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We investigate the transition from strange nonchaotic to strange chaotic attractors in quasiperiodical-
ly driven dynamical systems. It is found that whether the asymptotic attractor of the system is strange
nonchaotic or strange chaotic is determined by the relative weight of the contraction and expansion for
infinitesimal vectors along a typical trajectory on the attractor. When the average contraction dom-
inates the average expansion, the attractor is strange nonchaotic. Strange chaotic attractors arise when
the average expansion dominates the average contraction. The transition from strange nonchaotic to
strange chaotic attractors occurs when the average contraction and expansion are balanced. A charac-
teristic signature of this route to chaos is that the Lyapunov exponent passes through zero linearly. We
provide numerical confirmation using both a quasiperiodically driven map and a quasiperiodic flow.

PACS number(s): 05.45.+b

I. INTRODUCTION

Strange nonchaotic attractors occur in nonlinear
dynamical systems [1-7]. Here the word strange refers
to the complicated geometry of the attractor: a strange
attractor contains an infinite number of points and it is
not a smooth surface in the phase space. The word chaot-
ic refers to the sensitive dependence on initial conditions:
trajectories originating from nearby initial conditions on
a chaotic attractor diverge exponentially in time. Strange
nonchaotic attractors are therefore geometrically compli-

cated; nonetheless, they exhibit no sensitive dependence’

on initial conditions. One example of strange nonchaotic
attractors is the attractors in the one-dimensional logistic
map x, ;=rx,(1—x,) at precisely the values of the pa-
rameter r where there is an accumulation of an infinite
number of period doublings [8]. This set of » values for
the occurrence of strange nonchaotic attractors in the
logistic map is nevertheless a set of measure zero in the
parameter space.

While strange nonchaotic attractors occur only at a set
of measure zero parameter values for most dynamical
systems with period-doubling bifurcations to chaos, the
existence of these exotic attractors in dissipative dynami-
cal systems driven by several incommensurate frequencies
(quasiperiodically driven systems) was suggested in 1984
[1]. Subsequent works demonstrated that strange non-
chaotic attractors occur commonly in quasiperiodically
driven systems [2—-7]. In particular, it was demonstrated
that in two-frequency quasiperiodically driven systems,
there exist parameter regions of finite area in the parame-
ter space for which there are strange nonchaotic attrac-
tors [3,4]. In this sense, strange nonchaotic attractors are
said to be “typical” in quasiperiodically driven systems.
Experimental observation of a strange nonchaotic attrac-
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tor was achieved by Ditto et al. [9]. One mechanism by
which strange nonchaotic attractors are created was in-
vestigated by Heagy and Hammel [5], who discovered
that, in quasiperiodically driven maps, the transition
from a two-frequency quasiperiodic attractor to a strange
nonchaotic attractor occurs when a period-doubled torus
collides with its unstable parent torus [S]. Near the col-
lision, the period-doubled torus becomes extremely wrin-
kled and develops into a fractal set at the collision, al-
though the Lyapunov exponent remains negative
throughout the collision process. More recently,
methods to characterize strange nonchaotic attractors
were proposed [6]. One method was based on analyzing
the bifurcation structure of the systems resulting from
periodic approximations of the quasiperiodic forcing. In
another method, a phase sensitivity exponent that mea-
sures the sensitive dependence of trajectories on changes
in the phase of the external forcing was proposed to
characterize the strangeness of the attractors. It was
shown that such an exponent can assume positive values
even though the Lyapunov exponent is nonpositive [6].
The most important observation was that a trajectory on
a strange nonchaotic attractor actually possesses positive
Lyapunov exponents in finite-time intervals, although
asymptotically, the exponent is negative. Other works on
strange nonchaotic attractors include a renormalization
analysis for the birth of these attractors [10] and their
correlation and spectrum properties [7].

In this paper we investigate how a strange nonchaotic
attractor, after its birth, may change into a different type
of attractor as a system parameter is varied further.
Specifically, we are interested in how the transition from
strange nonchaotic to strange chaotic attractor occurs in
quasiperiodically driven systems. Our investigation is
motivated by the observation that a chaotic attractor
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differs from a strange nonchaotic attractor only in the
dynamical properties as characterized by the Lyapunov
exponent, yet the geometric properties of the strange
nonchaotic attractor is very similar to that of the chaotic
attractor near the transition. Intuition would therefore
suggest that the transition from the former to the latter
results from only a nonabrupt change in the dynamical
properties of the attractor. These dynamical properties
could be, for instance, the expansion and contraction that
a trajectory experiences in different phase-space regions.
The geometric structure of the attractor should undergo
almost no change when the transition occurs. Based on
this intuition and numerical experiments, we propose the
following scenario for the transition from strange non-
chaotic to strange chaotic attractors. The phase-space
region in which an attractor lives for chaotic dynamical
systems, in general, can be divided into two subregions
where a trajectory experiences either pure expansion or
pure contraction. In particular, the expanding or the
contracting region is the region where an infinitesimal
vector in the tangent space either expands or contracts
under the dynamics. One may then define the frequencies
of visits to both the expanding and contracting regions.
The Lyapunov exponent of the attractor is determined by
the average expanding and contracting rates associated
with both regions, respectively. Strange nonchaotic at-
tractors occur when the average contracting rate weighs
over the average expanding rate, rendering negative the
asymptotic Lyapunov exponent. If, on the other hand,
the average expanding rate weighs over the average con-
tracting rate so that the Lyapunov exponent is positive,
the attractor becomes strange chaotic. As a consequence
of this picture, the Lyapunov exponent passes through
zero linearly from the negative side as the transition
occurs. We present numerical results verifying our tran-
sition scenario for (i) the quasiperiodically driven circle
map and (ii) a more realistic physical system: the quasi-
periodically forced pendulum, which includes as a special
case the dynamics of a quantum particle in a quasiperiod-
ical potential [2,3].

The organization of the paper is as follows. In Sec. II
we describe the transition scenario in a more systematic
way. In Sec. III we present numerical results with the
quasiperiodically driven circle map. In Sec. IV we
present results with the system of quasiperiodically
forced pendulum. Discussions are presented in Sec. V.

II. THE TRANSITION SCENARIO

We consider quasiperiodically driven systems described
by both discrete maps and flows, which are written as fol-
lows, respectively:

xn+1=F(xn7P:wbw2) (1)
and

dx

;=F(x,p,w1t,wzt) , (2)

where xER Y (N is the phase-space dimension), F is the
N-dimensional system evolution function, p is a system
control parameter, and w; and w, are the two incom-

mensurate external driving frequencies. The transition
from strange nonchaotic to strange chaotic attractors
occurs at the critical parameter value p=p,. Figure 1
schematically illustrates the division of the phase space
into an expanding region I and a contracting region II for
such a system. A trajectory resulting from a random ini-
tial condition visits both regions alternatively. Let A, (p)
and A (p) be the average expanding and contracting rate
of the trajectory in the expanding and contracting re-
gions, respectively. Let f,(p) and f,(p)=1—f,(p) be the
frequencies of visits of the trajectory to the expanding
and contracting regions, respectively. In general, f, and
fs also depends on the parameter p. The asymptotic
Lyapunov exponent of the trajectory is thus given by

Ap)=f, (DA, (p)— f(P)A;(p) , (3)

which also depends on the parameter p. Near the transi-
tion from a strange nonchaotic to a chaotic attractor, the
geometric structures associated with both attractors are
almost unchanged. Therefore, it is reasonable to assume
that the phase-space structure shown in Fig. 1 is roughly
the same for the strange nonchaotic and chaotic attrac-
tors for p in the vicinity of p.. However, the dynamical
properties of the attractors, as characterized by the quan-
tities A, (p), Ay(p), f,(p), and f,(p), change as the pa-
rameter p varies through the critical value p,. Since the
phase-space regions in which these quantities are defined
do not change drastically, these quantities should have a
smooth dependence on the parameter p. Expanding
A, (p), Ay(p), f,(p), and f,(p) around p, using Taylor
series and keeping only the first-order terms in (p —p,),
we obtain

where A(p.) and B(p.) are two constants that depend
only on the critical parameter value p. through the quan-
tities A, (p.), As(p.), fu(p.), and f(p.) and their first
derivatives evaluated at p.. From Eq. (4), we see immedi-
ately that A(p) passes through zero approximately linear-
Iy as the parameter p varies through p.. This linear
dependence is therefore a unique signature characterizing
the transition from strange nonchaotic to strange chaotic
attractors.

II

contracting

expanding

FIG. 1. Schematic illustration of the division of the phase
space into expanding and contracting regions for quasiperiodi-
cally driven dynamical systems.
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III. THE QUASIPERIODICALLY
DRIVEN CIRCLE MAP

The quasiperiodically driven circle map is written as

(4]
n+1=[¢, +27K + V sing, +C cosf, Imod(27) ,
(5)
6,+1=1[0, t2mwlmod(27) ,

where both ¢ and O are restricted in [0,27] via the
mod(27) operation; K, V, and C are three parameters;
and o is irrational. It was shown in Ref. [4] that for Eq.
(5) there are parameter regions of finite area where
strange nonchaotic attractors exist. Furthermore, there
exists a critical line in the two-dimensional parameter
plane of K and V below and above which strange non-
chaotic and chaotic attractors exist, respectively. Across
this critical line, the transition from strange nonchaotic
to chaotic behaviors occurs.

There are two Lyapunov exponents associated with Eq.
(5). The one that corresponds to the 6 dynamics is al-
ways zero. The other nontrivial exponent is given by

n
A= lim 1 > ln|1+Vcos¢jl . (6)

n—o RN

j=1

Note that the Lyapunov exponent depends on all three
parameters K, V, and C through the trajectory {¢;} ;.
Choosing K =0.28 and C=0.6 in the parameter region
investigated in Ref. [4], we find that the transition from
strange nonchaotic to strange chaotic attractors occurs at
V=V,~1.07628, where A <0 for V<V, and A>0 for
V>V,. For our subsequent numerical experiments, we
shall concentrate on the parameter interval in the vicinity
of V. defined by V'€[1.075,1.078]. Examination of the
power spectra [4] of trajectories indicates that the attrac-
tors are strange for most values of ¥V in V' <V,. Figure
2(a) shows a single trajectory resulting from an arbitrary
initial condition on the strange nonchaotic attractor at
V'=1.075. The Lyapunov exponent, computed by using
2X 107 iterations, is A= —0.01455. The finite-time
Lyapunov exponent A, is shown in Fig. 2(b) for 2X10*
iterations. It can be seen that A, converges to the
asymptotic value of approximately —0.014 55 as n— .
As a comparison, Fig. 3(a) shows a single trajectory on
the chaotic side for ¥'=1.078. The Lyapunov exponent
for this parameter value is estimated to be A=0.01193.
The finite-time exponent for this case is shown in Fig.
3(b). Evidently, without computing the Lyapunov ex-
ponents, it is visually difficult to distinguish the strange
nonchaotic attractor in Fig. 2(a) from the strange chaotic
attractor in Fig. 3(a). This suggests a rather smooth tran-
sition from the former behavior to the latter behavior.

To examine the phase-space structure on both sides of
the transition, we first observe that the expanding and
contracting regions are defined by (|1+V cosd|>1,
0€[0,27]) and (|14 V cosd| <1, OE[0,27]), respective-
ly. The two regions are thus given by 6€[0,27]
(0<¢<mw/2, 3Ir/25¢<2mw) (expanding) and
(m/2=¢ <37 /2) (contracting) for ¥ >0. These two re-
gions are invariant throughout the transition. Figures

(a) V = 1.075, strange nonchaotic attractor

6.28 %

0.1

0.05
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1x10* 1.5x10* 2x10*
n
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FIG. 2. (a) Single trajectory on the strange nonchaotic attrac-
tor at ¥=1.075 for the quasiperiodically driven circle map Eq.
(5). Other parameter values are K =0.28 and C=0.6. (b) Finite
time Lyapunov exponent computed for 2 X 10* iterations.

4(a) and 4(b) show, for ¥ =1.075, part of the trajectory of
Fig. 2(a) in the expanding and contracting regions, re-
spectively. The instantaneous variation of an
infinitesimal  vector, given by the quantity
L,=In|1+V cosd,|, along a trajectory on the strange
nonchaotic attractor is shown in Fig. 4(c), where L, >0
(<0) corresponds to the situation where the trajectory is
in the expanding (contracting) region. It is evident that
the trajectory visits both regions experiencing expansion
or contraction alternatively. Figures 5(a)-5(c) show plots
similar to Figs. 4(a)—-4(c) for the case of chaotic attractor
at ¥=1.078. Visually, it is difficult to distinguish Figs.
4(a)-4(c) from Figs. 5(a)-5(c), indicating that the
geometric structures for the strange nonchaotic and
chaotic attractors are roughly the same near the transi-
tion point.

In order to verify our main result Eq. (4), we compute
the relevant quantities A,, A, f,, and f; throughout the
transition region. We choose 300 values of V in [1.075,
1.078]. For each value of ¥V, a random initial condition is
chosen to yield a trajectory of length N=2X10". The
frequencies of the visit to the expanding and contracting
regions f, and f; are approximated by f, =N, /N and
fs=N,/N, where N, and N; are the numbers of trajecto-
ry points with (0<¢<w/2, 3w/2=<¢<2m) and



(a) V = 1.078, Chaotic attractor
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FIG. 3. (a) Single trajectory on the strange chaotic attractor
at ¥'=1.078. (b) Finite time Lyapunov exponent.

(m/2=<¢ <3m/2), respectively. The average expanding
and contracting rates are then given by

Nu
]\; S In|1+Vcosd;| , N

u j=1

A, =

NS
Aszwl—s—jgllnH%-Vcosqul .

Figures 6(a)-6(d) show A,, f,, A,, and f versus the pa-
rameter V in the transition region. Clearly, all these four
quantities behave approximately linearly as V passes
through V., apart from numerical fluctuations due to
finite length of the trajectory. Figure 7(a) shows the com-
binations A, f, and A f; versus V. On the nonchaotic
side of the transition, we have A,f, <A,f;. On the
chaotic side, we have A, f, > A, f;. The transition occurs
when A, f,=A,f,. Since A, f, and A f; vary approxi-
mately linearly through the transition, the Lyapunov ex-
ponent A passes through zero also approximately linearly
near the transition point, as shown in Fig. 7(b). This
confirms our prediction Eq. (4).

IV. THE SYSTEM OF A QUASIPERIODICALLY
FORCED PENDULUM

We now consider the quasiperiodically forced damped
pendulum [3]
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2
%Jwid? +sing=K + V[cos(wt)+cos(wgt)],  (8)
where ¢ is the angle the pendulum makes with the verti-
cal axis, v is the dissipation rate, K is a constant, V is the
forcing amplitude, w; and w, are the two incommensu-
rate frequencies. Introducing the variable transform
t—vt and ¢—¢+/2, we rewrite Eq. (8) as

1d’%  db .
» dtz+dt cos¢p=K + V[cos(w;t)+cos(w,t)], (9)

D 3.14

®)
6.28 R e .
4.71
©3.14-
1.57
0
0 6.28

(c) V=1.075

T 1 1
1x10* 1.5x10* 2x10*
n

T
5000

|
i
(0]

FIG. 4. Part of a long trajectory in (a) the expanding region
and (b) the contracting region of the phase space for ¥=1.075.
(c) Instantaneous variation of an infinitesimal tangent vector
along the trajectory.
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where p =+ is a new parameter and , and w, have been
rescaled accordingly: w;— v~ ! and w,—w,v"!. Inthe
strong damping limit p — o, Eq. (9) reduces to a first-
order equation that is isomorphic to the Schrédinger
equation, which describes the dynamics of quantum par-
ticles in a quasiperiodic potential [2]. In terms of the
dynamical variables ¢, v =d¢/dt, and z =w,t, Eq. (9) be-
comes

(a)
6.28

¢
6.28 7 N ‘
4.71+
D 3.14
1.57 4
0 T =T T
0] 1.57 3.14 4.71 - 6.28
o
(c) V=1.078

-10 T T T

T 1
1x10* 1.5x10° 2x10*

n

(0] 5000

FIG. 5. Part of a long trajectory in (a) the expanding region
and (b) the contracting region of the phase space for ¥=1.078.
A comparison with Figs. 4(a) and 4(b) indicates that the expand-
ing and contracting regions for. ¥ =1.075 (strange nonchaotic)
and V'=1.078 (chaotic) are identical. (c) Instantaneous varia-
tion of an infinitesimal tangent vector along the trajectory.
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FIG. 6. Quantities (a) A,, (b) £, (c) A,, and (d) f; versus the
parameter V for V' €[1.075,1.078]. Apart from numerical fluc-
tuations due to the finite length of the trajectory, these quanti-

ties vary rather smoothly in the transition region.
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(a)

transition
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FIG. 7. (a) Combinations A, f, and A, f; versus the parame-
ter V in the transition region. The transition from strange non-
chaotic to strange chaotic attractors occurs when A, f, = A, f,.
(b) Lyapunov exponent A versus the parameter V in the transi-
tion region. The exponent passes through zero approximately
linearly at the transition.

a¢é _

=V
dt ’

dv
dt

dz
dt

It has been shown that Eq. (10) exhibits rich dynamical
phenomena [3]. In particular, there are parameter re-
gions of finite areas where two- and three-frequency
quasiperiodic attractors, strange nonchaotic attractors,
and chaotic attractors exist.

For subsequent numerical experiments, we fix K =0.8,
V' =0.55, w1=(1/§— 1)/2 (the golden mean), w,=1.0,
and choose p as the control parameter. For large values
of p (p > 1.0), the damping is strong so that orbits are at-
tracted to the torus rapidly and the torus is thus difficult
to destroy. As p decreases, the contraction to the torus
reduces and the torus can be destroyed [11]. For
P <po=1.0, both strange nonchaotic and chaotic attrac-
tors exist. In fact, there are several parameter subinter-
vals for p €[0,1] in which the transition from strange
nonchaotic to chaotic attractors occurs. One such transi-
tion occurs at p =p_~0.6869, where A>0 for p X p, and

(5
= —2Z

K+V |cos +cosz

()]

+cos¢—v’ ,

=w, . (10)

4.71 6.28

(b) p=0.684
6.28

471"
D314

1.57

4.71

FIG. 8. (a) Stroboscopic attractor in the ¢-v plane and (b) the
attractor in the ¢-6 plane for the quasiperiodically forced pen-
dulum system Eq. (10) at p =0.684 (strange nonchaotic attrac-
tor). Other parameter values in Eq. (10) are K =0.8, V'=0.55,
, the golden mean, and w,=1.

A <O for p Sp.. The attractors for p R p, are therefore
chaotic. Here we shall concentrate on the small parame-
ter interval p €[0.684,0.689] in the vicinity of p,.

To visualize the attractors, it is convenient to use the
Poincaré surface of section technique. Specifically, we
sample the system at time intervals corresponding to the
variable z, =w,t, =2mn, where n=0,1,. .. (the strobos-
copic surface of section). We then examine the dynami-
cal variables ¢,(mod2w), v,, and 6, =w,t,(mod27) on
the surface of section. Examination of the attractors for
P Sp. indicates that they are nonchaotic, yet they are
geometrically strange, as shown in Figs. 8(a) (the ¢,
versus v, plot) and 8(b) (the ¢, versus 6, plot) for
p=0.684 (A= —0.0096). As a comparison, Figs. 9(a)
and 9(b) show a single long trajectory on the chaotic at-
tractor for p=0.689 (A=0.0079), where ¢, versus v,
and ¢, versus 6, are plotted in (a) and (b), respectively.

To compute the Lyapunov exponents, we take the vari-
ations of the dynamical variables in Eq. (10) to obtain
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FIG. 9. (a) Stroboscopic attractor in the ¢-v plane and (b) the
attractor in the ¢-6 plane for the quasiperiodically forced pen-
dulum system Eq. (10) at p =0.689 (strange chaotic attractor).

6.28

43¢ =&v ,
dt

ddv _

2 8z

(Vw,/w,)sin +sinz

@,

—2Z

@3
(11)

+singd¢ + v ’ )

ddz _
dt

Note that the dynamics in z and 8z gives rise to a
Lyapunov exponent that is always zero. The maximum
nontrivial Lyapunov exponent is given by
1. A@)
A=lim —ln——,
= 1 T A0)
where A(1)=V'8¢%(t)+86v%(¢). The quantities A,, A,,
fu» and f; in Eq. (3) can be evaluated by monitoring suc-
cessive passes of a long trajectory through the surface of

0.

(12)

section. Specifically, we compute values of
the quantity In[A(¢)/A(0)] averaged over the
time interval T=27/w,. If the average value

(1/T) [ fin[A(2)/A(0)]dt >0 ( <0), then it is taken to be

(a) p = 0.684, expanding region

o 1.57 3.14

¢

(b) p = 0.684, contracting region

4.71 6.28

FIG. 10.
p=0.684.

(a) Expanding and (b) contracting regions for

A, (A,) for one iteration on the surface of section. The
quantities f, and f are the frequencies of having A, and
A, respectively, for a long trajectory. Figures 10(a)
and 10(b) show part of the trajectory with
(1/T) f Jin[A(£)/A(0)}dt >0 and  (1/T) [In[A(2)/
A(0)]dt <0, respectively, on the surface of section for
p=0.684 (strange nonchaotic attractor). The corre-
sponding plots for p =0.689 (chaotic attractor) are shown
in Figs. 11(a) and 11(b). Evidently, the expanding and
contracting regions on the surface of section remain ap-
proximately the same as p varies from 0.684 to 0.689, in-
dicating that the geometric structures for the strange
nonchaotic and chaotic attractors near the transition
does not change appreciably. The quantities A, f,, A,
and f;, however, change slowly as p is increased passing
through the critical value p,. Figure 12(a) shows the
combinations of A, f, and A f; versus the parameter p
for p €[0.684,0.689] and Fig. 12(b) shows the Lyapunov
exponent A versus p. Clearly, near the transition point,
the Lyapunov exponent A passes through zero approxi-
mately linearly. The small amplitude fluctuations on the
curves in Figs. 12(a) and 12(b) are the artifacts of the nu-
merical computation in which the integration time and
the transient time are 40000(27/w,) and 2000(27/w,),
respectively, for each of the 500 values of p in Figs. 12(a)
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(a) p = 0.689, expanding region
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5 (b) p = 0.689, contracting region
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o

FIG. 11. (a) Expanding and (b) contracting regions for
p=0.689.

4.71 6.28

and 12(b). Choosing longer integration and transient
times can reduce the numerical fluctuations, which is,
however, computationally intense. In spite of the numer-
ical fluctuations, the transition from strange nonchaotic
to chaotic attractors here is similar to that in the quasi-
periodically driven map Eq. (5). This is actually expected
because, on the surface of section, the dynamics of the
flow generated by Eq. (10) is equivalent to that of a map
driven quasiperiodically.

V. DISCUSSION

The main conclusion of the paper is that in quasi-
periodically driven dynamical systems, the transition
from strange nonchaotic to strange chaotic attractors fol-
lows the route in which the Lyapunov exponent passes
through zero linearly from the negative side to the posi-
tive side. This can be understood by studying the struc-
ture of the phase space in which the strange nonchaotic
and chaotic attractors lie for parameter values near the
transition. We have developed an approach to examine
the phase space that is particularly suitable for investigat-
ing this type of transition. Specifically, we divide the
phase space into regions where infinitesimal tangent vec-
tors along a trajectory experience expansion or contrac-

(a)

0.19
" 0.185-
=]
<
“_:m
1]
< 0.184
transition
0.175 T T T —
0.684 0.685 0.686 0.687 0.688 0.689
p
(b)
0.01 ‘ 1
|
0.005+ transition
|
< B e LTy -  ARIIIIRTIIIIe R ‘
-0.005- ‘
-0.01-F T T o |
0.684 0.685 0.686 0.687 0.688 0.689
P

FIG. 12. (a) Combinations A, f, and A, f; versus the parame-
ter p in the parameter region p €[0.684,0.689] in the vicinity of
the transition. (b) Lyapunov exponent A versus the parameter p
in the transition region. The exponent passes through zero ap-
proximately linearly at the transition.

tion. We then compute the frequencies of the visit to
both regions and also the average expanding and con-
tracting rates in both regions. These quantities change
smoothly as the parameter changes through the critical
value at which the transition occurs. Whether the
asymptotic attractor of the system is strange nonchaotic
or strange chaotic is determined by the relative weights
of the expanding and contracting rates. The attractor is
strange nonchaotic if the contracting rate weighs over the
expanding rate. Otherwise the attractor is strange chaot-
ic. This scenario for the transition from strange non-
chaotic to chaotic attractors was verified using both a
quasiperiodically driven map and a quasiperiodically
driven flow. We conjecture that this route to chaotic at-
tractors is a general route to chaos in quasiperiodically
driven dynamical systems.

It is interesting to review the possible routes to chaotic
attractors in nonlinear dynamical systems in general. So
far there are four known major routes to chaotic attrac-
tors: (i) the period-doubling cascade route [8], (ii) the in-
termittency transition route [12], (iii) the Ruelle-Takens
route for quasiperiodic flows [13], and (iv) the crisis route
[14]. In route (i), a chaotic attractor appears in a parame-
ter region immediately following the accumulation of an
infinite number of period doublings. Feigenbaum showed
that there are universal quantitative behaviors for the
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period-doubling cascade [8]. Near the transition point,
the largest Lyapunov exponent exhibits nondifferentiable
variations as it passes through zero from the negative
side. In route (ii), as a parameter passes through a criti-
cal value, a simple periodic orbit is replaced by a chaotic
attractor in such a way that the chaotic behavior is inter-
spersed with a periodic behavior resembling that before
the transition in an intermittent fashion. The average
duration of the chaotic bursts scales algebraically with
the parameter variation above the critical value [12]. In
route (iii), a quasiperiodic flow is substituted by a strange
attractor on the torus. In the parameter space, the quasi-
periodic flow occurs at a Cantor set of parameter values,
while the strange attractor occurs at the complement of
the Cantor set. In route (iv), a chaotic attractor is sud-
denly created to replace a nonattracting chaotic saddle as
the parameter passes through the crisis value [14]. In
this case, the Lyapunov exponent for the attractor is

defined only after the chaotic attractor is born. All four
routes to chaotic attractors have been observed in many
physical systems [15]. The route to chaos discussed in
this paper [16] for quasiperiodically driven systems ap-
pears to be fundamentally different from these four
known routes to chaos.
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