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Photon migration in highly forward scattering random media can be described as a non-Euclidean diffusion
~NED! on the velocity sphere. An exact path-integral solution of the corresponding NED equation in the
photon five-dimensional phase space has been obtained. The solution leads to a ‘‘generalized Fermat prin-
ciple’’ ~GFP! for the most probable photon paths in turbid media: GFP requires the least mean-square curva-
ture of the path. An explicitly analytic description of an ultrashort laser pulse propagation in random media
based on NED equation is presented. Experiments have been performed to verify the NED theory.
@S1063-651X~96!02205-2#

PACS number~s!: 42.25.Bs, 42.25.Hz, 05.60.1w, 78.90.1t

The literature on the problem of electromagnetic wave
propagation in random media is vast~see, e.g.,@1#!. The
theory of this phenomena has been well elaborated especially
for wave propagation in randomly inhomogeneous media in
the small-angle scattering regime, when the characteristic
scale of inhomogeneitiesL@l, the wavelength; for recent
and previous papers see Ref.@2#. These works address the
case very important in space and atmosphere physics, when
single and multiple scattering angles are always small and
therefore an approximation for the wave equation, the so-
called Leontovich stochastic parabolic equation~PE! @2#,
holds. A PE’s counterpart, the small angle approximation
~SAA! for the radiative-transfer equation~see, e.g.,@1,3#!,
has the same restrictions. This theory is not applicable for the
strong deflection angle regime, e.g., backscattering. Further-
more, both the PE and SAA theories are limited to the
steady-state case. With the advent of ultrashort laser and en-
hanced ultrafast time-resolved registration techniques, new
fundamental questions beyond the scope of these previously
established techniques can be addressed. Among them is the
problem of ultrashort laser pulse propagation in dense,
highly forward-scattering media~important examples are
bead suspensions, intralipid aqueous solutions, dense smog
and fog, smoke, and biological tissues!. The main feature of
this problem that makes both the PE- and SAS-type ap-
proaches inapplicable is the strong deflection of photons
from the direction of the incident pulse~sometimes called the
‘‘diffusion’’ regime!. However, as far as photon migration
on spatial scales less than;7l t , the photon transport mean
free path, is concerned, the conventional diffusion approxi-
mation was experimentally proven to fail for such media for
the steady-state regime in Ref.@4# and for ultrashort laser
pulses propagation in Ref.@5#.

An important step beyond the conventional diffusion
scheme was made in Ref.@6#, in which a telegrapher’s equa-
tion was introduced to optical physics. However, from Ref.
@7# one concludes, that the telegrapher’s equation is strictly
valid in the region where the corrections to the diffusion
equation are small. A further step to consider arbitrary mul-
tiple scattering angles in the frame of the radiative-transfer

~Boltzmann! equation was undertaken in Ref.@8#. Still, a
formal path-integral solution obtained in Ref.@8# was re-
stricted to the scattering angle less thanp/2. This path-
integral solution is much too difficult to use for a practical
analysis. Actually, it is expressed in terms of an unknown
functional associated with the so-called pseudo-Fourier rep-
resentation of the scattering phase function. Indeed, the final
results of Ref.@8# upon absorption effects on radiative trans-
fer are limited to the same region of applicability as the PE
and the SAS. Recently, some attempts to attack again the
concept of photon paths in turbid media have been under-
taken. In Ref.@9# the Monte Carlo approach was used to
simulate paths of photon migration. The backscattering for a
highly forward scattering medium was addressed in Ref.
@10#. Unfortunately, to avoid a cumbersome numerical solu-
tion of variational equations, these authors oversimplified the
problem by using model expressions for the most probable
photon paths, which violate the invariability of the speed of
light in a homogeneous random medium.

In this paper, we introduce a non-Euclidean diffusion
~NED! equation, which is a kind of general Boltzmann equa-
tion for photons in highly forward-scattered media with the
collision integral represented as the non-Euclidean diffusion
in the velocity space. The NED describes the important spe-
cific regimes of photon migration: the near ballistic and
‘‘snake,’’ developed diffusion regime and the transitional
case corresponding to strong multiple scattering angles. An
exact path-integral solution of the NED equation is pre-
sented, which particularly leads to the ‘‘generalized Fermat
principle’’ ~GFP! for the most probable photon paths in ran-
dom media.

The conventional Fermat principle for transparent media
selects the path between a source and a detector possessing
the shortest photon optical paths length. The GFP for uni-
form random media selects among all photon paths possess-
ing the same length, photon launching point and direction, as
well as terminal point and direction, the most probable one
characterized by the least mean-square curvature. An exact
analytic solution for the ‘‘Fermat’’ paths and an approximate
analytic intensity temporal profiles describing ultrashort laser
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pulse propagation in highly forward-scattering media are
presented and briefly discussed. The NED theory has been
verified by special time-resolved measurements. Experimen-
tal data favor the NED approach even in the region where
diffusion theory was commonly believed to hold.

Photon migration in a macroscopically homogeneous ran-
dom medium characterized by the speed of lightc apparently
can be described as a random walk on a spherical surface of
the radiusc, non-Euclidean velocity spaceS2 . For a medium
composed of highly forward directed scatterers, the mean-
square value of the deflection angle in a single collision
event is given bŷD2&'2@12^cos~D!&#!1. After each colli-
sion a photon undergoes a small velocity change stepds
5cA^D2& in a random direction on a small almost flat
spherical segment ofS2 . Given the photon collision fre-
quency 1/t, the photon random walk in the velocity space is
simply diffusion with an effective diffusion coefficient
Ds5(ds)2/4t5c2^D2&/4t5c3/2l t , where l t is the photon
transport mean free path@note thatDs5c4(6D)21, where
D5clt/3 is the usual photon diffusion coefficient#. As a re-
sult, the photon distribution functionn(t,rW,sW,sW0! satisfies the
non-Euclidean diffusion equation in the photon phase space:

]n

]t
1sW¹W rn2

c4

6D
Dsn1nan5d~ t !d~rW !d~sW2sW0!, ~1!

wherena is the absorption collision frequency and the right-
hand side of Eq.~1! simulates an incident light pulse.

A proof is given below that the probability of each photon
path@given by a photon velocity functionsW(t)# is determined
by k(t), the curvature of the photon path in real three-
dimensional space,c2k(t)5udsW/dtu, and that the solution of
Eq. ~1! for constantD andna can be represented in the form
of a path integral as
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t
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One should not confuse this description with the completely
different summation-over-paths picture of the conventional
diffusion in the coordinate space. Note, for instance, that the
exponential term in Eq.~2! contains the factorD, while the
corresponding exponential term in the path-integral solution
of the conventional diffusion equation@11# contains the fac-
tor D21.

A finite-difference representation of the function
n15n exp(nat) resulting from Eq.~2! is
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wheret5N«, A5p«/x, x5 l t/2c
3, sWk denotes the velocity

at the timet5k«, andsWN[sW. Each integration in Eq.~3! is
performed over the spherical surfaceS2 of the radiusc.
When one omits thed function in Eq.~3! or ~2!, the function

n1(t,rW,sW,sW0) corresponds to a solution of the Schro¨dinger
equation with the imaginary Planck constant for a particle
moving on a sphere@11#: (dsW/dt)2 stands for the kinetic
energy of the particle.

Representing thed function in Eq.~3! asd(rW2«(k51
N21sWk

2«sW) and using the first-order Taylor expansion with respect
to «sW, one obtains a recurrent relation, which can be repre-
sented in the limitN@1 as
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In the limit «→0 the second integral on the right-hand side of
Eq. ~4! reduces to2«sW¹W rn1(t,rW,sW,sW0). Only the first integral
term would appear in Eq.~4! if the Schrödinger equation for
a particle on a sphere were considered. So one can handle the
first integral in Eq.~4!, recalling the above analogy with the
Schrödinger equation. This means that the first integral in
Eq. ~4! reduces to n1(N21,rW,sW,sW0)1«/(4x)DSn1(N
21,rW,sW,sW0), whereDS is the spherical part of the Laplace
operator acting uponsW. The use of the apparent relation for
the derivative]n1/]t5[n1(N)2n1(N21)]/« then would
lead to the Schro¨dinger equation on a sphere if the second
term on the right-hand side of Eq.~4! were neglected. When
the latter is yet taken into account, one immediately arrives
at the conclusion that the functionn5n1 exp(2nat) satisfies
Eq. ~1!.

According to Eq.~2!, the probability of a particular path
from the branch of all paths, connecting a collimated source
and a detector and possessing the same path lengthct, as
well as initial sW0 and terminalsW propagation directions, is
determined by its mean-square curvature (1/t)* 0

t k2(t8)dt8.
Therefore, the most favorable path corresponds to the least
mean-square curvature and satisfies the equation

d

dsW~ t !E0
t

dt8@~d/dt8!22l~ t8!sW2~ t8!2CW •sW~ t8!#50. ~5!

Herel(t) andCW are the Lagrange multipliers corresponding,
respectively, to the speed of light invariability condition
usW(t)u5c, and the arrival point restriction*0

t sW(t8)dt85rW.
When the source and detector are chosen so thatsW0 ,rW,sW lie on
the same plane, Eq.~5! can be solved exactly analytically.
This leads to the following general expressions for the most
probable paths given in a parametric form:

C5tE
g0

g fC~a2w!da

~d sin a61!1/2
, ~6!

whereC stands forx, y, or z, spatial coordinates ort, the
time corresponding to a current point on the path, witha
being a parameter on the path curve andf x(a)5c cosa,
f y(a)5c sina, f z(a)50, andf t(a)51. Arbitrary constants
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t,d,w,g0 are to be determined by the initial and final condi-
tions. The details of the derivation of Eq.~6! have been dis-
cussed elsewhere@12#. The validity of Eq.~6!, however, can
be verified just by straightforwardly substituting it into Eq.
~5!.

There are few known examples of physical equations pos-
sessing an exact tractable path-integral solution with a clear
and straightforward physical interpretation: the diffusion
~heat transfer! equation and its quantum mechanical analog,
the Schro¨dinger equation@11#; the telegrapher’s equation and
its quantum mechanical counterpart, the Dirac equation@13#;
and an equation essentially very close to the diffusion equa-
tion, the Fokker-Planck equation@14#. The transport equation
~1! adds a fundamentally and practically important member
to this small family. The NED equation, Eq.~1!, is appar-
ently not a kind of Fokker-Planck equation since the third
term on the left-hand side of Eq.~1! cannot be represented as
a divergence. Despite that, Eq.~1! satisfies the law of con-
servation of particles as it should be. This follows from the
fact that*S2dsW Dsf (sW)[0 for an arbitrary functionf defined
on a spherical surfaceS2 . Note that the most probable paths
for particles moving according to the Fokker-Planck~or dif-
fusion! equation with constant coefficients are infinite
straight lines@14# in striking contrast to Eq.~6!.

Earlier an approximate analytic description of short pulse
propagation in random media based on a modified diffusion
~telegrapher! equation was presented in Ref.@6#, resulting in
isotropic photon distribution. As a simple illustrative ex-
ample of how the NED equation, Eq.~1!, helps to describe
anisotropy effects, we now present an approximate analytic
solution of Eq.~1! for the function representing photon num-
ber density

N~ t,rW,sW0!5
1

c2ES2dsW n~ t,rW,sW,sW0!

5
1

~2p!3c2ES2dsWE dkW K expS ikWE
0

t

sW~ t !dt2 ikW rW D L ,
~7!

expressed in terms of the random vector functionsW(t) with
the averaging defined in terms of a path integral by Eq.~2!.

Equation ~7! can be evaluated using standard cumulant
decomposition interrupted after the second term. The calcu-
lations are lengthy but straightforward and will be presented
elsewhere. We thus obtain

N~ t,rW,sW0!5
1

~4p!3/2
1

AdetB
exp~2 1

4Bab
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aW 5
sW0l t
c

~12e2t!,

Bab5
l t
2

2
dab@ 2

3 t2~12e2t!1 1
9 ~12e23t!#

1
l t
2

2c2
~s0!a~s0!b@~12e2t!2 1

3 ~12e23t!

2~12e2t!2#, ~8!

wheret5ct/ l t is the reduced time andB
21 denotes the ma-

trix reciprocal toB.
The following interpretation of Eq.~8! can be given. It

describes the evolution of a photon ‘‘cloud’’ initially con-
centrated at the origin and launched in the directionsW0 . The
center-of-mass motion of the cloud is described by the func-
tion aW (t). The spreading of the cloud is described by the
matrixB(t). For small timest!1 one hasaW (t)5sW0t, which
corresponds to the near ballistic photon motion. According to
Eq. ~8! in the near ballistic regime, the spreading of the pho-
ton ‘‘clot’’ in the sW0 ~longitudinal! direction is governed by
the lawDxl;t2 and in the transversal directionDxtr;t3/2.
These are considerably slower than ordinary diffusion law
Dxd;t1/2. For large timest@1 Eq. ~8! describes the ordi-
nary diffusion spreading with respect to an imaginary point
source shifted from the origin by the vectoraW 5sW0l t /c.

To support the NED theory at spatial scales where the
diffusion approximation is commonly supposed to hold, the
experiment was performed using a 100-fs laser pulse at 625
nm, a streak camera detection system with;10-ps time reso-
lution, and 0.132 vol % aqueous suspension of polystyrene
spheres~0.30360.0057mm in diameter,g5^cosD&'0.7!,
contained in a 10-cm cylindrical tank. For such a concentra-
tion l t was experimentally shown to be exactly proportional
to the concentration of scatterers@15#. The calculations lead
to the Mie-based value ofl t52.0060.04 mm. The effective
absorption lengthl a5c/na was estimated to be 7006150
mm. Time-resolved intensitiesI (t,rW,mW ,sW0) were measured in
the photon launching direction at 7l t from the source for
different orientationsmW of detecting fibers~Fig. 1!. The in-
tensity I (t,rW,mW ,sW0) can be related to the photon
distribution function n(t,rW,sW,sW0) as I (t,rW,mW ,sW0)

FIG. 1. Normalized intensity temporal profilesI (t)5I (t,r ,sW0)
or N(t,rW,sW0), measured and calculated using the NED and the con-
ventional diffusion approximation for the source-detector distance
7l t ~see the text for more details!. Wavy solid lines, the experimen-
tal results; curve 1, Eq.~8!; curve 2, Green’s function for the con-
ventional diffusion equation. The rise part and entire pulse are de-
picted separately~arrows indicate the corresponding time axes!.
The inset shows the experimental geometry. Source (S) is an opti-
cal fiber with a divergence angle of 5°. The orientation of the re-
ceiver (D) ~a fiber with 15° collection angle! was changed to detect
scattered light propagating in different directions.
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5*A(mW ,sW)n(t,rW,sW,sW0)dsW, whereA(mW ,sW) is the so-called receiv-
ing cross section@1#. The corresponding experimental data
I (t,rW,mW ,sW0) were combined to obtain the angle-averaged
profile I (t,rW,sW0)5*dmW I (t,rW,mW ,sW0)5ÃN(t,rW,sW0), where Ã
5*A(mW ,sW)dmW is a constant characterizing the fiber. This
condition makes possible the comparison of Eq.~8! with the
experimental data. A particular distance 7l t was selected for
the experiment since the conventional diffusion theory is
commonly supposed to be valid at such distances and it was
demonstrated to hold within 1% accuracy for the net trans-
mission through a slab thicker than 5l t@16#. The experimen-
tal intensity temporal profileI (t,rW,sW0) is shown in Fig. 1
along with two theoretical curves, based on Eq.~8! and the
conventional diffusion model, calculated using the Mie-
basedl t52.00 mm andl a5700 mm. The rise part and the
peak region of the temporal profile are not sensitive tol a
within the given range. It is seen that experimental data defi-
nitely favor the NED theory in spite of the large source-
detector distance used in measurements andg not very close
to 1.

The GFP approach may have a potential to simplify the
solution of the object recognition problem for optical tomog-
raphy. Different photon paths between a sourceS and a de-
tectorD ~both well collimated to emit and collect light in a
narrow solid angle! corresponding to a detection time slice
T,T1dT have the same lengths and tangents at theSandD
points, but the Fermat path, Eq.~6!, has the largest probabil-
ity. If an obstacle crossed this particular Fermat path, it
would lead to the largest change in the detector readings. By
varying the source and detector positions the whole medium

can be covered by a grid formed as a set of intersecting
Fermat paths~like coordinate lines on a map!. Placed some-
where inside the medium, an absorbing foreign object would
cover certain grid nodes and its location can be determined
as a crossing points of the corresponding Fermat paths from
comparative intensity measurements. Though this imaging
scheme, introducing the idea of utilizing collimated sources
and detectors and the correspondence between Fermat pho-
tons paths and source-detector configurations, looks simple
and attractive, one important question is the accuracy of
resolution, which depends on the effective widthWr of the
branch of paths concentrated around a Fermat path. Since a
collimated detector selects a certain group of paths, while
terminating the others arriving at the same location and time
but at different angles, one can expectWr to be smaller than
the diffusion regime would assume.

The non-Euclidean diffusion equation in the photon ve-
locity space can be important for many challenging applica-
tions of ultrafast optical phenomena, when the spatial reso-
lution of the order ofl t is of interest such as, for instance, in
optical imaging~l t;1 mm for biological tissues!. We also
believe that the nontrivial feasibility to observe well defined
curvilinear photon paths in multiply scattering media and to
interpret the respective intensity temporal profiles will attract
the attention of groups working at the frontier of ultrafast
laser optics of random media for optical tomography.
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