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The nonlinear envelope equations for an intense Kapchinskij-Vladimirskij~KV ! beam equilibrium are stud-
ied self-consistently for the case of a periodic quadrupole focusing lattice. First, the linearized solutions to the
two nonlinearly coupled envelope equations for a matched KV beam are obtained in the smooth-beam ap-
proximation. A comparison between the solutions of the linearized equations and the~numerically solved!
nonlinear equations is presented. Second, the nonlinear evolution of the envelopes for a mismatched beam is
studied numerically. It is found that the oscillation of the beam envelope exhibits chaotic behavior in certain
regions of the parameter space (KS/«,sv). Here,K is the self-field perveance,« is the unnormalized beam
emittance,S is the axial periodicity length, andJv is the vacuum phase advance. Detailed numerical results are
presented and the stable regime in the parameter space (KS/«,sv) is determined numerically. It is found that
the threshold condition for the onset of unstable oscillations of the envelope functions is independent of the
filling factor h of the quadrupole focusing lattice.@S1063-651X~96!08605-1#

PACS number~s!: 07.77.2n, 29.27.Eg, 41.75.2i, 52.25.Wz

I. INTRODUCTION

Periodic focusing accelerators@1# have a wide range of
applications ranging from scientific research to industrial
processes@2–4#. There is growing interest in the physics of
advanced high-current ion accelerators, particularly for ap-
plications such as heavy ion fusion@5,6# and nuclear waste
treatment@7#. In these applications, the requirements of low
cost and high efficiency are critical factors and must be met
by optimizing aperture size and minimizing beam particle
losses and beam envelope instabilities. One of the challenges
of intense ion beam propagation relates to avoiding the ef-
fects of collective instabilities, which become important
when space-charge effects are comparable to the external
focusing force@8–17#. Electrostatic and electromagnetic in-
stabilities due to various features of the beam distribution
function in phase space place severe limits on the parameter
regimes where a beam can be propagated stably with mini-
mal loss of beam particles@1,3,4#. One important class of
instabilities pertains to perturbations about the Kapchinskij-
Vladimirskij ~KV ! beam distribution@18#, which is the only
known steady-state beam equilibrium~]/]s50! for beam
propagation through an alternating-gradient focusing lattice
with fully self-consistent space-charge effects. The KV dis-
tribution function is singular in phase space and is suscep-
tible to various collective instabilities.

We consider here an infinitely long, intense ion beam
propagating through an alternating-gradient quadrupole fo-
cusing lattice with periodicity lengthS in the axial direction
~Fig. 1!. In the laboratory frame, a fixed, right-handed Car-
tesian coordinate system (X,Y,Z) is employed, with theZ
coordinate denoting the longitudinal direction. The quantities
X andY measure the transverse distances from the beam axis
at (X,Y)5~0,0!. The axis of the beam transport system co-
incides with the ideal path of the beam particles for a thin
beam witha,b!S, wherea andb are the transverse beam
dimensions in theX andY directions, respectively. A similar
Cartesian coordinate system (x,y,z) is established in the
~moving! beam frame, with (x,y)5(X,Y) and z5Z2vbt,

wherevb is the average axial velocity of the beam particles.
Both coordinate systems are illustrated in Fig. 1. Following
the standard convention in accelerator physics@1–3,19#, the
new independent variables5vbt is introduced, correspond-
ing to the axial displacement of a beam ion in the beam
propagation direction.

For a KV beam equilibrium, the corresponding density
profile in configuration space is uniform and equal to a con-
stant value n̂b within the elliptical cross section
x2/a21y2/b251 ~Fig. 2!. The beam boundary is defined by
the two envelope functionsa(s) andb(s) in the transverse
plane (x,y). The envelope functionsa(s) and b(s) satisfy
the familiar nonlinear envelope equations@1,3,4,20#
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FIG. 1. Cartesian coordinate systems in the laboratory frame
and in the frame of the beam moving with axial velocityvb ~the
bold coordinate system!.
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In Eqs. ~1! and ~2!, the quadrupole focusing terms are pro-
portional to the lattice functionkq(s) defined by

kq~s!5
ZeBq8~s!

gbmibbc
2 . ~3!

For a periodic focusing lattice, which is the case considered
here, the lattice functionkq(s) satisfies

kq~s1S!5kq~s!, ~4!

whereS is the axial periodicity length. The quadrupole fo-
cusing terms in Eqs.~1! and~2! are balanced by the repulsive
terms proportional to the normalized beam emittances«x and
«y and by the repulsive terms proportional to the self-field
perveanceK defined by

K5
I b

~mic
2/Ze!

2

bb
3gb

3 . ~5!

Heremi and Ze are the ion rest mass and charge, respec-
tively, I b is the beam current,bbc5vb is the average axial
velocity of the beam ions,gb5(12b b

2)21/2 is the relativistic
mass factor,c is the speed of lightin vacuo, and Bq8(s)
[(]Bx

q/]y)05(]By
q/]x)0 is the quadrupole field gradient at

the beam axis at (x,y)5~0,0!. The nonlinear evolution of the
beam envelope functionsa(s) andb(s) determines the con-
finement region of the beam particles within a KV beam
equilibrium.

Note from Eqs.~1! and~2! that the envelope equations are
nonlinearly coupled by the self-field terms proportional toK.
Therefore, space-charge effects can play an important role in

the nonlinear evolution of the envelope functionsa(s) and
b(s), particularly when the self-field perveanceK is suffi-
ciently large.

By solving the envelope equations~1! and ~2!, which are
two nonlinearly coupled, second-order differential equations,
the envelope functions for a KV beam with elliptical cross
section can be obtained for amatchedbeam by imposing
periodic boundary conditions@1,20#. Because a perfect
matching of the beam envelope is difficult to achieve experi-
mentally, it is of considerable practical importance to study
the stability behavior of the beam envelope for the case of a
slight mismatch, i.e., for small perturbations around the equi-
librium matched solution. Previously, linear stability analy-
ses of the envelope equations~1! and ~2! have been carried
out, indicating the presence of linear instabilities in certain
regimes of parameter space@11,12#. However, the fully non-
linear evolution of the beam envelope has not heretofore
been investigated systematically. Two consequences of beam
envelope instabilities include beam particle loss and emit-
tance growth. In this paper, the nonlinear envelope equations
~1! and ~2!, including self-consistent space-charge effects,
are investigated numerically. This work not only confirms
earlier linear results, but also reveals new nonlinear phenom-
ena important in the evolution of the beam envelope, includ-
ing chaotic behavior and the nonlinear saturation of linear
instabilities.

In Sec. II, for a matched beam, the linearized solutions to
the envelope equations are obtained in the smooth-beam ap-
proximation and these solutions are compared with the~ex-
act! numerical results for various choices of system param-
eters. In Sec. III, for a mismatched beam, the nonlinear
evolution of the envelope functions is investigated and the
stability regime in the parameter space (KS/«,sv) is deter-
mined numerically, where the quantitysv is the vacuum
phase advance defined in Eq.~21!. Finally, conclusions are
summarized in Sec. IV.

II. ENVELOPE SOLUTION FOR A MATCHED BEAM

Based upon the envelope equations~1! and ~2! for a KV
beam equilibrium, the evolution of the envelope functions
a(s) and b(s) is investigated for the cases of a matched
beam ~this section! and a mismatched beam~Sec. III!. In
both cases, the~unnormalized! rms emittances«x and«y in
Eqs.~1! and ~2! are assumed to be constant.

For a matched KV beam, the nonlinearly coupled enve-
lope equations~1! and ~2! can be solved numerically@21#,
with the periodic boundary conditions

a~s1S!5a~s!, b~s1S!5b~s!, ~6!

for a variety of system parameters, whereas the analytical
solutions to the KV envelope equations are generally diffi-
cult to obtain. In addition, the numerically determined non-
linear solutions for the envelope functionsa(s) andb(s) can
be used to obtainexactestimates for the phase advancessx
andsy , defined by

sx5«xE
s0

s01S ds

a2~s!
, sy5«yE

s0

s01S ds

b2~s!
. ~7!

FIG. 2. Uniform density profile for a KV beam equilibrium with
elliptical cross section.
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For isotropic beam emittance with«x5«y[«, it is found that
sx5sy5s, where

s5«E
s0

s01S ds

a2~s!
5«E

s0

s01S ds

b2~s!
. ~8!

In the smooth-beamapproximation, where the envelope
oscillations are assumed to be small amplitude, the envelope
equations~1! and ~2! can be solved approximately by the
linearization approximation. It was shown in a previous cal-
culation @21# that, when the envelope functionsa(s) and
b(s) undergosmall-amplitudeoscillations about the constant
average valuesā and b̄, the linear solution to the envelope
functions can be expressed in the Fourier series representa-
tions

a~s!5ā1da~s!5ā1(
2`

`

danexp~ ikns!, ~9!

b~s!5b̄1db~s!5b̄1(
2`

`

dbnexp~ ikns!. ~10!

Here the quantitiesā, b̄, dan , anddbn are determined from
@21#
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~11!
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~12!

dan5kn

lb̄1@l13«y
2/b̄42kn

2#ā

l22@l13«x
2/ā42kn

2#@l13«y
2/b̄42kn

2#
, ~13!

dbn52kn

āl1@l13«x
2/ā42kn

2#b̄

l22@l13«x
2/ā42kn

2#@l13«y
2/b̄42kn

2#
. ~14!

In Eqs.~9!–~14!, the quantitieskn , kn , andl are defined by

kn5
1

S E
s0

s01S

dskq~s!exp~2 ikns!, ~15!

kn5
2pn

S
~n50,61,62,...!, ~16!

l5
2K

~ ā1b̄!2
. ~17!

Equations~11! and~12! are nonlinearly coupled transcen-
dental equations for the average envelopesā and b̄ and are
applicable for a wide range of choices of periodic lattice
function kq(s) that satisfy kq(s1S)5kq(s) and
kq(2s)5kq(s). For the special case of a symmetric beam
with equal emittances in thex and y directions, i.e.,
«x5«y[«, Eqs.~11! and ~12! reduce to

«2

r b
3 1

K

r b
5 (

n52`

` kn
2r b

kn
223«2/r b

4 , ~18!

whereas Eqs.~13! and ~14! reduce to

dan52dbn5
knr b

kn
223«2/r b

4 , ~19!

wherer b5ā5b̄. Equation~18! can be solved for any speci-
fied periodic lattice functionkq(s) to obtain the average
beam radiusr b , whereasda(s) anddb(s) can be estimated
from Eqs.~9!, ~10!, and~19!.

Throughout the remainder of this paper we consider the
case where the beam propagates through the periodic step-
function lattice defined by~Fig. 3!

kq~s!55
1k̂q ,
0,
2k̂q ,
0,
1k̂q ,

0<s,~h/2!S/2
~h/2!S/2<s,~12h/2!S/2
~12h/2!S/2<s,~11h/2!S/2
~11h/2!S/2<s,~22h/2!S/2
~22h/2!S/2<s,S,

~20!

whereh is the filling factor andk̂q is the amplitude of the
lattice function. For future reference, it is convenient to mea-
sure the strength of the quadrupole focusing field in terms of
the vacuum phase advancesv defined in the limit of negli-
gibly small beam intensityK by

sv5 lim
K→0

«E
s0

s01S ds

a2~s!
, ~21!

FIG. 3. Lattice functionkq(s) for an alternating-gradient quad-
rupole magnetic field with periodic step-function profile and filling
factorh50.5.
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where «x5«y5« is assumed. Making use of the matrix
method @4#, a careful examination of Eqs.~1! and ~2! for
K→0 shows thatsv is determined exactly for the case of the
periodic step-function lattice in Eq.~20! by @4#

cossv5coshw1~cosw12w2 sinw1!

1w2 sinhw1~cosw12
1
2w2sinw1!. ~22!

Here the quantitiesw1 andw2 are defined by

w1[
1
2Ak̂qhS,

w2[
1
2Ak̂q~12h!S5

12h

h
w1 . ~23!

Therefore, a specification ofh andAk̂qS permits an exact
determination of the vacuum phase advancesv from Eq.
~22!, which is valid in the limit of negligibly small beam
intensity withK→0. In previous calculations by the authors
~see, for example, Ref.@21#!, we made use of the quadratic
measure, denoted bys0, of the strength of the periodic fo-
cussing field defined by

s0
2

S2
[E

s0

s01S ds

S S E
s0

s01s

ds8kq~s8! D 2

5 (
n51

` 2kn
2S2

~2pn!2

5 1
16 k̂q

2S2h2~12 2
3h!. ~24!

Comparing Eqs.~23! and ~24!, we note thats0 andw1 are
related bys0

25w1
4~122h/3!/h2. For sufficiently weak focus-

ing field amplitude~w1!p/2!, it can be shown from the exact
expression for cossv in Eq. ~22! that sv.s0, wheres0 is
defined in Eq.~24!. However, except for small values ofsv ,
the quantitys0 consistently gives an underestimate of the
exact vacuum phase advancesv determined from Eq.~22!.
This is evident from Fig. 4, wheresv/s0 is plotted versussv
for three values ofh corresponding toh50.3,0.5,0.7.

Of course, as the beam intensityK is increased, the actual
advances, defined in Eq.~8! and determined numerically
from the nonlinear envelope equations~1! and ~2!, is de-
pressedrelative to the vacuum valuesv defined in Eq.~21!
for K→0. This is illustrated in Fig. 5, wheres/sv is plotted
versus the normalized self-field perveanceKS/« for the case
wheresv560°, h50.5, and«x5«y5«.

Shown in Fig. 6 is a plot of the periodic envelope func-
tions a(s1S)5a(s) and b(s1S)5b(s) for a matched
beam propagating through the periodic step-function lattice
defined in Eq.~20!. The numerical solutions to the exact
nonlinear envelope equations~1! and ~2! are shown by the
solid curves in Fig. 6, whereas the analytical estimates ob-
tained in the smooth-beam approximation for small-
amplitude envelope oscillations about the average radiusā
5b̄ are shown by the dashed curves. The choice of system
parameters in Fig. 6 corresponds toh50.5, sv563°,
KS/«x52, s527.7°, and«x5«y . In Fig. 6 the envelope
functionsa(s) andb(s) are plotted in terms of the rescaled
quantitiesa(s)/A«S and b(s)/A«S, respectively. It is evi-
dent from Fig. 6 that the linear solution to the envelope equa-

tions is an excellent approximation to the exact solution for
the choice of system parameters in the figure.

To determine the parameter regime where the smooth-
beam approximation is valid, a detailed comparison between
the analytical estimate and the exact solution to Eqs.~1! and
~2! is shown in Fig. 7. Here r b[ā5b̄ and dr
[uda(s)umax5udb(s)umax are plotted versus the normalized
self-field perveanceKS/« for the case of a step-function lat-
tice with filling factorh50.5 and several values ofsv rang-
ing from sv530° to 85°. In Fig. 7 the analytical estimates
obtained in the smooth-beam approximation are plotted as
solid curves, whereas the numerical results obtained from the

FIG. 4. Plot ofsv/s0 versus the vacuum phase advancesv for
«x5«y5« and three values of filling factorh50.3,0.5,0.7. Heresv
ands0 are defined in Eqs.~21! and ~24!.

FIG. 5. Plot ofs/sv versus the normalized self-field perveance
KS/« for the choice of system parameterssv560°, h50.5, and
«x5«y5«. Heresv is defined in Eq.~21! and the phase advances
is determined from Eq.~8! and the numerical solutions to the non-
linear envelope equations~1! and ~2!.
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exact nonlinear solutions to the envelope equations~1! and
~2! are plotted as dashed curves.

Figure 7~a! shows a plot of the average value of the en-
velope radiusr b . It is evident from Fig. 7~a! that the average
radiusr b increases with increasing normalized self-field per-
veanceKS/« and decreases with increasing average focusing
field as measured bysv . Note that the analytical estimate of
the average beam radius obtained in the smooth-beam ap-
proximation provides an excellent approximation to the exact
value of r b calculated numerically from Eqs.~1! and ~2!.

A plot of the oscillation amplitudedr is shown in Fig.
7~b!. Three points are noteworthy from Fig. 7~b!. First, the
oscillation amplitude of the envelope functiondr increases
with increasingsv and with increasing beam intensity as
measured byKS/«. Second,dr is different for different val-
ues ofsv and the difference decreases with increasingKS/«.
Third, the analytical estimate ofdr provides a good approxi-
mation to the exact result for values ofsv in the range
sv&60°.

In conclusion, the KV envelope equations~1! and ~2!
have been solved in the smooth-beam approximation. The
analytical estimate of the envelope functions provides an ex-
cellent approximation in the rangesv&60° and in the large
KS/« limit. Because the rms envelope equations are identical
to the KV envelope equations~1! and ~2! @22#, they can be
solved in an identical manner in the smooth-beam approxi-
mation to that shown in this section, provided that the rms
emittances«x and«y are approximately constant during the
course of the beam propagation.

III. NONLINEAR EVOLUTION
FOR A MISMATCHED BEAM

Perfect beam matching, where the envelope functions
a(s) andb(s) precisely satisfy the periodic boundary condi-

tions in Eq.~6!, is difficult to achieve in practical applica-
tions due to the various perturbations that affect the beam
envelope. Therefore, it is of considerable practical impor-
tance to study the stability property of the envelope equa-
tions~1! and~2!, because unstable oscillation of the envelope
functions a(s) and b(s) can lead to beam particle losses.
When the envelope functionsa(s) and b(s) are perturbed
about the equilibrium matched-beam solutions, the beam is
said to bemismatched.The associated nonlinearity and the
choice of system parameters (KS/«,sv) render the evolution

FIG. 6. Plot of the periodic envelope functionsa(s) andb(s) of
a matched beam propagating through a step-function lattice. The
system parameters are specified byh50.5, sv563°, KS/«x52,
s527.7°, and«x5«y . The solid curves are numerical results ob-
tained from the exact envelope equations, whereas the dashed
curves correspond to the linear solutions obtained analytically in the
smooth-beam approximation. Herea(s) and b(s) are plotted in
terms of the rescaled quantitiesa(s)/A«xS andb(s)/A«yS.

FIG. 7. Plots of the solutions for the envelope functions versus
the normalized self-field perveanceKS/« for the case of a matched
beam propagating through a step-function lattice withh50.5 and
sv530°, 60°, and 85°. The two plots correspond to~a! the average
value r b[ā5b̄ and ~b! the oscillating amplitude of the envelope
functions dr[uda(s)umax5udb(s)umax. The dashed curves corre-
spond to the exact results, whereas the solid curves correspond to
the analytical estimates obtained in the smooth-beam approxima-
tion. Herer b anddr are plotted in terms of the rescaled quantities
r b/A«S anddr /A«S, respectively.
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of a(s) andb(s) very complicated. Previous studies using a
linearized model indicate that instabilities can exist in certain
parameter regimes for the case of a mismatched beam
@11,13#. The self-consistent, nonlinear evolution of the enve-
lope functions has yet to be investigated for the case of a
mismatched beam and is the subject of the analysis in this
section.

To investigate the nonlinear evolution of the envelope
functionsa(s) andb(s), the envelope equations~1! and ~2!
are studied numerically. For purposes of illustration, a sym-
metric beam with«[«x5«y is assumed to propagate through
the step-function lattice shown in Fig. 3. To simplify the
numerical analysis, the envelope equations are expressed in
the dimensionless form

d2

dŝ2
â~ ŝ!1k̂q~ ŝ!â~ ŝ!2

2K̂

â~ ŝ!1b̂~ ŝ!
2

1

â3~s!
50, ~25!

d2

dŝ2
b̂~ ŝ!2k̂q~ ŝ!b̂~ ŝ!2

2K̂

â~ ŝ!1b̂~ ŝ!
2

1

b̂3~s!
50. ~26!

Here the dimensionless variables are defined by

ŝ5
s

S
, â5

a

A«S
, b̂5

b

A«S
, k̂q5kqS

2, K̂5
KS

«
.

~27!

Equations~25! and~26! are characterized by two dimension-
less parametersKS/« andsv , where the quantitysv is de-
termined in Eq.~22! for the case of a step-function lattice.

For a mismatched beam, Eqs.~25! and ~26! constitute an
initial-value problem without periodic boundary conditions.
The beam is initially injected ats50, the beginning of the
focusing lattice shown in Fig. 3. The initial conditions for
a(s) andb(s) at s50 are chosen to be

a~0!5a0~11Dx!, b~0!5b0~11Dy!, ~28!

wherea0 andb0 are the matched-beam solutions ats50. In
Eq. ~28!, the initial mismatchesDx andDy are taken to be in
the range 0,uDxu,0.01 and 0,uDyu,0.01, respectively. The
envelope equations~25! and ~26! are integrated numerically
for the choice of initial condition in Eq.~28!. The solutions
in the phase space (a,b,a8,b8) are plotted at the end of each
lattice period, i.e.,s50,S,2S,...,NS. Here a8[da/ds and
b8[db/ds. For present purposes, it is sufficient to study the
Poincare´ surface-of-section plot projected in the phase plane
~a,a8!, because the Poincare´ surface-of-section plot pro-
jected onto the phase plane~b,b8! is similar to that for the
phase plane~a,a8!.

Figure 8 shows the Poincare´ surface-of-section plots in
the phase plane~a,a8! for the case of a mismatched beam
propagating through a step-function lattice with filling factor
h50.5 and vacuum phase advancesv563°. The envelope
function a(s) has been followed for 1000 lattice periods (s
51000S). In Fig. 8, four plots are shown for different values
of the normalized self-field perveanceKS/« corresponding to
~a! KS/«50.1, s560.2°; ~b! KS/«51, s540.47°; ~c! KS/«
55,s513.14°; and~d! KS/«510,s56.8°. It is evident from
Figs. 8~a!–8~d! that the envelope functiona(s) is stable for
small but finite perturbations about the matched-beam equi-

librium. The evolution ofa(s) is regular and localized in the
phase plane~a,a8!. As a consequence, the beam is well con-
fined for finite mismatch. In Fig. 8 and in all subsequent
figures, the envelope functiona(s) is plotted in terms of the
dimensionless quantitya/A«S as defined in Eq.~27!,
whereas the variablea85da/ds is scaled by the factor
AS/«.

Figure 9 shows numerical results obtained for the case of
a mismatched beam for a larger value of vacuum phase ad-
vancesv , i.e., sv5104°. The Poincare´ surface-of-section
plots in the phase plane~a,a8! are shown for different values
of the normalized self-field perveanceKS/« corresponding to
~a! KS/«50.1, s5102°; ~b! KS/«50.6, s588.5°; ~c! KS/«
50.7,s586°; ~d! KS/«51.5,s569°; ~e! KS/«51.9,s562°;
and ~f! KS/«510, s517°. The envelope functiona(s) has
been followed for 1000 lattice periods (s51000S). It is
readily seen from Fig. 9 that there are two regimes where the
envelope functiona(s) is stable, namely, 0<KS/«&0.6 and
KS/«>1.9. The unstable regime corresponds to the range
0.6&KS/«&1.9. When the normalized self-field perveance
KS/« is larger than the threshold value (KS/«)c.0.6, the
envelope functiona(s) exhibits bifurcation and the chaotic
behavior evident in Figs. 9~c! and 9~d!. Figure 10 shows the
evolution of the unstable oscillation of the envelope function
a(s) for system parameters corresponding to those in Fig.
9~d!. It is evident that the amplitude of the envelope oscilla-
tion grows nonlinearly. The corresponding chaotic motion of
a(s), in contrast to the regular motion in Fig. 8, leads to
unstable, large-amplitude oscillations, which may ultimately
result in beam particle losses.

To determine the parameter regime (KS/«,sv), where the
envelope functionsa(s) andb(s) are unstable, the envelope

FIG. 8. Poincare´ surface-of-section plots in the phase plane
~a,a8! for the case of a step-function lattice with filling factor
h50.5, vacuum phase advancesv563°, and several values of the
normalized self-field perveanceKS/« corresponding to~a! KS/«
50.1, s560.2°; ~b! KS/«51, s540.47°; ~c! KS/«55, s513.14°;
and~d! KS/«510,s56.8°. The evolution of the envelope function
a(s) has been followed for 1000 lattice periods.
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equations~25! and~26! have been integrated numerically for
various choices of system parametersKS/« andsv . The re-
sults are shown in Fig. 11, where the threshold value ofKS/«
is plotted versussv for the onset of chaotic behavior in the
envelope functiona(s) as shown in Figs. 9~c! and 9~d!. In
the stable regimes~unshaded areas in Fig. 11! of the param-
eter space (KS/«,sv), the envelope functionsa(s) andb(s)
exhibit regular oscillations with small deviations from the
matched-beam solution as shown in Fig. 8. In the unstable
parameter regime~shaded area in Fig. 11!, a(s) and b(s)

exhibit chaotic behavior with large-amplitude oscillations.
The result shown in Fig. 11 is found to be qualitatively con-
sistent with the results obtained in previous studies using the
Vlasov-Poisson equations@11,15#.

It is evident from Fig. 9 that the nonlinear evolution of the
envelope functiona(s) for the case of a mismatched beam is
related to the stability of the matched-beam solution to the
envelope equations~25! and ~26!. The matched-beam solu-
tion to the envelope equations corresponds to the equilibrium
position on the axisa850 in the phase plane~a,a8!. In the
stable region in the parameter space (KS/«,sv), the equilib-
rium position ofa(s) on thea850 axis is a~stable! O point
in the phase space~a,a8! as evident from Figs. 9~a!, 9~b!,
9~e!, and 9~f!. However, when the valueKS/« is in the un-
stable region, as shown in Figs. 9~c! and 9~d!, the equilib-
rium position becomes an~unstable! X point. This indicates
that the chaotic behavior ofa(s) for the case of a mis-
matched beam is related to the instability of the matched-
beam solution to the envelope equations.

It is important to note that the features shown in Figs. 8
and 9 remain qualitatively similar for the nonlinear evolution
of the envelope functionsa(s) and b(s) when the filling
factor h varies in the range 0,h,1 for a wide range of
choices of system parameterssv andKS/«. In Fig. 12, the
Poincare´ surface-of-section plots are shown for the case of
unstable oscillations of the envelope functiona(s) with dif-
ferent values of filling factorh corresponding to~a! h50.1,
~b! h50.3, ~c! h50.5, and~d! h50.7. Other system param-
eters have been chosen to besv594°,KS/«50.3°,s585.7°,
and the envelope functiona(s) has been determined numeri-
cally for propagation over 1000 lattice periods. It is readily
seen from Fig. 12 that the qualitative features of the unstable
oscillations of the envelope functiona(s) remain the same
for different filling factorsh of the step-function lattice. It is
further found that the threshold for the onset of unstable

FIG. 9. Poincare´ surface-of-section plots in the phase plane
~a,a8! for the case of a step-function lattice with filling factor
h50.5, vacuum phase advancesv5104°, and different values of
the normalized self-field perveanceKS/« corresponding to~a! KS/
«50.1, s5102°; ~b! KS/«50.6, s588.5°; ~c! KS/«50.7, s586°;
~d! KS/«51.5, s569°; ~e! KS/«51.9, s562°; and~f! KS/«510,
s517°. The evolution of the envelope functiona(s) has been fol-
lowed for 1000 lattice periods.

FIG. 10. Unstable oscillation of the envelope functiona(s) for
system parameters corresponding to those in Fig. 9~d!.

FIG. 11. Plot of the threshold value ofKS/« versussv for the
onset of chaotic behavior in the envelope functiona(s) for the case
of a mismatched beam propagating through a step-function lattice
with filling factor h50.5. The unshaded areas are the stable re-
gimes, whereas the shaded area is the unstable regime.
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envelope oscillations does not depend upon the filling factor
h. Therefore, it is concluded that the instability threshold in
the parameter space (KS/«,sv), obtained forh50.5 in Fig.
11, is also applicable for filling factorsh in the range
0,h,1.

IV. SUMMARY

In this paper, the nonlinear evolution of the beam enve-
lope functionsa(s) andb(s) has been investigated for the
case of a uniform density KV beam. For the matched-beam
case, it is found that the linearized solutions to the envelope
equations are good approximations to the exact solutions in
the parameter regime where the smooth-beam approximation
is valid. For the mismatched-beam case, the evolution of the
envelope functions is found to be complicated due to the
nonlinear self-field effects in the envelope equations~1! and
~2!. The beam envelope function exhibits nonlinear instabili-
ties when the average focusing field strength, as measured by
sv , is sufficiently large. In the stable regime of the parameter
space (KS/«,sv), it is found that the envelope functions
a(s) andb(s) undergo regular, small-amplitude oscillations.
In the unstable regime, it is found thata(s) andb(s) exhibit
chaotic behavior with large oscillation amplitudes. Chaotic
evolution of the beam envelope can lead to poor confinement
of the beam particles and limit the allowed regime of param-
eter space (KS/«,sv) for stable beam propagation. The
stable regime in the parameter space (KS/«,sv) has been
determined numerically. Furthermore, the instability thresh-
old in the parameter space (KS/«,sv) has been found to be
independent of the filling factorh of the step-function focus-
ing lattice.
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