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Method for generating long-range correlations for large systems
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We propose a method to generate a sequence of random numbers with long-range power-law correlations
that overcomes known difficulties associated Wittge systemsThe method presents an improvement on the
commonly used methods. We apply the algorithm to generate enhanced diffusion, isotropic, and anisotropic
self-affine surfaces, and isotropic and anisotropic correlated percolation.

PACS numbegps): 02.70—c, 05.40:+j

I. INTRODUCTION relations are relevant for€©y<d, whered= 1. The spectral
density S(q) defined as the Fourier transform 61/ [7]
Recently, the study of physical systems displaying long-has the asymptotic form

range power-law correlation has attracted considerable atten-

tion. Long-range correlations have been found in a wide S(@)=(nqm-¢~9""* (q—0). (]

number of systems, including biological, physical, economi- . .

cal, geological, and urban systefild. Attempts to study and Here{ 7} corresppnds to the Fourier transform coefficients

characterize such systems are often based on numericdi {7}, and satisfies

methods to generate correlated ndige3]. One of the most _ 2

used methods to generate a sequence of random numbers 79=[S(A) ]y, )
where{ug} are the Fourier transform coefficients {af;}.

with power-law correlations is the Fourier filtering method
(FFM) [2,4,9. It consists of filtering the Fourier components The actual numerical algorithm for FFM consists of the
ollowing steps.

of an uncorrelated sequence of random numbers with a suqe
(i) Generate a one-dimensional sequefigé of uncorre-

able power-law filter in order to introduce correlations
among the variables. This method has the d|sadvantage_ tlted random numbers with a Gaussian distribution, and cal-
culate the Fourier transform coefficieriis,} [8].

presenting a finite cutoff in the range over which the vari-
ables are actually correlatdd—6]. As a consequence, one (ii) Obtain{,} using(2) and (3).
(iii) Calculate the inverse Fourier transform {of,} to

must generate a very large sequence of numbers, and then
use only the small fraction of them that are actually corre- piain {7}, the sequence in real space with the desired
power-law correlation functiofl).

lated (this fraction can be as small as 0.1% of the initial
length of the sequendd,5]). This limitation makes the FFM
unsuitable for the study of scaling properties in the limit of
large systems.

Here we modify the FFM in order to remove the cutoffin  The FFM method has been applied in a number of studies
the range of correlations. We show that in the m0d|f|edof correlated Systemm,4’5]_ However, an ana'ysis of the
method the actual correlations extend to thieole system  method for largel shows that, by following the above pro-
We also apply the method to generate several systems sugdure, one ends up with a sequence of correlated numbers
as fractional Brownian motion, self-affine surfaces, and longwnose range of correlations, fde=1, is only about 0.1% of

Ill. PRESENT METHOD

range correlated percolation. the system size. For example, from an initial sequence of
10° numbers, only 1®numbers show the desired power-law
Il. FOURIER FILTERING METHOD correlationd4]. Ford=2, the range of correlations increases

to 1% of the system siZé&]. In order to remove this artificial

We start by defining the FFN2,4,9 for thed=1 case . off in the correlations, we modify the FFM algorithm as

(d is the dimension of the sampleConsider a stationary ¢,jiows.

sequence ot uncorrelated random numbefsi}i—y . - (a) To calculate the spectral dens#q), a well-defined
The correlation function iu;u;.)~8,0, With 6,0 the  coprelation function in the real space is needed. The function
Kronecker delta, and the brackets denote an average er@(/):/w has a singularity at'=0. We replacé1) with a
respect to a Gaussian distribution. The goal is to use thgjighy modified correlation function that has the desired

sequencgu;; in order to generate a new sequeiieg} With 5\ er jaw behavior for large’, and is well-defined at the
a long-range power-law correlation functid®(/") of the origin

form
‘ a ‘ C(/)=(1+/%) "2 (4)
CN=(minis)~""7" (/—=). 1)
(b) The relation(3) is based on the convolution theorem,
Here, y is the correlation exponent, and the long-range corand therefore the desired correlation functidhmust satisfy
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the proper periodic boundary condition. The functiof)  icity. If one requires a sequence with open boundary condi-
can be naturally extended to negative valueg afue to the tions, we generate twice as many numbers and then split the
/? dependence. We define(4) in the interval Sequence into two parfdl].

[—L/2,...L/2], and impose periodic boundary conditions, ~To test the actual correlations of the generated sample

i.e., C(/)=C(/+L). {m} we calculateC(/") averaging over different realizations
(c) The discrete Fourier transform 6f)— needed to ob- Of random numbers. Figure 1 shows a plot of the actual

tain »4 using (3)— can now be calculated analytically, correlations obtained for different values ¢fand for a se-

quence ofL=22%! numbers. It is seen that the long-range

012 q\# correlations exist for thavhole system. The nominal values
S(A)=77—|5] Kga), (5)  of y obtained from the best fits are also the same, within the

F(g+1)\2 error bars, as the desired input values.

To summarize the method, the correlation function we
where g takes valuegj=2m7m/L with m=—L/2,... L/2, propose is well-defined and satisfies the correct power-law
Kg(q) is the modified Bessel function of order behavior in the real space. Its Fourier transform has the cor-
B=(y—1)/2, andl' is the gamma function. rect power law at small frequencies, and presents a cutoff for

The modified Bessel functions satisfy the asymptotic relarge frequencies that avoids aliasing effects, and leads to the
lations infinite long-range behavior in real space. An alternative

method in whichS(q) was calculated numerically, in con-
trast to the analytical expressigh), is given in[12].

r B
_(2’8 ) (g) if g<1
K ()= - 6) IV. APPLICATIONS
\/—e"q if g>1, In the following we apply the proposed method to several
2q physical problems.
for B positive ar_1d by definitiork _ ;= Kﬁ_. Then for small A. Generating fractional Brownian motion (FBM)
values ofg, (5) gives the same asymptotic form &3. How- We map the variable§z,} onto the steps of a correlated

ever, the Bessel function introduces a cutoff for lange the  random walk, and define the position of the walker at step
sense thaB(q) has a faster exponential decay. This cutoff,t hy x(t)=3!_, 7. Thenx(t) corresponds to &rstep FBM,
while irrelevant to the long-distance scaling, is very impor-and the sequence of increments;} is called fractional
tant for the validity of the whole Fourier analysis because itgayssian nois¢FGN) [13]. An important quantity is the

avoids aliasing effecttsee Chap. 7 if9]). The cutoff in the  mean-square displacement of the FBM whose asymptotic be-
Fourier space is thus responsible for eliminating the cutoff iny5vior is

real space observed in the FFM.

In order to perform the above steps numerically, we em- {Ix(t) = x(tg)|2)~|t—to|? 7. (7)
ploy the fast Fourier transforr{9,10]. Due to the periodic
boundary condition imposed on the correlation function, it Thus the long-range correlations lead to enhanced diffu-
follows that the correlated sample satisfies the same periodion [14] (|x(t) —x(to)|?)~|t—to|?H for 0<y<1 with
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H=1-+/2 [15]. Figure 2 shows the plots of the mean . 2 7912 Bd
square displacement for different degree of correlations. The S(q)= (B 1|2 Kp (), 9

fits confirm the validity of the long-range correlations among
the variables in the whole system size.
whereq=|q|, gqj=27m;/L, —LR2<m<L/2,i=1,...d,

B. Generating long-range correlations ind dimensions and B4=(y—d)/2. In the two-dimensional case the corre-
The algorithm can be easily generalized to higher dimenlated variables are defined in aty square lattice{7; ;}.
sions. In ad-dimensional cube of volumé® the desired Figure 3 shows a test of the actual correlations obtained in
correlation function takes the form two dimensions for different degree of correlations, and for a

system ofl =211,

d —yl2
C(H=|1+2 /2) : ®

C. Generating FBM in two dimensions

_ ) o N The two-dimensional correlated numbelrg; ;} can be
with the corresponding periodic boundary condition ysed to generate two-dimensional FBM. We propose the fol-

C(/)=C(/+L). The spectral density is lowing definition[16],
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FIG. 4. Site percolation in the square lattice of
1024x 1024 for different degrees of correlations
and concentrationga) and (b) correspond to the
correlated case withy=0.2, while (¢c) and (d)
correspond to the uncorrelated percolation prob-
lem, below and at the threshold for both cases,
respectively. Unoccupied sites are in black and
occupied sites are in whitée) shows the case of
anisotropic  percolation generated with the
method of Sec. IV D fory,=0.2 andy,=1.8,
and for the same concentration as(&). We no-
tice how the clusters are elongated along the di-
rection of the smaller exponelistrong correla-
tions). The figures are generated using the same
seed for the random number generator.

t s (14 B, /2) Coszqoq
h(tys)zi:El ni’5+j21 M, - (10 5(q,<Pq)= Zl—ﬁxr(z_lgxlz) qﬁx

w3 (1+ By/2) Sin2<pq

After some algebra, we find that when the numbers +21"3yl"(2—,8y/2) P

{mi;} are long-range correlated then

(13

_ 2\ I(+_+ 12 o \2]1— 2 with B,=2—-1v,, and B,=2—v,. Then the proposed
(Ih(t,)=h(to,S0)[ )~ (t=to) "+ (s=50)" "7 (1) method can be applied o genérate anisotropic correlated
numbers. This method might be suitable for the simulation of
geological reservoir systems for which strong anisotropy is
found [1]. Moreover, after generating the anisotropic vari-
ables#, we can apply the procedure outlined in Sec. IV C in
order to obtain an anisotropic self-affine surface.

Thus, using the correlated numbers with §<2, FBM can
be generated with exponent given y=1-+v/2 and
0<H<1. A landscape with this scaling behavior is also
called a self-affine surfadd 7].

D. Generating anisotropic long-range correlations
Many physical systems display not only correlations but
also anisotropy[1] reflected in different correlation expo- A qualitative check of the impact of long-range correla-
nents along different directions. We generalize the algorithniions for physical systems can be obtained by applying the
for this case. We propose a correlation function suitable foProposed method to a concrete physical problem: the corre-

E. Correlated percolation problem

two-dimensional anisotropic systems lated percolatio{18]. The properties of long-range corre-
lated site percolation in the square lattice have been recently
C(r,p)=r " "coSe+r %sirfe, (12 studied[5]. However, these studies were limited to systems

not larger than 104 104 sites. The method we present here
where ,¢) are the polar coordinates. The spectral density isallows us to study this problem in the limit of large systems.
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Figure 4 illustrates the results obtained for site percolation otthe correlated case, large clusters are present even at low
a square lattice of 10241024 sites. We see that the intro- concentratiofFig. 4(@)].

duction of long-range correlations among the occupancy

variables strongly affects the morphology of the system. In ACKNOWLEDGMENTS
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