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Rigid-body motion, interacting billiards, and billiards on curved manifolds
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It is shown that the free motion of any three-dimensional rigid body colliding elastically between two
parallel, flat walls is equivalent to a three-dimensional billiard system. Depending upon the inertial parameters
of the problem, the billiard system may possess a potential energy field and a non-Euclidean configuration
space. The corresponding curvilinear motion of the billiard ball does not necessarily lead to a decrease of the
stable periodic orbits found in the analogous rectilinear sysf&t063-651X96)06906-1]

PACS numbd(s): 05.45+b

[. INTRODUCTION [1]. Recent examples include the mapping of a system of two
point particles on an interval colliding elastically with one
The traditional billiard problem of a point particle moving another and with the end points, into a billiard problem
in a rectilinear manner and undergoing specular reflections atithin a right angle triangl¢9]. Furthermore, if10], it was
boundary walls has proved to be a lucid example of a Hamildemonstrated that a two-dimensional billiard with a moving
tonian dynamical system exhibiting both integrable and chaboundary can be expressed as a higher dimensional billiard
otic motion[1-3]. Yet, billiards as dynamical systems first in a potential, whereas ifl1], it was shown that the motion
came to attention when it was shown by Hadamafdthat  of a stick in a circle is equivalent to a two-dimensional bil-
negative curvature billiards, i.e., the study of geodesics omard system with a rotating boundary wall. Billiards in po-
manifolds of strictly negative curvaturghyperbolic mani-  tential energy fields have also been investigatsee[12—
folds), provide a rich illustration of dynamical systems with 14)).
dense stochastic trajectories. Clearly then, billiards wih- Let us now outline the contents of this paper. We begin in
rectilinear motion are of some interest to the study of chaosSec. Il with a brief review of the elementary problem of a
Such systems can be created by non-Euclidean configuratiashe-dimensional stick moving in two dimensions and then
manifolds as above or by the introduction of some interactextend these results to three dimensions. As we shall see, this
ing potential field. Systems of this type have been consideregddditional degree of freedom leads to an interacting billiard
before(i.e., gravitational billiard$5,6], Aharonov-Bohm bil-  system on a flat manifold. Section IIl considers the motion of
liards[7]) but their construction has been somewadthoc  free billiards on certain curved manifolds constructed to de-
In this paper, we present a systematic procedure for corscribe the motion of cubical rigid bodies. After these two
structing a broad class of physically realizable curvilinearillustrative examples, we demonstrate in Sec. IV that the
billiard systems. We begin with the demonstration that thegeneral system of any freely moving rigid body leads to a
motion of a freely moving three-dimensional rigid body billiard problem which combines the two phenomena found
making elastic collisions between two flat infinite parallel in the stick and cube problem@.e., interacting potential
walls can, in general, be mapped to a three-dimensional noffields and curved manifoldsMost of these features will be
rectilinear billiard system in which the corresponding pointijllustrated in Sec. V when we consider the motion of an
particle moves in a potential energy field and makes speculafllipsoid with the mass distribution of a stick, a problem
reflections at two suitable curved parallel wafle., two-  chosen because of its clear separation between geometric and
dimensional manifolds While the shape of these walls is inertial properties. This example is well-suited for a compari-
determined solely by the geometric shape of the rigid bodyson of the resulting motion with its known two-dimensional
the potential field and the geodesic nature of the configuraanalog. Finally, a number of conclusions and directions for
tion space are determined by the inertial propertiaertia  future study will be discussed in Sec. VI.
tensoy of the rigid body. This strict separation between in-
ertial and geometric properties will be used in constructing
certain useful comparisons to two-dimensional billiards. The Il. STICKS AND INTERACTING BILLIARDS
equivalence of rigid-body motion with billiards was first
demonstrated for two-dimensional motion in a previous pa- We begin by considering the case of a one-dimensional
per[8]. There, all billiards were Euclidean in nature. It was stick of total massvl which is composed of two equal point
noted, however, that since the motion of a rigid body in thregmasses separated by a rigid rod of lendtar®d which makes
(and higher dimensions is associated with a noncommuta-elastic collisions between two flat parallel walls separated by
tive group, a new type of billiard motion was to be expected,a distanceh. Let us recall some results frofl] for the case
which is certainly the case according to the statementshen the stick moves in two dimensions. The coordinates of
above. the stick will bez, the height of its center of mass above the
Examples of mechanical systems which lead to billiardlower wall, and the angle of rotatiofi from the vertical.
systems began with Sinai's work on the hard sphere Bos&caling z with the radius of gyrationk, as n=2z/«, the
gas which culminated in the invention of the Sinai billiard energy of the stick becomes
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M. Using this fact, the equations fdr, andL,, and the equa-
E==(67+ 7). (1) tions for AL, andAL,, we find that
The distance of closest approach of the center of mass to the A= %(Sing)A'z_ (10)

plane isnmin= (I/«)|(cosd)| so that this point particle moves

between boundaries at the bottob{,#), and the topt(#6), ) L .
with Finally, we can use the fact that the collision is strictly elas-

tic and equate kinetic energies before and after the collision.
| 1 This leads us to a quadratic equation with a trivial solution
b(6)= ;|(cos€)|, t(6)= ;[h—||(0099)|]. (20 Az=0 and a nontrivial solution of

A collision between the stick and the wall is described by 7= —2[z+16(sing)]
1+ (sirf6)

(13)
(M)Ap=f.7, (Mx2)AO=I(sind)f,r. 3) _ 3 _ _
We are now in a position to draw all desired conclusions
The impulse can be eliminated to obtain a relation betweedbout this special problem. Singe does not change during
A5 andA 6, and conservation of energy can be used to showhe collisions, the coordinate is quite passive. It serves

that only to “complicate” the motion inf. Equation(11) is iden-
tical to what was found in the above two-dimensional prob-
) —2[%7+(I/K)i9(sin0)] lem. There is no¢ dependence in this equation. Further-
An= T+ (0% SPe) (4)  more, there can be ng dependence in the wall function.

[This result is general. A general three-dimensional body
Proof that the reflection is specular follows immediately and/ill be described by three anglésee below. Set the first
is given in[8]. Here, we merely note that, given the form of tWO and bring the bod.y in contact Wlth the wall. Now rotate
the energy(1), this system clearly describes a free particle. the body about an axis in thedirection through the center
Now, we want to allow the stick to move in three dimen- of mass while maintaining contact with the wall. The height
sions and make elastic collisions with two flat walls which Of the center of mass above the wall will not charigehe
are the planeg=0 andz=h. We orient the stick using the wall function is also exactly what we had in the two-

usual polar angles) and ¢. The corresponding energy can dimensional case. Thus, V\.Iith. the scaling of variables de-
be written as scribed previously, we again find that we have specular re-

flection in the (0,z) plane for every collision. This apparent

1 ) . ) 1 three-dimensional problem is really a two-dimensional prob-
E= S MIP[6%+ (sinf0) ¢*] + S MZ%, (5)  lem in the (6,z) plane. The only difference is that, as a
consequence of the more complicated equations of motion,
and the angular momentum of the stick by the .trajegtories between consecutive wall hits are no longer
straight lines. Although the time-dependencedas not lin-
L= MI2[—(sinq&)é—(sin&)(cosﬁ)(co&;&)éﬁ], ear, it is not complicate_d. We simply consider the free mo-
tion in a rotated coordinate system such that the angular
Ly=MIZ[(COqu)é—(sinﬁ)(cosﬁ)(sin¢)¢], momentum vector lies along th& axis. In this frame the

angular velocityw,, will be a constant. It is then easy to
transform back to the originalz coordinates.

— 2 H ’
L,=MI?[(sirf6) ¢]. 6) The energy(5) can be rewritten as
This problem initially appears to be five dimensional. How- 1 2
ever, it is clear that the andy motion of the center of mass E==M[(16)%+ 23]+ Z—an (12)
of the stick is trivial and can be ignored. It is also clear that 2 2MI%(sin"0)

the force-free motion of the stick does not resultdrand
¢ being linear functions of time except for geometrical ac-
cidents. Now consider a collision with the wall which im-

Since all reference t@p has disappeared, this is the total
energy of the billiard ball in the reducedi&,z) plane. The

parts some impulsé,, in the z direction. third term,L§/2MI2(sir126), can be interpreted as the poten-
v tial energy for the two-dimensional billiard system. This ex-
A(Mz)=fr. (7)  plains the nonlinear time dependence of theariable. Thus,

a one-dimensional stick bouncing elastically between two
There is a corresponding change in the angular momenta: flat walls is equivalent to an interacting billiard problem
(with suitable wall$ on a flat two-dimensional manifold
ALy=—I(sing)(sing)(f7), AL, =I(sing)(cosp)(fr), (with a specific form of the interacting field

AL,=0. (8) lIl. CUBES AND CURVILINEAR BILLIARDS

As a consequence of the third of these equations, we see that Another specific example will be sufficient to point the
. way to the general problem. Consider a cube of total mass
A¢p=0. (9 M and sides 2 composed of eight identical point masses at
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the corners joined by rigid rod¢We have now proceeded Ay=—(cosB)Aa. (21)
from tossing coins to rolling dicgStart by aligning the cube

with its corners at£a,*a,*a). (For a general rigid body, The expressions fok, and L, can be used to determine
we would start with the principal axes along the laboratoryA « andAg in terms ofAz. This leads to

X, Yy, andz axes) Now consider the most general angular
orientation of the cube by performing the rotations

R(aBy)=RA7)Ry(B)RAa), (13

where all the rotations are about the laboratory-fixed axes"fmd

and theR’s are the usual &3 orthogonal rotation matrices AZ

[see Eq(A11) in the Appendix for an explicit representation AB=——[—(sinB)+(cosB)(cosx) + (sina)]. (23
of R(aBv)]. It is straightforward to construct the rotational 2a

kinetic energy as

Aa (cos) — (sina)] (22

Az
- 2a(sin,8)[

We can impose the condition of conservation of energy un-

1 S . der the collision and eliminates from the expression for
ErotZEE m,LiEl (RX,)i(RX,); - (14  L,in (17). This gives
m =

The . sum is over the point masses and allows us to recover a¥[(2ahatAa®)(siB) +(2BAB+ABY)]

the moment of inertia tensor in the general ca¥ée could +I7AZ+AZ2/2=0. (24)
have done this for the stick. If we had, the first rotation

would have had no effect. We would have obtained the refinally, using(22) and(23), we determineAz to be

sults above with some sign changes on the angkes. the

specific case of the cube we find Az=4(z+ a{,B(cosg)(COSa)+(sina)
e 3Ma2[2d2+232+2.y2+4w(00$8)] . EM'ZZ +(sinB)[ a(cosx) — (sina) — BINI{(sitB)(sin2a)
2 2 15 +(sin2B)[(cosw) + (sina) ] — 4} (25)
It is equally easy to generate the angular momentum compo- It is interesting to note that all reference fohas disap-
nents as peared. Neither does this angle play any role in the wall

function. This represents a genuine reduction of the dimen-
_E . sionality of the problem. At this point, we have obtained all
Li= . M8 ijic(RX,)j (RX )i (160 available information. What remains is to see if there is a
natural way to interpret these results in order to recover
Again, we can recover the moment of inertia tensor in thespecular reflection. With this in mind, it is useful to write the
general case. For the specific case of the cube, this produckietic energy(15) in a more suggestive way. Specifically,

L,=Ma?[ —2(siny) B+ 2 ing)al, . L2
A~ 2(siny) + 2(cosy)(sing) a] E:%Maz[zdz(sinzﬂ)+2,82]+mz+%M'zz. (26)

Ly=Ma?[ —2(cosy) B—2(siny)(sinB) a],
. . Evidently, L, is not changed by elastic collisions with the
L,=Ma’[—2y—2(cosB)a]. (17 wall in the xy plane. It is apparent that it is useful to intro-
duce a metricg,, in the a8z subspace with nonzero ele-
mentsg,,,,= (Sir’R), ggs=1, andg,,= 1. With the introduc-
tion of the velocity vector

Now, consider the situation when tha,&,a) corner of
the cube is in contact with the planezt 0. The coordinates
of this point are

x/a=(cosy)(cosB)[(cosx) + (sina)] v=(a.B.2\2a), (27)
+ (siny)[ (cosx) — (sina)]— (cosy)(sinB), (18 we can write the total energy of the billiard system,
yla=— (siny)(cos)[ (cos) + (sine)] E = Ma%ouPg,, + 2'\;2 ' 29

+(cosy)[ (cosx) — (sina) ]+ (siny)(sinB), (19

in a manner which emphasizes the non-Euclidean nature of
the configuration spacea(3,z/\/2a). This metric will be
z/la=(sinB)[(cosw) + (sina)]+ (cosB). (200  included in all subsequent scalar product operations. It is
important to note that this metric is determined by the iner-
We can now repeat the manipulations from the example ofial tensor and is independent of the shape of the body. The
the stick to study the nature of the present collision. Equatiorfact that thea — 8 components of the metrig,, correspond
(7) is unaltered. An impulse in the direction will leave to the surface of a sphere in the present example is a conse-
AL,=0. This results in the relation qguence of the equality of the three principal moments of

and
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inertia of a _CL_Jbe. In gen_eral, we would expect an ellipsoid. ] . Oua07 ) . UppYz2
Thus, our billiard space is curved. —ab,(2a+Aa) —abg(28+ A,B)g—
In order to address the question of specular reflection, we as BB
define the wall function using E¢20), Uys
+(2'z+A'z)T=O, (37
b(a,B)=—2(a,B)I\2 2
_ —[(sin,B)(COSa)+(sina)+(cose)]/\/§ where we have used the fact tH82) can be written as
@9 N=| —b, 2 —p, 2 |, (39)
Jaa gﬁﬁ

This leads to an associated wall surface,
From the two tangential conditions,

S(a,B)=(a.f,b(e. ), (30 Aag,+b,AZ0,,/\2a=0,

and two tangents to this surface,

ABggp+bsAzg,,/\2a=0, (39
JS aS ;
_2 _72 we find that
8= ~(1 0.b0), S4=75=(0, 1,by). (3D |
o ACL/ Jaa . AB gBB
The normal to the wall at each poimMi, must be orthogonal be=- ‘/EaE 95, bg=— \/EaE 9,7 (40)

to these two tangent vectors so that we hak&,=0 and
N-Sz=0 where the metricg,,, must be included in form-  The substitution 0f40) into the normal constrain87) leads

ing the scalar product. This leads to imediately to(36) which came from the requirement of con-
servation of energy. Thus, by imposing conservation of en-
N=[—ba/(sin2,8),—bﬁ,1]. (32 ergy in the billiard space and verifying that the tangential

conditions hold, the normal constraint is automatically satist-

The final ingredient required for the demonstration of specufied. This is of practical value since it is no longer necessary
lar reflection is the vector describing the change of the veto solve forAz explicitly in terms ofAa andAB. That the

locity due to the collision: present billiard manifold is an orthogonal systéne., the
metric tensor is diagonghnd that it possesses a trivial po-
Av =(Ad,AB,A2/\/§a), (33) tential (i.e., free motion is due to the fact that all principal

moments of inertia are equal in this special case. As we will
see in Sec. IV, the most general metric will contain off-

where we knowAa, Ag, andAz are all known from EGS.  iaqonal elements, and the potential will be more compli-

(22), (23), and(25) above.
o . . cated.
The conditions for specular reflection are now simply ex-

X i However, much of the above does generalize to arbitrary
pressed. The two tangential components of the velocity musolhapes. The wall function will always be indpendentof

remain unchanged, and the normal component of the Veloc“&ollisions with xy planes cannot change,, so that it is
must be reversed. Thus, always possible to eliminate all referencejtan the analogs
of Egs. (25) and (26). Thus, y will again be a neglectable
So'(v+Av)=S,-v, Sg-(v+Av)=Sgz-v, coordinate. We will find a nontrivial, ellipsoidal metric in the
N-(v+Av)=—N-v, (34) coorgiina.teSa and 8. As is the case .here, the details of this
metric will depend only on the inertial tensor of the system.
Also, the wall function will be determined solely by the
shape of the body, independent of the mass distribution and
the generalized metric.

or

S,-Av=0, Sz-Av=0, N-(2v+Av)=0. (39
Equations(22), (23), and (25) reveal that the reflection is V. GENERAL RIGID BODIES
specular provided that the metric is included in the scalar The extension of the results of the preceding section to the
product. case of arbitrary rigid-bodies is straightforward. Here, we
It is useful to look at the structure of this argument in ashall describe the general approach. Details are given in the
slightly different way. Conservation of energy leads to theAppendix. It is elementary to determine the point of contact

condition for any (a, B, ). One starts with the body oriented so that
the body-fixedx, y, andz axes coincide with the laboratory
aZ[ZdAiﬁ'(Ad)z]gaa+az[ZBAB+(AB)2]Q,3ﬁ axes. Label a point on the surface of the body by the usual
o ) polar anglesé and ¢ and specify the associated radius,
+[22A7+(A2)?]g,/2=0. (36  R(6,¢). Apply R(a,B,7) to this vector. The condition that

this point should be a point of contact is that ttieward)
The third equation of35) can be expressed as normal to the surface should point in tliaboratory +z
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direction. This defines the wall function in terms of V. ELLIPSOIDS

e, e e vhioss ncvca vt tor - SInce e resuls ofthe preceding secton and the Appen:-
' fdix are somewhat complicated, we consider the specific ex-

into the proof of specular reflection through the analog o L . o=
(35) can be eliminated by the condition that the Surfaceample of an ellipsoid of revolution whose surface is given by

should be tangent to the plane at the point of contact. (1+ &) (x3+x3) +x3=1. (45)
The metric tensorg,,, can be read from the form of the

energy once the angle has been eliminated using relations It is useful to parametrize the coordinates as

analogous t@17) and(21). This yields a billiard energy hav-

ing the form X1=R(0,¢)(sind)(cosp),
a? X>=R( 6, ¢)(sinb)(sing), (46)
E= m(sinZﬁ)[Ii(s,inza) +I;(coSa) + LI, + T,Z,
“h xs=R(6,)(cosh),
B 5 5, .
+I,7,]+ m[zx(cosza)(cos?ﬁ) +Zy(sifa) where
X (cogB) +I2(sirB) + L, L, + L, I, + T,T. =
(co ./3) Z(sin’B) + 1,1, + T,7,+ 1,71,] R(6, ) ¥ (siPa) (47)
+Da—'g(If,—If()(cose)(sinﬂ)(com)(sina) We have deliberately chosen an ellipsdib) in order to
(.f) have R( 6, ¢) independent ofp. It is our intention to con-
L2 1 sider a three-dimensional billiard system with strong simi-
+ m+ EM'ZZ, (41 larities to the two-dimensional systems studied previously.

The present choice will enable us to make a direct compari-
son with the results of Ref8].

The billiard wall function is obtained from EqA16) of
the Appendix

where

D(a,B)={Z,[1— (coga)(sir*B)] +Z,[1- (sirfa)(sir?B)]

+Iz(sin2,8)}. (42 Pyar=—2(a, B, 7= O, m— )
, _ [(sinB)(sind) coq e+ ¢¢)+ (coB)(cosh,)]
Thus, we are led to define the metric tensor as = [1+ e(sir26). ]2 '
[
(si?B)[Zi(sinfa) + I5(cod @) + LT, + LT, + 1,7, (48
“ D(a,B) whered. and ¢ are the angles of contact when the ellipsoid

hits the plane az=0. That is, we must have

0= [ZZ(coSa)(cogB) + T(sirfa)(cog B) + I5(sinB)

d
+I,1,+ I,1,+ 1,7,)/D(a, ) £(0=w— Oc,p=m—c)=0 (49)
_(Z;— Y[ (coB)(siNB) (cosw) (sinar) ] and
Jab™ D(a.B) 52
—(0=7— 0, =1~ o) =0. (50)
9:,=M. (43 ¢

. . This results in the relations
This allows us to rewrité41) as

. L2 (sinf;)(cosB)(1+ €)= (cosh.)(sinB)cog a+ ¢.) (51)
v Gab z

—tane=t , 52
(An implicit factor of 2 has been included in the definition of an=tang, 52

Jap SINCE Q,p=0p,). WhenZ,=7,, this tensor becomes which indicates thatp,= — a. Thus,by, is independent of
diagonal(i.e., the coordinate system becomes orthogonal 4 _. Finally, solving for (sirf,) and (co#) in (51) and sub-
As expected, we obtain a potential energy term.stituting back into(48) produces

(L§/2D(a,,8)), which depends only on the relative magni-

tude of the principal moments of inertia. In the completely

symmetric case of,=Z,=T7,, D(a,p) is a constant and the Byan( . B) =
motion is free. The construction of the billiard geometry and

the proof of specular reflection can be found in the Appenwhich is the exact result found for th@at) ellipse in[8].

dix. This is not surprising since the symmetrical rigid body under

1/2

1+ e(cogpB) 53

1+e
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1.2 | . 1.2 n 1 .
Z Z
0.8 S 0.8 —
0 1 0 1
B B
FIG. 1. A trajectory in configuration space for the ellipsoidal ~ FIG. 2. A trajectory in configuration space for the ellipsoidal
systeme=0.5, h=2, andL,#0 as indicated in the text. systeme=0.5, h=2, andL,=0 (noninteracting cage

consideration is a surface of revolution. We also note that th&his is apparent in Fig. 1. Further, we see fr¢f®) that
corresponding billiard system has tao-dimensional con- there must be turning points in the motidigetween colli-
figuration spacefi.e., an appropriately scaled3(z) sub-  sions,z is constant. Evidentlyd must decrease in magnitude
spacé because of this symmetry. As was mentioned beforeand ultimately change sign asapproaches 0 ofr.)
and demonstrated above, the shape of the walls for the Figures 3 and 4 provide a more complete summary of the
equivalent billiard problem is determined solely by the geo-motion for these two systems. At each collision with the
metrical properties of the rigid body. walls, we plot the angular orientation of the body and the
In order to determine the trajectories of our billiard we angle of incidencgmeasured relative to the normal at the
must specify its inertial properties. We choose to endow thigoint of contact The investigation here has been rather cur-
ellipsoid with the inertia tensor of the one-dimensional sticksory with the inclusion of only T0points. Again, plots with
of Sec. Il. That is, the mass is concentrated along the syma content similar to Fig. 4 have been considerefigih Al-
metry axis of the ellipsoid. Thus, the energy of the billiard though the figure is somewhat crude, there is clear evidence
problem will be given by Eq(12) with I=1 andd=8 and of the elliptic fixed point, periodic orbits, resonance islands,
the corresponding equations of motipobtained from the and chaotic regions. The results of Fig. 3 are remarkably
Lagrangian(5)] are similar given the qualitative differences in the individual tra-
jectories suggested in Fig. 1. The only qualitative difference

. L§ (cosB) _ 5=0 (54) of note is the overall compression of the figure as a conse-
A= Mz (sifp) ' quence of the existence of turning points in the casé of

#0. The survey of Fig. 3 does not reveal resonance islands;
This provides another illustration of the distinction betweenthis is probably due to the roughness of the exploration.
the nature of the billiard’s trajectories and its wall function.
The wall function of the ellipsoid53) is not that of the stick
given in(2). For this problem, the center of mass moves in a
nonzero potentialif L, is nonzery but with a flat metric This paper has continued the demonstration, initiated in
and, as always, with specular reflection at every collision. [8], of the equivalence of a class of problems in rigid body

An example is shown in Fig. 1 for an ellipsoid with

e=0.5 andh=2. In this case, the major axis of the ellipsoid 0.5
is equal to the wall separation as indicated by the fact that
the upper and lower walls touch g=0 and#. The ellip-
soid does not have sufficient room to “turn around.” In spite -
of this fact, the motion of the analogous two-dimensional
system is very rich displaying periodic orbits, resonance is-
lands, and chaotic regions. A sample trajectory of the point ¢, 0
particle is shown in Fig. 1 forL(%/MZI“): 1. (Note that we
have adopted different horizontal and vertical scales in the
interest of visibility. This makes it difficult to recognize
specular reflection.For purposes of comparison, the same
trajectory is followed in Fig. 2 fot.,=0. The results of this [ o
figure areidenticalto those of the analogous rectilinear prob- —0.5 0 02 04 06 08 1
lem of an ellipse moving in a plane studied[Bi. In spite of ' B ’
the strong physical similarities between these problems,
there are two qualitative distinctions of interest. As indicated FIG. 3. A phase space surface of section for the ellipsoidal
by (54), the motion is not rectilinear wheh, is nonzero. system of Fig. 1.

VI. CONCLUSIONS
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0.5 — i APPENDIX A

In order to determine the general rotational contribution to
the kinetic energy, we start from E@L4). All the time de-
pendence is ifR. Initially, the principal axes of the body are
aligned with the laboratory axes. The corresponding mo-
ments of inertia are now,, Z,, andZ,, and thus,E be-

¢ o 0 comes
E= %ZX[Z(cose)d'wa 2(sina)(cosy)(sinB) By+ (cofa)
_05 X(co02B) y2+ a?+ (cofa) B2+ (sirta) y2]

0O 02 04 06 08 1

A + %Iy[Z(cosﬁ)d'y—2(sina)(com)(sin,8),é'y+(sinza)

FIG. 4. A phase space surface of section for the ellipsoidal _ _ . )
system of Fig. 2. X (cogB) ¥+ a®+ (sirfa) B2+ (cofa) ¥?]

1 Co - 1 .
motion to billiard problems. The present three-dimensional  + =Z,[ (si?B8) y*+ B%]+ =M Z2. (A1)
. . . . . 2 2
considerations reveal a richne§s the metric and through

the presence of a potentiaiot encountered in two dimen- Similarly, we can work with Eq(16) and find the general

sions. The utility of this equivalence can be recognized inexpression for the various components of the angular mo-
either direction. On the one hand, it is extremely appealing tQnantum.

have physically motivated and even physically realizable ex-

ampleS of billiard prOblemS in h|gher dimensions. On the LX:_’ZX[(SinB)(COS’y)d_[(Sina)(com)(co$)(cosy)
other hand, familiarity with general billiard results can cut )

through some of the difficulties associated with rigid body +(cosa)(siny)]B+[(cosa)(sinB)(cosB)(cosy)
motion. For example, the wall function for a cube making , , . . . .
elastic collisions between parallel walls is everywhere con- ~ (sina)(cos)(sinB) (siny) 171+ Z,L(sin) (cosy)
vex and thus provides a strong suggestion that the resulting +[(sina)(cosx)(cose)(cos)/)—(sinza)(siny)]ﬁ
motion is chaotic(Since, as noted, there is a nonflat metric . ) . .

in this problem, the issue cannot be regarded as completely ~ +[(siMa)(sinB)(cosB)(cosy) + (sina)(cosx)(sinB)

settled) . . . p . -

X -7 +
There are several extensions of the present three- (siny)]1v]—Z [ (siny) B+ (sinB)(cosB)(cosy) ]
dimensional results which could be made. In two and three (A2)

dimensions we have seen that there is a single billiard prob- ]

lem equivalent to a given rigid body problem. In two dimen- Ly=Zx{ — (sinB)(siny) a+[(sina)(cosx)(cosB)(siny)
sions we demonstrated that, for every periodic billiard prob- . . ,
lem, there exist infinitely many equivalent rigid body — (coga)(cosy)] B+~ (coSa)(sinB)(cosB)(siny)
problems.(The multiplicity reflects freedom in choosing the — (sina)(cosw)(sinB)(cosy) ]y} +Zy{ — (sinB)(siny) a
separationh, between the parallel walls which can have any . ) ] :
value greater than sontg, determined by the shape of the +[ — (sina)(cosx)(cosB)(siny) — (sirfa)(cosy)] 8
billiard _wall.) We expect that_this proof can be extended to +[ — (sirPa)(sinB)(cosB)(siny) + (sina) (cosx)(sing)
three dimensions without difficulty.

There is no reason to restrict attention to rigid-bodies col-  x(cosy) ]y} +Z,[ — (cosy) B+ (sinB)(cosB)(siny) y]
liding with parallel walls. One can equally well imagine a (A3)
rigid body rattling inside an infinite cylinder of arbitrary
cross-sectional shape or confined within an arbitrary closed

three-dimensional surface. It is expected that these problem"’}snd finally

can also be mapped uniquely onto billiard problems using . , L .
arguments similar to those adopted here anfBin L,=T{ — (cosB) a— (sina)(cosx)(sinB) B+[ — (sinfa)
—(coSa)(cosB)]y}+I,{— (cosB) a+ (sina)(cosx)
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53 RIGID-BODY MOTION, INTERACTING BILLIARDS, AND ... 5677

We can eliminate reference to the angldrom the ex-  Let us first define ouk,y, andz coordinates. As explained
pression for the total energf by using the equation for earlier, we label a point on the surface of our rigid body by a
L,. This is useful for two reasons. First, at the point of radius vector and apply the rotation matfX «,8,y) given
contact,y is a symmetry angle since it specifies a final rota-by
tion about thez axis through the center of mass, and thus
cannot alter the height of the center of mass above the wall.
Second,L, is a constant of the motion because the impact
force is normal to the wall. Solving foy in (A4) gives

R11=(cosy)(cosB)(cosw) — (siny)(sina),

. , R1,=(c0osy)(cosB)(sina) + (siny)(cosx),
y=[(Z,—Z,)(sina)(cosw)(sinB) B—L,— (I, +Z,)

X (cosB) a]/{Z(sirfa) + I,(coSa) + T,(sir’B) Rya= — (cOSy)(sing),
+(co$B)[ I (coSa) +I,(sirfa)]} (A5)

By substituting this expression back inta1) and simplify- Rz1= — (siny)(cosB)(cosx) — (cosy)(sina),
ing, one is left with Eqs(41) and(42) of Sec. IV.

Now, we wish to determine the changes in the various Rop=—(siny)(cosB)(sina) + (cosy)(cosr),
angular velocities due to the collision with the wall. We seek
Aa, ApB, andAy (but notAz!). First consider the follow- . .
ing three quantities: Ro3=(siny)(sinB),

Al:{[LX(Cosy) - Ly(SIn’y)](SInﬁ) - LZ(CO$)}/(IX+Iy)1 R31: (Sin,B)(COSa) ,

Ay={[(L(cosy)—L(siny))(cosB) +L,(sinB)](cosx)

—[Ly(siny) +Ly(cosy)](sina)} (Z,+1,), Rao=(sinB)(sina), Rzz=(c0P), (Al1)

Az=—{[(L«(cosy) —L(siny))(cosB) + L (sinB)](sina) to R(6,¢) resulting in X(a,B,7.6.¢), y(a,B,7.6,¢),

. andz(«,B,vy,0,¢). Using these expressions farandy in
+[Li(siny) +Ly(cosy)(cos)}/ (I +I,). (AB) the e((qua['fio%s odf))motiongproduces P g

It can be verified that

R(6,¢)Az
A;=a+ y(cosB), AA = W[ (sing)(cosp)(sina)(sinB)
A= B(sina) — y(cos)(sing),
Az= B(cosw) + ¥(sina)(sing). (A7) +(sind)(sing)(cosa)(sinB)],
Thus, R(0,$)AZ

AA,= [(S|n6)(5|n¢)(0038)
AA;=Ad+Ay(cosB), 2 ML+

. — (cosd)(sine)(sinB)],
AA,=ApB(sina) — A y(cosx)(sing),
AA;=ApB(cos)+Ay(sina)(sinB), (A8) AA3=_|VIR((;—';2A)Z[—(sin6)(CO&ﬁ)(CO:38)
and +(cos)(cosx)(sinB)]. (A12)

Ay=[AA;(sina) — AA,(cosx)]/(sing), _ .
Finally, substituting these into the equations foy, Aa,
Aa=AA;—(cosB)AYy, andA B (A9) provides the desired expressions

AB=AA,(sina)+ AAz(Cosw). (A9) . R(6,¢)Az
Y~ "M(sing)

(sina)
I+1T,

[(sin)(cosp)(cosB) — (cosy)

Next, AA;,AA,, andAA; are obtained from the equations

of motion _ (cosw)
X(cosx)(sinB)]— I+, [(sing)(sing)(cosB)
ALy=yf,7, AL,=—xf,7,
AL,=0, MAz=f,r. (A10) —(cod)(sina)(sinB)]|, (A13)




5678 RUPAK CHATTERJEE, A. D. JACKSON, AND N. L. BALAZS 53

R(6,)AZ

Aa= v

[ = (sinB)(sind)(sina)(cosp)

I+1,
+(sinB)(sin@)(cosx)(sing) ]

—cotB

(sina)
77 L(5ind)(cosp) (cosp)

—(cos9)(coxx)(sinB)]

(cosw)
I T, [(sing)(sing)(cosB)

- (cosﬂ)(sina)(sinﬁ)]) } , (A14)

A.B:R(a,'\;l{))Az (sina)

I,+71,

[(sind)(sing)(cosB) — (coH)

: . (Cosa)
X(sina)(sinB)]+ IX+IZ[(sm6)(co&j>)(cosB)

—(cod)(cosx)(sinB)]|. (A15)

Our billiard problem exists in a three-dimensional space
given by the coordinatesy, 3,z) which specify the height of
the center of mass and the orientation of the body. The center
of mass moves between wall surfaces which depend on the
orientation of the body. We denote the lower wall as
S(a,B,—2). (The upper wall is displaced bly, reflected,
and subject to an evident phase shi®f course, thed and
¢ dependence of must be eliminatediia Egs. (A17) and
(A18), i.e., .= 0.(a,B) and ¢.= ¢d.(a,B). The two prin-
cipal tangent vectors to the Ilower wall are
=(1, 0,—9z/da) and Sz=(0, 1,—dz/dB). Using Eq.
(A16) and the two extremum conditiof®17) and (A18),
one finds that

:j—z =R(6,¢)[ —(sinB)(sina)(sind)(cosp)
+(sinB)(cosw)(sind)(sing) ] (A19)

and

é =R(6,$)[(cosB)(cosx)(sind)(cosp) + (cosB)(sina)

X(sinf)(sing) — (sinB)(cow)]. (A20)

One final piece of information is needed before we can -~ _
proceed with the verification of specular reflection. From EqAs in the specific example of the cube, there are two condi-

(Al11), it can be deduced that
z=R(6,¢)[(sinB)(cosx)(sing)(cosp) + (SinB)(sina)
X(sing)(sin¢g) + (cosB)(cod)]. (A16)

Using this, we can derive the curved billiard wédl two-
dimensional hypersurfagdor our system. Firstz must be
extremized with respect t@ and ¢, i.e., Vz(6.,¢.)=0.
This results in two conditions,

[(sinB)(cos)(sindc)(cosp)

JR
(9 Oc, =)= (

+(sinB)(sina)(sind.)(sing.) +(cosB)(coK,) ]
+R[(sinB)(cosx)(cosh.)(cosp.) + (sinB)(sina)
X (co,)(sing;) — (cosB)(sind.)]=0 (A17)

tions for specular reflection with respect to the tangent vec-
tors S, and S;. Since the velocity of the billiard ball is
v=(a,B,2), these tangent conditions read

S, Av= Aagaa+ABgaﬁ Az gZZ 0 (A2

and
Sg-Av= AagaBJrA,BgBB Az ,Bgzz 0. (A22

It can be shown following considerable tedious algebra that
these two equations are satisfied.

Finally, we prove that the last condition for specular re-
flection, viz., N-(2v+Av)=0, holds automatically if the
tangent conditions hold and energy conservation is valid in
the billiard space. Denoting the normal Bs=(N,,N,,1),
the equationN-S,=0, N-Sg=0 are explicitly given by

and
0z N N _ A23
(0= 05, = o) = )[(smﬂ)(cosa><smoc><cos¢c> 1900+ NoBap™ 5, 022 (A23)
d de
+ (sinB)(sina)(sind,)(sing,) and
+(cosB)(cost) ]+ R[ = (sinB) NiGos t Nzggﬁ=j—;9u- (A24)
X (cosx)(sinb.)(sing.) + (sinB)
X (sina)(sind,)(cospe)]=0. (A18)  Solving forN; andN,, one finds
As a consequence of these relations, all reference to deriva- N _[(9219a)9pp—(92/9B)90plYz:
1= (A25)

tives of R disappears in the evaluation afz/da and

(gaagﬁﬁ_ gaﬁgaﬁ)

dz/ B, which will be needed below to construct the tangents

and normals to the curved billiard wall.

and
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9zl da)g,5— (9210 and
2:[( @)g B ( ﬂ)gﬁﬁ]gzz. (A26)
(92p9ap~ 9uaIpp) Jz A« A,B
2% 9ap 2P Inp (A30)
Using the above expressions; (2v+Av)=0 becomes 5,3 Az gzz Az gzz'

(2a+Aa)(N1GaatNoGap) +(28+AB)(N1G,s+Nyggs)  Substituting(A29) and (A30) into (A28) results in

+(22+A2)g,,~0, (A27) o A' AB
(Ra+Aa)— +(2,8+A,8) gﬁﬁ+(22+Az)gZZ
which simplifies to Az°

(2a+Aa) (92l da)g,,+ (28+AB) (921 9B)g,,

+2(aAB+ BAa+AGAR) I — (A31)
+(2z+A2)g,,=0. (A28) Az
which is simply the conservation of energy condition. There-
fore, the normal condition for specular reflection also holds,
and thus we have proven that any three-dimensional rigid-

(A29)  body colliding elastically between two parallel, flat walls is

From the tangent equatioid21) and(A22) , we find that

gz Aag,, ABGQ,
A& Gua  AB Gup

da Az 92z Az 9z equivalent to a billiard problem.
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