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We propose a model for collisions between particles of a granular material and calculate the restitution
coefficients for the normal and tangential motion as functions of the impact velocity from considerations of
dissipative viscoelastic collisions. Existing models of impact with dissipation as well as the classical Hertz
impact theory are included in the present model as special cases. We find that the type of collision~smooth,
reflecting or sticky! is determined by the impact velocity and by the surface properties of the colliding grains.
We observe a rather nontrivial dependence of the tangential restitution coefficient on the impact velocity.

PACS number~s!: 46.10.1z, 51.10.1y, 62.20.Fe, 83.70.Fn

I. INTRODUCTION

A rich variety of systems one encounters in nature may be
considered as ‘‘granular gas’’@1#. The most important differ-
ence between a ‘‘gas’’ of granular particles and a regular gas
is the inelastic nature of the interparticle collisions. The
steady removal of kinetic energy from the granular gas due
to dissipative collisions causes a variety of nonequilibrium
processes that have been subjects of experimental~e.g.,
@2–10#! and theoretical~e.g., @11–15#! interest. Particularly
in recent time many of the experimental results have been
reproduced and investigated using various techniques such as
cellular automata~e.g.,@16–18#!, Monte Carlo methods@19#,
lattice-gas models@20#, and molecular dynamics in two@21–
24# and three@25–27# dimensions and hybrid methods@28–
31#.

The loss of kinetic energy of a pair of inelastically collid-
ing grains can be described using the restitution coefficients
for the normal and tangential components of the relative mo-
tion eN andeT

~gW N!852eNgW N ~0<eN<1!, ~1a!

~gW T!85eTgW T ~21<eT<1!, ~1b!

wheregW N andgW T are the relative velocities of the particles in
normal and tangential directions before the collision and
(gW N)8, (gW T)8 after the collision.

Recently, the collision properties of small spheres have
been investigated experimentally@32#. These investigations

have shown that the type of the collision~sliding or sticking!
depends on the ratio ofgN and gT. The results were ex-
plained with different models for each type, and the coeffi-
cients in these models were independent of the velocity. On
the other hand, laboratory experiments with ice balls@33# as
well as with spheres of other materials~for an overview see
@34#! have shown that the normal restitution coefficienteN

depends significantly on the impact velocity. As already
seen, the tangential restitution coefficient depends on the im-
pact parameters as well.

The behavior of the sheared granular material may be
significantly different if the restitution coefficients depend on
the impact velocity. This dependence should be taken into
account in order to get an adequate model of the stress dis-
tribution @35#. It is also known that the parameterseN and
eT crucially influence the global dynamics of granular sys-
tems~e.g.,@36,37#!.

In the present study we investigate how the restitution
coefficients depend on the relative impact velocity. For the
normal component of the relative motion we derive an ex-
pression for the normal force acting between the colliding
particles, which accounts for the dissipation in the bulk of
material. One particular application of the results presented
here is the explanation of experiments with ice balls@33#,
which are of importance for the investigation of the dynam-
ics of planetary rings@38#. A static model for the inelastic
impact of metal bodies was presented in@39#, which is based
on the assumption of fully plastic indentation and constant
mean contact pressure and leads analytically to a proportion-
ality eN}(gN)21/4 for arbitrary material constants. On the
contrary, our quasistatic approach does not request other ad-
ditional assumptions and can be adapted to different experi-
mental results by changing the coefficients in the differential
equation that describes the time dependence of the deforma-
tion. From these coefficients, material coefficients can be es-
timated@40#.

Our result contains the Hertz theory of elastic impact@41#
and the theory of the viscoelastic impact by Pao@42# as
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special cases. For the tangential component of the relative
motion we consider a mesoscopic model of the contact of
colliding particles. We derive a mean-field expression for the
tangential interparticle force. The result contains the model
of the tangential force of colliding particles by Haff and
Werner @43,44# as a special case, and we are able to treat
different tangential collisional behaviors within the frame-
work of one single model.

In Sec. II we formulate the collision model and derive the
equations for the normal and tangential components of the
relative motion of the colliding grains. In Sec. III we present
the results for the restitution coefficients for the proposed
model and discuss the dependence of the coefficients on the
components of the impact velocity. A model for the dynam-
ics of granular materials is proposed. In Sec. IV we summa-
rize the results. Details of the derivations are given in Ap-
pendices A and B.

II. THE COLLISION MODEL

We consider the inelastic collision between two spherical

particlesi and j . The valuesrW i , Ri , rẆ i , v̇W i , mi , andJi are
the position of the center of spherei , its radius, velocity,
angular velocity, mass, and momentum of inertia, respec-
tively. The relative velocity of the surfaces of the colliding
particles at the point of contact is given by~e.g.,@43,34#!

gW i j5~rẆ i2vW i3RinW !2~rẆ j1vW j3RjnW !

5rẆ i2rẆ j2RivW i3nW 2RjvW j3nW , ~2!

with nW 5(rW i2rW j )/urW i2rW j u. Introducing the dimensionless mo-
ment of inertiaĴi , the effective massmi j

eff and the effective
radiusRi j

eff

Ĵi5
Ji

miRi
2 , ~3a!

mi j
eff5

mimj

mi1mj
, ~3b!

Ri j
eff5

RiRj

Ri1Rj
, ~3c!

one obtains Newtons equations for the translational and ro-
tational motion

dgW i j
dt

5
FW i j

mi j
eff1S 1

Ĵimi

1
1

Ĵ jmj
D ~nW 3FW i j !3nW . ~4!

The forceFW i j acting between the particles during collision
consists of the normal componentFW i j

N5nW (nW •FW i j ) and the tan-

gential componentFW i j
T5FW i j2FW i j

N . Introducing the corre-
sponding componentsgW i j

N and gW i j
T of the relative velocity

gW i j and with

k i j
21511

miĴi1mjĴj

Ĵi Ĵ j~mi1mj !
~5!

we rewrite Eq.~4! omitting the indexesi j :

gẆN5FW N/meff, ~6a!

gẆ T5
1

meffk
FW T. ~6b!

Using Eqs.~1! the energy loss during the collision is

DQ5
meff

2
~gWN!2@~eN!221#1

meff

2
k~gW T!2@~eT!221#.

~7!

The energy is conserved during the collision ifeN51 and
eT561. In these cases there is a completely elastic rebound
for the normal component and either completely elastic re-
bound ~rough spheres! or frictionless slipping ~smooth
spheres! for the tangential component.

A. Normal motion

We assume that the colliding particles begin to touch each
other at the timet50 with the relative normal velocitygWN.
When we introduce the deformation~or ‘‘compression’’!

j~ t !5Ri1Rj2@ urW i~ t !2rW j~ t !u# ~8!

this velocity can be written asgN5ugWNu5 j̇.
Thus from Eq.~6a! we obtain the equations

j̈~ t !5FN@j~ t !#/meff,

j̇~0!5gN, ~9!

j~0!50.

The normal forceFN consists of an elastic, conservative part
due to the deformationj of the particles and a viscous part
due to dissipation of energy in the bulk of the particle mate-
rial, depending on the deformation ratej̇. For the conserva-
tive part Hertz’s theory of elastic contact@41# gives for
spherical particles

F ~el!
N ~j!5

2Y

3~12n2!
AR eff j3/2 , ~10!

whereY andn are the Young modulus and the Poisson ratio
for the material the particles consist of. This relation between
the elastic component of the force and the deformation is
valid for the quasistatic regime of the collision, i.e., when
inertial and relaxation effects may be neglected~see Appen-
dix B!.

The existing phenomenological expressions for the dissi-
pative part of the normal force, which are either linear in the
deformation ratej̇ ~e.g.,@43,45#! or quadratic@46#, however,
do not agree satisfactory with the experimental data for the
normal restitution coefficient@33#. Pao @42# extended the
Hertz theory of impact for the viscoelastic case, where, how-
ever, the dependence of the bulk dissipation on the dilatation
rate was neglected. In this theory memory effects in the dis-
sipative processes were taken into account. Although the lat-
ter approach is not self-consistent~see Appendix B!, it pre-
dicts a power-law dependence of the dissipative force on the
deformation rate, yielding an exponent similar to that for the
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quasistatic collision. In the present study we develop a self-
consistent quasistatic approximation to calculate the normal
force acting between colliding viscoelastic particles. The
quasistatic approximation is valid when the characteristic
relative velocity of the granular particles is much less than
the speed of sound in the material which is satisfied for many
experimental situations even in astrophysical systems such as
planetary rings@47#. For the duration of the collision it is
necessary to exceed significantly the viscous memory time in
the material of colliding particles~see Appendix B!.

Different from the approaches of@34,42# we take into
account both components of the dissipative force, arising
from the shear strain rate as well as from the dilatation rate,
which are both of comparable importance for the normal
component of the relative motion. From the equation of mo-
tion for the viscoelastic continuum we find the general rela-
tion between the dissipative part of the normal force and the
deformation rate. We show that memory effects in dissipa-
tive processes may be neglected in the case of a self-
consistent quasistatic approximation. Since the calculation of
the dissipative part of the normal force is rather straightfor-
ward, we present only the main idea of the derivation and
refer to Appendix A for further details. In Appendix B the
conditions for the validity of the quasistatic approach are
given.

The total normal force acting between viscoelastic par-
ticles may be derived from a stress tensor combined of an
elastic and a dissipative part@48#

ŝ5ŝ~el!1ŝ~dis! ~11!

with

ŝ~el!5E1F12 $¹W +uW 1uW +¹W %2
1

3
Î¹W •uW G1E2Î¹W •uW , ~12a!

ŝ~dis!5h1F12 $¹W +uẆ 1uẆ +¹W %2
1

3
Î¹W •uẆ G1h2Î¹W •uẆ .

~12b!

The displacements in the material are denoted byuW and Î is
the unit tensor.E1/2 andh1/2 are the elastic and the viscous
constants of the particle material

E15
Y

11n
, ~13a!

E25
Y

3~122n!
. ~13b!

In the quasistatic regime the displacement fielduW (rW,t) can be
approximated by that of the static problemuW (rW). It is com-
pletely determined by the elastic component of the interpar-
ticle force ~10!. Thus, the displacement velocities can be
written as

uẆ ~rW,t !. j̇
]

]j
uW ~el!~rW,j!, ~14!

whereuW (el)(rW,j) is the solution of the static~elastic! contact
problem. This expression depends parametrically on the de-
formation j and the dissipative part of the stress tensor be-
comes

ŝ~dis!5 j̇
]

]j H h1F12 ~¹W +uW ~el!1uW ~el!+¹W !2
1

3
Î¹W •uW ~el!G

1h2Î¹W •uW ~el!J . ~15!

The calculations can be significantly simplified when we no-
tice that the elastic and the dissipative parts of the stress
tensor are related in the quasistatic regime@see Eqs.~12! and
~14!#:

s~dis!5 j̇
]

]j
s~el! ~E1↔h1 ,E2↔h2!. ~16!

Therefore the impact problem for the viscoelastic particles in
the quasistatic regime can be mapped onto the corresponding
problem for elastic particles. Performing calculations similar
to that of the elastic case~for details see@49# and Appendix
A! one can find an expression for the dissipative part of the
normal force:

F ~dis!
N 5

Y

~12n2!
AR eff AAjj̇

A5
1

3

~3h22h1!
2

~3h212h1!
F ~12n2!~122n!

Yn2 G . ~17!

From Eqs.~17! and~10! we obtain for the normal component
of the relative motion

j̈1
2YAR eff

3meff~12n2! S j3/21
3

2
AAjj̇ D50 ~18!

with the initial conditionsj̇(0)5gN, j(0)50. In the case of
Aj̇!j, Eq. ~18! results from a Taylor expansion of

j̈1
2YAR eff

3meff~12n2!
~j1Aj̇ !3/250, ~19!

which formally coincides with the corresponding equation
for the elastic problem, provided thatj is substituted by
j1Aj̇.

It has to be noted thatj has its minimum at the beginning
of the collision wherej̇ takes its maximum. Hence, the con-
dition Aj̇!j is not provided at the very beginning of the
contact. On the other hand, the good confirmation of experi-
mental facts@33# by the numerical solution of Eq.~19! points
to its suitability for at least the rest of the collision time span.

Taking into account (ġN)85 j̇(tc) (tc is the duration of
the collision!, the normal restitution coefficient is obtained
from

eN5 j̇~ tc!/ j̇~0!. ~20!

B. Tangential motion

In the idealized model the surface of contact between the
spheresS is a perfectly flat circular area with radius
RS5A2R effj (t). For the description of the tangential forces
between the surfaces we follow a current model of tribology
~e.g.,@50,51#! where the apparent surface of contact is built
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up of a large number of hierarchically ordered asperities
varying in shape and size by several decades. For the pro-
cesses of the momentum transmission we will take into ac-
count only the largest-scale asperities~‘‘primary asperi-
ties’’!. The surface asperities do not affect the normal
motion, if they are small enough~see Appendix A!, however,
they are responsible for the tangential forces, acting between
the colliders. Here we consider a simplified mean-field ap-
proach and introduce the normals̄N and tangential stress
s T̄ averaged over the contact area. Further we define the
normal component of the total contact area of the asperities
of both spheresSN, which is responsible for the transmission
of the normal force. Correspondingly the tangential projec-
tion of the areaST is responsible for the transmission of the
tangential force. These surfaces are related to the apparent
contact area by the relations@52#

SN~ t !5 f N~ s̄N!S~ t !, ~21a!

ST~ t !5 f T~ s̄N!S~ t !, ~21b!

where the coefficientsf N and f T depend on the average nor-
mal stresss̄N. When the spheres begin to touch each other,
i.e., S50 ands̄N50, we find f N(0)50 and f T(0)50. We
expand the coefficients in Eq.~21b! with respect tos̄N50.
The linear expansion yields for the tangential component of
the surface

ST~ t !5fTs̄NS~ t !, fT5F ] f T

]s̄NG
s̄N50

. ~22!

For a given model of the sizes and shapes of the asperities
one can calculate the value offT @52#. In the case that the
heights of the asperities obey a Gaussian probability distri-
bution with mean valueL one finds

fT}AL. ~23!

For the average size of the asperitiesL of the surfaces the
mean-field approach yields the average shear deformation
h 5̄b z/L . The valuesz andb are the relative tangential

shift of the particle surfaces and a form factor, respectively.
We assume that the stress is uniformly distributed over the
entire surface and find

s T̄5
Y

11n
h̄5

Yz

~11n!L
b. ~24!

The linear relation betweens̄T and h̄ holds only for the
elastic regime, i.e., only ifs̄T does not exceed some critical
values

*
T , which is a specific material constant. If the shear

stress exceeds this thresholds
*
T , the asperity that hinders

the tangential relative motion of the surfaces is assumed to
break, resulting in a sudden release of the shear stress. At the
same time the surfaces are shifted macroscopically with re-
spect to each other by

z05
L~11n!

bY
s
*
T , ~25!

and one finds

h ~̄z!5h* S z

z0
2 b z

z0
c D , ~26!

h*5
bz0
L

,

where bxc denotes the integer ofx. The breaking of the as-
perities dissipates the energy that was previously stored in
the elastic stress; i.e., fracturing of the asperities is the el-
ementary dissipative process in the tangential motion. From
Eq. ~26! we obtain the shear stress as a function of the tan-
gential displacement

s T̄~z!5s
*
T S z

z0
2 b z

z0
c D ~27!

and the tangential component of the interparticle force

FIG. 1. The normal restitution coefficienteN

vs the normal component of the impact velocity
gN measured in cm s21 according to Eqs.~18!
and~19!. The dashed line denotes the dependence
eN(gN) measured by Bridges, Hatzes, and Lin
@33#.
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FT52STs̄T~z!52fTs̄NSs
*
T S z

z0
2 b z

z0
c D

52mFNS bT z

z0
2

z

z0
c D , ~28!

whereFN5s̄NS is the normal component of the interparticle
force andm5fTs

*
T .

It may be shown that a more refined mean-field approach,
which does not use the assumption of the uniformly distrib-
uted stress over the contact area, leads to the same Eq.~28!
for the tangential motion.

From Eq. ~28! follows the condition for the maximum
tangential force:

Fmax
T 5mFN. ~29!

Thus our model reproduces the Coulomb friction law@53#
with the friction coefficientm expressed in terms of meso-
scopic parameters. The model for the tangential motion is
very similar to the extensively investigated one-dimensional
model by Burridge and Knopoff@54,55# intended to model
earthquakes.

With gT(t)5 ż(t), Eq. ~5! and FN52meffj̈(t) the tan-
gential motion is governed by the differential equation

z̈2
m

k
j̈~ t !S z

z0
2 b z

z0
c D50, ~30!

with the initial conditionsż(0)5gT andz(0)50. The value
of j̈(t) is given by Eq.~18! or ~19!. Then the tangential
restitution coefficient reads

eT5 ż~ tc!/ ż~0!. ~31!

III. RESULTS AND DISCUSSION

The obtained equations for the normal@Eqs. ~19! and
~18!# and tangential motion@Eq. ~30!# have been solved nu-
merically using a Runge-Kutta method of fourth order with
adaptive step size@56#. The restitution coefficientseT and
eN have been calculated as functions of the normal and tan-
gential relative velocitiesgT, gN. For the integration we used
the parameters of ice at low temperatures@57#: Young modu-
lus Y510 GPa, Poisson ration50.3, particle size
R51022 m, with densityr5103 kg m23. The coefficient
A in Eq. ~18! was considered to be a fit parameter, due to
lack of information about the dissipative coefficientsh1 and
h2 . Figure 1 shows the numerical result of our model for the
normal restitution coefficienteN as a function of the normal
relative velocitygN compared to experimental data for the
collision of spherical ice particles with an ice wall@33#. The
experimental results are well reproduced by our model.

For the investigation of the tangential restitution coeffi-
cient of colliding homogeneous spheres (J5 2

5mR2, k5 2
7!

we have chosen the Coulomb friction coefficient from the
intervalmP@1022 . . . 1#. The value ofs

*
T is a material con-

stant. With Eq.~23! and the definitions ofj0 and h* we
estimatez0 , which characterizes the size of the surface as-
perities viam5aAz0. In the numerical calculation we have

chosena51. The results are shown in Fig. 2. The tangential
restitution coefficienteT is drawn versus the plane defined by
the tangential and normal velocitiesgT and gN. The three
plots correspond to the values of the asperity sizes
z05(1027;231024;1023)R eff, respectively.

The obvious common feature of all cases is sliding of the
surfaces (eT.0) for small gN and largegT. This is quite
plausible since smaller impact velocitygN corresponds to a
smaller normal acceleration and thus, to a smaller value of
the maximal tangential force, Eq.~28!. As a resulteT→1 at
gN→0 due to vanishing tangential acceleration. At the same
time, for the high tangential velocity,gT(0)@1 @gN(0)
.1#, sliding occurs owing to a considerable breaking of the
asperities. The area of the sliding phase in thegN-gT plane
depends on the sizez0 of the asperities.

In the case ofz051027Reff sliding occurs in the entire
velocity range according to values 0.85<eT<1. The small
asperities are not able to cause a sufficient torque to change

FIG. 2. The stereographic projection of the tangential restitution
coefficienteT vs the planegN-gT of the tangential and normal com-
ponents of the impact velocity. The three parts of the figure belong
to different values of the ‘‘size’’ of the asperities:~a! z0
51027Reff, ~b! z05231024Reff, ~c! z051023Reff.
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considerably the spin of the individual particles. Here we are
close to the case of ideal smooth spheres where no change of
the tangential motion is expected (eT51).

In the other two casesz05(231024;1023)R eff one rec-
ognizes two phases:~1! Sliding eT.0 at smallgN and high
gT; ~2! reversal of the spin of either particleseT,0 at small
gT and highergN.

Case~1! corresponds to the effect discussed in the context
of z051027. Despite being far from rather smooth spheres,
the small tangential force originated from smallgN changes
the velocitygT only slightly. Hence one haseT.0, which is
also the case for high velocitiesgT where the asperities
break. In case~2! we have the other extreme: a high normal
acceleration causes a tangential force, which is high enough
to change the sign ofgT as long as the asperities do not break
~small gT). A complete reversal of the tangential velocity
according togT(0)→2gT(tc) is not possible because of the
dissipation arising of the bulk viscosity of the material,
which enters the normal as well as the tangential forces@see
Eqs.~18! and ~30!#.

Both types of behavior of the tangential motion are sepa-
rated by a sharp transition atgT5g(cr)

T where the asperities
begin to break @see surface plots for z05(2
31024;1023)R eff#. The highergN the larger the critical tan-
gential velocityg(cr)

T . A higher normal velocitygN causes a
stronger counteracting forceFT and thus a larger tangential
impact speedgT is necessary to reach the critical deforma-
tion where the asperities break. Both cases
@z05(231024;1023)R eff# reveal similar qualitative behav-

ior but the ranges of different types of motion@~1! and ~2!#
cover different areas in thegT-gN plane.

The results show that our model includes a continuous
transition from the limit case of rough spheres (eT→21) to
the limit case of smooth spheres (eT→1). In the literature of
the dynamics of granular material an alternative step func-
tion is widely used for the tangential force@43#

FT5min$2gsm
effugTu,mFN%. ~32!

The numerical evaluation of the considered model~Fig. 2!
reveals surprising behavior of the tangential restitution coef-
ficient eT as a function of the normal velocitygN at fixed
tangential velocitygT. ~This effect is noticeable for the larg-
est values ofz0 .) At low and moderategN, eT first decreases
with increasinggN down to its minimal negative value in a
manner discussed above, but whengN exceeds some thresh-
old ~approximately of severalgT), it starts to increase up to
zero at very high values ofgN. This effect may be explained
as follows: For high values ofgN the average normal force is
large and causes thus a large tangential force, which can
effectively decelerate the initial tangential velocity without
switching to the sliding regime.

Calculating the restitution coefficientseT, eN ~in the lim-
its of our model! we obtain a complete description of binary
collisions. Therefore one can determine the dynamics for
moderately dense granular gases, where an evolution occurs
via a sequence of binary collisions. For such systems we
have the following Boltzmann equation for the one-particle
distribution function:

S ]

]t
1vW 1•¹W D f ~1!5E dvW 2E dvW 2E dnW ugW •nW uQ~gW •nW !F f ~18! f ~28!

~eNeT!2
2 f ~1! f ~2!G , ~33!

with Q(x) given by

Q~x!5H 1 for x>0

0 for x,0
~34!

and with the common notations, e.g., (1)5$rW1 ,vW 1 ,vW 1 ,t%.
The velocity and angular velocity of the first particle after
the collision vW 18 and vW 18 can be expressed in terms of the
precollisional values via the relations

vW 185vW 11
meff

2m1
$@eT~gN,gT!21#gW T2@eN~gN,gT!11#gWN%,

~35a!

vW 185vW 11
meff

2m1
RnW 3$@eT~gN,gT!21#gW T

2@eN~gN,gT!11#gWN% ~35b!

and analogously forvW 28 , vW 28 . With the use of Eqs.~33! and
~35! and the above calculated restitution coefficients
eN(gN,gT) and eT(gN,gT) @Eqs. ~20! and ~31!# one can de-
scribe the evolution of moderate dense granular gases with-

out computing the detailed dynamics of binary collisions as
is usually done in the ‘‘soft sphere’’ molecular dynamics
~MD! approach. Here one considers the grains as elastic bod-
ies that deform each other during a collision. There are sev-
eral Ansätze for the force acting between touching grains
@43,44,58#. In all cases one has to choose a time step for the
integration scheme that is significantly smaller than the typi-
cal collision time. Hence, during each collision one has to
calculate about 10–1000 times the interaction force between
the grains to provide satisfying accuracy of the simulation.
When two grains approach each other they do not feel any
interaction as long as they do not touch each other. When
granular particles collide they interact via huge restoring
forces that can be expressed by Young moduli of the order of
Y5107 kg/m sec2. The difficulty of the simulation consists
in the extreme short-range interaction of the particles and the
resulting huge gradient of the interaction force. Therefore
presently one cannot simulate much more than 3000 granular
particles in three dimensions~e.g., @59,60#! and about 104

particles in two dimensions~e.g.,@61#!.
Another method for the simulation of granular assemblies

is the ‘‘hard sphere’’ approach where one does not consider
the details of the collision but only the precollisional and
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postcollisional velocities of each pair of colliding grains. The
advantage of these simulations is the low numerical com-
plexity. One needs only computational effort when particles
collide but not in between the collisions. This allows for the
application of so-called event-driven calculations~e.g.,@62#!.
Hence, one can simulate many more particles than with
‘‘soft particle’’ methods.

One of the preconditions for the application of the ‘‘hard
sphere approach’’ is the exact knowledge of the normal and
tangential restitution coefficients,eN andeT, as functions of
the normal and tangential impact rates,gWN and gW T, whose
theoretical determination was the goal of the present paper.

An interesting possible application of this approach is the
dynamics of planetary rings composed of icy and silicate
material, which is determined by inelastic dissipative colli-
sions@38#. The calculation of such systems using the tradi-
tional MD is impossible due to the huge number of particles
in these systems.

IV. CONCLUSION

A model for collision of particles in granular gases is
proposed. For the normal component of the relative motion
the equation of motion is derived based on the general con-
sideration of the viscoelastic impact. We find the expression
for the dissipative part of the normal force in the self-
consistent quasistatic approximation that generalizes the ex-
isting results for the viscoelastic collisions@42#. For the tan-
gential relative motion we investigated a mesoscopic model
of surfaces of the colliding particles that are in contact. We
found a mean-field expression for the tangential interparticle
force, which can reproduce smooth, reflecting, or sticky col-
lisions depending on the microscopic parameters of the sur-
faces and on the relative impact velocity. A frequently used
model for collisions of granular particles by Haff and Werner
@43# is contained in our model as a special case. The restitu-
tion coefficients for the normal and tangential motion are
calculated as functions of the relative impact velocity. A
rather nontrivial strongly nonlinear dependence of the tan-
gential restitution coefficient on the impact velocity is ob-
served.

The obtained restitution coefficients may be used to de-
scribe the dynamics of moderately dense granular gases,
where the evolution occurs via a sequence of successive bi-
nary collisions.
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APPENDIX A: GENERALIZATION
OF THE HERTZ THEORY

We briefly sketch the Hertz theory of elastic impact and
give a generalization of this theory for the case of viscoelas-
tic collisions ~see also@49#!.

In the quasistatic approximation that is used in Hertz’s
impact theory it is assumed that the~time dependent! strain
and the~time dependent! stress are related in the same man-

ner as in the static case. It may be shown~see Appendix B!
that this approximation is valid for the elastic case when the
characteristic velocity is much less than the speed of sound
in the material of the colliding particles. Moreover for the
viscoelastic case it is required that the viscous relaxation
time of the material is much shorter than the duration of the
collision. In the static case the equation of equilibrium reads
@48#

¹W •ŝ~el!50, ~A1!

where the elastic stress tensorŝ (el) is expressed in terms of
displacementsuW (r ) via Eq. ~12!. Hence the static Eq.~A1!
can be written as

¹W '
2uW 1b2¹W i

2uW 50,
~A2!

b25
4E116E2

3E1
5
2~12n!

~122n!
,

with the ‘‘longitudinal’’ and ‘‘transversal’’ parts of the La-
placian

¹W i
25¹W +¹W , ~A3a!

¹W '
25¹W 22¹W i

2 . ~A3b!

The boundary conditions for the displacements in Eq.~A2!
are formulated on the surface of contact. From geometric
considerations it follows that the contact area between two
colliding particles is a plane. Using the appropriate coordi-
nate system centered in the middle of the contact region
~where we setz50) one can write

C1x
21C2y

21uz11uz25j. ~A4!

The valuesuz15uz1(x,y) anduz25uz2(x,y) are thez com-
ponents of the displacements in the materials of the bodies at
the planez50, j is the total deformation~the sum of the
deformations of both bodies at the center of the contact area,
i.e., atx5y50). The constantsC1 andC2 are expressed in
terms of radii of curvature of the surfaces in contact~see,
e.g.,@41,48#!. The values ofuz1 anduz2 may be expressed in
terms of the normal pressurePz(x,y) that acts between the
bodies atz50 @48#:

uz1~x,y,0!5uz25
L

pE E Pz~x8,y8!

r
dx8dy8,

r5A~x2x8!21~y2y8!2, ~A5!

L5
2E113E2

E1~E116E2!
5
12n2

Y
.

For simplicity we assume that the colliding particles are of
the same material. The normal pressurePz is related to the
total normal forceF (el) ,

Pz~x,y!5
3F ~el!

2pab
A12

x2

a2
2
y2

b2
, ~A6!
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wherea andb are the semiaxes of the contact ellipse. The
latter values as well as the compressionj may be found from
the set of equations

j5
F ~el!

p

3

2
LE

0

` dq

A~a21q!~b21q!q
, ~A7a!

C15
F ~el!

p

3

2
LE

0

` dq

~a21q!A~a21q!~b21q!q
, ~A7b!

C25
F ~el!

p

3

2
LE

0

` dq

~b21q!A~a21q!~b21q!q
. ~A7c!

From the above expressions it follows that for all bodies
in contact having smooth surfaces~in the mathematical
sense! the total force and the deformation are related via the
power law

F ~el!~j !5 c̃j3/2. ~A8!

The constantc̃ depends on the elastic properties of the ma-
terials and on the local curvatures of the colliding bodies. For
the case of the spherical particles one has the Hertz’s law

F ~el!~j !5
2Y

3~12n2!
AReffj3/2. ~A9!

Using this relation between force and deformation and the
equation of motion@Eq. ~9!# one can describe the elastic
collision completely. The duration of the collision is@41,48#

tc52.94Smeff

k D 2/5~gN!21/5,

k25S 45 2

3L D 2Reff. ~A10!

In the solution of the elastic contact problem the displace-
ment fieldsuW 1(rW) and uW 2(rW) are completely defined by the
value of F (el) and thus by the value of the deformationj.
Hence we writeuW (rW)5uW (rW,j), i.e., the displacement field
depends explicitly on the compression. Therefore we obtain
for the velocity of the displacement in the quasistatic ap-
proximation

uẆ ~rW !5 j̇
]

]j
uW ~rW,j! ~A11!

and correspondingly for the dissipative part of the stress ten-
sor

s~dis!
ik 5 j̇

]

]j H h1uik1S h22
h1

3 Dulld ikJ
5 j̇

]

]j
s~el!
ik ~E1↔h1 ,E2↔h2!. ~A12!

We emphasize that the expression in the curly brackets in the
above equation coincides with the elastic stress, provided the
viscous constants are substituted by the elastic ones. The
latter expression for the dissipative stress tensor is written for

the case when the memory effects in the viscous processes
may be neglected. A more general case is discussed in Ap-
pendix B.

The s (el)
zz component of the elastic stress is equal to the

normal pressurePz at the planez50,

s~el!
zz ~x,y,0!5E1

]uz
]z

1SE22
E1

3 D S ]ux
]x

1
]uy
]y

1
]uz
]z D

5
3F ~el!

2pab
A12

x2

a2
2
y2

b2
. ~A13!

With the transformation of the coordinate axes

x5ax8, ~A14a!

y5ay8, ~A14b!

z5z8 ~A14c!

and

a5S h22
1
3 h1

h21
2
3 h1

D S E21
2
3 E1

E22
1
3 E1

D , ~A15a!

b5
~h22

1
3 h1!

a~E22
1
3 E1!

, ~A15b!

a5aa8, ~A15c!

b5ab8, ~A15d!

we obtain

h1

]uz
]z

1S h22
h1

3 D S ]ux
]x

1
]uy
]y

1
]uz
]z D

5bFE1

]uz
]z8

1SE22
E1

3 D S ]ux
]x8

1
]uy
]y8

1
]uz
]z8 D G

5b
3F ~el!

2pa8b8
A12

x82

a82
2
y82

b82

5ba2
3F ~el!

2pab
A12

x2

a2
2
y2

b2
. ~A16!

Applying the operatorj̇ ]/]j to the previous expression we
obtain the result for the viscous stress. Integrating the vis-
cous stress over the contact area we finally find for the dis-
sipative component of the interparticles force

F ~dis!5Aj̇
]

]j
F ~el!~j !, ~A17!
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A5a2b5
1

3

~3h22h1!
2

~3h212h1!

~12n2!~122n!

Yn2
. ~A18!

Thus one obtains for the normal force that acts between the
viscoelastic bodies in the quasistatic regime of collision

F5const3S j3/21
3

2
AAjj̇ D . ~A19!

The constant in Eq.~A19! coincides with that for the elastic
force. For colliding spherical particles we arrive at Eq.~17!.

The impact theory, sketched above, was developed for
bodies with smooth surfaces. If the surface asperities are
taken into account, one can consider the actual surface as a
smooth one~obtained by averaging over the asperities’
heights!, with a small perturbation superimposed due to the
presence of the asperities. One can also consider the actual
normal displacements and normal pressure as a sum of the
averaged~over the asperities! values and the small perturba-
tion. Then it is easy to show that the equations, obtained for
the averaged values, coincide~due to linearity of the prob-
lem! with the corresponding equations for the elastic colli-
sion of the smooth bodies. As a result, the relation between
the force and deformation (j is the same as in Hertz’s
theory! provided thatj is defined with the use of the average
over the asperities’ radii of the colliders.

Considering the normal motion for the dissipative colli-
sions, one need not consider the plastic deformation of the
asperities, since the size of the asperities is assumed to be

very small compared with the radii of the spheres. For our
calculations in Fig. 2 the asperity size is 103–107 times
smaller than the effective radius of the particles. Hence the
dissipation in the bulk of the asperities is negligibly small
compared to the total dissipation in the compressed part of
the collider. Moreover, the ratio of the normal to tangential
stress may be roughly estimated ass̄ N/s̄ T;(j/R)1/2, so that
the crushing of the asperities does not seem to be important
for the normal motion, ifj/R!1 and if the conditions of the
quasistatic collision hold. Thus one concludes that the sur-
face asperities may be ignored, when the normal motion is
studied, provided they are small and the conditions of the
quasistatic collision are satisfied.

APPENDIX B: VALIDITY OF THE QUASISTATIC
APPROXIMATION

To analyze more rigorously the conditions when the qua-
sistatic approximation is valid we write the equation of mo-
tion for the viscoelastic continuum

ruẄ 5¹W •~ ŝ~el!1ŝ~dis!!, ~B1!

wherer is the density of the material. The expression for the
elastic part of the stress tensor is given by Eq.~12!. Taking
into account the memory effects of the dissipative processes
in the material one can write for the dissipative part

ŝ~dis!~ t !5E1E
0

t

dtc1~ t2t!F12 H ¹W +uẆ ~t!132uẆ ~t!+¹W J 2
1

3
Î¹W •uẆ ~t!G1E2E

0

t

dtc2~ t2t! Î¹W •uẆ ~t!, ~B2!

where the~dimensionless! functionsc1(t) andc2(t) are re-
laxation ~or ‘‘memory’’ ! functions for the distortion strain
and the dilatation, respectively. Note that Eq.~B2! coincides
with the corresponding expression for the viscous stress ten-
sor in @34,42# for c2(t)50. The latter approximation means
that one neglects the bulk dissipation due to the dilatation
rate. For the normal motion of colliding particles, however,
the dissipation of energy due to the dilatation rate and the
dissipation due to the distortion strain rate are of the same
order of magnitude. Thus we keep both relaxation functions
in our considerations. Introducing transversal and longitudi-
nal velocities of sound in the material

ct
25

E1

2r
5

Y

2r~11n!
, ~B3a!

cl
25

2E113E2

3r
5

Y~12n!

r~11n!~122n!
, ~B3b!

b25
cl
2

ct
2 5

2~12n!

~122n!
,

one can write the equation of motion for the viscoelastic
medium:

1

ct
2uẄ 5$¹W '

2uW 1b2¹W i
2uW %1¹W '

2c1* uẆ

1¹W i
2H 43c1* uẆ 1S b22 4

3Dc2* uẆ J , ~B4!

wherec* uẆ denotes convolution.
To estimate the relative importance of the terms in Eq.

~B4! we introduce the characteristic velocityv05gN and the
characteristic timet05tc , where tc is the duration of the
collision, introduced above in Eq.~A10!. Then the character-
istic length isR05v0t0 . Equation~B4! can then be written
in a dimensionless form:
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S v02ct2D ũẆ~ t !5$¹W '
2 ũW~ t !1b2¹W i

2ũW~ t !%1S tvis,1
t0

D¹W '
2 ũẆ~ t̃* !1S tvis,1

t0
D¹W i

2H 43ũẆ~ t̃* !1S b22 4

3D S tvis,2
tvis,1

D ũẆ~ t̃* !J , ~B5!

tvis,1/25E
0

t

c1/2~t!dt. ~B6!

We use the following representation of the convolution:

c* uẆ 5ũẆ ũ~ t̃* !E
0

t

c1/2tdt, ~B7!

with t̃* being a dimensionless time from the interval
0< t̃*< t̃5t/t0 . The relation for the convolution~B7! is
valid if c(t)>0.

During the collision processt is of the order oft0 ; i.e. t̃
is of the order of 1, while by the definition oftvis,1/2 these
values are of the order of the relaxation times for the dissi-
pative processes in the material. That means thattvis,1/2 char-
acterizes the time when the memory effects are important. If
the duration of the collision is much greater than the relax-
ation times, i.e., iftvis,1/2!t0 , one can write

tvis,1/2.E
0

`

c1/2~t!dt ~B8!

and consequently

c* uẆ .uẆ ~ t !tvis,1/2. ~B9!

If the characteristic velocityv0 is much less than the speed
of sound in the material too, one can neglect the terms with
vanishing factors (v0

2/ct
2) and (tvis,1/2/t0) in Eq. ~B5! and

finally one arrives at the static Eq.~A2!. That means the
quasistatic approach is valid provided that the conditions

1@
v0
2

ct
2 , ~B10a!

1@
tvis,1/2

t0
~B10b!

hold. From the above considerations it follows that in the
quasistatic approximation the memory effects in the dissipa-
tive processes are not important and the viscous part of the
stress tensor may be written in the same way as in Eq.~12!,
with the viscous constantsh1 andh2 given by

h1/25E1/2tvis,1/25E1/2E
0

`

c1/2~t!dt. ~B11!

It is worth noting that the quasistatic approximation is
valid for many of the granular gases one encounters in na-
ture, since usually the characteristic velocity in these systems
is low. One should also note that the description of the col-
lision in the quasistatic approximation is rigorous in a sense
that no other additional approximations are used.

As follows from the above considerations, it is not correct
to use the time dependent relaxation functions for the dissi-
pative part of the stress tensor together with Hertz’s quasi-
static relations@34,42#, since this approach is not self-
consistent and one has to assume a lot of additional hardly
controllable approximations.
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