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The inadequacy of Lie´nard-Wiechert potentials is demonstrated as one of the examples related to the
inconsistency of the conventional classical electrodynamics. The insufficiency of the Faraday-Maxwell concept
to describe the whole electromagnetic phenomenon and the incompleteness of a set of solutions of Maxwell
equations are discussed and mathematically proved. Reasons for the introduction of the so-called ‘‘electrody-
namics dualism concept’’~simultaneous coexistence of instantaneous Newton long-range and Faraday-
Maxwell short-range interactions! have been displayed. It is strictly shown that the new concept presents itself
as the direct consequence of the complete set of Maxwell equations and makes it possible to consider classical
electrodynamics as a self-consistent and complete theory, devoid of inward contradictions. In the framework of
the new approach, all main concepts of classical electrodynamics are reconsidered. In particular, a limited class
of motion is revealed when accelerated charges do not radiate electromagnetic field.

PACS number~s!: 03.50.De, 03.50.Kk

I. INTRODUCTION

In the last century, the understanding of the nature of
electromagnetic phenomena was proceeding with a constant
rivalry between two concepts of interaction: namely,Newton
instantaneous long-range interaction~NILI ! and Faraday-
Maxwell short-range interaction~FMSI!. Originally, owing
to the fundamental works of Gauss and Ampe´re, all electro-
magnetic phenomena were related to NILI. In other words, it
was understood that the interaction forces between both un-
moving and moving charges at some specific time were de-
termined by their distribution and the character of their mo-
tion at the same instant~implicit time dependence!. As a
matter of fact, the concept of field was merely subsidiary~it
was considered in a limited sense only as an external-force
field! and could be omitted entirely. On the contrary, the
concept of field is primary for FMSI, but charges and cur-
rents come to be auxiliary. More fundamentally, a field is a
system in its own right~has physical reality!, carries energy,
and fills the whole space. In accordance with Faraday-
Maxwell’s idea, the interaction between charged particles
can be described only by the intermediary of a field as an
energy-carrying physical system. Any electromagnetic per-
turbation must be spread through space continuously from
point to point during a certain amount of time~finite spread
velocity!. Finally, the discovery of Faraday’s law of induc-
tion ~explicit time dependence of electromagnetic phenom-
ena! and the experimental observation of electromagnetic
waves seemed to confirm the field concept. Nevertheless, the
idea of NILI still has many supporters. Among the physicists
who have developed some theories based, in any case, on
this concept, we can find names such as Tetrode and Fokker,
Frenkel and Dirac, Wheeler and Feynman, and Hoyle and
Narlikar @1#. This interest in the concept of NILI is explained
by the fact that classical theory of electromagnetism is an

unsatisfactory theory all by itself, and so there have been
many attempts to modify either the Maxwell equations or the
principal ideas of electromagnetism. In connection with this,
we only mention some works that have tried to unify the
advantage of the NILI concept with the conventional theory
of field. They are the so-called ‘‘retarded action at a dis-
tance’’ theories@2–6#. The fact that all new general solutions
are represented by half the retarded plus half the advanced
Liénard-Wiechert solutions@7,8# of the Maxwell’s equations
makes it consistent with the conventional FMSI concept. On
the other hand, these theories suggest the primacy of charge
and use the notion of field as an external-force field such as
the action at a distance theories. A single charged particle, in
this approach, does not produce a field of its own, and hence
has no self-energy. Thus the classical theory can be saved
from some difficulties such as self-reaction force~self-
interaction!, the idea of a whole electromagnetic mass, etc. It
turns out, however, that no one effort to straighten out the
classical difficulties has ever succeeded in making a self-
consistent electromagnetic theory. Moreover, the principal
difficulties in Maxwell’s theory do not disappear still after
the quantum mechanics modifications are made. In spite of
the great variety of methods applied to arrange the situation,
no one theory dealing with electromagnetism had ever ad-
mitted the possibility of the simultaneous and independent
coexistence of two types of interactions: NILI and FMSI. A
new approach, based on this idea, has no need to modify
either Maxwell equations or the basic ideas of the classical
electromagnetic theory. In this work we take a complete set
of Maxwell equations as correct and show that dualism of
electromagnetic phenomena is an intrinsic feature. Physical
and mathematical grounds for that will be given in the next
sections.

II. INADEQUACY OF LIE ´NARD-WIECHERT
POTENTIALS: A PARADOX

The presence of a paradox in a theory does not always
mean its inconsistency, but often indicates the cause of dif-* Instituto de Ciencia de Materiales, C.S.I.C., Madrid, Spain.
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ficulties. In this section we show one of the confusions of
classical electrodynamics in describing an electromagnetic
field of an accelerated charge. The attractiveness of this ex-
ample consists in the way it demonstrates the difficulties of
the main conventional theory and the way it leads to the idea
of dualism . Let us consider a chargeq moving in a labora-
tory reference system with a constant accelerationa along
the positive direction of theX axis. An electric field created
by an arbitrarily moving charge is given by the following
expression obtained directly from Lie´nard-Wiechert poten-
tials @9#:

E~x, y, z, t !5q
~R2RV/c!~12V2/c2!

~R2RV/c!3

1q
@R,@~R2RV/c!,V̇/c2##

~R2RV/c!3
. ~1!

We note here that all values on the right-hand side~rhs! of
~1! are taken in the moment of timet05t2t, wheret is the
‘‘retarded time.’’ We shall see that formula~1! does not
satisfy the D’Alembert equation along theX axis at any time.
To begin with, we note that in a free space along theX axis
~except the site of a charge! an electric field componentEx
satisfies the homogeneous wave equation:

DEx 2
1

c2
]2Ex

]t2
50. ~2!

To find the valueEx at the moment of timet, one must take
all the values on the rhs of~1! at the previous instantt0
derived from the condition

t05t2t5t2
R~ t0!

c
; $~R25~x2x0!

21~y2y0!
21~z

2z0!
2!% ~3!

~here (x0,y0,z0) is the site of the charge at instantt0) or
from the implicit function:

F~x, y, z, t, t0!5t2t02
R

c
50. ~4!

Then, we have the following expression forEx(x, y, z, t):

Ex~x, y, z, t !5q
~x2x02Rat0/c!~12a2t0

2/c2!

~R2~x2x0!at0/c!3

2q
a~~y2y0!

21~z2z0!
2!

c2~R2~x2x0!at0/c!3
. ~5!

SubstitutingEx given by ~5! in the wave equation~2!, one
ought to calculate in any case]t0 /]t and]t0 /]xi using dif-
ferentiation rules for the implicit function

]t0
]t

52
]F/]t

]F/]t0
;

]t0
]xi

52
]F/]xi
]F/]t0

. ~6!

As a result of the substitution of~5! into ~2! one obtains
(y, y0, z, z0 approaches zero after the differentiation!:

DEx2
1

c2
]2Ex

]t2
5q

@3~at02c!~c1at0!
222ac~x2x0!#

~at02c!3~x2x0!
4 .

~7!

In accordance with~2!, the right part of~7! must be zero.
This result is reasonable if we remember that wave equation
~2! describes only transverse modes. In this particular case,
thex component of electric field turns out to be the longitu-
dinal one and, obviously, is inconsistent with the wave equa-
tion ~2!. In any other direction, solution~1! is compatible
with ~2!. Thus, the Lie´nard-Wiechert potentials, as a solution
of the complete set of Maxwell equations, are inadequate for
describing the properties of electromagnetic field along the
direction of an arbitrarily moving charge. We note here that
inadequacy of Lie´nard-Wiechert potentials for describing the
properties of relativistic fields was also shown by Whitney
~see, e.g.,@10#!. The same singular behavior along the
X-axis direction displays another important quantity. The
Poynting vector represents the electromagnetic field energy
flow per unit area per unit time across a given surface:

S5
c

4p
@E,H#; P5

1

c2
S, ~8!

whereS is the Poynting vector,P is the momentum density,
and E and H are the electric and magnetic field strength,
respectively. One can easily see that expressions~8! are iden-
tically zero along the wholeX axis. On the other hand, from
the energy conservation law,

w5
E21H2

8p
,

]w

]t
52“•S, ~9!

we conclude thatw and]w/]t must differ from zero every-
where alongX and there is a linear connection betweenw
and E2. The conflict takes place if, for instance, as the
charge is vibrating in some mechanical way along theX axis,
then the value ofw ~which is a point function likeE) on the
same axis will be also oscillating. Then the question arises:
how does the point of observation, lying at some fixed dis-
tance from the charge on continuation of theX axis, ‘‘know’’
about the charge vibration? The presence of ‘‘retarded time’’
t in ~1! indicates that along theX axis the longitudinal per-
turbation should be spread with the energy transfer@contrary
to ~8!#. Since the vectorS is a product of the energy density
and its spreading velocityv,

S5wv, ~10!

then either the spreading velocityv or the energy densityw
must be zero along theX axis. The first assumption puts
aside the possibility of any interaction transfer. It is neces-
sary to examine carefully the second one (w50). Maxwell’s
equations state that time-varying fields are transverse. In
electrostatics and magnetostatics~as correct stationary ap-
proximations of Maxwell’s theory!, the static fields are lon-
gitudinal in the sense that the fields are derived from scalar
potentials@11#. Consequently, we can assume the spreading
of only longitudinal modes along the singularX-axis direc-
tion of our example capable of changing the field value at
any point along this axis. In this case, according to~10!, the
energy of the longitudinal modes cannot be stored locally in
space (w50) but the spread velocity may be any value. On
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the other hand, the FMSI concept forbids the spreading~not
the presence! of any longitudinal electromagnetic field com-
ponent in vacuum. Hence, this paradox cannot be resolved in
the framework of Faraday-Maxwell electrodynamics. This
simple example underlines the insufficiency of only trans-
verse solutions of Maxwell’s equations to describe full prop-
erties of electromagnetic field and leads directly to the dual-
ism idea of simultaneous and constantcoexistence of
longitudinal ~action at a distance! and transverse electro-
magnetic interactions. In the next sections one can find math-
ematical and physical reasons for the dualism concept that
permits one to build up self-consistent classical electrody-
namics. As a final remark, we make a reference to Dirac,
who writes@12#: ‘‘As long as we are dealing only with trans-
verse waves, we cannot bring in the Coulomb interactions
between particles. To bring them in, we have to introduce
longitudinal electromagnetic waves . . . . The longitudinal
waves can be eliminated by means of mathematical transfor-
mation. Now, when we do make this transformation which
results in eliminating the longitudinal electromagnetic
waves, we get a new term appearing in the Hamiltonian. This
new term is just the Coulomb energy of interaction between
all the charged particles:

(
~1,2!

e1e2
r 12

. . . This term appears automatically when we make the
transformation of the elimination of the longitudinal waves.’’

III. REASONS AND FOUNDATIONS OF THE METHOD
OF SEPARATED POTENTIALS

Let us recall that a complete set of Maxwell equations is

“•E54p%, ~11!

¹•B50, ~12!

¹3H5
4p

c
j1

1

c

]E

]t
, ~13!

¹3E52
1

c

]B

]t
. ~14!

If this system of equations is really complete, it must de-
scribe all electromagnetic phenomena without exceptions.

It is often convenient to introduce potentials, satisfying
the Lorentz the condition

“•A1
1

c

]w

]t
50. ~15!

As a result, the set of coupled first-order partial differential
equations~11!–~14! can be reduced to the equivalent pair of
uncoupled inhomogeneous D’Alembert equations:

Dw2
1

c2
]2w

]t2
524p%~r ,t !, ~16!

DA2
1

c2
]2A

]t2
52

4p

c
j ~r ,t !. ~17!

Differential equations have, generally speaking, an infinite
number of solutions. A uniquely determined solution is se-
lected by laying down sufficient additional conditions. Dif-
ferent forms of additional conditions are possible for the
second-order partial differential equations: initial value and
boundary conditions. Usually, a general solution of
D’Alembert’s equation is considered as an explicit time-
dependent functiong(r ,t). In the stationary state the
D’Alembert equation is transformed into the Poisson equa-
tion, whose solution is an implicit time-dependent function
f „R(t)…. Nevertheless, the conventional theory does not ex-
plain in detail how the functiong(r ,t) is converted into an
implicit time-dependent functionf „R(t)… ~and vice versa!
when the steady-state problems are studied.

Further we shall demonstrate that former solutions of
Maxwell’s equations are incomplete and do not ensure a con-
tinuous transition between the D’Alembert and Poisson
equations’ solutions, respectively. As a matter of fact, it will
be shown that a mathematically complete solution of Max-
well’s equations must be written as a linear combination of
two nonreducible functions with implicit and explicit time
dependence:

f „R~ t !…1g~r ,t !. ~18!

In the classical Faraday-Maxwell electrodynamics the
Poisson equation is mathematically exact for the steady-state
problems. Based on the idea of a continuous nature of elec-
tromagnetic phenomena, one could suppose that the general
solution of Poisson’s equation should be continuously trans-
formed to the D’Alembert’s equation solution~and vice
versa! when the explicit time dependence appears~disap-
pears!. This requirement can also be formulated as a math-
ematical condition on the continuity of the general solutions
of Maxwell’s equations at every moment of time. By force of
the uniqueness theorem for the second-order partial differen-
tial equations, only one solution can exist that satisfies the
given initial and boundary conditions. Consequently, the
continuous transition from the D’Alembert’s equation solu-
tion into the Poisson’s one~and vice versa! must be ensured
by the continuous transition between the respective initial
and boundary conditions. This is the point where the FMSI
concept fails. Really, only the implicit time-dependence
function f „R(t)… can be a unique solution of Poisson’s equa-
tion and boundary conditions for the external problem are to
be formulated in infinity. On the other hand, the
D’Alembert’s equation solution is looking for only an ex-
plicit time-dependent functiong(r ,t) since only that one cor-
responds to the classical FMSI concept as a physically rea-
sonable solution. The boundary conditions in this case are
given in a finite region. It has no sense to establish them at
the infinity if it cannot be reached by any perturbation with
finite spread velocity. Dealing with a large external region
when the effect of the boundaries is still insignificant over a
small interval of time, it is possible to consider the limiting
problem with initial conditions for an infinite region~initial
Cauchy’s problem!.

Let us consider carefully the formulation of respective
boundary-value problems in a region extending to infinity
@13#. There are three external boundary-value problems for
Poisson’s equation. They are known as the Dirichlet prob-
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lem, the Neumann problem, and their combination. The
mathematical problem, for instance, for the Dirichlet bound-
ary conditions is formulated as follows. It is required to find
the function u(r ) satisfying the following: ~i! Laplace’s
equationDu50 everywhere outside the given system of
charges~currents!; ~ii ! u(r ) is continuous everywhere in the
given region and takes the given valueG on the internal
surfaceS: uuS5G; ~iii ! u(r ) converges uniformly to 0 at
infinity: u(r )→0 asur u→`.

The final condition~iii ! is essential for a unique solution.
In the case of D’Alembert’s equation the mathematical prob-
lem is formulated in a different manner. Obviously, we are
interested only in the problem for an infinite region~initial
Cauchy’s problem!. So it is required to find the function
u(r ,t) satisfying the following: ~1! homogeneous
D’Alembert’s equation everywhere outside the given system
of charges~currents! for every moment of timet>0; ~2!
initial conditions in all infinite regions, as follows:

u~r ,t !u t505G1~r !; ut~r ,t !u t505G2~r !.

The condition~iii ! about the uniform convergence at the
infinity is not mentioned. We recall here that Cauchy’s prob-
lem is considered when one of the boundaries is insignificant
over all process time. This condition~iii ! will never affect
the problem and, hence, cannot be taken into account for the
correct solution selecting. However, it may be formally in-
cluded into the mathematical formulation of the
D’Alembert’s equation boundary-value problem to fulfill the
formal continuity with the Poisson’s equation solution at the
initial moment of time. Nevertheless, this condition is al-
ready meaningless in the next instant of time since only ex-
plicit time-dependent solutions asg(r ,t) ~retarded solutions
with finite spreading velocity! are considered.

Thus, we underline here that the absence of the condition
~iii ! for every moment of time in the initial Cauchy problem
does not ensure the continuous transition into the external
boundary-value problem for Poisson’s equation and, as a re-
sult, mutual continuity between the corresponding solutions
cannot be expected by force of the uniqueness theorem.
However, there is a way to solve the problem: to satisfy the
continuous transition between the D’Alembert’s and Pois-
son’s equation solutions, one must look for a general solu-
tion in the form of separated functions~18! nonreducible to
each other. When applied to the potentialsA and w this
statement takes the form:

A5A0„R~ t !…1A* ~r ,t !, ~19!

w5w0„R~ t !…1w* ~r ,t !. ~20!

In this case, the presence of the condition~iii ! in the Cauchy
problem turns out to be meaningful for any instant of time,
and the corresponding boundary conditions keep continuity
with respect to mutual transformation.

As an additional remark, we conclude that the traditional
solution of D’Alembert’s equation cannot be complete, since
the Faraday-Maxwell concept does not allow one to take into
account the first term in~18! as valuable at any moment of
time. Turning to the previous section, we see that the new
solution in the form~20! is able to change the electric field
componentEx along theX axis at any distance and at any

time. It is quite obvious now why Lie´nard-Wiechert poten-
tials ~as only explicit time-dependent solution of Cauchy’s
problem! turned out not to be the complete solutions of Max-
well equations, and why they are not adequate to describe the
whole electromagnetic field.

Let us consider again the set of Maxwell’s equations
~11!–~14!. A pair of uncoupled differential equations can be
obtained immediately for the new general solution in the
form of separated potentials~19!, ~20! ~we omit boundary
conditions premeditatedly!:

Dw0524p%~r , t !, ~21!

DA052
4p

c
j ~r , t ! ~22!

and

Dw*2
1

c2
]2w*

]t2
50, ~23!

DA*2
1

c2
]2A*

]t2
50. ~24!

The initial set of Maxwell’s equations has been decomposed
into two independent sets of equations. The first one,~21!
and~22!, answers for the instantaneous aspect~‘‘ action at a
distance’’! of electromagnetic nature while the second one,
~23! and~24!, is responsible for explicit time-dependent phe-
nomena. The dualism as an intrinsic feature of Maxwell’s
equations is evident. The potential separation,~19! and~20!,
implies the same with respect to the field strengths:

E5E0„R~ t !…1E* ~r ,t !, ~25!

B5B0„R~ t !…1B* ~r ,t !, ~26!

whereE0 andB0 are instantaneous~NILI ! fields. If we see
again the formula~1! based on Lie´nard-Wiechert potentials,
then in accordance with~25! the first term must be consid-
ered without ‘‘retarded time’’~at a given instant of timet)
and the whole expression will be as follows:

E@R~ t !,R0~ t0!,t0#5q
R~12V2/c2!

R2~12V2/c2sin2Q!3/2

1E* @a~R0 ,t !#, ~27!

hereQ is the angle between the vectorsV andR, a(R0 ,t0) is
the acceleration of the chargeq in the previous moment of
time t05t2t, and t is the ‘‘retarded time.’’ We note that
the first term in~1! is mathematically equivalent to that in
~27! ~see@9#!. In the steady state~ a50!, the second term
E* must be zero, so~27! can be consistent with the require-
ments of the Lorentz transformation. The same approach is
applicable to the Lie´nard-Wiechert ~LW! potentials. We
leave out the complete modification of LW potentials as well
as an exact expression forE* , which, while of interest in
themselves, have no direct connection with the following
material.

To finish this section we conclude that NILImust exist as
a direct consequence of Maxwell equations. According to
this, both pictures, the NILI and the FMSI, have to be con-
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sidered as twosupplementary descriptions of one and the
same reality. Each of the descriptions is onlypartly true. In
other words, both Faraday and Newton in their external ar-
gument about the nature of interaction at a distance turned
out right: instantaneous long-range interaction takes place,
not instead of, but along with the short-range interaction in
the classical field theory.

IV. RELATIVISTIC NONINVARIANCE OF THE
CONCEPT OF ENERGY OF SELF-FIELD OF A CHARGE

„SELF-ENERGY CONCEPT…: MECHANICAL
ANALOGY OF MAXWELL’S EQUATIONS

Maxwell’s equations lend themselves to a covariant de-
scription and are in agreement with the requirements of rela-
tivity. In the previous section we have not modified the set of
Maxwell’s equations, we have only separated two nonreduc-
ible parts in the general solution. Hence, the usual four-
vector form of the basis equations can be used. For four-
vectors of separated potentials we have automatically the
following expressions:

h~A0m1Am* !52
4p

c
j m ; ~m50,1,2,3!, ~28!

where

A0m1Am*5~w01w* ,A01A* !; j m5~c%,j !. ~29!

To give some substance to the above formalism we ex-
hibit explicitly the Poisson equation for instantaneous four-
vectorA0m :

DA0m52
4p

c
j m , ~30!

where

A0m5@w0„R~ t !…,A0„R~ t !…#. ~31!

Equation ~30! is covariant also under Lorentz transforma-
tions. This is an exact consequence of~28! in the steady
approximation and can be proved directly. It is supported by
the well-known fact that covariance is not necessary~it is
sufficient! for the relativistic invariance. Nevertheless, in the
Faraday-Maxwell electrodynamics this fact was always per-
ceived as quite odd. Actually, potentials of an unmoving
charge do not have explicit time dependence. For a general
Lorentz transformation from a reference systemK to an in-
ertial systemK8 moving with the velocityv relative toK, the
explicit time dependence does not appear. Why do those po-
tentials keep implicit time dependence under the Lorentz
transformation? Without any approximation, the influence of
a possible retarded effect is canceled itself at any time and at
any distance from the moving charge. On the other hand, the
conventional theory is unable to describe correctly the tran-
sition from a uniform movement of a charge into an arbitrary
one and then again into uniform over a limited interval of
time. In this case, the first and the latter solutions can be
given exactly by the Lorentz transformation. Furthermore the
question arises: what mechanism changes these potentials at
the distance unreachable for retarded Lie´nard-Wiechert

fields? The lack of continuity between the corresponding so-
lutions is obvious. It has the same nature as discussed in the
above sections, due to incompleteness of existent solutions.

The new approach also highlights the invariant deficiency
of the self-energy concept in the framework of relativity
theory. We confine our reasoning to the example of the elec-
trostatic. The total potential energy ofN charges due to all
the forces acting between them is

W5
1

2(i51

N

(
jÞ i

qiqj
ur i2r j u

. ~32!

Here, the infinite self-energy terms (i5 j ) are omitted in the
double sum. The expression obtained by Maxwell for the
energy in an electric field, expressed as a volume integral
over the field, is@14#:

W5
1

2EV E2dV . ~33!

This corresponds to Maxwell’s idea that the system energy
must be stored somewhere in space. The expression~33!
includes self-energy terms and in the case of point charges
they make infinite contributions to the integral. The introduc-
tion of a finite radius for the elementary charges enables one
to get rid of that difficulty but breaks down the possibility to
see the classical electrodynamics as a self-consistent theory
~Poincare´’s non-electrical forces@15#!.

In spite of introducing the self-energy concept long before
the special relativity principle had arisen, there was not much
alarm about the fact that it did not satisfy the relativity in-
variance condition. Strictly speaking, Einstein’s theory re-
futes the invariance of energy. The law of energy conserva-
tion cannot be maintained in its classical form. In a
relativistically covariant formulation the conservation of en-
ergy and the conservation of momentum are not independent
principles. In particular, the local form of the energy-
momentum conservation law can be written in a covariant
form, using the energy-momentum tensor

]Tmn

]xn 50. ~34!

For an electromagnetic field, it is well known that~34! can
be strictly satisfied only for a free field~when a charge is not
taken into account!, whereas, for the total field of a charge
this is not true, since~34! is not satisfied mathematically
~four-dimensional analogy of Gauss’s theorem!. As everyone
knows in classical electrodynamics, this fact gives rise to the
‘‘electromagnetic mass’’ concept, which violates the exact
relativistic mass-energy relationship (E5mc2). Let us ex-
amine this problem in a less formal manner. The equivalent
three-dimensional form of~34! is the formula ~9!. The
amount of electrostatic energy of an unmoving charge in a
given volumeV is proportional toE2 @see~33!#. According
to ~34! @or ~9!#, in a new inertial frameK8, this valueW
must be, generally speaking, an explicit time-dependent
function (]w/]tÞ0). Furthermore, this means also the ex-
plicit time dependence for the electric field (]E/]tÞ0). On
the other hand, the electric field strength of an unmoving
charge keeps its implicit time-dependent behavior under the
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Lorentz transformation (]E/]t50). The conflict with the
relativistic invariance condition is obvious. The analogous
reasoning can be applied for Coulomb’s electrostatic energy
of a system of charged particles. In this case, if one is think-
ing that electrostatic energy can be stored locally in space,
the conflict with the relativity principle is inevitable. How-
ever, in the framework of the above-stated separated-
potential method it is possible to avoid those difficulties.
Actually, in the new general solution~25! E0 is the only term
exclusively linked to the charges. According to the above
speculation, no local energy conservation law can be written
for this fieldE0 . The mathematical form~32! must be saved
for it. But there is no cause to reject the local form for the
time-dependent free fieldE* . In fact, the mathematical ex-
pression~33! is adequate for it. Thus, if one wishes not to get
into trouble with the relativity principle, one must distinguish
two different terms in the total electric field energy:

W5
1

2(i51

N

(
jÞ i

qiqj
ur i2r j u

1
1

2EV E* 2dV . ~35!

We should make one further remark about this energy
formula. In first place, the dualism concept reveals the dual
nature of the electromagnetic field energy. So, for instance,
the total electric energy is the electrostatic energy plus the
electric energy of the free electromagnetic field. The first
term is nonzero if the system consists of at least two inter-
acting charged particles. The second term is taken as an in-
tegral over the region ofV where the local value ofE* is
not equal to zero. In the next section the correctness of this
energy representation for all electromagnetic fields will be
strictly verified by applying the principle of least action. The
introduction of the self-energy concept in 19th century phys-
ics can be explained historically. Maxwell considered the
total electromagnetic field to be a uniform physical object in
its own right.

Removing the self-energy concept, a valuable mechanical
analogy of the Maxwell equations in the form of~21!–~24!
can be used to understand why their general solution must be
as separated potentials~19!, ~20!. From the mathematical
point of view, the two equations~21! and~22! correspond to
the electrostatic and magnetostatic approximations, respec-
tively, and may be considered as wave equations with infi-
nite spread velocity of longitudinal perturbations. If there is
no local energy transfer, Einstein’s theory does not limit the
signal spreading velocities. In this case, the set of differential
equations for elastic waves in an isotropic media~see@16#!
can be treated as a mechanical analogy of~21!–~24!:

]2ul
]t2

2cl
2Dul 50, ~36!

]2ut
]t2

2ct
2Dut50. ~37!

The general solution of~36! and ~37! is the sum of two
independent terms corresponding to longitudinalul and
transverseut waves:

u5ul 1ut . ~38!

If the longitudinal spreading velocity approaches formally to
infinity (cl →`) then ~36! transforms into Laplace’s equa-
tion whereas the functionul turns out to have an implicit
time dependence. Thus, the formula~38! takes the form of
separated potential’s solution~19! and ~20!.

To end this section, we note that the idea of nonlocal
interactions can be immediately derived from Maxwell’s
equations as an exact mathematical result. On the other hand,
some of the quantum mechanical effects like the Aharonov-
Bohm effect@17#, violation of the Bell’s inequalities@18,19#,
etc., point out indirectly to the possibility of nonlocal inter-
actions in electromagnetism. Nevertheless, in this work we
prefer to confine themselves to the classical theory.

V. HAMILTONIAN FORM OF MAXWELL’S EQUATIONS
FROM THE POINT OF VIEW OF SEPARATED

POTENTIAL’S METHOD

In the last section we introduced the prototype for a new
electromagnetic energy interpretation. In this section we
shall discuss general field equations for arbitrary fields from
the standpoint of the principle of least action and the change
in their interpretation due to the new dualism concept. In
extending the separated-potential method no modifications at
all are necessary in the set of Maxwell’s equations to make
them agree with the requirements of the covariant formula-
tion. Hence, in the steady approximation (w*50,A*50) a
relativistic action for a system of interacting charged par-
ticles can be written in the conventional form@9#

Sm1Smf5E S 2 (
a51

N

macdsa2 (
a51

N
ea
c (

m50
A0~ma!dxa

mD ,
~39!

whereA0(ma) is the instantaneouspotential (w0 ,A0) in the
four point on the world line of the particle with the number
‘‘ a’’ created by other particles. This expression is sufficient
to derive the first couple of equations~21! and~22! from the
least action principle. It can be proved directly rewriting the
second term in~39! as

Smf52
1

cE (
m

A0m j
mdV dt, ~40!

using the Dirac’s expression for four-current:

j m~r ,t !5(
a

F ea4p
DS 1

ur2rau
D Guma , ~41!

whereuma is the four-velocity of the charged particle ‘‘a. ’’
Generally, for a system of arbitrary moving charges, the
time-dependent potentials (w* ,A* ) appear in the general so-
lution. This means that an additional term corresponding to
the free electromagnetic field must be added to~39!. In the
first place, it must vanish under the transition to the steady
approximation (w*50,A*50). On the other hand, the
variation of this term has to lead to the second pair of equa-
tions ~23! and ~24!. As a result, it is easy to see that the
conventional Hamiltonian form can be adopted to describe
the presence of the free electromagnetic field@9#
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Sf52
1

16pE (
m,n

FmnF
mndV dt, ~42!

where

Fmn5
]An*

]xm 2
]Am*

]xn . ~43!

Finally, it remains to be proved that from the variation de-
rivative,

dSf52E (
m

S 1

4p(
n

]Fmn

]xn D dAm* dV dt, ~44!

one obtains the covariant analog of~23! and ~24! in the fol-
lowing form:

(
n

]

]xn F
mn5(

n

]

]xn F]A* n

]xm
2

]A* m

]xn
G50. ~45!

The only difference with the classical field interpretation
consists in the way electromagnetic potentials take part in
this Hamiltonian formulation. Actually, the second term in
~39! contains only instantaneous potentials whereasSf is re-
lated with time-varying field components. Consequently,
contrary to traditional interpretation, the quantityFmn can be
defined as a free electromagnetic field tensor.

In light of the new approach, the electromagnetic energy-
momentum tensor demands some corrections in the interpre-
tation of its formal mathematical formulation@9#:

Tmn52
1

4p(
r

Fr
mFnr1

1

16p
gmn(

b,g
FbgF

bg. ~46!

As a consequence of~43!, in this form it can describe the
energy-momentum conservation law for, exclusively, the free
electromagnetic field as follows:

(
n

]Tmn

]xn 50, ~47!

which supports the new interpretation of electric field energy
given in the previous section. Strictly speaking, from the
point of view of the dualism concept, the total field energy
Wmust consist of two noncompatible parts: on one hand, the
energyWmf of electrostatic and magnetostatic interaction be-
tween charges and currents~nonlocal term!, on the other
hand, the energyWf of the free electromagnetic field~local
term!:

W5Wmf1Wf . ~48!

This contradicts considerably the FMSI concept about the
unique nature of electromagnetic field energy. Summarizing
these results, we see that the concept of potential~nonlocal!
energy and potential forces must be conserved as valid in
classical electrodynamics. So, the system of charges and cur-
rents in the absence of free electromagnetic field must be
considered as conservative system without any idealization.
As an important remark we note the physical meaning of
Poynting vector has been changed notably. So far the classi-
cal theory dealt with it as a quantity attributed to all dynamic

properties of the total electromagnetic field. From the new
point of view, it can be nonzero only in the presence offree
field. The great problem of the classical electrodynamics, the
indefiniteness in the location of the field energy, does not
exist anymore. In particular, the flux of the electromagnetic
energy in the steady state has no sense since no presence of
the free electromagnetic field is supposed in this case.

VI. NONRADIATION CONDITION FOR FREE
ELECTROMAGNETIC FIELD

In this section we shall discuss the energy balance be-
tween the system of interacting charged particles and free
electromagnetic field, namely, energy and momentum lost by
radiation. Turning to the results of the last section we must
examine carefully one essential difference in electromagnetic
energy interpretation. Let us write the total relativistic action
as

S5Sm1Smf1Sf . ~49!

Although we adopt the same notation used in the conven-
tional theory, the physical essence of the last two terms has
changed significantly. Usually, the interaction between par-
ticles and electromagnetic field was attributed toSmf
whereas the properties of electromagnetic field manifested
themselves by the additional termSf .

In the new approach, no concept of field as intermediary
is needed to describe the interaction between charges~cur-
rents!. Hence,Smf cannot be treated in terms of particle-field
interaction. Such interaction as well as the intrinsic proper-
ties of a free electromagnetic field are enclosed now in the
last termSf . The possible free field interaction with the sys-
tem of charges~currents! depends entirely on its location in
space. This reasoning makes it possible to consider the iso-
lated system of charged particles and free field as consisting
of two corresponding subsystems. Each of the subsystems
may be completely independent if there is no mutual inter-
action ~for instance, free electromagnetic field is located far
from the given region of charges and currents!. In the steady
approximation the first subsystem~charges and currents! can
be considered as conservative. In other words, it means the
total Hamiltonian of the whole isolated system can be de-
composed into two corresponding parts:

H5H11H2 , ~50!

whereH1 is the Hamiltonian of the conservative system of
charges and currents. It involves, apart from electrostatic and
magnetostatic energy, mechanical energy of particles~corre-
sponds to the actionSm1Smf).H2 is the Hamiltonian of the
free electromagnetic field~corresponds to the actionSf).

We recall here that in the relativistic case, the energy is
the zero component of the momentum. However, if we deal
with the isolated system, the total Hamiltonian is not time
dependent and the energy conservation law as well as the
momentum conservation may be treated independently. It is
important to note that such separation into two subsystems is
valid only in the new approach. The conventional interpreta-
tion of Sf did not allow us to consider it separately. Actually,
in the steady approximationSf was not zero, and corre-
sponded to the self-energy of field@9#:
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Sf5E
t2

t1
L fdt, ~51!

where

L f5
1

8pEV ~E22B2!dV . ~52!

Here E and B are the total electrostatic and magnetostatic
field strengths, respectively. Thus, the fact thatSf is respon-
sible solely for free field turns out to be a meaningful argu-
ment in separating into two subsystems. It is often possible
to extract a large amount of information about the physical
nature of the system using conservation laws, even when
complete solutions cannot be obtained. Let us now consider
the case when charges~currents! and free electromagnetic
field are located in the same region and become interacting.
Internal forces of mutual reaction between two subsystems
are usually named as internal dissipative forces. They carry
out the energy exchange inside the total isolated system. In
terms of the Hamiltonian formalism it can be expressed as a
corresponding Hamiltonian evolution~see, for instance,
@20#!:

dH1,2

dt
5

]H1,2

]t
1P 1,2

ext1P 1,2
int , ~53!

where P 1,2
ext(P 1,2

int) is the power of the external~internal!
forces acting on the two subsystems, respectively. In our case
P 1

ext andP 2
ext appear as a result of the mutual interaction.

On the other hand, any internal nonpotential force in the first
subsystem can also cause energy dissipation (P 1

int). Even in
the absence of a real mechanical friction, other internal non-
potential forces~for example, inhomogeneous gyroscopic
forces! can still act in this subsystem and dissipate energy. In
other words, if initially there is no free electromagnetic field
(H250), it can be created by internal nonpotential forces
(P 1

int) acting in the first subsystem (H2 is no longer zero!. It
means that energy is lost by radiation in the subsystem of
charges and currents. In mathematical language the corre-
sponding energy balance can be written as follows:

d

dt
~H11H2!5Ḣ11Ḣ250, ~54!

whereḢ1 andḢ2 are energy change rates for the first and
the second subsystems, respectively. It might be easily noted
that the energy balance~54! is symmetrical in respect to time
reversion, which is in accordance with the time symmetry of
Maxwell’s equations. The real direction of the energy ex-
change process may be determined by some subsidiary con-
ditions. On the contrary to this, the energy balance in the
conventional electrodynamics was always irreversible in
time. From the other hand, the former class of theories based
on the action at a distance principle~for example, the elec-
trodynamics of Wheeler and Feynman! did not consider at all
the third termSf in ~49!, corresponding to radiation reaction.
As a matter of fact, there were no radiation effects in those
theories, but only interactions of a number of particles.

To end the section we formulate the previous statement
about the energy conservation asthe condition of non-
radiation of the free electromagnetic field.

If in an isolated system of charges~currents! in the ab-
sence of free electromagnetic field (H250), all internal
nonpotential forces are compensated or do not exist then this
system will not produce~radiate! free electromagnetic field
(H2 remains zero! and will keep the conservative system
itself.

This implies not only an equilibrium between radiation
and absorption but no radiation at all. As a simple example
of a nonradiating system we can consider two charged par-
ticles moving with acceleration along a direct line under mu-
tual Coulomb interaction. The absence of other frictional
forces is supposed. The presence of any inhomogeneous gy-
roscopic~Lorentz-type! forces here are not expected due to
the one-dimensional character of motion. Some mention
should also be made of the many-particle system. It is pos-
sible that there is some limited class of motion when all
nonpotential~for example, internal gyroscopic forces! can be
compensated due to the own magnetic moment of charged
particles. This possibility would be of particular interest in
the attempt to understand the quantum mechanics principles.

In the present work the question of interaction of free
fields with sources~charges and currents! is given in a per-
functory manner and should be studied carefully. It should be
compared with the older nonradiation theories based on the
extendedDirac electron models~see, for instance@21#,!. Fur-
thermore, emission, absorption and, for instance, scattering
processes can be caused by the interaction of matter fields
with theB(3) spin field. It is created by transverse left- and
right-circular polarized waves, as found by Evans and Vigier
@22–25#. On the other hand, the existence of the longitudinal
B(3) field may hint on nonzero photon mass. Theoretical
constructs of such a type were introduced and developed by
Einstein, Schro¨dinger, Deser, de Broglie, and Vigier~see,
e.g.,@26#!. However, relations betweenB(3) and other lon-
gitudinal solutions of Maxwell equations, as well as the
problem of photon mass, must be studied more carefully.

VII. CONCLUSIONS

Finally, we conclude that the FMSI concept could not
give a complete and adequate description of the great variety
of electromagnetic phenomena. It has been shown that an-
other concept~the so-calleddualism concept!, consistent
with the full set of Maxwell’s equations, can be accepted as
a correct description of electromagnetism. In other words,
the new concept states that there is asimultaneousand inde-
pendent coexistence of Newton instantaneous long-range
~NILI ! and Faraday-Maxwell short-range interactions
~FMSI! which cannot be reduced to each other. The reasons
are based on the mathematical method~so-calledseparated-
potential method! proposed in this work for a complete gen-
eral solution of Maxwell’s equations. As a result, the incom-
pleteness of former solutions of Maxwell’s equations is
proved.

In the framework of the new approach, all main concepts
of the classical electrodynamics have been reconsidered. In
particular, it has been shown that the dual nature of the total
electromagnetic field must be taken into consideration. On
one hand, there is a free electromagnetic fieldE* (B* ) that
has no direct connection with charges and currents, and can
be transferredlocally. On the other hand, there is a field
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E0(B0) linked exclusively to charges~currents! and respon-
sible for interparticle interaction, whichcannot be trans-
ferred locallyin space. However, in total, these two kinds of
electromagnetic fieldsE01E* (B01B* ) as a superposition
satisfy Maxwell’s equations and are observed experimentally
as a unique electromagnetic field. Other quantities of the
classical electrodynamics such as electromagnetic field ten-
sor, electromagnetic energy-momentum tensor, etc., have
also changed their physical meanings. In particular, the
Poynting vector can be associatedonly with the free electro-
magnetic field. In light of this result, the problem of the
indefiniteness in the field energy location has no place and
no flux of electromagnetic energy in steady state can be de-
rived from the theory. Also problems such asself-force, in-
finite contribution of self-energy, the concept of electromag-

netic mass, and radiation irreversibility in time with respect
of Maxwell equationshave been removed in the new ap-
proach. A new interpretation of the energy conservation law
is possible as a nonradiation condition that states thata lim-
ited class of motion exists when accelerated charged par-
ticles do not produce electromagnetic radiation.
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