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Nonlinear dynamics of intense ion beam envelopes
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(Received 13 December 1905

The nonlinear envelope equations for an intense Kapchinskij-Vladimitiski) beam equilibrium are stud-
ied self-consistently for the case of a periodic quadrupole focusing lattice. First, the linearized solutions to the
two nonlinearly coupled envelope equations for a matched KV beam are obtained in the smooth-beam ap-
proximation. A comparison between the solutions of the linearized equations arfdutimerically solvegl
nonlinear equations is presented. Second, the nonlinear evolution of the envelopes for a mismatched beam is
studied numerically. It is found that the oscillation of the beam envelope exhibits chaotic behavior in certain
regions of the parameter spadé€S/e,0,). Here,K is the self-field perveance, is the unnormalized beam
emittance Sis the axial periodicity length, ang), is the vacuum phase advance. Detailed numerical results are
presented and the stable regime in the parameter spedfe (o7,) is determined numerically. It is found that
the threshold condition for the onset of unstable oscillations of the envelope functions is independent of the
filling factor 7 of the quadrupole focusing latticES1063-651X96)08605-1

PACS numbgs): 07.77—n, 29.27.Eg, 41.75:i, 52.25.Wz

[. INTRODUCTION whereuv,, is the average axial velocity of the beam particles.
Periodic focusing acceleratofg] have a wide range of Both coordinate systems are illustrated in Fig. 1. Following
o . e X ._the standard convention in accelerator phy$ics3,19, the

applications ranging from scientific research to mdustrlalneW independent variabke=u,t is introduced, correspond-
processe$2—4]. There is growing interest in the physics of ing to the axial displacement of a beam ion in the beam
advanced high-current ion accelerators, particularly for aPpropagation direction.
plications such as heavy ion fusi$8,6] and nuclear waste For a KV beam equilibrium, the corresponding density
treatmen{7]. In these applications, the requirements of low profile in configuration space is uniform and equal to a con-
cost and high efficiency are critical factors and must be mettant value n, within the elliptical cross section
by optimizing aperture size and minimizing beam particlex?/a?+y?/b?=1 (Fig. 2). The beam boundary is defined by
losses and beam envelope instabilities. One of the challengése two envelope functiona(s) andb(s) in the transverse
of intense ion beam propagation relates to avoiding the efplane &,y). The envelope functiona(s) and b(s) satisfy
fects of collective instabilities, which become importantthe familiar nonlinear envelope equatidris3,4,2q
when space-charge effects are comparable to the external )
focusing force[8—17]. Electrostatic and electromagnetic in-
stabilities due to various features of the beam distribution
function in phase space place severe limits on the parameter 5 9
regimes where a beam can be propagated stably with mini- d _ _ 2K _ & _
h . b(s) = kq(s)b(s) 3 0. (2

mal loss of beam particlel,3,4. One important class of ds? a a(s)+b(s) b(s)
instabilities pertains to perturbations about the Kapchinskij-
Vladimirskij (KV) beam distributiorj 18], which is the only
known steady-state beam equilibriu(@ds=0) for beam X
propagation through an alternating-gradient focusing lattice
with fully self-consistent space-charge effects. The KV dis-
tribution function is singular in phase space and is suscep-
tible to various collective instabilities. Vi

We consider here an infinitely long, intense ion beam
propagating through an alternating-gradient quadrupole fo-

2K g2
PP a(s)+ kq(s)a(s)— a9 b 259 =0, (1

cusing lattice with periodicity lengt® in the axial direction /\

(Fig. 1. In the laboratory frame, a fixed, right-handed Car- U Z 7
tesian coordinate systenX(Y,Z) is employed, with theZ

coordinate denoting the longitudinal direction. The quantities /

X andY measure the transverse distances from the beam axis y

at (X,Y)=(0,0. The axis of the beam transport system co-
incides with the ideal path of the beam particles for a thin
beam witha,b<S, wherea andb are the transverse beam
dimensions in th andY directions, respectively. A similar FIG. 1. Cartesian coordinate systems in the laboratory frame
Cartesian coordinate systenx,y,z) is established in the and in the frame of the beam moving with axial velocity (the
(moving beam frame, with X,y)=(X,Y) andz=Z—uvyt,  bold coordinate system

Y
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n(T) the nonlinear evolution of the envelope functicass) and
b(s), particularly when the self-field perveangeis suffi-
ciently large.

By solving the envelope equatiof¥) and(2), which are
two nonlinearly coupled, second-order differential equations,
the envelope functions for a KV beam with elliptical cross
section can be obtained for matchedbeam by imposing
periodic boundary conditiong1,20]. Because a perfect
matching of the beam envelope is difficult to achieve experi-
mentally, it is of considerable practical importance to study

x2 . y2 the stability behavior of the beam envelope for the case of a

2 T2 slight mismatch, i.e., for small perturbations around the equi-
librium matched solution. Previously, linear stability analy-
ses of the envelope equatiofly and (2) have been carried
out, indicating the presence of linear instabilities in certain

0 1
y
b(s)
regimes of parameter spakkl,17. However, the fully non-
/\ linear evolution of the beam envelope has not heretofore
X been investigated systematically. Two consequences of beam
\\i/

envelope instabilities include beam particle loss and emit-
tance growth. In this paper, the nonlinear envelope equations
(1) and (2), including self-consistent space-charge effects,
are investigated numerically. This work not only confirms
earlier linear results, but also reveals new nonlinear phenom-
ena important in the evolution of the beam envelope, includ-
ing chaotic behavior and the nonlinear saturation of linear
instabilities.

In Sec. Il, for a matched beam, the linearized solutions to
the envelope equations are obtained in the smooth-beam ap-
proximation and these solutions are compared with(éhe
act numerical results for various choices of system param-
eters. In Sec. lll, for a mismatched beam, the nonlinear
evolution of the envelope functions is investigated and the
stability regime in the parameter spadeY/e,o,) is deter-
mined numerically, where the quantity, is the vacuum
For a periodic focusing lattice, which is the case considere@hase advance defined in E1). Finally, conclusions are
here, the lattice functiom,(s) satisfies summarized in Sec. IV.

FIG. 2. Uniform density profile for a KV beam equilibrium with
elliptical cross section.

In Egs. (1) and (2), the quadrupole focusing terms are pro-
portional to the lattice functiom(s) defined by

ZeB(s)

YoM BpC”’

)

Kq(s) =

Kq(S+S)=Kq(S), 4 Il. ENVELOPE SOLUTION FOR A MATCHED BEAM

Based upon the envelope equatidfsand(2) for a KV
beam equilibrium, the evolution of the envelope functions
a(s) and b(s) is investigated for the cases of a matched
beam (this section and a mismatched beaf®ec. lll). In
both cases, théunnormalized rms emittances, ande, in
Egs.(1) and(2) are assumed to be constant.

For a matched KV beam, the nonlinearly coupled enve-

whereS is the axial periodicity length. The quadrupole fo-

cusing terms in Eqg1) and(2) are balanced by the repulsive

terms proportional to the normalized beam emittangesnd

e, and by the repulsive terms proportional to the self-field
perveanceK defined by

_ Iy 2 _ (5) lope equationg1) and (2) can be solved numericallj21],
(mic*/Ze) Biva with the periodic boundary conditions
Herem; and Ze are the ion rest mass and charge, respec- a(s+S)=a(s), b(s+S)=Db(s), (6)

tively, 1, is the beam curreni,c=v,, is the average axial

velocity of the beam ionsy,=(1— ,Bﬁ) Y2is the relativistic  fo; 5 variety of system parameters, whereas the analytical
mass factorc is the speed of lighin vacug and By(s)  solutions to the KV envelope equations are generally diffi-

=(dB3/dy)o=(dBy/9x), is the quadrupole field gradient at cult to obtain. In addition, the numerically determined non-

the beam axis atqy) =(0,0). The nonlinear evolution of the inear solutions for the envelope functioags) andb(s) can

beam envelope functiorey(s) andb(s) determines the con- pe used to obtaiexactestimates for the phase advanegs
finement region of the beam particles within a KV beamgnd oy, defined by

equilibrium.
Note from Egs(1) and(2) that the envelope equations are %+S ds sotS ds
nonlinearly coupled by the self-field terms proportionakto Oy=6y 209" oyzgyf b%(s)" (7)
So

Therefore, space-charge effects can play an important role in So
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For isotropic beam emittance with=e,=e¢, it is found that
oy=0oy=0, where

sp+S ds
G'ISJ

sotS ds
5 2% _Sf

5 e @

In the smooth-beanapproximation, where the envelope

oscillations are assumed to be small amplitude, the envelope

equations(1l) and (2) can be solved approximately by the

linearization approximation. It was shown in a previous cal-

culation [21] that, when the envelope functiorsfs) and
b(s) undergosmall-amplitudeoscillations about the constant
average valuea andb, the linear solution to the envelope
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Periodic Quadrupole Lattice(n=0.5)

—| w2

K(8) 0 -

functions can be expressed in the Fourier series representa- 0 1 2

tions

o

a(s)=a+da(s)=a+ _2 Saexpl(ik,s), 9)

oo

b(s)=b+ 5b(s):b_+2 Sbyexp(ik,s).  (10)

Here the quantitiea_,b_, éa,, and éb, are determined from
[21]

2 ei
— =
+b a°
i , bx+[A+3e2/b*—K2Ja
T NN+ 3ela - k2N + 362/ — K2
(11
2K s=§
a+b b3
i , an+[N+3e2a"—K2]b
T N 3eZa KN+ 382D K2
(12
Nb+[\+3s2/b*—K2Ja
5an:Kn 2 2 2,4 2.1 (13)
N—[\+3s2/a’— K[\ +3s2/b*— K]
an+[N+3s2a% kb
Sby=— [ - o (14)

K — .
" N2—[\+3eZa"— K2\ +3e2/b*— k2]

In Egs.(9)—(14), the quantitiesg,,, k,,, and\ are defined by

1 spt+S
k=g f dsky(s)exa—ik,s), (19
2mn
kﬁ? (n=0,+1,%2,..), (16)
2K
N 17

s/S

FIG. 3. Lattice functionk,(s) for an alternating-gradient quad-
rupole magnetic field with periodic step-function profile and filling
factor »=0.5.

Equationg11) and(12) are nonlinearly coupled transcen-
dental equations for the average envelogeandb and are
applicable for a wide range of choices of periodic lattice
function k4(s) that satisfy «y(s+S)=«k4(s) and
Kq(—S)=kKq(S). For the special case of a symmetric beam
with equal emittances in the and y directions, i.e.,
ex=¢&y=¢, EQs.(11) and(12) reduce to

g? N K Kﬁrb 18

3 ry ne k2-3&%rd’ (18
whereas Egqs(13) and (14) reduce to
Knl'p

da,=— b, (19

TK—3e2rE

wherer,=a=b. Equation(18) can be solved for any speci-
fied periodic lattice functionk(s) to obtain the average
beam radius,, whereaséa(s) and éb(s) can be estimated
from Egs.(9), (10), and(19).

Throughout the remainder of this paper we consider the
case where the beam propagates through the periodic step-
function lattice defined byFig. 3

+iq, 0=s<(7/2)Si2
0, (9l2)Sl2<s<(1- 5/2)SI2
ko(9)=1 ke, (1-p)S2=s<(1+72S2 (20
0, (1+ pl2)Sl2<s<(2— 5/2)S/2
+kq, (2—7l2)S2<s<S,

where 7 is the filling factor andx, is the amplitude of the
lattice function. For future reference, it is convenient to mea-
sure the strength of the quadrupole focusing field in terms of
the vacuum phase advanoe defined in the limit of negli-
gibly small beam intensitK by

sop+S ds
LO a’(s)’

o,=lime (21

K—0
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where e,=¢e,=¢ is assumed. Making use of the matrix
method[4], a careful examination of Eqsl) and (2) for
K—0 shows that, is determined exactly for the case of the
periodic step-function lattice in Eq420) by [4]

€0so, = coshg,(CoSp;,— ¢, Sing,)
+ @, sinhe1(COSE; — 5 @,SiNg;). (22

Here the quantitiep; and ¢, are defined by

¢1E%\/'A<—q775,
1= 1-7
@o=3kq(1—7)S= e (23

Therefore, a specification of and \/k—qS permits an exact
determination of the vacuum phase advamgefrom Eq.
(22), which is valid in the limit of negligibly small beam
intensity withK—0. In previous calculations by the authors
(see, for example, Ref21]), we made use of the quadratic
measure, denoted hy,, of the strength of the periodic fo-
cussing field defined by

0-(2) sp+S ds spt+s 2
?=f g(fs ds Kq(S ))

So 0

= 1515 n* (1§ 7). (24)

Comparing Eqs(23) and (24), we note thatsy and ¢, are
related byo3=(1—2%/3)/77. For sufficiently weak focus-
ing field amplitudg¢;<<71/2), it can be shown from the exact
expression for cos, in Eq. (22) that o,=~0y, where gy is
defined in Eq(24). However, except for small values of ,
the quantityo, consistently gives an underestimate of the
exact vacuum phase advaneg determined from Eq(22).
This is evident from Fig. 4, where, /oy is plotted versus,

for three values ofy corresponding ta;=0.3,0.5,0.7.

Of course, as the beam intenskyis increased, the actual
advanceo, defined in Eq.(8) and determined numerically
from the nonlinear envelope equatiofy and (2), is de-
pressedrelative to the vacuum value, defined in Eq.(21)
for K—0. This is illustrated in Fig. 5, where/o, is plotted
versus the normalized self-field perveanc®/s for the case
whereos,=60°, #=0.5, ands,=¢,=e.

Shown in Fig. 6 is a plot of the periodic envelope func-
tions a(s+S)=a(s) and b(s+S)=Db(s) for a matched

beam propagating through the periodic step-function lattice

defined in Eq.(20). The numerical solutions to the exact
nonlinear envelope equatior%) and (2) are shown by the

solid curves in Fig. 6, whereas the analytical estimates ob- 0.0 .

tained in the smooth-beam approximation for small-
amplitude envelope oscillations about the average radius

o o,

1.05

100

o (degrees)

FIG. 4. Plot ofo, /oy versus the vacuum phase advarmgefor
e,=&y=¢ and three values of filling factop=0.3,0.5,0.7. Here,
and o are defined in Eq921) and (24).

tions is an excellent approximation to the exact solution for
the choice of system parameters in the figure.

To determine the parameter regime where the smooth-
beam approximation is valid, a detailed comparison between
the analytical estimate and the exact solution to Etjsand
(2) is shown in Fig. 7. Herer,=a=b and &r
=|5a(S) | max=| 90(S)| max are plotted versus the normalized
self-field perveanc& S/e for the case of a step-function lat-
tice with filling factor »=0.5 and several values of, rang-
ing from 0,=30° to 85°. In Fig. 7 the analytical estimates
obtained in the smooth-beam approximation are plotted as
solid curves, whereas the numerical results obtained from the

1.0 T

n=0.5

G/GV 05 +

0 5 10

KS/e

=b are shown by the dashed curves. The choice of system

parameters in Fig. 6 corresponds tg=0.5, 0,=63°,
KS/e,=2, 0=27.7°, andey,=e,. In Fig. 6 the envelope
functionsa(s) andb(s) are plotted in terms of the rescaled
quantitiesa(s)/\eS and b(s)/\eS, respectively. It is evi-

FIG. 5. Plot ofad/o, versus the normalized self-field perveance
KS/e for the choice of system parametess=60°, »=0.5, and
e,=ey=¢. Hereg, is defined in Eq(21) and the phase advanoce
is determined from Eq8) and the numerical solutions to the non-

dent from Fig. 6 that the linear solution to the envelope equalinear envelope equatior{4¢) and (2).
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analytical estimates
----- exact results

— exact results
————— analytical estimates

2
00.0 05 1.0
S/S 0 L L 1 A
0 2 4 8 10
KS/e
FIG. 6. Plot of the periodic envelope functioaés) andb(s) of
a matched beam propagating through a step-function lattice. The 1.0 i : : .
system parameters are specified h%0.5, 0,=63°, KS/e,=2,
0=27.7°, ands,=e,. The solid curves are numerical results ob- (b) n=0.5
tained from the exact envelope equations, whereas the dashed 08 | )

curves correspond to the linear solutions obtained analytically in the analytical estimates
smooth-beam approximation. Hee€s) and b(s) are plotted in | = ----- exact results
terms of the rescaled quantitiags)/+'e,S andb(s)/Ve,S.

exact nonlinear solutions to the envelope equatidnsand
(2) are plotted as dashed curves. or

Figure {a shows a plot of the average value of the en-
velope radius, . It is evident from Fig. {a) that the average
radiusr, increases with increasing normalized self-field per-
veanceK S/e and decreases with increasing average focusing
field as measured by, . Note that the analytical estimate of
the average beam radius obtained in the smooth-beam ap-
proximation provides an excellent approximation to the exact
value ofr,, calculated numerically from Eq$l) and(2).

A plot of the oscillation amplitudesr is shown in Fig. “o 2 4 6
7(b). Three points are noteworthy from Fig(bJ. First, the KS/e
oscillation amplitude of the envelope functidin increases
with increasingo, and with increasing beam intensity as
measured b S/e. Secondér is different for different val- FIG. 7. Plots of the solutions for the envelope functions versus
ues ofo, and the difference decreases with increas{i8e.  the normalized self-field perveankeS/e for the case of a matched
Third, the analytical estimate @ provides a good approxi- beam propagating through a step-function lattice wjth0.5 and
mation to the exact result for values of, in the range o¢,=30° 60°_and 85°. The two plots correspondapthe average
0,<60°. valuer,=a="b and (b) the oscillating amplitude of the envelope

In conclusion, the KV envelope equationi$) and (2)  functions 6r=|8a(s)|max=|0(s)|max- The dashed curves corre-
have been solved in the smooth-beam approximation. Thepond to the exact results, whereas the solid curves correspond to
analytical estimate of the envelope functions provides an exthe analytical estimates obtained in the smooth-beam approxima-
cellent approximation in the range,<60° and in the large tion. Herer, and ér are plotted in terms of the rescaled quantities
K S/e limit. Because the rms envelope equations are identicals/ \eS and 8r/\eS, respectively.

to the KV envelope equationd) and (2) [22], they can be tions in Eq.(6), is difficult to achieve in practical applica-

solv'ed in an identical manner in Fhe smoqth-beam apProXls s due to the various perturbations that affect the beam
mation to that shown in this section, provided that the rms

emittancess. ande. are aporoximatelv constant during the envelope. Therefore, it is of considerable practical impor-
X Gy Ppro y 9 tance to study the stability property of the envelope equa-
course of the beam propagation.

tions(1) and(2), because unstable oscillation of the envelope
IIl. NONLINEAR EVOLUTION functions a(s) and b(s) can lead to beam particle losses.
FOR A MISMATCHED BEAM When the enyglope functiores(s) and b(s) are perturbed .
about the equilibrium matched-beam solutions, the beam is
Perfect beam matching, where the envelope functionsaid to bemismatchedThe associated nonlinearity and the
a(s) andb(s) precisely satisfy the periodic boundary condi- choice of system parametet€§/¢,0,) render the evolution

o
(=)
-

10
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of a(s) andb(s) very complicated. Previous studies using a oos : 0.02 :
linearized model indicate that instabilities can exist in certain () KS/e=0.1 (b) KS/ea1
parameter regimes for the case of a mismatched beam
[11,13. The self-consistent, nonlinear evolution of the enve- ,
lope functions has yet to be investigated for the case of a@ %% | I a 000 -
mismatched beam and is the subject of the analysis in this
section.
To investigate the nonlinear evolution of the envelope ., . 0,02 ,
functionsa(s) andb(s), the envelope equatior{¢) and (2) 1.25 130 1.35 1.50 125 1.60
are studied numerically. For purposes of illustration, a sym-
metric beam withe=e, =e¢, is assumed to propagate through 43 , 0.04 ,
the step-function lattice shown in Fig. 3. To simplify the (©) KSle=5 (d) KS/e=10
numerical analysis, the envelope equations are expressed in
the dimensionless form
a’0.00 1 a’0.00 |
il a(8) + kq(S)a(s) 2 0, (29
— a(s Kq(S)a(S)— —= ~ T T =0,
d¥ a a(3)+b(3) a%(s)
- 003, 27 28 0047 38 39
LS T S L 0. (29 8 a
—— B(S) — K4(S)D(S) — — ~ = =0.
d¥? d a(3)+b(3) b3(s)
Here the dimensionless variables are defined by FIG. 8. Poincaresurface-of-section plots in the phase plane
(a,a’) for the case of a step-function lattice with filling factor
S a . b , - KS 7=0.5, vacuum phase advanog=63°, and several values of the
S=-, a=—, b= Kq=K S, K=—. normalized self-field perveandéS/e corresponding toa) KS/e
) ’ ) q q )
S Ves VS e 0.1, 0=60.2° (b) KSle=1, 0=40.47° () KS/e=5, o=13.14°;

(27) and(d) KS/e=10, 0=6.8°. The evolution of the envelope function

Equationg25) and(26) are characterized by two dimension- a(s) has been followed for 1000 lattice periods.

less parameterkS/e and o, , where the quantityr, is de-

termined in Eq.(22) for the case of a step-function lattice.
For a mismatched beam, Ed25) and (26) constitute an

initial-value problem without periodic boundary conditions.

The beam is initially injected a¢=0, the beginning of the . : —= . .
focusing lattice shown in Fig. 3. The initial conditions for dimensionless qgant'“ﬂ/ &S as defined in Eq.(27),
whereas the variabl@’=da/ds is scaled by the factor

a(s) andb(s) ats=0 are chosen to be N

librium. The evolution ofa(s) is regular and localized in the
phase planéa,a’). As a consequence, the beam is well con-
fined for finite mismatch. In Fig. 8 and in all subsequent
figures, the envelope functica(s) is plotted in terms of the

a(0)=ap(1+4,), b(0)=by(1+A,), (29) Figure 9 shows numerical results obtained for the case of
a mismatched beam for a larger value of vacuum phase ad-
wherea, andb, are the matched-beam solutionssat0. I vance o, i.e., 0,=104°. The Poincareurface-of-section
Eq. (28), the initial mismatched, andA, are taken to be in  plots in the phase plan@,a’) are shown for different values
the range 6¢|A,|<0.01 and &|A,|<0.01, respectively. The of the normalized self-field perveank/e corresponding to
envelope equation@5) and (26) are integrated numerically (a) KS/e=0.1, 0=102°; (b) KS/e=0.6, 0=88.5°; (c) KS/e
for the choice of initial condition in Eq28). The solutions =0.7,0=86°;(d) KS/e=1.5,0=69°; (e) KS/e=1.9,0=62°;
in the phase space(b,a’,b’) are plotted at the end of each and (f) KS/e=10, o=17°. The envelope function(s) has
lattice period, i.e.s=0,5,2S,...,NS. Herea’=da/ds and been followed for 1000 lattice periods=10005). It is
b'=db/ds. For present purposes, it is sufficient to study thereadily seen from Fig. 9 that there are two regimes where the
Poincaresurface-of-section plot projected in the phase planesnvelope functiora(s) is stable, namely, €K S/e<0.6 and
(a,a’), because the Poincarsurface-of-section plot pro- KS/e=1.9. The unstable regime corresponds to the range
jected onto the phase plafiie,b’) is similar to that for the 0.6sKS/e<1.9. When the normalized self-field perveance
phase planéa,a’). KSle is larger than the threshold valu&k$/¢).=0.6, the
Figure 8 shows the Poincamurface-of-section plots in envelope functiora(s) exhibits bifurcation and the chaotic
the phase plané,a’) for the case of a mismatched beam behavior evident in Figs.(8) and 9d). Figure 10 shows the
propagating through a step-function lattice with filling factor evolution of the unstable oscillation of the envelope function
7=0.5 and vacuum phase advaneg=63°. The envelope a(s) for system parameters corresponding to those in Fig.
function a(s) has been followed for 1000 lattice periods ( 9(d). It is evident that the amplitude of the envelope oscilla-
=10008). In Fig. 8, four plots are shown for different values tion grows nonlinearly. The corresponding chaotic motion of
of the normalized self-field perveank&/e corresponding to  a(s), in contrast to the regular motion in Fig. 8, leads to
(@) KS/le=0.1, 0=60.2°; (b) KS/e=1, 0=40.47°;(c) KS/e unstable, large-amplitude oscillations, which may ultimately
=5,0=13.14°; andd) KS/e=10,0=6.8°. It is evident from result in beam particle losses.
Figs. 8§a)—8(d) that the envelope functioa(s) is stable for To determine the parameter regim€S/¢,o0,), where the
small but finite perturbations about the matched-beam equienvelope functiona(s) andb(s) are unstable, the envelope
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FIG. 9. Poincaresurface-of-section plots in the phase plane

(a,a’) for the case of a step-function lattice with filling factor
7=0.5, vacuum phase advaneg=104°, and different values of
the normalized self-field pervean&esS/s corresponding tga) KS/
£=0.1, 0=102°; (b) KS/e=0.6, 0=88.5°; (c) KS/e=0.7, 0=86°;
(d) KS/e=1.5, 0=69°; () KS/e=1.9, 0=62°; and(f) KS/e=10,
o=17°. The evolution of the envelope functiaifs) has been fol-

lowed for 1000 lattice periods.

equationg25) and(26) have been integrated numerically for
various choices of system paramet&S/e and g, . The re-
sults are shown in Fig. 11, where the threshold valuk &f

is plotted versusr, for the onset of chaotic behavior in the
envelope functiora(s) as shown in Figs. @) and 9d). In
the stable regime&nshaded areas in Fig. JL&f the param-
eter spacei S/e,o,), the envelope functiona(s) andb(s)

FIG. 11. Plot of the threshold value &S/e versuso, for the
onset of chaotic behavior in the envelope functgs) for the case
of a mismatched beam propagating through a step-function lattice
with filling factor »=0.5. The unshaded areas are the stable re-
gimes, whereas the shaded area is the unstable regime.

exhibit chaotic behavior with large-amplitude oscillations.

The result shown in Fig. 11 is found to be qualitatively con-
sistent with the results obtained in previous studies using the
Vlasov-Poisson equationgl1,15.

It is evident from Fig. 9 that the nonlinear evolution of the
envelope functiora(s) for the case of a mismatched beam is
related to the stability of the matched-beam solution to the
envelope equation&5) and (26). The matched-beam solu-

exhibit regular oscillations with small deviations from the tion to the envelope (?qua?ions corresponds to tf)e equilibrium
matched-beam solution as shown in Fig. 8. In the unstablB0Sition on the axi@’=0 in the phase plang,a’). In the

parameter regiméshaded area in Fig. 11la(s) and b(s)

FIG. 10. Unstable oscillation of the envelope functifs) for

stable region in the parameter spa&&S(e,o,), the equilib-

20

s/S

system parameters corresponding to those in Ridj. 9

40

rium position ofa(s) on thea’=0 axis is a(stablg O point

in the phase spac@,a’) as evident from Figs. (8), 9(b),
9(e), and 9f). However, when the valukS/e is in the un-
stable region, as shown in Figs(c® and 9d), the equilib-
rium position becomes afunstable X point. This indicates
that the chaotic behavior cdi(s) for the case of a mis-
matched beam is related to the instability of the matched-
beam solution to the envelope equations.

It is important to note that the features shown in Figs. 8
and 9 remain qualitatively similar for the nonlinear evolution
of the envelope functiong(s) and b(s) when the filling
factor » varies in the range ©7<1 for a wide range of
choices of system parametass and KS/e. In Fig. 12, the
Poincaresurface-of-section plots are shown for the case of
unstable oscillations of the envelope functafs) with dif-
ferent values of filling factor; corresponding t¢a) »=0.1,

(b) =0.3,(c) »=0.5, and(d) »=0.7. Other system param-
eters have been chosen todye=94°, KS/e=0.3°,0=85.7°,

and the envelope functices) has been determined numeri-
cally for propagation over 1000 lattice periods. It is readily
seen from Fig. 12 that the qualitative features of the unstable
oscillations of the envelope functicam(s) remain the same
for different filling factors# of the step-function lattice. It is
further found that the threshold for the onset of unstable
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IV. SUMMARY

In this paper, the nonlinear evolution of the beam enve-
lope functionsa(s) andb(s) has been investigated for the
case of a uniform density KV beam. For the matched-beam
case, it is found that the linearized solutions to the envelope
equations are good approximations to the exact solutions in
the parameter regime where the smooth-beam approximation
is valid. For the mismatched-beam case, the evolution of the
envelope functions is found to be complicated due to the
nonlinear self-field effects in the envelope equati@hsand
(2). The beam envelope function exhibits nonlinear instabili-
ties when the average focusing field strength, as measured by
o, , is sufficiently large. In the stable regime of the parameter
space KS/e,a,), it is found that the envelope functions
a(s) andb(s) undergo regular, small-amplitude oscillations.
In the unstable regime, it is found thafs) andb(s) exhibit
chaotic behavior with large oscillation amplitudes. Chaotic
evolution of the beam envelope can lead to poor confinement
of the beam particles and limit the allowed regime of param-
eter space KS/e,o,) for stable beam propagation. The
stable regime in the parameter spa¢eS(e,o,) has been
determined numerically. Furthermore, the instability thresh-
old in the parameter spac&§/¢,0,) has been found to be
independent of the filling facton of the step-function focus-
ing lattice.

FIG. 12. Poincaresurface-of-section plots in the phase plane
(a,a’) for the case of a step-function lattice with,=94°, KS/e
=0.3, 0=85.7°, and different values of the filling factar corre-
sponding to(@) »=0.1, (b) =0.3,(c) »=0.5, and(d) »=0.7. The
evolution of the envelope functica(s) has been followed for 1000
lattice periods. ACKNOWLEDGMENTS
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