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Model for collisions in granular gases
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We propose a model for collisions between particles of a granular material and calculate the restitution
coefficients for the normal and tangential motion as functions of the impact velocity from considerations of
dissipative viscoelastic collisions. Existing models of impact with dissipation as well as the classical Hertz
impact theory are included in the present model as special cases. We find that the type of dslhiioth,
reflecting or sticky is determined by the impact velocity and by the surface properties of the colliding grains.
We observe a rather nontrivial dependence of the tangential restitution coefficient on the impact velocity.

PACS numbs(s): 46.10+z, 51.10+y, 62.20.Fe, 83.70.Fn

I. INTRODUCTION have shown that the type of the collisi¢sliding or sticking
depends on the ratio a™ and g". The results were ex-
Arich variety of systems one encounters in nature may b@lained with different models for each type, and the coeffi-
considered as “granular ga$l]. The most important differ-  cients in these models were independent of the velocity. On
ence between a “gas” of granular particles and a regular gagne other hand, laboratory experiments with ice b8t as
is the inelastic nature of the interparticle collisions. Thewell as with spheres of other materidfsr an overview see
steady removal of kinetic energy from the granular gas dug34]) have shown that the normal restitution coefficiefit
to dissipative collisions causes a variety of nonequilibriumdepends significantly on the impact velocity. As already
processes that have been subjects of experimeetal, seen, the tangential restitution coefficient depends on the im-
[2-10) and theoreticale.g.,[11-19) interest. Particularly pact parameters as well.
in recent time many of the experimental results have been The behavior of the sheared granular material may be
reproduced and investigated using various techniques such ggynificantly different if the restitution coefficients depend on
cellular automatée.g.,[16-18), Monte Carlo methodgl9],  the impact velocity. This dependence should be taken into

lattice-gas modelg20], and molecular dynamics in tW@1—  account in order to get an adequate model of the stress dis-
24] and threg 25-27 dimensions and hybrid methof88—  tripution [35]. It is also known that the paramete¥ and
31]. €' crucially influence the global dynamics of granular sys-

The loss of kinetic energy of a pair of inelastically collid- tems(e.g.,[36,37).
ing grains can be described using the restitution coefficients | the present study we investigate how the restitution
for the normal and tangential components of the relative mogoefficients depend on the relative impact velocity. For the

tion " and " normal component of the relative motion we derive an ex-
N NaN N pression for the normal force acting between the colliding
(@%)'=—€g" (0=e'<1), (18 particles, which accounts for the dissipation in the bulk of
material. One particular application of the results presented
(GN'=€'g" (—1se'<1), (1b)  here is the explanation of experiments with ice b#88],

which are of importance for the investigation of the dynam-
whereg" andg " are the relative velocities of the particles in ics of planetary ring§38]. A static model for the inelastic
normal and tangential directions before the collision andmpact of metal bodies was presented38], which is based
(6N)’, (§7)" after the collision. on the assumption of fully plastic indentation and constant
Recently, the collision properties of small spheres havenean contact pressure and leads analytically to a proportion-
been investigated experimentall$2]. These investigations ality eNoc(gN) =Y for arbitrary material constants. On the
contrary, our quasistatic approach does not request other ad-
ditional assumptions and can be adapted to different experi-
*Also at Universita Potsdam, Am Neuen Palais, D-14 415, Pots- mental results by changing the coefficients in the differential
dgrum, Germany. equation that describes the time dependence of the deforma-
Also at The James Franck Institute, The University of Chicago,tion. From these coefficients, material coefficients can be es-
5640 South Ellis Ave., Chicago, IL 60 637. Electronic address:timated[40].
thorsten@hlrsun.hlrz.kfa-juelich.de Our result contains the Hertz theory of elastic impfadi]
http://summa.physik.hu-berlin.de:80/ thorsten/ and the theory of the viscoelastic impact by Hd@] as
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special cases. For the tangential component of the relative éN:ﬁN/meﬁ 6a)
motion we consider a mesoscopic model of the contact of '
colliding particles. We derive a mean-field expression for the ) 1
tangential interparticle force. The result contains the model QT:_eﬁ_ﬁT, (6b)
of the tangential force of colliding particles by Haff and m=«
Werner[43,44] as a special case, and we are able to treaf, . . L
different tangential coFI)IisionaI behaviors within the framefJlEJSIng Egs.(1) the energy loss during the collision is
work of one single model. meff meff

In Sec. Il we formulate the collision model and derive the AQ= T(QN)Z[(EN)2—1]+ TK(QT)Z[(ET)z—l].
equations for the normal and tangential components of the )
relative motion of the colliding grains. In Sec. Il we present
the results for the restitution coefficients for the proposedrhe energy is conserved during the collisioneff=1 and
model and discuss the dependence of the coefficients on the— + 1 |n these cases there is a completely elastic rebound
components of the impact velocity. A model for the dynam-fo the normal component and either completely elastic re-

ics of granular materials is proposed. In Sec. IV we summapqoyng (rough spheres or frictionless  slipping (smooth
rize the results. Details of the derivations are given in Ap-gpheresfor the tangential component.

pendices A and B.
A. Normal motion

Il. THE COLLISION MODEL o ) _
We assume that the colliding particles begin to touch each

We consider the inelastic collision between two sphericabther at the time=0 with the relative normal velocitg".
particlesi andj. The values;, R;, ;, &, m;, andJ; are  When we introduce the deformati¢ar “compression’)
the position of the center of spherg its radius, velocity, DD _[lr
angular velocity, mass, and momentum of inertia, respec- ¢O=Ri+R [IFict) rJ(t)H ®)
tlvetl_y.I Thet rtilatwe_ \;eltf)cr[y tof "Eh_e surfaces of Tgegcollldlng this velocity can be written ag"=|gN| = .
particles at the point of contact is given kg.9.,[43,34) Thus from Eq.(6a we obtain the equations

Gij = (ri— & X RiA) = (F;+ &; X RjA) £(t)=FN[£(t)]/mef,
with A= (f;—})/|F;— ;. Introducing the dimensionless mo- £(0)=0
ment of inertiaJ;, the effective masmi‘*jff and the effective '
radiusRﬁff The normal forcé=N consists of an elastic, conservative part
due to the deformatiog of the particles and a viscous part
3= Ji (33 due to dissipation of energy in the bulk of the particle mate-
fmy Riz’ rial, depending on the deformation rage For the conserva-

tive part Hertz's theory of elastic conta¢4l] gives for

m;m; spherical particles

mie"ﬁ:m +m;’ (3b)
| ! 2Y
N __ 5 [pef e
off RIRj 3 F(e|)(§)_ 3(1_1/2) R f s (10)
I RIR’ (30

whereY andv are the Young modulus and the Poisson ratio
one obtains Newtons equations for the translational and rdor the material the particles consist of. This relation between

tational motion the elastic component of the force and the deformation is
R valid for the quasistatic regime of the collision, i.e., when
dg; Fyj 1 1 (i c it @ inertial and relaxation effects may be neglectede Appen-
— = +| =—+ =— | (AXF;)XA. i
dt m_ﬁﬁ Im am, ij dix B).

The existing phenomenological expressions for the dissi-
> . . . .. pative part of the normal force, which are either linear in the

The forceF;; acting between thﬁe partlcleas during collision def i ta (43,45 dratiq46], h

consists of the normal componeﬁ{g‘zﬁ(ﬁ- Fii) and the tan- elormation ra g(e.g., L ) or qua rat » NOWEVeT,

] a1 = =N X do not agree satisfactory with the experimental data for the
gential component;;=F;;—Fj . Introducing the corre- normal restitution coefficienf33]. Pao[42] extended the
sponding componentgl and g;j of the relative velocity Hertz theory of impact for the viscoelastic case, where, how-
gi; and with ever, the dependence of the bulk dissipation on the dilatation
rate was neglected. In this theory memory effects in the dis-
sipative processes were taken into account. Although the lat-
ter approach is not self-consisteisee Appendix B it pre-
dicts a power-law dependence of the dissipative force on the
we rewrite Eq.(4) omitting the indexes; : deformation rate, yielding an exponent similar to that for the

miji+mjjj

jljj(m|+m])

-1_
Kij =1+

©)



5384 BRILLIANTOV, SPAHN, HERTZSCH, AND PGSCHEL 53

quasistatic collision. In the present study we develop a self- .0 1 . .1
consistent quasistatic approximation to calculate the normal U'(dis):'f&_g{ nl[z(voﬁ(el)"_ﬁ(el)ov)_ 3
force acting between colliding viscoelastic particles. The

guasistatic approximation is valid when the characteristic .

relative velocity of the granular particles is much less than + ﬂz'V'U(en]- (15

the speed of sound in the material which is satisfied for many

experimental situations even in astrophysical systems such ghe calculations can be significantly simplified when we no-
planetary ringg47]. For the duration of the collision it is tice that the elastic and the dissipative parts of the stress
necessary to exceed significantly the viscous memory time itensor are related in the quasistatic reg(see Eqs(12) and

Iv- L_j(e|)

the material of colliding particleésee Appendix B 14)]:
Different from the approaches ¢B4,42 we take into
account both components of the dissipative force, arising 0
from the shear strain rate as well as from the dilatation rate, T(dis) = fa_ga(eb (BEae 71, Exr ). (16)

which are both of comparable importance for the normal

component of the relative motion. From the equation of mo-Therefore the impact problem for the viscoelastic particles in
tion for the viscoelastic continuum we find the general rela-the quasistatic regime can be mapped onto the corresponding
tion between the dissipative part of the normal force and thgroblem for elastic particles. Performing calculations similar
deformation rate. We show that memory effects in dissipato that of the elastic caséor details se¢49] and Appendix
tive processes may be neglected in the case of a self) one can find an expression for the dissipative part of the
consistent quasistatic approximation. Since the calculation ofiormal force:

the dissipative part of the normal force is rather straightfor-

ward, we present only the main idea of the derivation and EN Y JRE A\/§§

refer to Appendix A for further details. In Appendix B the (di9 (1 —p?)

conditions for the validity of the quasistatic approach are

given. 1 (37— m)?[ (1= v?)(1-2v)
The total normal force acting between viscoelastic par- "3 (3p,+277) Y12 (17)
ticles may be derived from a stress tensor combined of an
elastic and a dissipative pdr8| From Eqs(17) and(10) we obtain for the normal component
~ - - of the relative motion
T=0(e)t O (dis) (17)
. ; 2Y+\R® 3 :
with 32, > _
et €74 5AVE -0 s

with the initial conditions&(O)ng, £(0)=0. In the case of
Aé<¢, Eq. (18) results from a Taylor expansion of

. 1 .- - 1., - aAs
O'(dis):ﬂl[—{VOU"‘UoV}_—|V'U}+7]2|V'U. . 2Y+JRE .
2 3 bt e (£+A8)¥2=0, (19
(12b) 3m*(1—v9)

The displacements in the material are denotedifandl is  which formally coincides with the corresponding equation
the unit tensorE,, and 7/, are the elastic and the viscous for the elastic problem, provided thatis substituted by
constants of the particle material E+AE.
Y It has to be noted that has its minimum at the beginning

(139 of the collision wheret takes its maximum. Hence, the con-

dition A¢<¢ is not provided at the very beginning of the

Y contact. On the other hand, the good confirmation of experi-
Ezzm. (13  mental fact§33] by the numerical solution of E¢19) points

to its suitability for at least the rest of the collision time span.

In the quasistatic regime the displacement fig{d,t) can be Taking into account ")’ =£(tc) (t. is the duration of
approximated by that of the static problaf(r). It is com-  the collision, the normal restitution coefficient is obtained
pletely determined by the elastic component of the interparfrom

ticle force (10). Thus, the displacement velocities can be N :
written as € =§&(to)/£(0). (20)

oL . (9 R R ) )
u(r,t)=§&——l)(r,€), (14) B. Tangential motion

9% In the idealized model the surface of contact between the
wherelg)(F,£) is the solution of the statielastio contact ~ spheresS is a perfectly flat circular area with radius
problem. This expression depends parametrically on the deRs= V2R "¢ (t). For the description of the tangential forces
formation ¢ and the dissipative part of the stress tensor bebetween the surfaces we follow a current model of tribology
comes (e.g.,[50,51]) where the apparent surface of contact is built

El:l-l—v’
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up of a large number of hierarchically ordered asperitieshift of the particle surfaces and a form factor, respectively.

varying in shape and size by several decades. For the praWe assume that the stress is uniformly distributed over the

cesses of the momentum transmission we will take into acentire surface and find

count only the largest-scale asperiti€primary asperi-

ties”). The surface asperities do not affect the normal — Y — Y{

motion, if they are small enougisee Appendix A however, T 1T AL b. (24)

they are responsible for the tangential forces, acting between

Lﬁgaiﬂligﬁgs‘iﬂggu‘é\’: &%nﬂgfr;%sgzlifg;gggig"gi'gsgp' The linear relation betweea' and 7 holds only for the

o ' averaged over the contact area. Further we define th\%IaStIC geg|mef, e only Ifr-- does not exceed some critical
... Valueo, , which is a specific material constant. If the shear

normal component of the total contact area of the asperities * . . .

of both spheresN, which is responsible for the transmission Stress exceeds this threshoid , the asperity that hinders

of the normal force. Correspondingly the tangential projec-LhrZ;En?eesml't"?‘rl] rg:]agvse ;Tj(::]opegatsheeosfliggciz:r atsrgg;nidt ttr?e
tion of the are&S' is responsible for the transmission of the » Fesutting | u S S :

tangential force. These surfaces are related to the appare?"ﬁme time the surfaces are shifted macroscopically with re-

contact area by the relatiof52] Spect to each other by

N — NN
SNty =fN(a™MS(t), (213 goz#\t”)({, (25

ST(t)=fT(a™)S(1), (21b)

where the coefficient§" andf™ depend on the average nor- and one finds

mal stresssN. When the spheres begin to touch each other,

ie., S=0 anda™=0, we findfN(0)=0 andfT(0)=0. We —a_ (£ | £ 26
- . ) — n ()=, : (26)

expand the coefficients in Eq21b) with respect toc™=0. fo L &o

The linear expansion yields for the tangential component of

the surface blo
afT R
S ()=¢'o"S(t), ¢'= — (22
907 | Ny where| x| denotes the integer of. The breaking of the as-

perities dissipates the energy that was previously stored in
For a given model of the sizes and shapes of the asperitighe elastic stress; i.e., fracturing of the asperities is the el-
one can calculate the value g [52]. In the case that the ementary dissipative process in the tangential motion. From
heights of the asperities obey a Gaussian probability distriEq. (26) we obtain the shear stress as a function of the tan-

bution with mean valu& one finds gential displacement
¢ L. (23 e
: . U_T(é“):o*(—— P ) (27)
For the average size of the asperitlef the surfaces the o o

mean-field approach yields the average shear deformation
7 =b/{/L. The values{ andb are the relative tangential and the tangential component of the interparticle force

06 : T T T T T T T T T
f Bridges et al. 1984 —
| from eq. (18) —-
0.55 H from eq. (19) ---- 4

05 £

045 3 | FIG. 1. The normal restitution coefficiet'

vs the normal component of the impact velocity
gN measured in cm st according to Eqs(18)
and(19). The dashed line denotes the dependence
eV(g") measured by Bridges, Hatzes, and Lin

[33].
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l l chosena= 1. The results are shown in Fig. 2. The tangential
FT=-S"¢"({)=—¢"0"So, (5_ - ) restitution coefficient" is drawn versus the plane defined by
o L the tangential and normal velocitigs and gN. The three
. ¢ plots correspond to the values of the asperity sizes
=— ,uFN( Té_o A ) , (28)  £p=(10"7;2%x10 410 3)R°®" respectively.

The obvious common feature of all cases is sliding of the
T N T i i ;
whereFN=¢"S is the normal component of the interparticle surfaqes é.>0) for smallg and Iar_geg . This is quite
force andu= ¢ o plausible since smaller impact velocity' corresponds to a
“ * , ' smaller normal acceleration and thus, to a smaller value of
It may be shown that a more refined mean-field approacr}

) ; . .2 "the maximal tangential force, E¢R8). As a resulte’—1 at
which does not use the assumption of the uniformly distrib- o i ;
uted stress over the contact arga leads to the sanzleaiq. gN—0 due to vanishing tangential acceleration. At the same

for the tangential motion. tlnle, flc_)r_ the high tangential velopith(o)>1 [gN(O)
From Eqg. (28 follows the condition for the maximum ] _s'|d|ng oceurs owing to a ponaderab]e bHreaTkmg of the
tangential force: asperities. The area of the slldmg_ phase ingheg' plane
depends on the siz&, of the asperities.
(29) In the case off,=10 "R®" sliding occurs in the entire
velocity range according to values 085'<1. The small
Thus our model reproduces the Coulomb friction Ig58]  @sperities are not able to cause a sufficient torque to change
with the friction coefficientw expressed in terms of meso-
scopic parameters. The model for the tangential motion is
very similar to the extensively investigated one-dimensional
model by Burridge and Knopoff54,55 intended to model
earthquakes. )
With gT(t)=¢(t), Eq. (5) and FN=—m°®"(t) the tan-
gential motion is governed by the differential equation

T
Fmax= MFN-

. M 4 4
4 ;f(t)(g—o %

) =0, (30

with the initial conditionsZ(O)zgT and{(0)=0. The value
of &(t) is given by EQq.(18) or (19). Then the tangential
restitution coefficient reads

€"={(t)1£(0). (31)

Ill. RESULTS AND DISCUSSION

The obtained equations for the nornid&gs. (19) and
(18)] and tangential motiohEq. (30)] have been solved nu-
merically using a Runge-Kutta method of fourth order with
adaptive step siz56]. The restitution coefficients” and
e\ have been calculated as functions of the normal and tan-
gential relative velocitieg™, gN. For the integration we used
the parameters of ice at low temperatur&sg: Young modu-
lus Y=10 GPa, Poisson ratior=0.3, particle size
R=10"2 m, with densityp=10° kg m~3. The coefficient
A in Eqg. (18) was considered to be a fit parameter, due to
lack of information about the dissipative coefficients and
7, . Figure 1 shows the numerical result of our model for the 0.5
normal restitution coefficieng\ as a function of the normal
relative velocitygN compared to experimental data for the 0.5
collision of spherical ice particles with an ice wgB3]. The '
experimental results are well reproduced by our model.

For the investigation of the tangential restitution coeffi-
cient of colliding homogeneous sphere3=((mR?, k= 2)
yve have Ch05€r21 the Coulomb fI’IC'[IO[I] .coeffICIent. from the FIG. 2. The stereographic projection of the tangential restitution
intervalu e[107°. .. 1]. The value ofo, is a material con- . etficiente vs the plangN-g" of the tangential and normal com-

stant. With EQ-_(23) and the_definition_s o€ and 7, We  ponents of the impact velocity. The three parts of the figure belong
estimatelo, which characterizes the size of the surface asto different values of the “size” of the asperities@ &,

perities viau= a\/Z,. In the numerical calculation we have =10"7R®", (b) {,=2x10"*R", (c) {o=10"3R°".

()
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considerably the spin of the individual particles. Here we argor but the ranges of different types of motipfl) and(2)]
close to the case of ideal smooth spheres where no change aéver different areas in thg'-gN plane.
the tangential motion is expected'=1). The results show that our model includes a continuous
In the other two case&,=(2x 10 %10 3)R®f one rec-  transition from the limit case of rough spheres { —1) to
ognizes two phase$l) Sliding e">0 at smallgN and high  the limit case of smooth spheres’(~1). In the literature of
g'; (2) reversal of the spin of either particle<0 at small  the dynamics of granular material an alternative step func-
g" and highergN. tion is widely used for the tangential for¢é3]
Case(1) corresponds to the effect discussed in the context T offl T N
of {,0=10"". Despite being far from rather smooth spheres, F'=min{—ysm®|g'|,uF"}. (32
the small tangential force originated from small changes The numerical evaluation of the considered mdéég. 2)
the velocityg™ only slightly. Hence one has"™0, which is  reveals surprising behavior of the tangential restitution coef-
also the case for high velocitieg” where the asperities ficient €T as a function of the normal velocitg™ at fixed
break. In case2) we have the other extreme: a high normal tangential velocityg™. (This effect is noticeable for the larg-
acceleration causes a tangential force, which is high enougbst values of,.) At low and moderatg", €” first decreases
to change the sign @' as long as the asperities do not breakyith increasingg™ down to its minimal negative value in a
(small g"). A complete reversal of the tangential velocity manner discussed above, but withexceeds some thresh-
according tog’(0)— —g'(to) is not possible because of the |4 (approximately of severaj”), it starts to increase up to
dissipation arising of the bulk viscosity of the material, ;erg at very high values @. This effect may be explained
which enters the normal as well as the tangential fofses 55 follows: For high values @™ the average normal force is
Egs.(18 and(30)]. , , large and causes thus a large tangential force, which can
Both types of behavior of the tangential motion are sepagffectively decelerate the initial tangential velocity without
rated by a sharp transition girzg(cr) where the asperities switching to the sliding regime.
begin to break [see surface plots for {,=(2 Calculating the restitution coefficients, €\ (in the lim-
X 1010 %)R®". The higheg" the larger the critical tan- its of our model we obtain a complete description of binary
gential velocityg(Tcr). A higher normal velocityg" causes a collisions. Therefore one can determine the dynamics for
stronger counteracting forde" and thus a larger tangential moderately dense granular gases, where an evolution occurs
impact speedy’ is necessary to reach the critical deforma-via a sequence of binary collisions. For such systems we
tion where the asperities break. Both caseshave the following Boltzmann equation for the one-particle
[£o=(2X10"%10 3)R®M] reveal similar qualitative behav- distribution function:

|
Jd R
(a—t+ﬁl~V)f(1)=fd52J d(zzf dilg- A ®(g-A)

f(1)f(2)
W—f(l)f(Z) : (33
|
with @(x) given by out computing the detailed dynamics of binary collisions as
is usually done in the “soft sphere” molecular dynamics
1 for x=0 (MD) approach. Here one considers the grains as elastic bod-

0O (x)= [ (34)

ies that deform each other during a collision. There are sev-
eral Ansdze for the force acting between touching grains
and with the common notations, e.g., &J7,,01,o4,t}. [43,44,58. In all cases one has to choose a time step for the
The velocity and angular velocity of the first particle after integration scheme that is significantly smaller than the typi-
the collisionu; and @; can be expressed in terms of the cal collision time. Hence, during each collision one has to
precollisional values via the relations calculate about 10—1000 times the interaction force between
the grains to provide satisfying accuracy of the simulation.
. - R . When two grains approach each other they do not feel any
v1=U1F 2m1{[6T(gN'gT)_1]9T_[6N(9N'9T)+1]gN}' interaction as long as they do not touch each other. When
(359 granular particles collide they interact via huge restoring
forces that can be expressed by Young moduli of the order of

0 for x<O

eff

Lo . Y=10" kg/m seé. The difficulty of the simulation consists
wy=w;+ Z—manX{[E (97,0)—-1]9 in the extreme short-range interaction of the particles and the
resulting huge gradient of the interaction force. Therefore
—[eNgN,g") + 116"} (35b  presently one cannot simulate much more than 3000 granular

particles in three dimension®.g.,[59,60) and about 16
and analogously foi;, &5. With the use of Eqs(33) and  particles in two dimension&.g.,[61]).
(35 and the above calculated restitution coefficients Another method for the simulation of granular assemblies
eNgMN,g") ande'(gN,g") [Egs.(20) and (31)] one can de- is the “hard sphere” approach where one does not consider
scribe the evolution of moderate dense granular gases witlihe details of the collision but only the precollisional and
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postcollisional velocities of each pair of colliding grains. The ner as in the static case. It may be shoi@ee Appendix B

advantage of these simulations is the low numerical comthat this approximation is valid for the elastic case when the

plexity. One needs only computational effort when particlescharacteristic velocity is much less than the speed of sound

collide but not in between the collisions. This allows for thein the material of the colliding particles. Moreover for the

application of so-called event-driven calculatigesy.,[62]).  viscoelastic case it is required that the viscous relaxation

Hence, one can simulate many more particles than withime of the material is much shorter than the duration of the

“soft particle” methods. collision. In the static case the equation of equilibrium reads
One of the preconditions for the application of the “hard [48]

sphere approach” is the exact knowledge of the normal and

tangential restitution coefficients) ande', as functions of ﬁ.&(e,)=0, (AL)

the normal and tangential impact rat€d! and ', whose

theoretical determination was the goal of the present paperwhere the elastic stress tenseg,, is expressed in terms of
An interesting possible application of this approach is thedisplacementsi(r) via Eq. (12). Hence the static EQA1)

dynamics of planetary rings composed of icy and silicatecan be written as

material, which is determined by inelastic dissipative colli-

sions[38]. The calculation of such systems using the tradi- V20+b2Via=0,

tional MD is impossible due to the huge number of particles (A2)

in these systems. 4E;+6E, 2(1—v)

3E;,  (1-2v)’

2

IV. CONCLUSION

with the “longitudinal” and “transversal” parts of the La-

A model for collision of particles in granular gases isrplacian

proposed. For the normal component of the relative motio
the equation of motion is derived based on the general con-
sideration of the viscoelastic impact. We find the expression
for the dissipative part of the normal force in the self- o
consistent quasistatic approximation that generalizes the ex- Vf=V2—Vﬁ- (A3b)
isting results for the viscoelastic collisioh42]. For the tan-

gential relative motion we investigated a mesoscopic model'he boundary conditions for the displacements in &®)

of surfaces of the colliding particles that are in contact. Weare formulated on the surface of contact. From geometric
found a mean-field expression for the tangential interparticl€onsiderations it follows that the contact area between two
force, which can reproduce smooth, reflecting, or sticky col-colliding particles is a plane. Using the appropriate coordi-
lisions depending on the microscopic parameters of the sufate system centered in the middle of the contact region
faces and on the relative impact velocity. A frequently usedwhere we sez=0) one can write

model for collisions of granular particles by Haff and Werner ) 5

[43] is contained in our model as a special case. The restitu- Cix+ Coy“tuytuz,=¢E. (A4)

tion coefficients for the normal and tangential motion are

calculated as functions of the relative impact velocity. A TN€ Valuesz = Uz (X,y) anduz=uz(X,y) are thez com-
rather nontrivial strongly nonlinear dependence of the tanPbonents of the displacements in the materials of the bodies at

gential restitution coefficient on the impact velocity is ob- the Planez=0, ¢ is the total deformatiorithe sum of the

served. deformations of both bodies at the center of the contact area,
The obtained restitution coefficients may be used to del-€-» ax=y=0). The constant€, andC, are expressed in

scribe the dynamics of moderately dense granular gaseggrms of radii of curvature of the surfaces in contésxte,

where the evolution occurs via a sequence of successive bi-9-[41,48). The values oti,; andu,, may be expressed in
nary collisions. terms of the normal pressui,(x,y) that acts between the

bodies atz=0 [48]:

VE=VoV, (A3a)
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N 2E,+3E, 1-1?
APPENDIX A: GENERALIZATION ~ Ey(E;+6Ey) Y
OF THE HERTZ THEORY

We briefly sketch the Hertz theory of elastic impact angFor simplicity we assume that the coIIid[ng particles are of
give a generalization of this theory for the case of viscoelastN® Same material. The normal presstngis related to the
tic collisions (see alsd49]). total normal forceF ),

In the quasistatic approximation that is used in Hertz's 5 5
impact theory it is assumed that tli@me dependentstrain P(Xy)= 3Fe) 1— Xy (A6)
and the(time dependentstress are related in the same man- 2o 27mab a’ b?
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wherea andb are the semiaxes of the contact ellipse. Thethe case when the memory effects in the viscous processes
latter values as well as the compressiomay be found from may be neglected. A more general case is discussed in Ap-

the set of equations pendix B.
The a(g, component of the elastic stress is equal to the

: Fey 3Af°° dq (A7) normal pressur®, at the planez=0,

= —_ , a

7™ 2 Jo J(@®+q)(b*+q)q
au E;\[du, du, du
Fer 3, (~ dq 2z e 0 O | e S I
1= 5 A J : ————, (A7 C@XYOTRG B )( x "y az)
™ 2 Jo (a+q)V(a*+a)(b*+a)q

e XY (A13)
C _Fe gAfx dq 2mab a’ b?
0

. (A7
= r 2N o eVt tiag 0

From the above expressions it follows that for all bodies ) ,
in contact having smooth surface® the mathematical With the transformation of the coordinate axes
sensg the total force and the deformation are related via the

power law X=ax’, (Al4a)
Fen(§)=C&¥ (A8) y=ay’, (A14b)
The constant depends on the elastic properties of the ma- z=7' (Al4o)
terials and on the local curvatures of the colliding bodies. For d
the case of the spherical particles one has the Hertz's law an
F (€)= 2 JReEM 312 (A9) 2~ 37\ [ E2t 5E;
(el 3(1_ VZ) ' a= 5 1 s (A15a)
Mt 3m) \Ex—3E;
Using this relation between force and deformation and the
equation of motion[Eq. (9)] one can describe the elastic (72— 3 m1)
collision completely. The duration of the collision[i$1,48 =—F" (A15b)
a(Ex— 3Ey)
meﬁ 2/5
tczz'g"(T (g, a=aa’, (A150)
b=ab’, (Al50)
2 4 2 2 ff
ke=|==| R®". (A10)
5 3A .
we obtain
In the solution of the elastic contact problem the displace-
ment fieldsu, () and U,(r) are completely defined by the
value of F (¢ and thus by the value of the deformatign du, 71| Uy  duy U,
Hence we writed(f)=U(r,£), i.e., the displacement field Moy T\ o T WJF 9z
depends explicitly on the compression. Therefore we obtain
for the velocity of the displacement in the quasistatic ap- _ z Ei|[dux oduy du,
. =BlEi 7+t B/l ot ot
proximation Jz 3/\ox" 9y’ o9z
Lo J . ALl 3 3':(6') X/2 y/2
U(r)—fagu(hf) ( ) _ﬁzﬂ_a/b/ a12 b/2
and correspondingly for the dissipative part of the stress ten- _ ,3F@) B x? B y? AL6
sor =Bat s ab a’® b* (AL6)
Tidis) ™~ & g | MikT| 727 737 H 9k Applying the operatog 9/ d¢ to the previous expression we
obtain the result for the viscous stress. Integrating the vis-
:'gio_ik (B 71, Epes 1) (A12)  cous stress over the contact area we finally find for the dis-
gg " (e 1771 E2 7 2) sipative component of the interparticles force
We emphasize that the expression in the curly brackets in the P
a_bove equation coincides Wlth the elastic stress,_prowded the Fais = A&~ F e (&), (A17)
viscous constants are substituted by the elastic ones. The 23

latter expression for the dissipative stress tensor is written for
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1 (37,—71)? (1—v?)(1—2v) very small compared with the radii of the spheres. For our
3 Gnt 200 Y2 . (A18)  calculations in Fig. 2 the asperity size is33A0 times
smaller than the effective radius of the particles. Hence the
Thus one obtains for the normal force that acts between theissipation in the bulk of the asperities is negligibly small
viscoelastic bodies in the quasistatic regime of collision =~ compared to the total dissipation in the compressed part of
the collider. Moreover, the ratio of the normal to tangential

3 _ stress may be roughly estimated@&s/o '~ (¢/R)Y?, so that
£824 —A\/EE)- (A19) the crushing of the asperities does not seem to be important

2 for the normal motion, i€/R<1 and if the conditions of the
quasistatic collision hold. Thus one concludes that the sur-
face asperities may be ignored, when the normal motion is
0§tudied, provided they are small and the conditions of the
guasistatic collision are satisfied.

A=a?B=

F =consX

The constant in EqA19) coincides with that for the elastic
force. For colliding spherical particles we arrive at Ebj7).
The impact theory, sketched above, was developed fi
bodies with smooth surfaces. If the surface asperities ar
taken into account, one can consider the actual surface as a
smooth one(obtained by averaging over the asperities’
heightg, with a small perturbation superimposed due to the =~ APPENDIX B: VALIDITY OF THE QUASISTATIC
presence of the asperities. One can also consider the actual APPROXIMATION
normal displacements and normal pressure as a sum of the : .
" To analyze more rigorously the conditions when the qua-
averagedover the asperitigsvalues and the small perturba- _. . . LT . ! ;
. o : : sistatic approximation is valid we write the equation of mo-
tion. Then it is easy to show that the equations, obtained fO{‘. : . )
S : X ion for the viscoelastic continuum
the averaged values, coincideue to linearity of the prob-
lem) with the corresponding equations for the elastic colli-
sion of the smooth bodies. As a result, the relation between

>

the force and deformationé(is the same as in Hertz’'s pa:V'(f}(enJr O (dis)» (BY)
theory) provided that is defined with the use of the average
over the asperities’ radii of the colliders. wherep is the density of the material. The expression for the

Considering the normal motion for the dissipative colli- elastic part of the stress tensor is given by Ek). Taking
sions, one need not consider the plastic deformation of thato account the memory effects of the dissipative processes
asperities, since the size of the asperities is assumed to fire the material one can write for the dissipative part

V. G(7)

R t (. - - )1 t ae e
U(dis)(t)=E1f0dT¢l(t—T) 5{V°U(T)+32U(T)°V]—§ +E2J0d7¢2(t—7)|V~u(7’), (B2)

where the(dimensionlessfunctions;(t) and ¢,(t) are re- one can write the equation of motion for the viscoelastic
laxation (or “memory”) functions for the distortion strain medium:
and the dilatation, respectively. Note that EB2) coincides

with the corresponding expression for the viscous stress ten-

sor in[34,42 for ¢,(t) =0. The latter approximation means

that one neglects the bulk dissipation due to the dilatation

rate. For the normal motion of colliding particles, however,

the dissipation of energy due to the dilatation rate and the
dissipation due to the distortion strain rate are of the same

order of magnitude. Thus we keep both relaxation functions =5
in our considerations. Introducing transversal and longitudi- +Vj
nal velocities of sound in the material

2 b Y B3
=2 T (1t ) (B33

1. = > - _
?u={Vfﬁ+ b2V ia}+ Vi gy
t

where % U denotes convolution.
, 2E1+3E;  Y(1-v) To estimate the relative importance of the terms in Eq.

T3, T sl m(1-2v) (B3b) (B4) we introduce the characteristic velocity=gN and the
) characteristic timery=t., wheret, is the duration of the
, G 2(1-v) collision, introduced above in E§A10). Then the character-

2 (1-2v)’ istic length isRy=v,7. Equation(B4) can then be written

in a dimensionless form:
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U2 = 202 > o Tvis, 1| =o=~ Tvis,1| = 4= _ Tvis,2|= ~
(C—g)u<t>={Viu<t>+b2V?ﬁ<t>}+ Tol)Viuam Tol)vz( )+ b2‘§)(ms,i)“(*)]' (B5)
t
Tvis, 1/2™ Jo i T)dT. (B6)

We use the following representation of the convolution: v%
1> —, (B103
Loz~ [t t
gk u=uu(t,) 01/11/27'd7': (B7)
Tvis,1/2
L= : . . : . 1> — B10b)
with t, being a dimensionless time from the interval To ( )
0<t,<t=t/7y. The relation for the convolutioriB7) is . . ) )
valid if (t)=0. hold. From the above considerations it follows that in the

During the collision procesis of the order ofry; i.e.t ~ quasistatic approximation the memory effects in the dissipa-
is of the order of 1, while by the definition aof, 1, these tive processes are not important and the viscous part of the
values are of the order of the relaxation times for the dissiStress tensor may be written in the same way as in(E2),
pative processes in the material. That meansthat,,char-  With the viscous constantg, and 7, given by
acterizes the time when the memory effects are important. If .
th_e du_ration_of tr_\e collision is much gregter than the relax- Duo=E1oTis 1/5= Ell2f Yo )T (B11)
ation times, i.e., ifrjs 17< 79, One can write ’ 0

" It is worth noting that the quasistatic approximation is
Tvis, 112~ fo YrA T)d7 B8 valid for many of the granular gases one encounters in na-
ture, since usually the characteristic velocity in these systems
and consequently is low. One should also note that the description of the col-
o lision in the quasistatic approximation is rigorous in a sense
Yk U= G(t)Tvis,llz- (B9) that no other additional approximations are used.
As follows from the above considerations, it is not correct
If the characteristic velocity is much less than the speed to use the time dependent relaxation functions for the dissi-
of sound in the material too, one can neglect the terms witlpative part of the stress tensor together with Hertz's quasi-
vanishing factors 2/c?) and (rvis, 12/ T0) In EQ. (B5) and  static relations[34,42, since this approach is not self-
finally one arrives at the static E§A2). That means the consistent and one has to assume a lot of additional hardly
guasistatic approach is valid provided that the conditions controllable approximations.
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