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The behavior of monomolecular layers of fluid spreading on a solid substrate is examined using molec-
ular dynamics simulations of polymerlike liquids. We consider drops of chain molecules of lengths 8 and
16, composed of Lennard-Jones atoms bound by confining potentials, spreading on an atomic solid sub-
strate. Different strengths of the solid-fluid interaction are studied, in cases where a spreading drop
forms distinct layers. We emphasize the conformational properties of the molecules while spreading and
the dynamics of the individual layers. In particular, the questions of interlayer mass transfer and per-
meability are examined in the light of theoretical models.

PACS number(s): 61.20.Ja, 68.10.Gw, 68.45.Gd

I. INTRODUCTION

A number of recent experiments [1-3], computer
simulations [4—-12], and theoretical models [13,14] have
addressed the unusual phenomenon of “terraced” spread-
ing, in which certain polymeric liquids spread completely
on certain solid substrates in the form of well-defined
monomolecular layers. The experiments have provided
the time-dependent profiles of macroscopic drop shapes,
but no information on the internal dynamics.

The computer simulations have shown how the solid-
fluid interactions can produce a terraced spreading re-
gime, for relatively simple molecules at least, and have in-
dicated a variation of spreading rate with molecule size
for large systems. The theoretical work of de Gennes and
Cazabat [13] has modeled the layers as rubberlike sheets
evolving under disjoining pressure and friction, whose
growth originates from mass transfer occurring at their
edges. To date, these models have been tested only in an
indirect fashion, by verifying the consistency of model
parameters with observation.

In this paper, we discuss the results of further molecu-
lar dynamics (MD) simulations of the spreading of chain
molecules, with two aims. First, we consider how the
conformational statistics of the chains are modified by
the presence of the substrate and by the spreading pro-
cess. We have considered chains composed of Lennard-
Jones atoms strung together by pairwise confining in-
teractions, whose spreading dynamics on atomic solid
substrates has been shown [10] to be consistent with ob-
servation in terms of layered structure and growth rate.
Such simulations provide detailed information at the
atomic level concerning the individual atoms and mole-
cules, and here we use this data base to examine the
changes in molecular structure during spreading. We
have considered chains of lengths 8 and 16 and several
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strengths of the solid-fluid interaction potential. Second,
we use the simulations to attempt to bridge the gap be-
tween theory and experiment, by examining the internal
dynamics and molecular motion within and between the
layers. In particular, we attempt to quantify the mass
transfer between spreading layers in some detail, as this is
a key ingredient in modeling.

Section II reviews the MD simulation method, em-
phasizing the binding that gives rise to polymerlike
chains. Section III discusses the statistics of chain con-
formation in spreading and Sec. IV analyzes the dynam-
ics of the layers. Conclusions and an outlook appear in
Sec. V.

II. SIMULATION METHOD

The molecular dynamics algorithm and interactions
used in this study are basically of the Lennard-Jones form
used in the earlier simulations reported in [7,8], but with
the major difference that the fluid is made of chains of
atoms of lengths 8 and 16. The use of chains is intended
to bring the computer models studied closer to the exper-
iments, which involved polymeric fluids such as polydi-
methylsiloxane (PDMS). A realistic polymer of course
contains more than 16 monomers, but it appears that
with this number of monomers we can consider enough
of these molecules to obtain satisfactory statistics in a
reasonable amount of computation time. The basic in-
teraction between all pairs of atoms is of the 6-12
Lennard-Jones type
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with adjustable coefficients ¢,d chosen to ensure coexist-
ing heterogeneous phases of solid and liquid. In (1), € and
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o are energy and length scales, respectively, and i,j
represent the solid and liquid species. The fluid atoms
are readily grouped into chains with the additional pair-
wise confining potential

+6

I

Vmol(r ) =fmol (2)

between adjoining atoms. Aside from generating larger
molecules than the monoatomic or diatomic systems con-
sidered previously [7-9], the chain structure has the
effect of strongly reducing the volatility of the fluid so as
to bring the simulation closer to the “dry spreading” seen
in the experiments, which was not always the case previ-
ously. The substrate is a lattice made of one layer of fcc
unit cells, whose atoms execute thermal oscillations about
their lattice sites, but which retains a solid structure by
means of a deep and narrow potential well. (The mass of
the solid atoms is chosen to be as many as 50 times that
of the fluid so as to have comparable time scales for the
atomic motion in fluid and solid, permitting a longer time
step in the integration of the equations of motion.)

For computational convenience, the tail of the poten-
tials are cut off at ,=2.50. The loss of the tail of the
fluid-fluid interaction simply changes the transport
coefficients of the fluid [15], but since van der Waals
forces are known to be significant in spreading we take
the precaution of restoring the long-range tail by adding
a “wall-averaged” long-range van der Waals-like poten-
tial
8

Viai(r)= A€ , (3)

r+u

where u is the solid lattice constant. Notice that an in-
teraction of this form arises from integrating over a half-
space of Lennard-Jones potentials. The coefficients were
chosen as 4=1.13 and 6§=3, and we have also con-
sidered the cases where 4 =20 and 8=4, as well as no
long-range interaction at all. We find that our results are
rather insensitive to the amplitude and the power of the
long-range potential. In a macroscopic calculation, the
van der Waals potential is crucial, but in the very small
systems studied here, the short-range part provides the
dominant effect.

The basic interaction parameters are chosen as
c ff=d =1 (the standard Lennard-Jones values),
¢, =36.45, and d; =5 (for an incommensurate solid lat-
tice) and we have considered cases where ¢, =d =1, 2,
and 5. This choice of simple potentials does not have the
pretension to represent a real PDMS polymer, but never-
theless it contains the basic ingredients to reproduce sat-
isfactorily the experimental results. Given the potential,
the motion follows from integrating Newton’s equations,
using a fifth-order predictor-corrector algorithm. In the
remainder of the paper, we nondimensionalize by using
o, €, and the fluid monomer mass as the units of distance,
energy, and mass, respectively. The resulting natural
time unit is r=0 (m /€)!/2.

We have considered fluid drops made initially of 16 384
and 32000 atoms in chains of length 8 or 16. Initially,

the fluid atoms are placed on fcc lattice sites at density
0.8 and the resulting drop is allowed to equilibrate until
its properties stabilize. Constant kinetic-energy rescaling
is used to maintain a temperature 7"=1 during this stage.
Independently, substrates made of a single layer of fcc
cells at density 2.7 of up to 147 456 atoms are equilibrat-
ed at the same 7. After equilibration, the drop is given a
small downward velocity and the substrate interaction is
turned on. Once within interaction range of the solid, the
drop is drawn down to the surface by the interatomic
forces and begins to spread. During spreading, the tem-
perature is kept constant by continued equilibration of
the solid alone, which is, from our point of view, the pro-
cedure closest to the experiment. Thus the temperature
of the solid is exactly constant and the temperature of the
liquid varies by less than 10% over the entire experiment.

III. CONFORMATIONAL PROPERTIES
OF THE CHAINS

A typical drop undergoing terraced spreading is shown
in Fig. 1 from side and top views. In this case the drop is

(a)

FIG. 1. (a) Side view of a drop of 2000 16-atom molecules
during spreading. (b) The associated top view.
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FIG. 2. Number of atoms as a function of their height z for
the snapshot given in Fig. 1.

made of 2000 16-atom chains, with solid-fluid attraction
coefficients ¢,, =d ;=1. One may note the absence of va-
por and the distinct layering near the wall. The layering
may be quantified by constructing a histogram of the
number of molecules as a function of vertical position z.
Figure 2 gives the histogram corresponding to the previ-
ous snapshot, which clearly shows the existence of several
layers, each of thickness approximately 0.8 (in units of o).
More precisely, the top of the solid is at z=1. 14, a very
pronounced first fluid layer extends from z=1.4t02.2, a
second extends from that height to z=3.0, and a third up
to 3.9. At later times, the layering persists while the rela-
tive heights of the different peaks change due to the
spreading of the drop. Other cases of spreading drops
show a very similar distribution of peaks, and in the
remainder of this article we will define the first layer as
those fluid particles with z <2.2.

Next we consider the coverage of the substrate by the
first layer. Overall, the fluid density is roughly constant
but trails smoothly off near the edges. We illustrate this
behavior in Fig. 3, which gives the radial distribution cor-
responding to the snapshot discussed above. As the drop
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FIG. 3. Radial density (i.e., per unit of surface) for the first
layer of the drop shown in Fig. 1.

150
z 140 |
o p— d
o
=
3 130 |
Q
=
) B
L 120 £,
=
o
Eg 110
o p—(
N
o yp—(
%)
EL 100
>

BT g L Y TR e

90 = -
140 145 150 155 160 165 170 175

X position in reduced units

(b)

y position in reduced units

X position in reduced units

FIG. 4. Blowup of a portion of the first layer of a spreading
drop: (a) ¢y =df;=1and (b) ¢, =d s =5.
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spreads, the central plateau moves outward in radius,
with no significant change in height, confirming that the
first layer remains compact during the spreading. Again,
for drops with other parameters, the same behavior is ob-
served. Locally, the structure of the first layer shows the
atoms in a molecule attempting to fall into the potential
minima associated with the substrate and so on for the
other layers. In Fig. 4(a) we show a zoom view of a part
of Fig. 1(b), with the fluid molecule positions superposed
on the substrate atom sites. The arrangement of fluid
molecules with respect to the wall changes with the
solid-fluid interaction strength; in Fig. 4(b), we give the
corresponding figure for the case ¢, =d,,=5. Here the
fluid structure is more solidlike and resembles a square
lattice.

A further aspect of the wall coverage is the degree to
which a fluid molecule is entirely within the first layer. In
Fig. 5(a) we show as a function of time, separately for
chains of length 8 and 16, the fraction of molecules in the
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FIG. 5. (a) Atomic fractional occupation of the first layer as
a function of the time for 1024 16-atom chains (/) and for 2048
8-atom chains (O) and (b) the fraction of atoms for which the
associated molecules entirely belong to the first layer as a func-
tion of the time.
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FIG. 6. Density of radius of gyration for the free drop
(dashed line), for the first layer corresponding to ¢y =ds =1
(dotted line), and for the first layer corresponding to cs, =d s =35
(solid line).

drop that have at least one atom in the first layer and in
Fig. 5(b) the fraction of molecules with all atoms in the
first layer. We see that with shorter chains the covering
is much more effective and at the same time the covering
with the polymer is much more rapid.

To assess the distortion of the molecule shape resulting
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FIG. 7. Density of bond angles for (a) ¢;, =d,;s=1 and (b)
csf=d:f=5.
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from spreading along the wall, we have measured the ra-
dius of gyration R, . and the bond angles 0 of the chains.
In Fig. 6 we give the histograms of the radius of gyration
of the molecules for the free drop after equilibration and
for the first layer at the end of the simulation (time 5157)
for the case of length-16 chains with ¢;,=d, =1 and 5.
We see that the molecules of the first layer tend to
elongate, as one would anticipate from the fact that the
fluid atoms attempt to find uncovered wall sites. The
average radius of gyration increases from 2.018 in the
free drop to 2.541 in the first spreading layer. As the
wall-fluid attraction increases, the histograms indicate an
increase in the average radius of gyration.

The molecular orientations can be further quantified
through a histogram of the cosine of the angle 6 between
adjacent bonds along a chain; see Fig. 7(a) for
¢;;=d,=1 and Fig. 7(b) for c¢,,=d;,=5. In the free
drop, there is a tendency for the angle to be 120°, corre-
sponding to three atoms at their respective potential
minima. In the first layer of the spreading drop, on the
other hand, the favored angle is 0°, consistent with the
aforementioned behavior of the radius of gyration.

Finally, as a simple measure of the degree to which the
molecules are pinned by the wall potential, we have com-
puted the mean-square displacement D%(z) of atoms in
the first layer as a function of time over 20 000 time steps
for the atoms that remain in the first layer during that
period. We have measured Dz(csf=dsf=1)=40.83 in
reduced units D¢, =d;;=2)=12.22 and D¥c
=d,;=5)=1.37, while the mean-square displacement for
the atoms far from the wall is of order 40. We thus see
that increasing the wall potential reduces the atomic dis-
placements and, furthermore, for the case csf=dsf=5,
the fluid appears to be quite pinned in place.

IV. DYNAMICS OF THE LAYERS

We now turn to a consideration of the spreading lay-
ers, treated as continua. In Fig. 8 we plot N;(z), the
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FIG. 8. N,(t), N,(t), N3(t), and N4(t), the number of atoms
in the first, second, third, and fourth layers, respectively, as a
function of time in units of 7 after equilibration, for the largest
drop made of 2000 16-atom chains. The different straight lines
correspond, respectively, to 15.6¢+800, 4.8:+1200,
2.8t + 1200, and 1.6¢ + 1400.

number of atoms in the ith layer (i=1,...,4) as a func-
tion of time after equilibration, for the largest drop made
by 2000 16-atom chains. Note that, in view of the con-
stant density within a layer, the number of atoms in a lay-
er is proportional to the layer radius squared. The linear
behavior for the first layer is entirely compatible with the
diffusive growth law N; ~R?% ~¢, seen in experiment [1]
and in Monte Carlo models [6]. For the other layers, the
spreading behavior is less clear, presumably due to finite-
size effects. Thermodynamically, the ultimate equilibri-
um state is a single layer atop the substrate and the upper
layers should eventually disappear. Indeed, in the corre-
sponding plot for layer growth in the smaller system of
2048 8-atom chains in Fig. 9, one sees the second, third,
etc., layers grow transiently before they are depleted in
favor of the first layer.

The most developed theoretical model for terraced
spreading, due to de Gennes and Cazabat [13], approxi-
mates the layers as rubberlike sheets driven by van der
Waals forces from the substrate, restrained by interlayer
friction, and with mass transfer between them occurring
near the edges in the “permeation ring.” To examine the
basis of this model, as well as to provide some general in-
sight into the dynamics of the layers, we have studied the
interlayer transport in some detail.

First, following previous studies [7,8], we have comput-
ed the probability distributions for vertical and horizon-
tal displacements in the second layer, for 16-atom chains
at cp,=dp,=1. The layer is divided into four annular
ringg O=<R=<10, 10=R=<20, 20=<R =30, and
30<R <40, where R is the distance between the atom
and the center of the layer (roughly the axis of symmetry
of the drop). For each ring, we compute the histogram of
radial (Fig. 10) and vertical (Fig. 11) displacements, over
a time interval of 1007.

As in previous work, we see that the radial growth and
vertical motion are greatest at the edges (see curve 3 in
Figs. 10 and 11), but that some motion occurs in all parts
of the layer. Since more holes in the first layer and va-
cant wall sites are available at the edges, the behavior in
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FIG. 9. N(t), N,(t), N5(t), and N,(2), the number of atoms
in the first, second, third, and fourth layers, respectively, as a
function of time in units of 7 after equilibration, for the drop
made by 2048 8-atom chains.



53 TERRACED SPREADING MECHANISMS FOR CHAIN MOLECULES 567

e
w
2]

o
w
T
-0
o
L

o

N

a
T

o
N
T

°©
o
T

e
T

©

o

a
T

Atomic probability density

0 g L L oo meg g
-4 -2 [o] 2 4 6 8 10 12 14

Radial displacement in reduced units

FIG. 10. Atomic probability density for radial displacement
Ar=r (t=5157)—r (t=4157) for the four regions 30=r
(t=4157)=<40, 20=r (t=4157) =30, 10=r (t=4157) <20, and
0=r (+=4157) <10 (indicated, respectively, by 3, 2, 1, and O on
the figure) associated with the atoms that belong to the second
layer at time t =4157.

Fig. 11 is entirely reasonable. Note also that some radial
drift occurs for even the atoms belonging to the inner
rings.

An alternative measure of mass transfer is obtained by
plotting the histogram of the radii where atoms of the
second layer enter the first layer, normalized by the ra-
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FIG. 11. Atomic probability density for vertical displace-
ment Az=z (+=5157)—z (+=4157) for the four regions 30=r
(t=4157)<40, 20<r (t=4157)<30, 10=r (t=4157) <20, and
0=<r (t=4157) <10 (indicated, respectively, by 3, 2, 1, and O on
the figure) associated with the atoms that belong to the second
layer at time t =4157.
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FIG. 12. Histogram of the radius R of the entry point of the
atoms of the second layer going into the first layer divided by
the radius of the second layer at that time R,(z) between
t=4157 and 5157.
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FIG. 13. Average flux over 1007 per unit of area of atoms of
the 2000 16-atom drop going from the second layer into the first
layer as a function of the radius R divided by the radius of the
second layer at that time R,(¢) for three different starting times
t=1457 (solid line), t =2457 (dashed line), and ¢t =3457 (dotted
line).
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FIG. 14. Average flux over 1007 between the first and second
layer for a drop of 1024 16-atom chains with ¢, =d,; =5 versus
the reduced radius R * for two different starting times ¢t =610~
(solid line) and # =510 (dotted line).

dius of the second layer at that time, taken over the final
1007 of the simulations; see Fig. 12. (If instead we plot
the histograms of the displacements of the molecular
center of mass, a very similar result is found.) In this
case we see a very broad distribution that cuts off only
near the layer’s edge. This result may seem to be in con-
tradiction to the previous plots. To clarify the situation,
we have studied the characteristics of the flux of atoms
passing through a plane at z=2.2 separating the first and
the second layers. Atoms moving downward from the
second to the first layer are weighted by + 1 while atoms
moving upwards are weighted by —1. To improve the
statistics, we average over three 1007 time intervals be-
ginning at initial times 2157, 3157, and 4157 and in each
case plot the result as a function of the relative radius
R*=R/R,, where R, is the mean radius of the second
layer at the time of transition. The flux is plotted in Fig.
13 and we see that the flux is much reduced in the central
region.

A plausible physical picture of these results is that
there are atomic fluctuations from layer to layer some-
what broadly distributed in radius, but it is difficult for an
entire molecule to make a transition in the interior where
room is tight. In consequence, the atoms diffuse both up
and down, with comparable likelihood. However, at the
edge of the layer, where more vacancies are available
below, vertical molecular movement is easier. When
stronger solid-fluid interactions are used, the tendency for
mass transfer to occur near the edge is reinforced (see
Fig. 14).

Although movement near the edge of the layer is thus
preferred, the validation of the de Gennes—Cazabt model

is somewhat ambiguous. While the distribution in Fig.
13 peaks at R * =1, the peak is rather broad. The model
leads to the concept of a permeation ring whose width de-
pends on a number of ill-known parameters, where the
mass transfer should occur exclusively. Here the perme-
able region includes most of the area of the layer. The
simulation results are thus in qualitative agreement with
the de Gennes—Cazabat picture of a permeation ring. It
is possible that the study of longer chains or larger drops
would improve the agreement, but our computational
resources do not permit this.

V. CONCLUSION

We have conducted MD simulations of the spreading
of polymerlike fluid chains on atomically smooth solid
substrates. The results of the simulations are consistent
with experiment, in terms of the presence of well-defined
molecular monolayers during spreading and the rate with
which the layers grow in time. The detailed microscopic
information provided here has allowed us to study the
internal dynamics of the molecules and the layers they
comprise and to examine the basis of theoretical models
for the process.

Earlier calculations on simpler molecular systems [7,8]
also exhibited terraced spreading, at sufficiently strong
solid-fluid interaction strengths, but did not give the
“diffusive” growth rate seen experimentally. It appears
then that the molecule size is an important parameter in
the spreading rate. Other groups [9,11,12] have found
diffusive spreading rates with or without chain molecules,
but we have insisted on simulating a substrate with a real-
istic atomic structure and used a physically reasonable
thermostatting procedure that mimics a laboratory exper-
iment.

As the spreading proceeds, the strong substrate attrac-
tion draws the monomers toward the preferred sites at
the minima of the substrate potential, while competition
with the other chains produces an excluded volume effect
that tends to elongate the chains, in terms of their radius
of gyration and nearest-neighbor bond angles. The
chains show an incomplete degree of commensurate
alignment with the solid lattice due to a deliberate (and
realistic) choice of incommensurate solid-solid and fluid-
fluid potentials. Furthermore, the molecules are tran-
siently localized at the preferred sites but not bound
there, since while the thermal diffusivity is reduced com-
pared to the free-fluid value, it is nonzero at least for the
rather comparable liquid-liquid and liquid-solid interac-
tions used here.

The layer dynamics provides some qualitative support
to the impermeable pancake picture of de Gennes and
Cazabat. The mass transfer between layers is quite
reasonably largest at the layer edges, where the density is
smallest, the molecules mobility is greatest, and the num-
ber of vacant sites largest. For the sizes amenable to
simulation using these techniques, there is some mass
transfer throughout the layers and there is motion in all
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three directions. Unfortunately, it is not possible to ex-
trapolate convincingly to much larger sizes and test the
model’s prediction that the interlayer motion is confined
to an outer annular ring.

More generally, this work shows how molecular simu-
lation, in concert with other techniques, can help unravel
phenomena in which nontrivial microscopic aspects
emerge. We expect that further simulations can consider
such issues as the effects of surface roughness, the nature
of the transitions between terraced and “ordinary” com-
plete wetting, entanglement effect for longer polymer
chains, more detailed interaction potentials, and so on.
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