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Conservation of space-charge-dominated beam emittance in a strong nonlinear focusing field

Yuri K. Batygin*
The Institute of Physical and Chemical Research (RIKEN), Hirosawa, 2-1, Wako-shi, Saitama 351-01, Japan
(Received 11 October 1995

Beam dynamics in a nonlinear uniform focusing channel is studied from the viewpoint of keeping emittance
of a high current beam. Conservation of beam emittance is treated as a problem of proper matching of the beam
with the uniform focusing channel. To obtain matching conditions for a beam with an arbitrary distribution
function, it is necessary to accept that the potential of the external focusing field contains higher-order terms
than quadratic. The solution for the external potential is obtained from the stationary Vlasov's equation for the
beam distribution function and Poisson’s equation for the electrostatic beam potential. An analytical approach
is illustrated by results of a particle-in-cell simulatig$1063-651X96)09105-3

PACS numbeps): 07.77—n, 29.27.Eg, 41.75:i, 52.25.Wz

I. INTRODUCTION (2) with Poisson’s equation gives the integral equation for
the self-consistent space-charge potential of a beam in a fo-
The nonlinear space-charge field of a beam is a serioususing channel:
concern for beam emittance growth in particle acceleration

facilities. This effect is most pronounced when patrticles are 24p2 k2

. i q px py 2 2
slow and space-charge forces are significant. The problem oAU,= — o f om + 2 (x“+y9)+qU,|dp, dpy,
beam emittance growth due to a nonstationary beam profile 0 &)

in a focusing channel with a linear focusing field has been
treated in many papersee Refs[1-12], and cited refer-

ences there The general property of space-charge-
dominated beam behavior is that a beam with an initial non
linear profile tends to become more uniform and this proces
is associated with strong emittance growth and the appeafy,

ance of beam halo. In Fig. 1 an example of beam dynamicgf the matched beam has to be more and more flat while the

ywth an initial Gaussian profile in a uniform focgsmg channel phase space projectidheam emittandehas to be more and
is presented. After a few transverse oscillations, the mis:

; I ! . more close to a rectangle.
match|r]g of the initial beam profile 'results in the appearance Laboratory beams are usually far from the above solution
of & uniform beam core accompanied by a halo formation. . gffer serious emittance growtee Fig. L It is inter-
_The beam emittance is conserved if the beam is matche sting to verify whether it is possible to match a realistic
with the channel. The problem of matching of the nonlmearb

densi filed b ihoali i ¢ . h | eam with a focusing channel. Instead of finding a self-
ensity profiled beam with a linear unitorm focusing channel,,qistent distribution in the linear focusing channel one can
was studied in detail in Ref§12—15. The analytical ap-

h is based he f hat the Hamiltoni f th try to adjust the external potential in such a way that the
proach s based on the fact that the Hamiltonian of e, en peam distribution will be preserved. As shown in Ref.
matched beam is a constant of motion, and therefore th

S : . [16], matching of a realistic beam with a uniform focusing
unknown distribution function can be expressed as a functio hannel can be achieved if the focusing field is not linear
of the Hamiltonian:

anymore. In this paper we present the required focusing po-
tential as a series in power of beam current.

whereq is a charge of particles ang=8.85x10 ** F/m is

the permittivity of vacuum. After finding the space-charge
potential of the beanl,, the self-consistent distribution
nction can be found using Eql). A general property of

e solution is that with increasing beam current, the profile

f(Xypxyyapy):f(H)l (1)
p2+p2 2 Il. MATCHING OF THE BEAM WITH ARBITRARY
DISTRIBUTION FUNCTION
H=—5 42 (C+y) +aUp(x.y). 2)

To find the matching conditions for a beam with an arbi-
5 _ ) ) trary distribution function, let us assume as in E@9.and
In Eq. (2) the parametek” describes the focusing of particles () hat the beam is matched with the channel. Hence, the

in solenoids or a smoothed external focusing in anyamiltonian is a constant of motion but no assumptions
alternating-gradient structure and,(x,y) is the space-  gpqt Jinearity of focusing forces are adopted:

charge potential of the beam. Combination of E({s.and

2+ 2
H=M+qU(x,y)=const. (4)
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FIG. 1. Beam profile(left column, phase
space projectiongmiddle column, and space-
charge forcegright column of a nonstationary
beam in the linear focusing channel. Discrepancy
between the space-charge forces for nearby par-
ticles comes from projection of radial forces on
the x axis, E,=E(r)x/r, where the ratide(r)/r
is different for particles with fixed positior.
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tial Uy, of the beam,U=U,+U,. The time-independent Illl. GAUSSIAN BEAM MATCHED WITH THE CHANNEL

distribution function of a matched beam obeys Vlasov's Let us consider -uniform beam with a Gaussian distri-

equation: bution function in four-dimensional phase space, which is
close to the experimentally observed beam distribution:
df of +af of aU+ af oU 0. (5
dt — ax "y O N ap, ax T apy ay) x2+y?  p2+p?
0

where the partial derivative of the distribution function over

source of particles of the beam. Therefore, the self-potentigkmg beam emittance:

of the beamlJ,, is also a known function derived from Pois-
son’s equation:

4
o= — OO -(xp?=R 2. (9

-—, (
or € Substituting the distribution functiof8) into Vlasov's equa-

tion yields an expression for the total unknown potential of

wherep(r) is the space-charge density of the beam. Com{he structure:

bining solutions of Vlasov’'s equation for the total potential

of the structurelJ, and space-charge potential of the beam, mc? R* ou 2]V

U, obtained from Poisson’s equation, the external potential q (XPctyPy) =z | P 5+ Py oy ) (10
of the focusing structure can be found:

1&( aub)_ p(r)
ror\"ar )T

Vlasov’'s equation can be separated into two independent
Uegy=U—Uy. (7) parts forx andy coordinates, respectively:

The solution of this problem has to be found for every spe- ﬂ: mc’e? X ﬂ: mc’e? y (11)
cific particle distribution. X Rt 7 oy qrR* -
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FIG. 2. Total field of the structurg,, [Eq. (12)], required ex- FIG. 3. Charged particle density of the transport beam with
ternal focusing fieldE.y; [Eq. (15)], and space-charge field of the Gaussian distributiohEq. (13)] and of the external focusing beam
Gaussian beark,, [Eq. (14)]. [Eqg. (17)].

Combining solutions of Eq(11), the total potential of the Let us note that the external potential of the structure con-

structure is a quadratic function of coordinates, which createsists of two parts: quadratigvhich produces linear focusing

linear focusing fieldE,: and higher order terms that describe nonlinear focusing. The
linear part depends on the values of beam emittance and

- mc &? [x2+y? beam current while the nonlinear part depends on beam cur-
Uxy)= q R* 2 | rent only. This means that the external field has to compen-
sate the nonlinearity of self-field of the beam and produce

U mc &2 required linear focusing of the beam to keep the elliptical
Eiot=— e R r. (120  beam phase space distribution. Figure 2 illustrates the rela-

tionships between space-charge field of the beam, total field,
nd focusing field of the structure. The external focusing
ield obtained from the above consideration is a complicated
Bhction of radius, which is linear near the axis and becomes
Wonlinear far from the axis. One of the ways to create the
required focusing potential is to introduce inside the trans-
g(?ort channel an opposite charged cloud of parti¢fgasma
lens with the space-charge density:

The appearance of quadratic terms in the total potential
the structure is quite clear because phase space projections]c
the beam have elliptical shape and an ellipse is conserved
a linear field. The space-charge field of the beagnis cal-
culated from Poisson’s equation using a known space-char
density function of the beam, :

rz) 2 2
=poexp —2 =5/, 13 r lce
Po=Po [{ R (13 Pext= Poexﬁ< -2 @) R (17
2
b= — % = I_ - 1—ex;{ _2r_z (14) In Fig. 3 the charged particle density of the transport beam
ar  2megpcCr R and the external focusing beam are presented.

wherepo=21/(7cBR?), | is the beam current, anfl is the

longitudinal velocity of particles. Subtraction of the space-
charge field from the total field of the structure gives the
expression for the external focusing field of the structure, The analogous result can be obtained for a beam with

IV. “WATER BAG” AND “PARABOLIC” BEAM
MATCHED WITH THE CHANNEL

which is required for conservation of beam emittance: other distributions with elliptical symmetry. Let us consider
uniformly populated four-dimension&tD) hypervolume in
B mc? ( &%r I r? four-dimensional phase space, which is called the “water
Eex=— IR $+2|C_,3 Tlimexn 2%z |1 bag” distribution[2]:
(15 .
2 [x*+y? Pty
wherel .=4me,mc’/q=A/Zx3.13< 10’ A is a characteris- f=fo, z|—gz oz <1,
tic value of the beam current. The relevant potential of the 0 (19)
focusing field is given by the expression 5. s 5
=0, 2 r +—2—pX+py >1
U - mc 82+ 2l 2, 2 r +2r6 " 3| R p3 '
o=l o i gr?) T gl T2RE T O RS

1ok 2k The coefficient 2/3 in Eq(18) is chosen from normalization
. (=D 2% of the distribution and reflects the fact that the maximum
2kkRE ||’ beam sizes for such a distribution ay&/2 larger than rms
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FIG. 6. Emittance growth of the Gaussian beam in the linear
focusing channefupper curveé and emittance conservation in non-

FIG. 4. Total field of the structur& [Eq. (12)], required ex-  |i1aar focusing channdlower curve.

ternal focusing fielcE,,; [Eq. (21)] and space-charge fiel, [Eq.
(20)] of the beam with “water bag” distribution. 2. .2 2 9
f=ty 1- 1Y ——rpX+py (22)
beam parameteiR andp,. This distribution is characterized 0 2R 2p5 |-
by a parabolic space-charge density function in real space:
Al 2r2) Maximum beam sizes for such a distribution af® larger

()= 1 than rms beam parametd®sandp,, which is reflected in the
PU™ 37 BcR2 3R%)

coefficient 2 in the denominator of the distribution in Eq.
(22). The space-charge density function of the bggnand
The solution of Vlasov's equation is the same as for theglectrical field of the beark, are defined by the following
potential described by E412). The space-charge field of the expressions:

beam is a two-term function of radius

2l r2 3 ( rz)z
(1——) (20 P pmcpre |17 2RE) 3

(19

Eo= 3 me e B2 |17 3R]
2 4
The corresponding external focusing field is given by the 3 | +E (24)
expression b 4e0BCR? varR! 3 \viR
mcer [ &2 8l 2 . . .
Eee— —=5 | oot 53 | 1— 5= (21)  The relevant focusing field that is required to conserve beam
qRrR® [R" 3IBR 3R emittance is given by the expression
In Fig. 4 the space-charge potential, total field, and required 2 2 2 4
focusing field of the structure or the beam with the water ba E.= meriz + 8l 1 ' + T 25
% S B gr|RTiglt R TR @

distribution are presented. As in the case of a Gaussian beam

the required focusing field is close to a linear function of _ , . :
radius near the axis and drops nonlinearly far from the axisl.n Fig. 5 the space-charge field, total field, and required fo-

For the “parabolic” distribution[2] phase space density cusing field of the structure for the beam with the parabolic
of particles monotonically decreases from the center of th(g.\j'st”bl"tIon are presented.

beam until the boundary of four-dimensional hypervolume:
V. RESULTS OF PARTICLE-IN-CELL SIMULATIONS

15 F ] To verify the possibility of conservation of beam emit-
1 £ tance in a nonlinear focusing field, a beam dynamics simu-
0.5 & Spage Gharge Field lation using particle-in-cell codeEAMPATH [17] has been
0 k performed. A beam of particles is represented as a collection
=05 N~ [Total Field of large numberusually 1.3<10% trajectories. Equations of
“ ’1 N [~ motion are integrated using a time-centered second-order in-
1'5 E \\ ~ tegrator with constant time stept (“leap-frog” method)
e N Fopusifg Field [18]:
: I~ - - -
25 B T Pi+1/2= Pi—12T AEiAL,
0 02040608 1 1214
"R Fie1=Fi+0i At (26)

FIG. 5. Total field of the structur&, [Eq. (12)], required ex-  The value of discrete time stefpt in simulation is chosen
ternal focusing fieldEq, [Eq. (25)] and space-charge fiel, [Eq. ~ small enough(1072,...,10°% of particle oscillation period
(24)] of the beam with parabolic distribution. that the results of simulations are insensitive to the changes
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#0.000 £0.000 FIG. 7. Mismatching of the Gaussian beam in
the linear focusing channdlleft column and
matching of the same beam with the nonlinear
focusing channefright column.
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of At. The space-charge field ofzauniform beam is found Calculation of the series is performed using a fast Fourier
from a two-dimensional Poisson’s equation in Cartesian cotransformation method. Space-charge and potential expan-
ordinates: sion coefficients are connected by an algebraic relationship

following Poisson’s equation:
f72Ub+ #Up  p(xy)

(27

axe  ay?  eg T Puv
W o[ (mrula)®+ (mvla)?]’

(30)

The Dirichlet boundary condition for potentidl, is imposed

on the surface of an infinite rectangular pipe with transversevhich gives the solution of the space-charge problem. Elec-
sizesaX a. The region occupied by an ensemble of particlegtric field components are calculated by numerical differentia-

is divided into uniform rectangular meshes of dimendibd  tion of the potential grid function.

X NY=256x256. The charge of every particle is distributed In Figs. 6 and 7 the results of the beam dynamics study
among the nearest four nodes inversely proportional to thaith initial Gaussian distribution in linear and nonlinear fo-
distance of the particle from each node. To obtain a solutiorcusing channels are presented. Parameters of the beam were
of Poisson’s equation, the space-charge density of the beaaohosen as follows:A/Z=1, 1=2 A, £=0.127 cm mrad,

and the unknown potential functions are represented as FolR=0.15 cm,3=0.0178. The external focusing potential for

rier series: the linear focusing channel was taken as
NX—1 NY-1 . . C2 2 |
_ [ mui\  [wvj _m ( € 2
= _ - Ul =— | ==+ —=]t°%, 31
pij uzl Uzl pu’USIn( Nx)sm( NY)’ (29 ext(l) q 2RI BR? (32)
NX—1 NY—1 Ui j which corresponds to the matched conditions for an equiva-
_ TR | T lent Kapchinsky-VladimirskyKV) [13] beam with the same
U;i= U, ,Sinl —=|sinl —=|. 29 ) .
! u§="1 v§=:l o ( NX) ( NY) @9 rms beam emittance and rms beam sizR. In the case of
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nonlinear focusing, the external potential is represented by 06
Eqg. (16). Let us note that quadratic terms in potentigl§) 04 (o)j
. jo3 [¢] g
and(31) are different. E 02—l | E of | Llaed ! | |
From results of simulations, it is seen that in both cases & 0% i mf’i 04 A .
the sizes of the beam in real space are close to constant, o ¥? TR o 02T
which is typical for matching of the beam, taking into ac- j; 04
count rms beam sizes. But in the case of linear focusing, the e il *"6_2_1“‘.0‘30.05 Llod
beam is mismatched in the phase plane, which results in 50% X (cm) T Xem)
emittance growth accompanied by halo formation. At the
same time the beam is completely matched with the nonlin-
ear focusing channel, and this results in conservation of all Zj zj
beam characteristics and does not suffer any serious emit- 2 b | |l dad | | | g o
tance growth. & oL L&, b
S 02— - 2 2
VI. FOCUSING BY A STATIC FIELD o " y
The required external focusing field obtained from the '2'1'5"“’f(‘(’c‘r’nj) 1152 ‘2"'5""’{(‘(’0%5)’ £32
above consideration is a complicated function of radius,
which is linear near the axis and drops nonlinearly far from
the axis. This specific feature of the focusing field restricts 06 o6
the possible ways to produce the appropriate potential distri- ‘EJ Z: Folak | Lede | | ] g Z;
bution. Axial-symmetric electrostatic and magnetostatic & ,f |3 L | E c
lenses have aberrations that increase the focusing of charged 3, o2 |- e | | 2 02
particles with radius as compared with linear focudifg]. T 04 - T 04
A time-independent field provides a focusing effect that can N 06 T
be described by a linear term as well as higher-order terms. A e A ey

The paraxial equation of radial motion of a particle in the
electrostatic lens with the field distribution along the axis o .
E,(2) is given b 9 FIG. 8. Phase space projections of the beam in the pure quad-
z 9 y rupole FD structureleft column and in quadrupole structure with
2 2 3 .3 duodecapole componefright column: (a) initial beam;(b) after
r P roge, r E
d b A|rdE 7ok, (32) 10 lenses(c) after 20 lenses.

a2 w3 m|2 9z 16 02
whereP, is an azimuth component of canonical momentumsation of space-charge field in two orthogorgy directions
of partic(ie After passing through the lens the slope of thethe sign of the_ duodecapole compon@(z) should be op-
particle traijectoryr is changed as follows: posite to the sign of the quadrupole compor@pfz). Let us
' consider the one-dimensional problem for a particle oscillat-
r ing in the field(34):

Ar'= f(1+Car2), (33

dx .

wheref is a focal length of the lens and,, is a spherical M4 ALG2(2)x+ Ge(2)x7]. 39
aberration coefficient. From Eq33) it follows that the
changing of slope of trajectory is larger for particles with We restrict our consideration to a Riiocusing-defocusing
larger radius. Spherical aberrations of axial-symmetric lensestructure, where all lenses have the same lefytand the
result in hollow beam profile formation and emittance period of the structure iS=2D. The solution of the problem
growth[12]. can be represented as a combination of the slow varying

Most of the focusing channels are based on alternatingdeviation of the particle from axiX and the fast oscillating
gradient principle employing alternating focusing-defocusingvariable & Employing an averaging methdd 9] one can
quadrupole lenses with linear focusing field distributionobtain the following equation for slow variabk, which is
across the aperture. The higher-order multipole leiises- ~ €ssential for the definition of the focusing properties of the
tupoles, octupoles, elccreate essentially nonlinear field due channel:
to azimuth variation of potentidll .,,=Ur"cos 6. Focusing
and defocusing directions are repeated after azimuth angle dX P
shift A6=m=/n. The potential of the quadrupole alternating- WJF'“O
gradient focusing channel is presented as follows:

Gy(2)
2

Ge 5|_
X+6— X°|=0, (36)
G,

wherer=2/S is a dimensionless longitudinal coordinate and
Mo IS a frequency of the smoothed oscillations in the FD
structure:

Gg(z
r2sin2p + %)re’sin&er--- ,

u(r,e,z)=
(34)

2
whereG,(z) is a quadrupole gradient arék(z) is a duode- GD (37)

: . o= -
capole component. To create the required nonlinear compen- ® va(miq) g
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kV/cm® D=1 cm for the beam witlA/Z=1, W=150 keV,
;\/V‘A =100 mA, ¢=0.2rcm mrad, R=1 cm. As shown, the
L]

beam emittance shape is better conserved in the focusing
channel with the duodecapole component while the rms

0.22 ,‘J‘N/\
emittance growth is smaller in the channel with the pure
NN/‘/ quadrupole field. It confirms the assumption that the nonlin-
. ML A
=

0.21 ear focusing field component compensates nonlinear space-
/va charge field but at the same time creates stootygcoupling,
N\/V/\ / which itself is a source of emittance growth. The beam with
" 0.20 &AAA'/\ arbitrary nonlinear distribution cannot be exactly matched
with the quadrupole channel, but better matching as far as
0 5 10 15 20 25 the whole phase space area occupied by the beam is con-
Z,CM cerned can be achieved in the channel with the nonlinear
focusing component. Strongy coupling arising from the
) _ duodecapole component does not allow one to use this field
_ FIG. 9. rms beam emittance growth in the quadrupole structure, . heam matching with the high value of phase space den-
with the duodecapole componefupper curvg and in the pure i, 1n numerical experiments the effect of nonlinear space-
quadrupole structurdower curve. charge field compensation and, therefore, beam matching

Let us consider a beam with the parabolic distributiag). ggsnoobslfg\r/g?hfg; geea nﬁcxlxrg]c? value of phase space den-

The field required to conserve beam emittance for parabolic
particle distributions is given by E§25). It consists of terms
proportional tor, r3, andr®, while the field of the FD struc- VIl. CONCLUSIONS
ture consists of terms,x°. Let us choose the parameters of
guadrupole structure from the conditions that fig[@S) and
(36) are equal to each other near the axis, where only line
focusing terms are essential, and at the boundary of the be
at r=v2R. It gives the following expressions for the field
gradient and for the duodecapole component:

RMS Emittance c¢m mrad

Conservation of beam emittance was treated as a problem
of proper matching of the beam with a uniform focusing
hannel. Matched conditions for the beam with elliptical

ase space projections but nonlinear space-charge forces in
a uniform focusing channel require the focusing field to in-
clude nonlinear terms of higher order than quadratic. The

mg (&2 31|12 solution for the external potential is attained from the station-
G,=V8 —— | =5+ _) , (38)  ary Vlasov's equation for the beam distribution function and
qRD \R™ 1cf Poisson’s equation for the electrostatic beam potential. The

) focusing field produces linear focusing near the axis of the
it bt (39 Structure but has to change nonlinearly away from the axis.
31, 2R® ,u,éﬂg ' Different examples of Gaussian, “water bag” and “para-

bolic” distributions in 4D phase space are considered. Re-
We present in Figs. 8 and 9 the results of beam dynamicsults of a particle-in-cell simulation confirm the conservation
simulation in the FD structure witG,=36 kV/cn?, Ggz=—1  of beam emittance in a nonlinear external field.
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