5 lim
TL

1

L
EL

~2! , ~5.4a!

bP~3!5 lim
TL

1

L
EL

~3! , ~5.4b!

bP~4!5 lim
TL

1

L
SEL

~4!2
@EL

~2!#2

2 D . ~5.4c!

The general structure of theP(n)’s is, of course, similar to
that of theE(n)’s studied is Sec. IV C. In eachP(n), homo-
geneous monomials of degreen in thez’s can be factored in
front of integrals overn opened filaments with one of their
extremities fixed. In particular, we easily infer from~4.11!

bP~2!5
1

2! (a ~21!2sa~2sa11!
za
2

~2pla
2 !3

E
L
drW2E D~jW1!D~jW2!expF2~rW22rW1!

2

la
2 2bea

2v~F 12
a ,F 21

a !G
3expH 2bE

0

1

dgE dE8rg~E8uF 12
a ,F 21

a !eaea8@v~F 12
a ,E8!1v~F 21

a ,E8!#J . ~5.5!

The convergence of the integrals involved in theP(n)’s is
ensured by the combination of two mechanisms. As quoted
in Sec. IV D, each set ofn opened filaments can be decom-
posed inp loops. The Gaussian measures in thej’s, as well
as the Gaussian factors exp@2r kl

2 /~2la
2!#, control the integra-

bility with respect to the sizes of the loops. In addition, the
sufficiently fast decay with respect to the relative distances
between the loops results from the truncated structure of the
corresponding integrands and from screening. In particular,
in the case ofP~4!, the contributions~4.13a!, ~4.13b! associ-
ated with the two loopsL ~2! drawn in Fig. 2 and which arise
from bothEL

~4! and2@EL
~2!#2/2, do cancel in an integrable way

for large separations of theL~2!’s ~see Sec. V C!.

B. The MB contribution

In the first two papers of the present series@1,13#, we
have studied the expansion of the MB pressurebPMB with
respect to the MB densitiesra

MB . These densities are those
calculated from the MB grand-partition function for the
fugacitiesza , i.e.,

ra
MB5zalim

TL

d ln JL
MB

dza~rW ! U
za~rW !5za

. ~5.6!

They are, of course, different from the real densitiesra cal-
culated from~2.4! for the same fugacities, because of the
nonvanishing exchange contributionsJL

n to JL . The density
expansion of the pressure is obtained by starting from a dia-
grammatical representation of the filament correlations of the
homogeneous systemS ! @1#. A scaling analysis with respect
to kMB shows thatbPMB reduces to a double integer series
with respect to~rMB!1/2 and lnrMB.

C. Exchange contributions

For expanding the exchange contributionsbP(n), we con-
sider the expressions of the type~5.5!. In the latter, the non-
trivial density dependence is entirely contained in the fila-
ment densityrg~E8u$F %! of the inhomogeneous systemS ! in
the presence of the external potentialg(F eaea8v~F ,E8!.
Such a quantity may be represented by a perturbative series
in terms of the external potential

fg~E8u$F %!5g(
F

eaea8v~F ,E8!.

The first terms read@38#

rg~E8u$F %!5r~E8! ~5.7a!

2bE dE9fg~E9u$F %!

3@rT~E8,E9!1r~E8!d~E92E8!# ~5.7b!

1••• .

In ~5.7!, r~E8! is the one-body density of the homogeneous
system S ! associated with the MB contributions, while
rT~E8,E9! is the corresponding truncated two-body density.
Similarly, the terms of orderf g

n ~n>2!, which are not writ-
ten explicitly in~5.7!, involve combinations of the fully trun-
catedp-body densities of the previous system with 2<p<n
11. These combinations have the same structure as that of
the~n11! point charge correlations for an ordinary Coulomb
system with point charges@for instance, see the combination
for n51 in ~5.7b!#.
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When inserting the perturbative series~5.7! into the
many-body screening factor~4.13b!, the contribution of
~5.7a! reads~in the exponent!

2b(
F

eaE
0

1

dgE dE8ea8r~E8!v~F ,E8!

52pb(
F

ea(
a8

ea8la8
2 E

0

1

dsE D~jW8!ra8~jW8!@jm8 ~s!#2,

~5.8!

where the Taylor expansion ofv~F ,E8! with respect tola8,
the rotational invariance ofra8~j

W8!, and Poisson’s equation
for 1/r have been used@notice that~5.8! does not depend on
the shapes of the opened filamentsF #. The density expan-
sion of ~5.8! immediately follows from that of the transla-
tionally invariant densityr~E8!5ra~jW8! derived in Ref.@1#. It
takes the form of a double integer series in~rMB!1/2 and
ln rMB, similarly to the expansion ofbPMB.

For studying the contributions to~4.13b! of the next terms
of orderf g

n ~n>1! in ~5.7!, we replace all the correlations of
the homogeneous systemS ! by series of prototype graphs
similar to those which define the correlations between two
filaments@1#. All these prototype graphs are built with the
same resummed bondsFMB as those introduced for the two-
body correlations. The previous contributions are then re-
written as integrals over products of resummed bondsFMB

and potentialsv~F ,E8!. The behavior with respect to the MB
densities of these integrals can be studied by techniques
similar to those introduced in Ref.@13# for evaluating the
purely MB contributions. Here, we do not reproduce the de-
tails of the analysis, but just mention the basic mechanisms
which control the behaviors of interest. In the zero-density
limit, the large-r divergencies arise from integer inverse
powers of r . The many-body screening effects, which re-
move these divergencies, amount to scalingr with respect to
the MB Debye length~kMB!21. Consequently, screening gen-
erates integer powers ofkMB and lnkMB ~the logarithms are
linked to the presence of 1/r 3 tails which are at the borderline
for integrability!. The structure of the expansion of~4.13b! is
then quite similar to that of the MB pressure itself. The
former is not affected by the integration over the opened-
filament degrees of freedom with the weighting self-factor
~4.13a!. Indeed, each piece of~4.13a! associated with a given
loop is short ranged, while two of these pieces are linked by
Coulomb-like interactions which are again ultimately
screened on a range~kMB!21 @39#. It results that, apart from a
trivial zn prefactor,bP(n) reduces to a double integer series
in ~rMB!1/2 and lnrMB, asbPMB.

D. Elimination of the fugacities and of the MB densities

Once the above expansions ofbPMB andbP(n) have been
performed, it still remains to eliminate the fugacities and the
MB densities in favor of the real densities. The thermody-
namical activityaa of speciesa is defined through the ther-
modynamical relation

lnaa5
]

]ra
b f $rg%ub , ~5.9!

whereb f $rg% is the free energy per units of volume andkBT.
A straightforward manipulation of the relation~5.9! and of
the standard formula

bP5(
a

ra

]

]ra
b f $rg%ub2b f $rg% ~5.10!

then shows that

ra5aa

]

]aa
bP$ag%ub . ~5.11!

Our method provides a perturbative representation of the
pressure in terms of the activitiesag and of the MB densities
rg
MB which are such that

aa
MB$rg

MB%5aa . ~5.12!

Our knowledge of the MB thermodynamic quantities al-
lows us to determine first the functionsaa

MB$rg
MB% from the

definitions ~5.9!, and consequently to expressra
MB in terms

of theag’s by inverting ~5.12!. Once the MB densities have
been eliminated in favor of theaa’s in the Slater-like expan-
sion ~5.2!, we are left with the functionP$ag%. A simple
inversion of ~5.11! then gives the pressure in terms of the
real densitiesra only, as required.

E. General structure of the density expansions

As shown in Secs. V B and V C,bPMB is represented by
a double integer series in~rMB!1/2 and lnrMB, while bP(n)

also reduces to similar series multiplied by prefactorsan.
This general structure, involving half-integer powers and
logarithms, is conserved through the elimination of$ra

MB%
and$aa% in favor of $ra%, as a consequence of the low-density
behaviors

ra;ra
MB;

~2sa11!

~2pla
2 !3/2

aa , ~5.13!

when all theaa’s go to zero. Eventually, the density expan-
sion of the pressure reads

bP5(
a

ra1 (
l ,n,p

P l$ra%S 4pb(
a

ea
2raD n/2

3 lnpS 4pb(
a

ea
2raD , ~5.14!

whereP l$ra% are homogeneous polynomials of degreel in
the densitiesra with coefficients depending on the tempera-
ture while l ,n,p are relative integers such thatl>2, p>0,
and l1n/2> 3

2 ~n may take negative values!.
Using ~5.14! in the thermodynamic relation~5.10!, we see

that the expansion of the free energy must exhibit a structure
similar to that of the pressure, i.e.,
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b f5(
a

raF lnS ~2pla
2 !3/2ra

~2sa11!
D 21G1 (

l ,n,p
Ql$ra%

3S 4pb(
a

ea
2raD n/2 lnpS 4pb(

a
ea
2raD , ~5.15!

with the same constraints onl ,n,p as above. Moreover, the
homogeneous polynomialsQl are easily computed in terms
of the P l ’s by an identification method. The expansions of
all the other thermodynamic functions can be inferred from
~5.14! or ~5.15! by combining thermodynamic identities and
relations between Jacobians. As in~5.14! and ~5.15!, their
generic terms reduce to polynomials in thera’s multiplied by
integer powers ofk and lnk with k5~4pb(aea

2ra!1/2.

VI. EXPLICIT CALCULATIONS UP TO ORDER r5/2

The general scheme described in the preceding section is
now applied to the calculations of the virial coefficients up to
order r5/2. According to the low-density behaviors~5.13!,
this requires the evaluation of the MB pressure up to order
~rMB!5/2. At the same time, only the two-body exchange con-
tribution bP~2! has to be taken into account. All the other
exchange contributionsbP(n) with n>3 are at least of order
r3 @40#.

A. The MB pressure

The expansion in thera
MB’s of bPMB has been calculated

in Ref. @13# within the diagrammatical method briefly out-
lined in Sec. V B. We find

bPMB5(
a

ra
MB2

~kMB!3

24p
2

p

3 SC1 ln31
1

2D(a,b b3ea
3eb

3ra
MBrb

MB

2
1

2 (
a,b

ra
MBrb

MB lim
R→`

H E
r,R

drWF ~2plab
2 !3/2^rWuexp~2bhab!urW&211

beaeb

r
2

b2ea
2eb

2

2r 2 G
1
2p

3
b3ea

3eb
3 ln~kMBR!J 1pS 132

C

2
2 ln2D(

a,b
b4ea

4eb
4kMBra

MBrb
MB1C1 (

a,b,g
b5ea

3eb
4eg

3~kMB!21ra
MBrb

MBrg
MB

1C2 (
a,b,g,d

b6ea
3eb

3eg
3ed

3~kMB!23ra
MBrb

MBrg
MBrd

MB2
3

4 (
a,b

beaebkMBra
MBrb

MB

3 lim
R→`

H E
r,R

drWF ~2plab
2 !3/2^rWuexp~2bhab!urW&211

beaeb

r
2

b2ea
2eb

2

2r 2 G1
2p

3
b3ea

3eb
3 ln~kMBR!J

1
1

16(
a

b2\2ea
2

ma
~kMB!3ra

MB1O„~rMB!3 lnrMB…. ~6.1!

where the pure numerical constantsC1 andC2 have been estimated asC1;15.20160.001 andC2;214.73460.001, whileC
is the Euler-Mascheroni constant,C;0.577. . . . Moreover,hab is the one-body Coulomb Hamiltonian of the relative particle
with reduced massmab5mamb/(ma1mb) is the potentialeaeb/r , andlab is the corresponding thermal de Broglie wave-
length,lab5~b\2/mab!1/2.

B. The two-body exchange contribution

Theaa
2 prefactors inbP~2! are at least of orderr2. Thus the many-body screening factor~4.13b! has to be evaluated up to

order ~rMB!1/2.
The contribution~5.8! to ~4.13b! of ~5.7a! is obviously of orderrMB sincera~jW8! reduces tora

MB at lowest order@1#. The
leading contribution to~4.13b! of ~5.7b! arises from the simplest Debye prototype graph in theP representation ofrT~E8,E9!,
i.e.,

ra8~jW8!ra9~jW9!~2bea8ea9!
exp~2kMBurW92rW8u!

urW92rW8u
. ~6.2!

In addition, it is legitimate to replace eachra(jW ) by ra
MB according to@1#

ra~jW !5ra
MB1O„~rMB!2…. ~6.3!

This gives for the previous contribution@in the exponent of~4.13b!#

b2

2
ea
2 (
i , j51

2

(
a8

E drW8D~jW8!ea8v~F i ,E8!ra8
MBE drW9D~jW9!(

a9
ea9v~F j ,E9!

3F2bea8ea9ra9
MB exp~2kMBurW92rW8u!

urW92rW8u
1da9a8d~rW92rW8!d~jW92jW8!G , ~6.4!
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with F 1[F 12
a andF 2[F 21

a . In ~6.4!, the integral over finite distancesr 8 is of orderrMB at least. The remaining integral over
large distancesr 8;~kMB!21 may be estimated, at lowest order inrMB, by replacing each potentialv~F i ,E! by its monopole-
monopole asymptotic form

v~F i ,E !51/r1O~1/r 2!. ~6.5!

The integrals over the filament shapesjW8(s) and jW9(s) are then easily performed and the low-density limit form of~6.4!
reduces to

2b2ea
2E drW8(

a8
ra8
MB ea8

r 8
E drW9(

a9

ea9
r 9 F2bea8ea9ra9

MB exp~2kMBurW92rW8u!
urW92rW8u

1da9a8d~rW92rW8!G

52b2ea
2E drW8(

a8
ra8
MB

ea8
2

r 8

exp~2kMBr 8!

r 8

52bea
2kMB. ~6.6!

In deriving the second line of~6.6!, we have used that*drW9... is nothing but the electrostatic potential at the origin created by
a point chargeea8 at rW8 plus its Debye screening cloud, i.e.,ea8 exp~2kMBr 8!/r 8.

The expression~6.6! constitutes the leading contribution of~5.7! to the exponent of~4.13b!. The corrections to~6.6! are at
least of orderrMB @41#, as shown by a scaling analysis with respect tokMB similar to that of Ref.@13#. Thus the many-body
screening factor~4.13b! reads

expF2bE
0

1

dgE dE8rg~E8uF 1 ,F 2!(
i51

2

eaea8v~F i ,E8!G5112bea
2kMB1O~rMB ln rMB!. ~6.7!

This simple result, which does not depend on the shapes of the filamentsF 1 andF 2, is easily recovered as follows. In the
low-density limit, the characteristic sizes of the opened and closed filaments become small compared to the mean distance
between these objects. As far as many-body effects on the two-body exchange are concerned, the physical
picture which emerges is that of a classical point charge impurity 2ea immersed in a mixture of classical point chargesea8.
The corresponding screening factor has the same structure as~4.13b! with the substitutions E8→rW8,
rg(E8uF 1 ,F 2)→r2gea

(a8,rW8), ( i51
2 eaea8v~F i ,E8!→2eaea8/r 8. In addition, the inhomogeneous densityr2gea

(a8,rW8) of
speciesa8 in the presence of the impurity 2gea fixed at the origin, is given at lowest order by Debye mean-field theory,

r2gea
~a8,rW8!5ra8

MB
22bgeaea8ra8

MB exp~2kMBr 8!

r 8
. ~6.8!

The first term in~6.8! does not contribute to the screening factor by virtue of the neutrality condition. The contribution of the
second term is identical to~6.6! and we indeed recover~6.7!.

Inserting the expansion~6.7! in ~5.5!, we find

bP~2!5
1

2 (
a

~21!2sa~2sa11!
aa
2

~2pla
2 !3

E drW2E D~jW1!E D~jW2!expF2
~rW22rW1!

2

la
2 2bea

2v~F 1 ,F 2!G
3$112bea

2kMB1O~rMBlnMB!%

5
1

2 (
a

~21!2sa~2sa11!aa
2E drW2K rW2rW1UexpH 2bF2

\2

2ma
D12

\2

2ma
D21

ea
2

urW22rW1u
G J UrW1rW2L

3$112bea
2kMB1O~rMBlnrMB!%

5
1

2 (
a

~21!2sa~2sa11!
aa
2

~pla
2 !3/2

@112bea
2kMB#E drW^2rWuexp~2bhaa!urW&1O~r3lnr!. ~6.9!
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The second line of~6.9! follows by applying backwards the FK formula~4.3! with N52, uRW 2&5urW1rW2&, and ^RW 28u5^rW2rW1u,
while in the final result, the trivial kinetic contribution of the center of mass of the two particlesa is factored out.

C. Activities and MB densities

Now we express the activitiesag and the MB densitiesrg
MB in terms of the real densitiesra , according to the prescriptions

derived in Sec. V D. At the present orderr5/2, only the termsbPMB andbP~2! have to be retained in the series~5.2!, i.e.,

bP5bPMB1bP~2!1O~r3!. ~6.10!

Using ~6.10! in ~5.11!, we find

ra5aa

]

]aa
bPMB1aa

]

]aa
bP~2!1O~r3!

5ra
MB1aa

]

]aa
bP~2!1O~r3!, ~6.11!

where the second line results from the combination of~5.11! and~5.12! ~for the MB quantities!. The relation~6.11! shows that
ra differs from ra

MB by terms which are of orderr2 at least. This general feature~not specific to Coulomb systems! allows
further simplifications in the elimination process.

The MB activitiesaa
MB are readily obtained in terms of the MB densitiesrg

MB by inserting into the definitions~5.9! the
expansion of the MB free energy which is explicitly known up to order~rMB!5/2 @13#. In the corresponding relation, we may
substituteaa for aa

MB by virtue of ~5.12!. It is also legitimate, up to orderr3/2, to replacera
MB by ra because the difference

~ra2ra
MB! is of orderr2 at least. This gives

aa5
~2pla

2 !3/2

~2sa11!
ra2

~2pla
2 !3/2

2~2sa11!
bea

2kra1O~r2lnr!, ~6.12!

which is sufficient for our purpose.
When using the expression~6.9! of bP~2! in ~6.11!, we can replacekMB by ka5$4pb(aea

2[(2sa11)/(2pl a
2)3/2]aa%1/2

with the result

ra5ra
MB1~21!2sa

~2sa11!

~pla
2 !3/2

aa
2~112bea

2ka!E drW^2rWue2bhaaurW&

1
1

2 (
g

~21!2sg
~2sg11!

~plg
2!3/2

ag
2beg

2S 4pbea
2~2sa11!

~2pla
2 !3/2ka

aaD E drW^2rWue2bhggurW&1O~r3lnr!. ~6.13!

Use of ~6.12! in ~6.13! leads to the required expression ofra
MB ,

ra
MB5ra1

~21!2sa11

~2sa11!
~2plaa

2 !3/2ra
2~112bea

2k!E drW^2rWue2bhaaurW&

1
1

2 (
g

~21!2sg11

~2sg11!
~2plgg

2 !3/2rg
2beg

2
4pbea

2

k
raE drW^2rWue2bhggurW&1O~r3lnr!. ~6.14!

D. Final form of the virial expansions

The final expression of the pressure is obtained from~6.10! wherebPMB and bP~2! are replaced by~6.1! and ~6.9!,
respectively, while at the same time theaa’s andra

MB’s are eliminated in favor of thera’s according to~6.12! and ~6.14!. A
straightforward calculation gives

bP5(
a

ra2
k3

24p
2
1

2 (
a,b

rarb lim
R→`

H E
r,R

drWF ~2plab
2 !3/2^rWuexp~2bhab!urW&211

beaeb

r
2

b2ea
2eb

2

2r 2 G
1
2p

3
b3ea

3eb
3 ln~kR!J 1

1

2 (
a

~21!2sa11

~2sa11!
~2plaa

2 !3/2ra
2E drW^2rWuexp~2bhaa!urW&

2
p

3 SC1 ln31
1

2D(a,b b3ea
3eb

3rarb2
3

4 (
a,b

beaebkrarb lim
R→`

$•••%1
1

16(
a

b2\2ea
2

ma
k3ra
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1
3

4 (
a

~21!2sa11

~2sa11!
~2plaa

2 !3/2bea
2kra

2E drW^2rWuexp~2bhaa!urW&1pS 132
C

2
2 ln 2D(

a,b
b4ea

4eb
4krarb

1C1 (
a,b,g

b5ea
3eb

4eg
3k21rarbrg1C2 (

a,b,g,d
b6ea

3eb
3eg

3ed
3k23rarbrgrd1O~r3lnr!. ~6.15!

The structure of the expansion~6.15! is indeed that of~5.14! predicted on the basis of the general scaling arguments. The
expansions of the other thermodynamic functions are easily inferred from~6.15! as explained in Sec. V E.

VII. COMMENTS AND COMPARISONS

For the present discussion, it is sufficient to consider a given thermodynamic quantity, for instance, the free energy.
Moreover, it is useful to rewrite the truncated trace limR→`* r,RdrW. . . appearing in the density expansion~6.15! in terms of the
so-called quantum second-virial coefficient introduced by Ebeling,

Q~xab!5
1

~&plab
3 !

lim
R→`

H E
r,R

drWF ~2plab
2 !3/2^rWue2bhaburW&211

beaeb

r
2

b2ea
2eb

2

2r 2 G1
2p

3
b3ea

3eb
3F lnS 3&R

lab
D 1CG J ,

~7.1!

with xab52& l ab/lab andl ab5beaeb ~this quantity is the analog of the usual second-virial coefficient for quantum systems
with short-range forces!. The dimensionless functionQ defined by~7.1! depends on the temperature and on the charges and
masses of the particles via the sole dimensionless parameterxab . Similarly, it is also useful to introduce the dimensionless
exchange integral

E~xaa!5~2Ap!E drW^2rWue2bhaaurW&, ~7.2!

which only depends onxaa52& l aa/laa . We write the virial expansion of the free energy as

b f5(
a

raF lnS ~2pla
2 !3/2ra

~2sa11!
D 21G2

k3

12p
1

p

6
ln2(

a,b
b3ea

3eb
3rarb2

p

&
(
a,b

rarblab
3 Q~xab!

2
p

3
b3(

a,b
rarbea

3eb
3 ln~klab!1

p

&
(
a

~21!2sa11

~2sa11!
ra
2laa

3 E~xaa!1pS 132
1

2
ln21

1

3
ln3D(

a,b
b4ea

4eb
4krarb

1
2

3
C1 (

a,b,g
b5ea

3eb
4eg

3k21rarbrg1
2

3
C2 (

a,b,g,d
b6ea
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~7.3!

Most virial coefficients in~7.3! are explicitly computed and exhibit simple power-law dependences with respect to the
inverse temperatureb51/kBT. The functionsQ(x) andE(x) can be determined with a good numerical accuracy@20#. The
small- and large-x expansions of these functions have also been derived in the literature@20#, while a simple integral
representation ofE(x) is given in Ref.@42# @similar useful representations ofQ(x) might be found by exploiting recent exact
results on the two-body Coulomb density matrix@43##.

The expression~7.3! is valid for any multicomponent system made of mobile point particles, where at least two species with
positive and negative charges are present in order to satisfy charge neutrality. For our purpose, it is useful to write the specific
form of the virial expansions for the one-component plasma~OCP!. This model is made of identical particles with chargee
moving in a neutralizing rigid background with charge density2er if r is the density of particles. The expansion ofb fOCP is

b fOCP5rF lnS ~2pl2!3/2r

~2s11! D21G2
k3

12p
22pr2l3Q~2be2/l!2

p

3
b3e6r2ln~kl!12p

~21!2s11

~2s11!
r2l3E~2be2/l!

1
pb2\2e2r2

3m
22pbe2kr2l3Q~2be2/l!2

p

3
b4e8kr2ln~kl!12p

~21!2s11

~2s11!
be2kr2l3E~2be2/l!

1
pb3\2e4kr2

6m
1Fp3 ~122 ln21 ln3!1

C1

6p
1

C2

24p2Gb4e8kr21O~r3lnr!, ~7.4!

with l5~b\2/m!1/2 andk5~4pbe2r!1/2.
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As already mentioned in Ref.@16#, all the terms in the ex-
pansion~7.3! coincide with those calculated by Ebeling and
co-workers@20# via the effective-potential method, except
the diffraction term of orderr5/2 proportional to\2 which is
missing in their expressions. This discrepancy, as well as
other checkings against known results in some particular
limits, are discussed in the following. We consider succes-
sively the four kinds of terms which arise from classical
screening, quantum diffraction, recombination or scattering,
and exchange. At the end of the section, we also discuss the
high-temperature expressions which can be readily derived
from ~7.3! as a by-product.

A. Classical terms

First, in ~7.3!, there appears a class of terms which do not
depend on Planck’s constant. These purely classical terms
arise from large distance configurations for which the Cou-
lomb interactions are screened on a rangek21. These terms
are also present in the expression~7.4! specific to the OCP.
The result of Cohen and Murphy@23# for the classical OCP
@44# is exactly recovered by taking the limit\→0 ~all other
parameters being kept fixed!.

B. Quantum diffraction

For the general multicomponent system, the contribution
of quantum diffraction appears only at orderr5/2 and reduces
to

1

24(
a

b2\2ea
2

ma
k3ra . ~7.5!

This term is linked to the quantum fluctuations of the par-
ticles which cannot be entirely neglected at large distances.
These fluctuations induce multipolelike interactions~in the
FK representation!, the amplitudes of which are controlled
by la while the corresponding nonintegrable parts are
screened on a rangek21.

Like the classical contributions, the diffraction terms may
be tested in the particular case of the OCP. In that case, the
quantum corrections to the classical virial coefficients can be
calculated by inserting into~7.4! the asymptotic behaviors of
Q(x) andE(x) whenx→2` @20#. The\2 correction to the
classical virial coefficient of orderr2 in b f class

OCP reads

pb2e2r2\2

6m
, ~7.6!

which is identical to the full\2 correction tob f class
OCP calcu-

lated by Pollock and Hansen@22# within the Wigner-
Kirkwood method. Since the result of these authors is valid
for any density, all the\2 corrections in the virial coefficients
of order higher thanr2 must vanish. This remarkable prop-
erty is indeed satisfied by ther5/2 term in ~7.4! because both
\2 contributions of

22pbe2kr2l3Q~x! ~7.7a!

and

pb3e4kr2\2

6m
~7.7b!

cancel out. We stress that the presence of the purely diffrac-
tion term~7.7b!, which is the strict analog of~7.5!, is crucial
in this checking.

C. Recombination and scattering

The r2 term

2
p

&
rarblab

3 Q~xab! ~7.8!

is the total contribution from both bound and scattering states
of two charges ea and eb . The truncation of
^rWuexp(2bhab)urW& in the integral~7.1! definingQ(xab) en-
sures that this contribution is finite. This regularization is not
an arbitrary mathematical artifact and is directly related to
the truncated structure of the bondf T which is introduced in
the MB diagrammatics@1,13#. It reflects the screening of the
Coulomb interaction at large distances.

For opposite charges such thateaeb,0, one may extract
from Q(xab) a contribution of the bound states which re-
duces to the familiar Planck-Brillouin-Larkin~PBL! sum

(
n51

`

n2@exp~2ben
ab!211ben

ab#, ~7.9!

where e n
ab52ea

2eb
2mab/(2\2n2) are the energy levels of

the hydrogenoid atom with Hamiltonianhab . However,
other definitions of the bound state contributions can be in-
troduced from~7.1! by using the basic properties of the trace.
For instance, as shown by Bolle´ @45#, there exists an infinite
set of arbitrary decompositions in terms of bound and scat-
tering contributions of the PBL sum itself. So, as far as ther-
modynamic quantities are concerned, only the total contribu-
tion of both bound and scattering states is an unambiguous
quantity.

D. Exchange

The contribution

p

&

~21!2sa11

~2sa11!
ra
2laa

3 E~xaa! ~7.10!

arises from the exchange of two chargesea in the vacuum. It
is finite, independently of any screening effect, because the
off-diagonal matrix elementŝ2rWuexp(2bhaa)urW& are short
ranged. The magnitude of this contribution is smaller than
that of free particles because the repulsive potentialea

2/r
inhibits the exchange.

Similarly to what happens for the contributions of bound
and scattering states, at the orderr5/2, the many-body effects
on the two-particle exchange lower the repulsive barrier
ea
2/r by the constant2ea

2k. In the OCP case, the total ex-
change contribution up to orderr5/2 does coincide with the
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expression derived by Jancovici@42#. Moreover, in the
classical limit \→0, this contribution vanishes as
exp~2const/\2/3! @42#.

E. High-temperature expansions

Eventually, high-temperature series can be deduced from
~7.3! by expanding the virial coefficients in powers ofb.
Since the dimensionless parametersxab are proportional to
b1/2, theb expansions ofQ(xab) andE(xaa) coincide with
their Taylor series in powers ofx @20#,

Q~xab!52
xab

6
2

Ap

8
xab
2 1O~xab

3 ! ~7.11!

and

E~xaa!5
Ap

4
1
xaa

2
1

Ap ln2

4
xaa
2 1O~xaa

3 !. ~7.12!

Inserting~7.11! and~7.12! into ~7.3!, we find a series repre-
sentation of the free energy in powers of the inverse tempera-
ture b, the densitiesr, and the chargese @46#. The terms
which do not depend on the charges correspond to the ex-
pansion of the ideal part ofb f . The remaining terms define
the excess part which reads

b f exc5b f2b f id52
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12p
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p

2 (
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4klaa
2 1••• . ~7.13!

All the terms which are omitted in~7.13! have orders which
are higher thanb7/2, r5/2, or e5. A similar expansion for
b f exc

OCP is easily derived from~7.4!,

b f exc
OCP52

k3

12p
2p

~21!2s11

~2s11!
r2be2l21

p3/2

4
r2b2e4l

1
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~ ln2!
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p
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r2b2e4kl2

2p
~21!2s11

~2s11!
r2b2e4kl21••• . ~7.14!

Notice that the OCP expansion~7.14! coincides exactly with
the pure contribution of one given species to the multicom-
ponent expression~7.13! @in other words,~7.14! is the par-
ticular form taken by~7.13! when the species summations
are restricted to only one species#.

Since the high-temperature series involve increasing pow-
ers of the charges, they may also be directly obtained from
the standard many-body perturbation theory where these
charges constitute the natural expansion parameter. The first
calculations in this spirit have been done by DeWitt@27,28#,
who retained contributions arising from the ring and
e2-exchange graphs only. These results have been completed
recently by DeWittet al. @29#, who included higher-order
contributions, in particular those from thee4-exchange
graph. Their expression for the OCP excess pressure is iden-
tical to that derived from our expansion~7.14! of the OCP
excess free energy,

bPexc
OCP5bPOCP2bPid

OCP5r
]

]r
b f exc

OCP2b f exc
OCP

52
k3

24p
2p

~21!2s11
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r2be2l21

p3/2

4

3F112~ ln2!
~21!2s11
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1
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4

~21!2s11

~2s11!
r2be2kl32

p

4

3F116
~21!2s11

~2s11! Gr2b2e4kl21••• .

~7.15!

This perfect agreement between independent calculations
based on completely different formalisms is a quite satisfac-
tory test for the reliability of the results.
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