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Stable solitons in two-component active systems
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As is known, a solitary pulse in the complex cubic Ginzburg-Landau (GL) equation is unstable.
We demonstrate that a system of two linearly coupled GL equations with gain and dissipation in
one subsystem and pure dissipation in another produces absolutely stable solitons and their bound
states. The problem is solved in a fully analytical form by means of the perturbation theory. The
soliton coexists with a stable trivial state; there is also an unstable soliton with a smaller amplitude,
which is a separatrix between the two stable states. This model has a direct application in nonlinear
Aber optics, describing an erbium-doped laser based on a dual-core fiber.
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Localized pulses (solitons) play a central role in a num-
ber of nonlinear physical systems, which are now a sub-
ject of very broad interest [1,2]. Since real systems are
always lossy, it is necessary to have an active element
in the system in order to provide gain compensating the
losses. In plasma physics and hydrodynamics, the gain is
provided by intrinsic instabilities of the system [3]. For
solitons in nonlinear optical fibers (NOF's), an efFective
way to compensate for the losses is by use of erbium-
doped amplifiers [2]. Here, however, one encounters a
fundamental problem: if the active element is uniformly
distributed along the length of the system, it automat-
ically renders the zero solution unstable, thus lending
an instability to the whole soliton. A commonly known
model which demonstrates this property is the complex
cubic Ginzburg-Landau (GL) equation, which in many
cases, and especially in application to NOF's, may be re-
garded as a perturbed nonlinear Schrodinger (NLS) equa-
tion [3]:
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where u(2:, t) is an envelope function (e.g. , of electromag-
netic waves in the NOF's), t and z are the spatial and
temporal variables (in the NOF's their physical meaning
is reversed), and po is the gain, while the coefficients pi
and p2 account for the dispersive and nonlinear losses,
and all the p's are assumed non-negative. It is well-
known that Eq. (1) admits an exact solitary-pulse so-
lution, which in the limit of a vanishing right-hand side
of Eq. (1) goes over into the soliton of the NLS equation
[3]. Regarding the pulses in the model (1) as perturbed
NLS solitons, it has also been demonstrated that they are
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able to form two-soliton and multisoliton bound states,
which are stable against disturbances of the separation
and phase differences between the solitons [4]. However,
it is obvious that, since po ) 0, the trivial solution u = 0
is unstable in this model; hence an isolated pulse as a
whole is unstable too [it was demonstrated numerically
that locally stable pulses are possible in Eq. (1) with
negative po and pz [5]; we do not consider this case here
as the model is then globally unstable]. This circum-
stance does not render the pulses meaningless objects—
they may be egjectively stable when the system is short
enough, or the evolution is considered at finite times.
In the general case, however, development of the insta-
bility leads to dynamical chaos [6]. An example is the
so-called "dispersive chaos" experimentally observed in
bi.nary-fluid convection [7].

A problem of fundamental interest is to find sufficiently
simple physical models which can produce totally stable
pulses. One example is the driven damped NLS equa-
tion [8], which has various applications, including those
in nonlinear fiber optics [9]. However, in that model the
pulses are not truly localized, being supported by an os-
cillating background. Experimentally, absolutely stable
localized pulses of traveling-wave convection were dis-
covered beneath the instability onset in narrow channels
filled with a binary fluid heated from below [10]. A dis-
tinctive feature of a model supporting stable pulses is
bistability, as, being stable, the localized pulses must co-
exist with the stable trivial solution. The simplest way
to provide for the bistability is to introduce a quintic
GL equation [11].In terms of nonlinear fiber optics, this
equation models a nonlinear amplifier [12], which can be
built, e.g. , as a combination of linear amplifier and a sat-
urable absorber with an instantaneous response. In this
case, the quintic equation can be obtained by means of a
truncated Taylor expansion of the gain and loss charac-
teristic of the medium.

Within the framework of the latter model, the exis-
tence of stable pulses can be demonstrated analytically
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in two opposite cases: when the quintic GL equation
is close to the NLS equation [13], and when it is close
to the real GL equation [14]. For intermediate values
of the parameters, existence of the stable pulses in the
model was demonstrated numerically [15]. Stable local-
ized pulses for which the quintic equation seems to be
an appropriate phenomenological model were observed
in the form of subcritical pulses in the traveling-wave
convection in narrow channels [10]. Similar pulses were

produced by numerical simulations of the full system of
the corresponding two-dimensional hydrodynamic equa-
tions [16]. However, the quintic GL equation proves to
be a crude model, even at the phenomenological level,

for the pulses observed in the experiment. The most es-

sential feature which finds no explanation in the frame-

work of this model is the very low velocity of the pulse in

the laboratory reference frame [17]. As demonstrated by
Riecke [18], an essential improvement of the description
of the experimentally observed pulses is achieved within

the framework of a model coupling the cubic GL equa-

tion (actually, two such equations for counterpropagat-
ing waves) to an additional equation for a real variable,
which is a "mean field, " representing in this problem a
concentration field. It is well known that coupling of the
GL equation to a real mean-field mode can drastically
change the dynamics of the GL model [19].

In this work, we aim to put forward a model of another

type supporting absolutely stable solitons. Actually, the
model will generate two solitons, one stable and one un-

stable, the unstable one being a separatrix between at-
traction domains of the stable soliton and of the stable
trivial solution. It will also be demonstrated that the
model may support stable bound states of solitons.

This model describes a dual-core NOF (also known as
a directional coupler [20]), in which one core is active

(i.e. , doped with erbium), while the other is passive (un-

doped). The couplers have attracted a lot of attention
due to the possibility of applications in photonics [21].
In Refs. [22] and [23], a coupler with one active core
was proposed. It was demonstrated that, by adding the
second passive core with loose ends to the usual doped
fiber used in soliton-generating lasers, one can essentially
improve the quality of the generated solitons: while the
soliton, being a strongly nonlinear object, remains essen-

tially confined to the active core, linear noise can read-

ily couple to the passive core, where it is radiated away

through the loose ends. This provides effective filtering
of the noise. Independently, in Ref. [24] it was proposed
to use a coupler for separating noise from the soliton in

an existing pulse. The basic physical idea proposed in
Ref. [24] is the same as in Ref. [22]: the soliton stays in

the core in which it is propagating, while the noise easily
couples to the second core. It was assumed in Ref. [24]
that the second core was lossy, so that the noise tunnel-

ing to that core would be killed there by the losses. An
important result obtained both analytically and numeri-

cally in Ref. [24] is that the best efficiency of the filtering
is attained. , not at very strong losses in the second core,
but in the case when the loss coefficient is close to the
coupling constant between the two cores.

The numerical simulations reported in Refs. [22]—[24]

~
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where the variables u and v are envelopes of the electro-
magnetic waves in the active and passive cores, the coeffi-

cients po and pi are the same as in Eq. (1), the nonlinear
dissipation is neglected (it can be easily restored), K is

the coupling constant, and I'0 is the loss coefFicient in the
passive core. An additional loss coefFicient I'q in the pas-
sive core, similar to pq in the active one, may be added
to the model. However, the additional lossy term would

render the following analysis more cumbersome without

making any essential change. Contrary to this, it will be
demonstrated that keeping the term pi in Eq. (2) is

necessary.
As concerns phys''cal applications of this model, it was

already mentioned that it was closely related to the ones

describing a soliton-generating laser [22] (but in that
case, I'p = 0) and a time-domain fiber filter [24] (how-

ever, pp
——pi ——0 in the latter model). Very recently, it

was demonstrated that the model based on Eqs. (2) and

(3) in their full form finds another practically important
application: it is the basis for a new type of nonlinear

optical amplifier [25].
First of all, we will consider the stability of the trivial

solution u = v = 0. Inserting into linearized Eqs. (2) and

(3) (u, v) exp(oz —isn't), one can immediately obtain
the relation between the instability growth rate o and
the perturbation frequency w:

~'+(rp go+pied )0+IS Ip fp+ fiIo~ =0,
1. 2K=0+ —lM
2

(4)

The stability condition for the trivial solution implies
that leo & 0 at all real w, which is equivalent to de-

manding that the free term and the coefFicient in front
of the linear term in Eq. (4) are always & 0. Eventually,
this amounts to

Wo & I'o « /Wo.

Obviously, a necessary condition following from Eq. (5)
is po & ~K~, i.e. , the coupling must be stronger than the
gain. Notice that the coefficient pi does not appear in

Eq. (5).

demonstrate that the soliton seems very stable in these
models (moreover, in Ref. [23] it was demonstrated
that the model produced a robust soliton even in the
case when dispersion in the active core was norma/, i.e. ,

the solitons could not exist in the usual NLS equation).
These observations suggest analyzing the existence and
stability of solitary pulses in two-component models. A

remarkable fact is that, as will be shown below, this prob-
lem can be consistently solved in a fully analytical form.

We adopt the following model, which is a combination
of the more special ones from Refs. [22] and [24] [unlike in

Eq. (1), here we will use the standard "optical" notation
for the spatial and temporal variables z and v]:
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Now, let us consider evolution of the soliton in the
system of Eqs. (2) and (3). We will treat this prob-
lern perturbatively, assuming that the coupling, gain, and
losses are all small perturbations to the NLS equation, al-
though difI'erent perturbations may have different orders
of smallness. Actually, we will assume that the gain and
losses in the active core are essentially weaker than the
coupling between the cores, while the losses in the pas-
sive one may be comparable to the coupling. Anyway, the
perturbative treatment of all these terms is quite reason-
able in application to the NOF's.

The soliton has two nontrivial parameters, viz. , the
amplitude and velocity. The simplest way to derive
perturbation-induced evolution equations for these pa-
rameters is to use the so-called balance equations for the
energy and momentum of the soliton [1]. In our model,
the evolution equation for the velocity will be exactly
the same as in the model (1), which describes the pro-
cess of "braking" of the soliton by the linear frequency-
dependent losses [1]; therefore we will not consider this
equation, and will simply set the velocity equal to zero.
Then, in the zeroth-order approximation, the soliton re-
sides only in the first core and has the form

u = il sech(gr) e'~l'l, (6)

where dP/dz = -rt, and il is the soliton's amplitude.
In the next approximation, one seeks for a component
("shadow") of the soliton in the second core [1 . Obvi-
ously, it has the form u(z, r) = V(r) exp[i/(z), where
the real function V(r) is determined by the equation fol-
lowing from Eqs. (3) and (6):

d2V —q V = 2rrjsech(qr—)d7
(7)

lu(r)
I

+ Iv(r)
I

dr.

An exact balance equation following from Eqs. (2) and
(3) is

dN
2+0

dz Iu(r) I'dr

[at this step, we neglect the lossy term in Eq. (3) which
enters only at the next order]. Finally, the slow evolution
of the soliton's amplitude under the action of the pertur-
bations is determined by the above-mentioned balance
equation for the quantity which plays the role of energy
in nonlinear optics:

IV(r)I = I~I sech(rIr') e "~ ~dz'. (10)

where C—:sit + ((3) = 2.845. The formal singularity
of the last term in Eq. (11) at rI —i 0 is fictitious, as this
expression is irrelevant at very small g; see below.

It is straightforward to see that Eq. (11) gives rise to
two physical (g ) 0) fixed points, provided that

(12)

and to no fixed points in the opposite case. Thus (12)
is the necessary and sufhcient condition for existence of
solitons in the considered model. It is, of course, im-
portant to check if this condition is compatible with the
other fundamental condition, (5), which is necessary for
the stability of solitons in the model. Because Eq. (5)
does not involve the parameter pq, one can secure the
compatibility simply by choosing p~ to be small enough.

Next, it i.s easy to check that, once the condition (12)
is met, the solution with larger g is stable, and the one
with smaller q is unstable. It is very plausible that the
soliton corresponding to the larger root is a completely
stable solution in the full model, while the smaller root
corresponds to an unstable soliton which plays the role
of a separatrix between the stable soliton and the stable
trivial solution.

Usually, existence of solitons is related to modula-
tional instability of continuous wave (cw) solutions [2].
The cw modulational (in)stability in the present model
will be considered in detail elsewhere. However, in the
regime which is akin to the case considered in this work,
i.e. , when the coefIrcients of the gain and loss are small,
the coupling constant is small too, and the field in one
core (v) is therefore much weaker than in the other (u);
the rnodulational instability in the present model is, ev-
idently, close to that in the single NLS equation. Thus,
as well as in the usual NLS equation, one may qualita-
tively regard the solitons in the present model as pulses
produced by the rnodulational instability of the cw.

It is now relevant to discuss conditions guaranteeing
application of the perturbation theory to this problem.
The "primary" conditions are pi (& 1, IKI « il, and
I'p « rI . Since, in a tyPical case, i1 Pp/Pi, the final
set of applicability conditions takes the form

Inserting this expression into the last term of Eq. (9), one
can explicitly calculate all the integrals, which eventually
yields the evolution equation sought:

d7/ 2

dz 3
= 2pog ——pr9 —Cr I og

lu (r)I'd7- —2I p lv(r) I'dr

Now, one should find V(7.) from Eq. (7) and insert
it into the last term on the right-hand side of Eq. (9),
while the contribution from v to the left-hand side [see
Eq. (8)] may be neglected in the lowest nontrivial ap-
proximation. Equation (7) can be solved by means of
the Fourier transformation, which leads to the following
integral representation for V(r):

Obviously, these conditions are compatible with the un-
derlying inequalities (5) and (12).

When formulating the model, we have omitted the dis-
persive loss term iI'iu in Eq. (3). If kept, it will gen-
erate an additional term —K riil in Eq. (11). It
is easy to check that the latter term will not produce
any qualitative difFerence in the properties of the fixed
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points. On the other hand, if the term p~ is omitted in
Eq. (2), the result will be disastrous: there will remain a
single unstable fixed point. Actually, the model is glob-
ally unstable in that case. Finally, if the nonlinear lossy
term pz (the two-photon absorption, in terms of the
nonlinear optics) is added to Eq. (2) [cf. Eq. (1)], it will
merely renormalize the coefficient pq in the final results
displayed above.

Now, we will briefly consider bound states (BS's) of
the solitons in this model, following the lines of Ref. [4].
The BS's may exist due to the fact that the small linear
terms accounting for the gain and dissipation render soli-
tons tails oscillatory, which, in turn, gives rise to local
minima in the effective potential of the soliton-soliton in-
teraction, produced by overlapping of the "head" of each
soliton with the tail of the other one. However, in the
framework of perturbation theory, the BS's are fragile,
although stable: the distance between the solitons in the
BS is large, and, accordingly, the corresponding binding
energy is exponentially small. Nevertheless, the existence
and stability of the BS's predicted by the perturbation
theory was confirmed by direct numerical simulations [26]
of the driven damped NLS equation [8] (see also [9]);
recently, this prediction was also confirmed, with fairly
good accuracy, for the cubic GL equation (1) [27]. In
the present model, the BS's can be rendered more robust
by increasing the dissipative constant I'o in the passive
core. Therefore, we will consider the case I"0 )) po, pig,
which is compatible with all the above conditions neces-
sary for the existence of stable solitons. In this case, we
again consider linearized Eqs. (2) and (3); however, in-
stead of the plane-wave solution leading to the dispersion
equation (4), we are now interested in an exponentially

decaying solution describing the soliton's tail:

(u u) exp( —girl + iy rl + tqz) (14)

where we consider q as a given soliton's inverse size [cf.
Eq. (6)], while y and q must be found. The linearized
equations immediately yield (with regard to the assumed
dominance of I'o)

According to Ref. [4], the minimum separation T be-
tween solitons in the BS is determined by the coeflicent

y in Eq. (14): T = vr/2y = sr'/I'o, where we have made
use of Eq. (14). On the other hand, the second relation
in Eq. (15) imposes a fundamental limitation I'o ( 2]r],
otherwise the soliton simply does not exist. This, in turn,
leads to a limitation on the minimum separation between
the bound solitons: T )

zeal/2v.

In conclusion, we have demonstrated that a simple an-
alytically tractable model, based on the linearly coupled
cubic GL equations, admits a fully stable soliton coex-
isting with the stable trivial state. The model finds a
direct physical realization in terms of the fiber laser and
suggests a way to stabilize soliton generation in the laser.

Note added in proof The exis.tence of the solitons pre-
dicted in the present work analytically has been very re-
cently corroborated by direct numerical simulations [3.
Atai and B. A. Malomed (unpublished)].
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