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Effects of stochastic drifts and time variation on particle diffusion in magnetic turbulence
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The effect on the guiding center trajectories of the stochastic drifts due to the curvature of the stochastic
magnetic lines is studied in the first part of this paper. It is shown that the subdiffysivehavior of the mean
square displacement of the particles cannot exist in a realistic magnetic configuration. The particles undergo a
diffusive process even in the absence of the perpendicular collisional diffusion. The anomalous diffusion
coefficient is estimated. The second part of this work deals with time-dependent stochastic perturbations of the
confining magnetic field. It is shown that the time variation has a strong effect of decorrelating the particles
from the magnetic lines. The diffusion coefficient is determined as a function of the correlation time of the
stochastic field. The influence of a cross field collisional diffusion on the results of the two problems presented
here is also estimatefi51063-651X96)10405-Q

PACS numbes): 52.25.Fi, 52.25.Gj, 52.35.Ra, 05.44.

[. INTRODUCTION plasmas, this mechanism may provide the major contribution
to trajectory dispersion. This problem was previously studied
A large number of theoretical and experimental studiesoy Coronado, Vitela, and Akcad] starting from a model
[1-16] led to the conclusion that the fluctuations of the mag-similar to ours and by Mynick and Krommes in REfQ] for
netic field observed in fusion plasméskamak, stellarator, the magnetic configuration of the tokamak in a more general
etc) provide a major contribution to the enhanced particlecontext including stochasticity criteria. However, both stud-
and energy transport. Even a very small stochastic compQes consider only a constant velocity motion of the particles
nent of thg magneti_c field _in the radial direction comb_inedakmg perturbed magnetic lines. In our model the parallel
with the high velocity motion of the particles along field \g|ocity is a stochastic function of time determined by colli-
lines determines high radial displacements. However, thesgqns e show that, even in the weakly collisional limit, the

two processes do not produce a radial diffusion but rather g.qits of the two models are different and that the constant

slovx_/er t||me \g/;_rowlth of thehdlspe;st_:oglof t:e trachtorflpm- velocity is not a good approximation of the physical prob-
portional tot). It was shown[3,5,9,19 that only when a lem. This is in agreement with the conclusion of several

supplementary mechanism acts to decouple the part'der?apers[4,8,14] that the fluctuating nature of the particle ve-

from the magnetic lines is this subdiffusive behavior domi-; " . . . . . .

i e locity along field lines is essential for an appropriate descrip-
nated asymptotically by a diffusion process. Such a decou'fion of plasma transport processes in magnetic turbulence
pling mechanism, provided by the collisions producing a Th F()j lati P ftr? ticles f ?h tic i )
small cross field diffusion that is strongly enhanced due to € decarrelation of the particies from the magnetic ines

the fast parallel motion along the stochastic magnetic linescan @lso be produced by the time variation of the stochastic

is presented in detail in Ref5] (see also Ref[9)). magnetic field. We show that this mechanism is very effi-

In the present paper we study two other mechanisms dfiént when the correlation time of the fluctuating fieidis

decoupling the particles from the magnetic lines: these ar€f the order of the inverse of the collision frequeneyand
not related to collisions. that particle diffusion is strongly enhanced in these condi-

First, we show that there exists an intrinsic decorrelatioriions. We determine the diffusion coefficient as a function of
mechanism in any space-dependent stochastic magnetic field, and demonstrate that the collisional cross field diffusivity
It consists in the stochastic drifts determined by the gradientbas no decisive influence on the shape of this curve. This
of the magnetic field, which are always present along a stoproblem was previously treated in several papérs,11,12.
chastic magnetic line. As a consequence, the subdiffusiv®ur results are in qualitative agreement with the heuristic
Jt behavior of the mean square displacement cannot existnalysis presented in Rel] and with part of the conclu-
even when the perpendicular collisional diffusion can be nesions obtained in Ref.11] from numerical calculations of
glected. We evaluate the diffusion coefficient determined bythe confinement time in the case of a single coherent pertur-
the stochastic drifts and show that, in weakly collisionalbation of the magnetic field. In Ref6], the problem is

treated in a simplified framéstochastic magnetic field de-

pending only on time or space-time fluctuating field but with
*On leave of absence from the Institute of Atomic Physics, P.Oconstant velocity parallel motiorihat prevents a direct com-
Box MG-7, Magurele, Bucharest, Romania. parison with our results. In Ref12], the time dependence of
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the stochastic magnetic field is folded into the Lagrangiaralong the field lines with a velocity that can be modeled by a
correlation function, which is introduced arbitrarily and re- stochastic function of time. We assume that the unperturbed
sults that are typical for the static case are eventually obfield is strong enough so that the motion of the particles can
tained. be described in the drift approximation. In Rg#] the per-
Our approach is based on Langevin-type equations thaiendicular drift motion is neglected and the equations of
describe both magnetic lines and particle guiding center tramotion are obtained by combining the field line equation
jectories. We use the methods and some of the results olwith the collisional velocity parallel and perpendicular to the
tained in our previous papéb], which contains a study of magnetic field, respectively. We are now interested in evalu-
the stochastic magnetic line configuration and of particle moating the influence of the drifts on particle behavior and also
tion in such fields. The Lagrangian nonlinearity determinedn studying the effect of time variation of the stochastic mag-
by the dependence of the fluctuating field on spatial positiometic field. Thus, the guiding center trajectorigs(t) are
appears there to play an essential role in particle-field linelescribed by the following set of equations:
separation due to perpendicular collisions. The influence of
the stochastic drift on the particle mean square displacement d «
is shown to act through the Lagrangian nonlinearity as well g Xp(!) =Pl Xp(1), 17 (t) Fvpu Xp (1), ]+ 7L (1), (3)
but the diffusion induced by the time variation of the sto-
chastic magnetic field is not conditioned by the chaoticity of
the latter. _ o at Yp(t)=by[X,(1),t]77(t) +vpy[X5(1), 1]+ 7Y (1), (4)
The present work belongs to a series of papersiated
by [4], [5], and[13]) which is devoted to various aspects of
the problem of particle and energy transport in regions where
the magnetic field is stochastic. The text is organized as fol-
lows. The model and the system of equations describing the
particle guiding center trajectories are presented in Sec. II. iThe drift velocity vy, is given by[17]
also contains the statistical assumptions about the fluctuating
guantities: magnetic field and collisional velocity. The model
is rather general. It contains three decorrelation mechanisms:
the perpendicular collisional velocity, the stochastic curva-
ture drifts, and the time dependence of the stochastic magvhere J=eB/mc is the gyration frequencyn=B/B is
netic field. Our strategy in dealing with this problem is to the unit vector along the field ling,=v?/2B is the magnetic
study first the effect of each of the three decoupling mechamoment, andy,,v, are the components of the particle ve-
nisms taken separately. The decorrelation due to collision®city parallel and perpendicular to the reference magnetic
was presented in our previous papbt while the intrinsic  field, respectively. The component of the drift velocity is
mechanism of particle-field line decoupling is studied in Secneglected since it combines with the much larger collisional
lll of the present paper and the time-dependence-inducegarallel velocity. We note that the Lagrangian nonlinearity
diffusion in Sec. V. Then the combined action of the decor-consisting in the trajectory dependence appears in the first
relation mechanisms is analyzed: stochastic drifts and collitwo terms in the right-hand sidghs) of Egs.(3) and(4).
sions in Sec. IV and collisional particles in time dependent The drift determined by the time variation of the magnetic
stochastic magnetic field in Sec. VI. The results obtainedield [third term in Eq.(6)] will be neglected since it is much
there allow us to draw conclusions about the full physicalsmaller than the first two ternjsee Ref[17], Chap. 1.
problem, in the frame of the Langevin model presented in Two additional approximations can be introduced in Egs.

d
gt Z,(t) = n(1). 6)

1 2 U an
Vp==NX[uVB+v;(n-V)n]+ Q nxX—

Q at)’ ©

Sec. Il. They are summarized in Sec. VII. (3) and (4) although they are not compulsory in developing
the model. They simplify considerably the calculations with-
Il. THE MODEL out sensibly affecting the results. First, since the amplitude

] _ . of the magnetic field fluctuations is very small, we can ne-
We consider a shearless slab geometry for the confiningject the terms irb", n=2, in the drift velocity and retain

magnetic field with a stron¢constant componen®B, along  gonly the dominant, first order, terms:
the z axis and a fluctuating perpendicular comporBgti(x)

in the (x,y) plane: Uf ab, vl?ll b,
B(x,t) =Bg(&,+ by(x,t) e+ by(x,1)e). (1)

ST G VT @
The time variation is slowwith characteristic frequencies Secondly, the parallel velocity, appearing in Eq(7) is the
=<1 MHz, as observed in tokamak plasni4s)) so that the Particle collisional velocity ~along magnetic lines
induced electric field is negligible. The stochastic componentv = 7,(t)]. Thus, the drift velocity is a doubly stochastic
b is represented by a vector potentifi(x,t)e, in order to  Process: it fluctuates due tnand due to collisions. An im-

have the condition of zero divergence automatically fulfilled:Portant simplification is obtained if we average the drift over
the fluctuating parallel velocity. This is an acceptable ap-

b(x,t)=VX(¥(x,1)e). (20  proximation since the drift velocity does not depend on the
sign of the parallel velocity. We have also checked that in
The configuration of the magnetic lines is studied in detail inboth cases there is no correlation between the two terms in
our previous papef5]. The particle guiding centers move the rhs of Eqs(3) and (4). Thus, in doing this approxima-
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tion, we do not lose any important cross term correlationand for their gradientd,, ,(X)=db,(X)/da, m=x,y, and
effect. With these simplifications, the systef®—(5) be- a=x,y,z
comes

FEE(r, 1) =D o X+ 1,1+ 7)by 5(X,1))
2

d v
gt X000 =B,0p(0). D7 (1) = 5 by Oxp(D). D+ 7 (D), =(bm,o(r,7)by 4(0,0)). (16)

(8) We extend this notation to the Eulerian correlation function
of a field componenb,, with a gradiento,, ., by introducing
V2 y the valuee=0, which means that no derivative is taken on
gt Ye(D=by(xp(1), D)7y (1) + -5 b 2(xp(1), )+ 72 (1), the corresponding component lof Nonzero expressions are
(9) obtained for all the components of the matri,,,, and of the
tensor.#22. All are proportional ta #(r,7), the correlation
d of the potential? and contain various factors that are poly-
gt (W =m(V), (10 nomials in the components,.r,.r, of the distancer be-
tween the two points.
whereb, ,= db,/dz, n=x,y. Using these expressions, it is easy to show that the fluc-

Equations(8)—(10) must be completed by specifying the tuating drift velocity(6) has zero average. .
statistical properties of the random quantities. We assiame  An order of magnitude estimation shows that the drift
in Ref. [5]) that both parallel and perpendicular collisional terms are much smaller than the parallel motion teftheir

velocities 7 and 7, , respectively, have zero average and arg@tio is of the orderp /A where p, is the Larmor radius
modeled by a Gaussian colored noise: However, the small stochastic drift can have a stronger con-

tribution than the collisional perpendicular diffusivity if
(D)) =x,v exp(—v|t—t')=R(|t—=t']), 1D  x.<x(pZ\DB> For the classical transport model, which
gives y/x, =077, this condition becomes B/ >1 (\g,

(7L (D)7 (")=( (D)7} (t"))=x. v exp(—v|t—1"]) is the parallel mean free path of the partiglésence it cor-
responds to high temperature, weakly collisional plasmas.
=R, ([t—t']), (12 An extended and very clear derivation of the equations of
particle motion relevant for the transport studies in the elec-
() 7 (1)) =(m(O) 7 (1"))=(7] () 7{ (1"))=0, trostatic and magnetic turbulence in tokamak plasmas is pre-

(13)  sented in Ref{6]. The systen{8)—(10) is in agreement with

L . the model presented there.
where v is interpreted as the collision frequency of the

plasmalxu as the(classical parallel diffusion coefficient, and I1I. AN INTRINSIC PROCESS OF PARTICLE-FIELD LINE

X, as the cross field diffusion coefficient. In terms of the DECORRELATION

thermal velocityVy=y2T/m (m is the mass of the particle . ) )
and T the temperature of the plaSl)naX\FV%/ZV and The aim of the present study is to answer the following
.=V 2202, question: could the stochasftth drifts provide a decorrela-

For the description of the fluctuating magnetic field, wetion mechanism of the particles from the magnetic lines? If
make an assumption about the statistical properties of ththe decorrelation exists, then the subdiffusive behavior of the
vector potential’(x,t)e, and then derive from it the statisti- Particle mean square displacement is not possible and the
cal characteristics of the magnetic field and of its gradient$articles diffuse even in the absence of the perpendicular
(as in Ref.[5]). This procedure ensures the zero divergencéollisional diffusion. In order to answer this question, we
condition for the fluctuating magnetic field(xt) is taken neglect in this section the collisional perpendicular stochastic
as a Gaussian random field, spatially homogeneous, isotropkglocities in Eqs(8) and(9) [#, (t) =0] and consider a static
in the (x,y) plane, and stationary. The Eulerian autocorrela-Stochastic perturbation of the main figl=b(x) and 7,—

tion function is taken as in the Eulerian correlation function for the potentiil Eq.
19].
A, ) =(V(x+r,t+7)P(x,1)) We use the same method as in Ré&fl, which consists of

) ) studying the time evolution of the perpendicular deviation
=82 exp — rz B |l| (14) Ax,(t) of a particle from the magnetic line on which it was
- 2NF 2\% ) located at time O:

Here, two characteristic lengths are defined: the parallel cor- AXp(D) =, (1) = Xmu [Zp(D)], 17
relation length\, anq j[he. perpendmu]ar cqrrelaﬂon length wherex,,, [z,(t)] is the position where the particle would be
\;, and a characteristic time.. The dimensionless param- at timet had it followed the initial field line. By definition
eter 8 is a measure of the intensity of the fluctuations of theAxp(0)=0. The evolution equation for this quantity follows

magnetic field. _ _ from Egs.(8)—(10):
Using the methods presented in RES], we derive the
Eulerian correlations for the magnetic field components: d dz,(t)

dt AXp(t) :{b[xpl(t)yzp(t)] —b[ Xy (Zp(t)):zp(t)]} dt
Dan(1, 7)=(bp(x+r1,t+ 7)bn(X,1)) =(by(r,7)b,(0,0))
s FolXp. (1), 25(0)] (19
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The statistical description aix,(t) requires the determination ¢at leas} three moments{Ax,ﬁ(t)}b, <Ayf,(t)>b, and
(Ax,(t)Ayy(1))p, Where the average is taken over the statistical ensemble of the stochastic magnetic field. We use here the
method presented in detail in R¢&]. Similar problems were treated previously in R¢8] and[9].

Being interested in the first stage of the evolution of the distance particle—fiekdmm%(t)|,|Ay§(t)|<)\f) we linearize
Eq. (18) around the magnetic lingy, [z,(t)]:

d Vi (g
a Axp(t)be,x[xm[zp(t)]vzp(t)]n\l(t)AXp(t)+bx,y[xm[zp(t)]vzp(t)]nl\(t)Ayp(t)_ ﬁT [ 5 by[Xm[Zp(t)]aZp(t)]

d d
+ o by X [2p(D)], (D ]AXp (D) + — by,y[XmL[Zp(t)]azp(t)]Ayp(t)} ; (19

2

d Vi| o
& Ayp(t)gby,x[xm[zp(t)]vzp(t)]nll(t)AXp(t)+by,y[xm[zp(t)]vzp(t)]n\\(t)Ayp(t)+ ﬁT E bx[xm[zp(t)]azp(t)]

1% 1%
+ o b X [2p(D)],2(D 1A (D) + — bx,y[xm[zp(t)]1Zp(t)]Ayp(t)]- (20)

We note that in these equations all the magnetic field comgiven time moment. Using this equation and the expressions
ponents and gradients are evaluated in thg ) plane along of the Eulerian correlations, one finds that, for th@moge-

the magnetic lingnot along the trajectoly Thez component  neous, gyrotropicand stationary turbulence we are study-

of the particle trajectory,(t) is here considered as a given ing, the table of correlations simplifies considerably in the
function of time. Thus, we treat the doubly stochastic procestagrangian frame. Some of them are zero and all the others
in two steps: we first consider the stochastic magnetic fieldcan be expressed in terms of two scalar functiofig) and
solve the Lagrangian nonlinearity, and obtain the square relaZ ({) (see Ref[5]):

tive displacement avergged q\kgrand then we average this S0 =5 (L) 22)
result over the stochastic collisions. We have checked, in the mn mn ’
simpler case where the stochastic drifts are neglected, that xx -y _ » __ox — XN — o
the I2)rder of performing the averages oveand 7, d?)es not Ll D)=LD) == Ll )= = Ll O =F1D), 23)
influence the result: the two operations commute.

Multiplying Egs. (19) and (20) by Ax(t),Ay(t), en- DI =23 =3I, (24)
semble averaging over the realizations of the stochastic mag-
netic field, then treating the resulting equations in the spirit L) =30 =L {) =L () =0, (25

of the quasilinear approximation and using the well-known

asymptotic Markovianization proceduf&7], one obtains a 2z £ )

rather complicated system of coupled equations for the mo- L) = )\7“ 1- fuf Smn (L), (26)
ments(see Ref[5] for more details on this long but straight-

forward calculation The coefficients appearing in this sys- A (=A% (0)=0, 1=xy, (27)

tem are time integrals of the Lagrangian correlations of

various gradients and components of the magnetic field. The 20 o 4 )

latter represent the Lagrangian version of the Eulerian corre- % )\_f Omn (), (28)
lations defined in Eqg15) and(16). Using as in Ref{5] the 7 _ _ _ .

Corrsin approximatiorf18,19, the Lagrangian correlations Where Z({) is the solution of the integral equation deduced
can be related to the corresponding Eulerian correlations bif? [5]:

£ N
A7) = B2 _
seb(g)= f dr, ZE(r, )T, 0), @n  O=8 exP( m) [)\f+2fgd§l(§—gl),,%(gl)]:zg)

and.7(¢) is the following function of%4():
wherey(r, ,{) is the probability of finding the current point

on a field line at the perpendicular positiopnwhen a paral- 5 4
lel distance! is covered. Its definition and estimation are _,. .. > 4 Ny

: : : : (=B exp — 52| 2 7 RN RS
given in Ref.[5]. We recall thatzy(t) is, at this stage, a 2N ) [INT+2[5d24(8—81)2(81)]
function of time and thug denotes the parallel position at a (30)
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The equations for the moments become

d t t
gt (Axp(0)p=2 fodr%'(g)m.(r)m(t)<AxS(t)>b+6 fodr%‘(5)m(r)m(t)<AyS(t)>b f dr 5z Z(&)m(n)

Vi &
X(Axp(D)AYp(t))p— 125 de N (&) m(H(AXp (t)Ayp(t)>b+l492)\” de(l—)\—> T(E)
Vi 2 Ve 2
QZ)\Z f dT( f ) <Ayp(t)>b+292)\2 f dT( 1_ f_) /(g) (31)

X(AXA())p+2 =57

dat <Ayp(t)>b Gf VA 5)77\\(7')7]\\(t)<Axp(t)>b+Zf d7 Z2(&) m(7) m(t)(Aya(t) >b+4 JdT 2 -2 (&) m(7)

(Vs &2
X(AXp(1)Ayp(t) >b+12_fd7 = 7(5)n\l(t)<AXp(t)Ayp(t)>b+2QZ)\” fdf( )\z) (E)(AX5(1))p

V4 4

gZ V 52
+14QZ)\II de( A) 7(§)<Ayp(t >b+2927\|l de(l_)\_

Z(8), (32

d t Vi ot 2
— (AXp(D)AYL(1))p= _4J dt Z(E) my(7) m(D(AX(1) Ay (1)) + 12_22T dr| 1— éz FE(AX(DAY (1))
dt 0 QN Jo Aj

2

V t
+2 Q—;” JodT EX(E[ (1) +3 (D) I[(AXS(1))p—(AY5(1))p], 33)

where §=z,(t) —z,(7). [second term in the square bracket in B3f)]. However, the

We first note that the equation feAx,Ay,),, is homoge-  latter is very small compared with the first term in the square
neous(it does not contain a source term as the other)two bracket and will be neglected for simplicity. The solution of
Thus, the solution corresponding to the initial condition Eq. (35 with the initial condition(34) is

_ _ v t
Axp(0)=Ay,(0)=0 (34) (Aré(t))b=4ﬁz J dt,f(ty)
I J0
is (AX,(t)Ay,(t)),=0. This means that the stochastic drifts
do not generate a cross correlation in particle trajectories. zp(0) ¢ _
The first two terms in the rhs of Eqé€31) and (32) are the xexp 8 25ty d¢ | d&y Z(4L=0)],

same as those appearing in the equation for the distance be-
tween two magnetic lingEgs. (54) in Ref. [5]] and the last (36)
five are produced by the stochastic drifts. Particularly impor-

h
tant is the last term, which is a source term. The solution 0¥V ere

(31) and (32) corresponding to the initial conditio(84) is ty (Zp(t1) —2zp(7))?

obtained from the S|mpler equation, which describes the evo- f(t1)—fo dr| 1— B — Azp(t) —zp(7)].
lution of (Ar 3(t))p=(AX5(t))p+{AY5(t))p: : (37)
d t . . .

el 2 _ A The argument of the exponential appearing in B8f) can
gt (AT [8f0d7 AEm(m)m() be evaluated asymptotically, fag(t),z,(t;)>\, i.e., in the

4 magnetic diffusion regime as
Vi &2
+1692M f dr(l—)\—) T(E) }(Arp(t»b

z,(t)—z
: 8fp de| a0 RV 5(0) (g
Vi & N
+4QZM f dT( 1- )\_) Z(6). (39 whereL is the Kolmogorov length:
Thus, the stochastic drifts determine a nonhomogenéte:s L,21=4fmd§ T(E). (39
coupling term and a modification of the exponentiation rate 0
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All the previous calculations are performed in a given realization of the stochastic parallel vejgtityThe solution(36)
and (37) still has to be averaged ovej;. We use the same method as in Hé&f| for calculating the average ovey, of the
following function of two variables:

(z—¢)? rAny2)
F(z—z1,z,—)=| 1—- —)\2— Az1—)exp 2 i (40

wherez=z(t), z;,=2zy(t,), and{=z,(7). Performing the Fourier transform in the two variables, the average is given by

|

© o t ty
<F(Z_21,21—§)>|\:f f dk dq F(k,q)<ex;{—ikﬁ de ﬂ\\(ﬁ)_iQJ de »,(0)
I ) ,

1 e w0
~(2m)2 f ledgl dé> F(él,fz)f fﬁxdk dgexdiké+iqés]

1, 1,5
Xex;{—z k (zp(t—t1)>u_§ a%(zp(ti— 7)) = ak(zp(t—=t1) Zp(ty = 7))y |- (42)

After integrating ovedk, dq, d¢;, d§,, one obtains the following expression for the average of the particle displacement from
the magnetic line:

R NZ )3’2 (Zp(t=ty)zp(t— 7)f
<Arp(t)>b"_492?\|2 fodtlfo dr N+ (Zp(t— 1) LKIAF+(Zp(ti= D]

;{ <Zp(tl T)>||<Zp(t 1)>H (Zp(t—ty)zp(t,— 7')>H+)‘ <Zp(t ty) >|)
LRINF+(zp(ti— 7))

The decorrelation of the trajectory from the initial field line is produced when the dis(&rrt%(t))bn is of the ordem? . The

model considered here applies to high temperature, weak collisional plasmas. We have neglected the perpendicular collisional

velocity in the trajectory equation(®) and(9) but have retained the stochastib drift. This approximation is justified when
AmipB/N>1. In these conditions, it is natural to consider that the decorrelation is produced during the ballistic reglme of the

parallel motion and to approximate the parallel mean square displacements appearing(4i2) Hxy. (zp(rl))H 2VTrl,

(zp(m1)Zp(T2) )= iVZ2r 7,. This gives

(42

Ar? . J' it ftld V-2|—1'2 ~32 (V#/)\Hz)tirz VTt] 43
(Ary(0)n =457 ZM I Zawvizng T zavizag) W
|

We thus find a continuous growth of the distance between aXy x2

the particle and the initial magnetic line that is more compli- h(x,)= f dx exp =——5= | (1+x%/2) 32
. ) - 1+x4/2

cated than in the case of the perpendicular collisional veloc-

ity [Eqg. (102 in Ref.[5]] but is essentially exponential. The szz

growth rate is related to the exponentiation length of the field 1+2—%— T3] (45)

linesLy .

In order to analyze this result it is useful to introduce the
following dimensionless quantltlesf(t) (Ar?2 (t)>b”/)\l,
a;=Np/Li . 3,=Ly/\;, c=48 (pE/)\l)LK/)\H, andr=tv.
Equation(43) becomes

The integrand in Eq45) is a fastly decreasing function &f
which becomes negligible at=2. As a consequence, the
functionh(x;) is practically independent of the paramedgr
[it only affects the behavior dfi(x;) at smallx; where the
values of this function are very small and do not contribute
to Y(t)]. Thus, the dependence ¥f(t) on the parameters
ayr enters only_th.rough thg muItipIi_cative factorand throggh
Y(¢)=cf dx, h(xy), (44)  the upper limit of the integral in Eq(44). The numerical

0 calculation of the functiorh(x;) showed that it can be ap-
proximated by

where h(xy)=exf e(x;+x%)], €=0.767, (46)
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which gives the following estimate for the dimensionlessin the quasilinear limit(a=8\/\, <1), L=\ 2/4D,, and
relative dispersiory(t): the diffusion coefficienf49) can be approximated by

Y(t)= exf e(a;7+a37?)]. (47) 2eD. V-

1+2a D
dr™ In¥ €1N| /p,_)

(7.=0), (50)
Thus, the curvature stochastic drift determined by the gra-

dients of the fluctuating magnetic field,+#0) provides an

efficient mechanism of decoupling the particles from theynerep s the diffusion coefficient of the magnetic lines

field lines producing an exponential departure between thf’D _Wﬁz)\ ).

trajectories and the field lines. This result, based on the lin- We note tha”t a different result is obtained for a constant

tion of the distance particle magnetic line, when

(Arp(t))p=\I. Beyond that limit, a diffusion process of 10)]. From the mathematical point of view, the problem
the particles is expected. The decorrelation time, defined ag,jifies considerably since the trajectories are determined
the time interval during whickAr (t)>bH grows from 0 to by a single stochastic function(x). The following expres-
A%, is determined from the equatldf( 7a) =1, whichhas the o, is optained in this case for the mean square deviation of

netic field[i.e., for »,(t) =v,=const and/1=v, in Egs.(8)—

solution the trajectories:
L Vitds—1 1 N
Tg=— ——=——, S=-—1In| e ]|, (48 2
N mfp 2 € pL ) %
o=z "z o) 1455 | 1- 5 [wie- o),
I I

where e;=(3/In 2)\m/2e=5.42.

The representation of the particle diffusion process as an
effective random walk permits us to evaluate the diffusion
coefficient as

(51)

where #"({) is the Lagrangian correlation of the magnetic
field along particle trajectories. Using the method presented

2
Dy ==t ML N iVt =0). (49) in Ref. [5], one can derive an integral equatifsimilar to
27’d 2 [ \/— Eq. (29)] for ~£™:

(52

22 )\4
£"(2)=p?
S ex"( 2x|>{x 72030 A O+ (DN (L= PN 1(z= 01

For p_ =0, Eq.(52) reduces to Eq(29) and #"(z) to #(z),  (10) but with a static stochastic field=b(x) and r,— in

the Lagrangian correlation of the magnetic field on magneti€q. (14)]. Since, is not correlated with the other two sto-
lines, which, introduced in Eq51), determines the well- chastic functions, it determines only an additional free term
known collisionless diffusion coefficienD ,v,. Equation in Eqs (31 and (32 for the moments(Axp(t)>bL and
(52) shows thafp, #0 contributes to the decrease of the La—(Ayp(t))m , respectively, which is of the form
grangian correlation and thus of the effective diffusion coef-2f §dr R, (t— 7). The decorrelation time is calculated fol-
ficient. The relative decrease is proportional dﬁpL/)\” lowing the same steps as in the previous section. With the
which is rather small for the parameters of tokamak plasmasapproximatione=1, the result can be written as a simple,
This result is in qualitative agreement with RE] and also  compact expression. Eventually, we obtain the following es-
with the conclusions deduced in a more general context itimation for particle diffusion coefficient when both the
Ref.[10]. It applies to collisionless particles, e.g., to the run-small stochastic drift and the collisional perpendicular veloc-
away electrons in tokamak plasmas. Thus, the stochastic cuity are considered:

vature drifts have an opposite effect on collisionless par-

ticles: they reduce the diffusion coefficient while the 2DV
collisional particle diffusion increase witp /N, as seen in D= m-T (weak collision$
Eq. (50). Y2 1

(L16)LZ/LZp+ (1ley) pPiIN? .
5
IV. DIFFUSION DETERMINED BY COLLISIONS AND

STOCHASTIC DRIFTS .
whereLyp=\, Vx;/x, is the Kadomtsev-Pogutse charac-

The perpendicular collisional velocity is now taken into teristic length. In the limit of very small collision frequency
account together with the stochastic curvature drift. The trav—0 (x,/x;—0 or Lyp—=) the diffusion coefficient(53)
jectories are thus represented by the complete sys8m reduces tdDq, given by Eq.(50), showing that the particle
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behavior remains diffusive when the perpendicular colli- Introducing the nondimensional quantiti€s=¢/\, and
sional diffusivity can be neglected. E ) =Z(EDI[ B exp(—|t|/ 7)), Eq. (55) becomes
The drift induced diffusion coefficient can also be calcu-
lated at higher collision frequencies corresponding to the &2
Rechester-Rosenbluth reginiRefs.[3] and [13]). In fact, ,%“d(g,t)=ex;{ - ?)
the perpendicular collisional stochastic velocity could not be
neglected in these conditions. However, we study this prob- 1
lem in order to show that the stochastic drifts have a negli- X T E —d 5,
gible effect at higher collision frequency. The average mean [1+2a%(t) [odé1(E—€1) L (é1,1)]
square particle deviation from the magnetic line can be esti- (56)
mated in this case from E@42), using the asymptotic ex- ) ) i
pression(z2(t))=2y,t instead of the ballistic approximation Where & (t)=B°(\/N,)* exp(—|t|/ o). Except for the time
that leads to Eq(43). The following result is obtained: dependence in the nonlinearity parametethis equation is
\2 identical with the equation for the static ca&®). Thus, an
_ LX| ‘L effect of the time dependence is to gradually decrease the
Dar Lﬁ N[N, xy/BpLV1Llk] (strong collisions. nonlinearity impact as time goes on.
(54) When calculating the mean square deviation of the mag-

Comparing Eq(54) with the collision induced diffusion co- "etic lines, one has, of course, to take0 in Eq.(55), which
efficient[Eq. (98) in Ref. [5]], one finds thaDy, is always reduces to the static case, E§9). The time dependence

smaller(as long ag8<1/2v2). Thus, we can conclude that in becomes important when particles moving along magnetic
this high collisional regime the stochastic drifts could notlines are considered. Then, a time dependence is introduced

represent the dominant diffusion mechanism. Particle diffuin the Lagrangian correlatiori# through particle motion

sion is mainly determined by the collisional cross field dif- {=z,(t) and the exponential time factor determined by the
fusivity and the stochastic drifts contribute only wit@osi-  time variation of the magnetic fluctuations contributes be-
tive) correction to the Rechester-Rosenbluth diffusionsides particle motion to the Lagrangian correlation of the

coefficient. stochastic field along trajectories.
V. PARTICLE DIFFUSION IN TIME-DEPENDENT ] The ‘mean squz_aref_ p;gr_tlcle deviation averaged over the
STOCHASTIC MAGNETIC FIELD uctuating magnetic field Is

We concentrate in this section on the effect of time varia- 5 t [t
tion of the stochastic magnetic field on particle diffusion. <Xp(t)>b:f fdtl dtyy(ty) 7(t2)
Therefore, we consider Eq$8)—(10) with b=b(x,t) [and 0’0
with finite correlation timer, in Eq. (14)], but with vp=0 X A2(ty) —2(ty) ty—to]. (57)
and , =0. i '

In this case, the mean square displacenﬁmf;(t)),mI can
be calculated for any and it is possible to show that its . .
asymptotic behavior is diffusive. Thus we do not need to’\Veraging over the second stochastic paramefe€g. (57)
evaluate the decorrelation time and to perform a randonP€comes
walk estimation of the diffusion coefficient. ¢t
The time dependence of the magnetic fluctuations does <X2(t)>b\\:f f dt, dt,L,(t;—t,), (58)
not affect the instantaneous geometry, i.e.,zliependence P 0Jo
of the magnetic lines. It determines, however, a parametrical
dependence on time of the Lagrangian correlation of the sto-
chastic magnetic field along magnetic lines. For finitethe  where
integral equatior(29) becomes

2 L, (t;—tp) =( A z(ty) — z(t2), ty— o] my(ty) m(t2) )y
Az onf - )
202 (59)
It| )\i is the Lagrangian correlation of the stochastic perpendicular
Xexp —— , . velocity v=b7, determined by particle motion along per-
"( rc) [N+ 203002(0— L) AL D T A -~ oL

turbed field linesL, can be calculated by performing a Fou-
(55 rier transform of #(z,t) in its first argument:

o tl
Lv(tl_tZ):J dk %T(k:tl_t2)< 7(ty) 77||(t2)exy{ —ikJ’t de 77(9))>
- 2

> g 1 (u
= f dk Z(k,t;—t,) i2 m <exp( _kat de »,(0) > . (60)
- 2 I
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Straightforward calculations consisting in performing the av-behavior of the diffusion coefficient as a function of the cor-
erage of the exponential, the time derivatives, the inverseelation timer,. Thus, atr,—x, the diffusion coefficient is
Fourier transform, and eventually the integrations, lead to theero and asr, decreases it grows due to the fact that the
following expression for the Lagrangian correlation of the negative part of the correlatidn, is gradually attenuated. A
velocity v: maximum ofD is reached at a value of corresponding to
a complete cutoff of the large time, negative partgft). At
I o smaller values ofr,, the decay due to time variation of the
L,(t) ffmdg LD, (62) magnetic fluctuations becomes efficient also on the small
time, positive part oL, so that the diffusion coefficient de-
where creases as 1 increases.
In the quasilinear limit, atv(0)<1, the Lagrangian corre-
d<2;2)(t)>u 1 lation of b on the magnetic lines resulting from E®&5) is

dt  \2m(Z1), simply

%G ? t
p( W) ' 2 e e - glen{ <[] 9

2\] .
<z§(t)>”=2f td7(t— r)R(7) is the mean square deviation in
the z direction resulting from Eq(10) and the correlation and the Lagrangian correlation wion the trajectories can be
function (11). Equation(61) differs from the corresponding calculated easily:
equation obtained in the static problem only through the ex-
plicit time dependence appearing in the correlation function
£(Lt). We show that this modification produces the transi- L ()= g 1 [R(t) @2(t)
tion from the well-known subdiffusive regime of the static A N N ey TN+
case to particle diffusion. To this aim, we note that when N+ (Z5(0), RACAON

1d
f(Z,t):za

¥=%(0), the time dependence of the correlatloy(t) com- It]
ing only from the functionf(¢,t) has the following shape: Xexp - — (64)
[

for smallt it is a positive, decreasing function, then it be-
comes negative, and at largét approaches zero asymptoti-
cally ast > (Fig. 1). The negative and positive parts of The diffusion coefficient obtained by numerically integrating
L,(t) have equal areas so that the diffusion coefficient isEq. (64) is represented in Fig. @y the continuous lineas a
zero:D=[dt L,(t)=0. This is the reason for the subdif- function of Inw/v) (Wherew=1/z,). It has indeed the shape
fusive behavior appearing in the static case. When there is @escribed above. As.—0 (w—), the diffusion coefficient
time variation of the magnetic fluctuations that makes theyoes to zero. But this is not a correct result sincevasx,
correlation timer, finite, the supplementary time dependencefirst the time-dependent drift cannot be neglected in &.
contained in({,t) destroys the “equilibrium” of the posi- and further, the guiding center approximation is not valid
tive and negative parts of the correlatibp. Equation(55)  and also the induced electric field becomes important.
shows that the explicit time dependence‘6fs,t) consists in Simple analytical expressions for the diffusion coefficient
an attenuation that is effective at larg€t=r7.). Thus, the in limited ranges of the parametercan be obtained easily
negative part of the correlation is affected more than thgrom Eq.(64). For the strongly collisional regime character-
positive one and a nonzero, finite diffusion coefficient will ized by the conditiony=(\y/A)?<1, the integral of Eq.
result from the time integral ot (t) for time-dependent (64) can be approximated by
magnetic fluctuations. This image also gives the qualitative

L, D

0.067

0.04

0.02

-0.02

2 [ , : ()
0.04 1

o FIG. 2. The normalized particle diffusion coefficient
FIG. 1. The Lagrangian correlatidn,=L,/(8%) [EQ.(64]for ~ D=D(®)/Dmax,» Dmac=1AN2)BNV[1-(2Ip)Y*+(1/yY?] as a
the following values ofw/v: 0 (curve 3, 0.1 (curve 2, and 1(curve  function of In(w/v); continuous line: the time integral of E¢G4);
3) [yE()\mfp/)\”)ZIZO]. dashed line: the approximation given in E§6) (y=20).
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¢ I ® if B2x/x.>1, i.e., if \yp>pL/B. The two conditions for the
\/; BNV o, Pt mean free pathp /B<\np<)\) indicate that the magnetic

field fluctuations produce a strong anomalous diffusion of

D(w)={ Bx(1—y/2), 7<2< 1(y<1) (65 the particles in this strongly collisional regime only if

v B=Bim=pL/\;. The bracket in the second line of E§5) is

1 Vi w a correction.

2 B o' 1<;- For the weakly collisional regime characterized by the
conditiony>1, the diffusion coefficient can be approximated

Equation(65) shows that an anomalous diffusion is obtainedby

|
( T, ®
5 B M, <1

1
D(w)=1 — FAVH(1- @™+ 1), 1=7<\y (1) (66
1 V2 1)
Z g2t <
L 2 B '’ Vy= v’

Again a correction was retained in the second line of thisFig. 2) but strongly reduces the diffusion of collisionless
equation. The condition that the maximum value of this dif-particles. In the quasilinear limitZ(¢;t) is given by Eq.(63)
fusion coefficient is larger thay, is )\mfp>pfl(,82)\”)_ This  and the following expression results for the collisionless dif-
shows that the diffusion can be anomalous also at levels dfision coefficient:
w)\”
1—erf
\/QU”

the fluctuating magnetic field smaller than the lirgjt,, de- w2\2
termined in the previous case. These analytical approxima- D=Dmv”[ exp( ')

where erf§) is the error function. The curly bracket is in-
deed a decreasing function af always smaller than 1.

e : (67)
tions are represented in Fig.(fr y=20) together with the 2vj ]
numerical integral of the correlation functidf4).

The Lagrangian correlation functio{®4) and the diffu-
sion coefficientd65), (66) are the main results of this sec-
tion, which concerngy =0. Let us end with the following
two remarks about the effect of the nonlinearity and the dif-V!- COLLISIONAL PARTICLES IN TIME-DEPENDENT
fusion of purely noncollisional particles, respectively. MAGNETIC FLUCTUATIONS

The result presented in Fig. 2 is obtained in the limit |n the previous section we have studied particle diffusion
A, — (or a—0) where the Kolmogorov length is infinite. in space-time varying stochastic magnetic field neglecting
Thus the chaoticity of the stochastic magnetic field does nothe perpendicular component (t) of the stochastic velocity
play an important qualitative role in the diffusion induced by determined by collisions. We evaluate here the influence of
its time variation. Moreover, we have found that nonlinearity, on the diffusion coefficient. Thus, the corresponding
parametersy<1 produce only slight quantitative modifica- model consists of Eqs3)—(5) with b=Db(x,t) (7, finite),
tions of the previous, linear results. Numerical integration ofvy=0, and, #0.

Eqg. (61) with ~4({t) given by the numerical solution of Eq. This problem cannot be solved using the method of Sec.
(55) yields a diffusion coefficient very similar to the linear V since it is not possible to expre&s, the Lagrangian cor-
one presented in Fig. 2. The effect of the nonlinearity con+elation of the velocityw=bz,, on particle trajectories as a
sists in a small decrease of the value of the maximum tofunction of 4({,t), the correlation of the magnetic fluctua-
gether with a slight displacement of it towards larger valuedions on magnetic linefEq. (61)]. In fact, wheny, (t) =0,

of w. the particle paths coincide with the magnetic lines and this is

We also note that particle diffusion in a time-dependentthe physical basis of Eq61). When #, (t) #0, one has to
stochastic magnetic field is completely different in the purelydetermine the Lagrangian correlation lmfon particle paths
collisionless case. When the parallel velocity is constaninstead of magnetic lines, which is a much more complicated
[7,(t) =v,=consi, the Lagrangian correlation of the stochas- (unsolved problem. This can be avoided and the diffusion
tic perpendicular velocity v=bv, is simply L,(t) coefficient can be estimated using the method of Sec. Il and
=v f,%(v jt,t) instead of Eq(61). As the time dependence of of Ref.[5] based on the calculation of the decorrelation time.
the magnetic fluctuations determines an additional attenuaFo this aim, we determine the evolution of the moments
tion factor in £({t) [see Eq.(55)], one can immediately (Axﬁ(t)), (Ayf,(t)), and (Axp(t)Ayy(t))  where
deduce that its effect is a continuous decrease of the diffudx,(t)=X,(t) —xm(z,(t)) is the distance between the par-
sion coefficient withw=1/7,. The effect is as strong as in the ticle and the magnetic line on which it was initially located.
case of colliding particles but opposite: the time dependencé&he following equations are obtained in the quasilinear and
increases the diffusion of collisional particles fer<v (see  Markovian approximation:
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%(Axg(t))m:2.,//Z(t)(AxS(t))m+6,//é(t)(AyS(t)>m+2£dr R, (t—7), (68)
% (Ayé(t))m=6.//Z(t)<Ax,2,(t)>bL+2.//Z(t)<Ay§(t)>bL+2f;dr R, (t—7), (69)
% (AXp(D)AY(1))pr = =4 Z()(AX(1)AY (1) )by (70)
where
() — fotda T 2(t)—2(0),t— 0] 7 (t) 7,(6). (72)

Equationg68)—(70) are identical with Eqs(75)—(77) obtained in Ref[5] for the static problem. The only difference consists
in the explicit time dependence appearing in the functi@ifz(t) —z(#),t— 6|. This function determines the Lagrangian
correlation of the gradients & and is given by an equation similar with E@0) but with a supplementary time dependence
coming from the time variation db:

(L t)=pB2 ex;{ - m) exp{ - 5—2) M (72)
B 7 2NF) N2+ 208d00 (L= 1) A 0]

The solution of Eqs(68)—(70) with zero initial condition is
t t t [
(00 =y =2 [ o [ "ar Rt e [ g0 a0 a0~z 0-0 o], 73
1

This solution still has to be averaged ovgr. Due to the explicit time dependence.af({ t), the averaging method used in
Ref.[5] and in Sec. Il is not applicable here. As we are interested in determining particle mean square deviation at small time,
we can use the cumulant method to the lowest order. The first cumulant of the argument of the exponenti@d3nig&gn

the quasilinear limita<<1 and fort,t;>1/w:

8 [t 6 8
Cl(w;t,tl)g)\—z ft dﬁfodﬁ/ L,(6— 0’)5)\—2 D(w)(t—tq), (74)
1 1 1

whereD(w) is the diffusion coefficient in time-dependent stochastic magnetic fieldyferO [Eq. (65) or (66)]. Long but
straightforward calculations showed that the time dependende adtermines the decay of the second cumulant, which
becomes negligible compared to its value éo+0 whent,t;>1/w. It is smaller than the first cumulant except in the limit
w—0, where it is dominant and can be approximated by

)\ﬂ<zg(t)>u_<2§(t1)>u]
4 .

Co(w=0;t,ty)=32(7—2)8" N (75
L
Thus, the average ovey, of the exponential in Eq(.73) becomes
t 0 8a
<exp[8jt dajoda' H2p(0) = 25(60'),6— 0" 13y(6) m(6') > zexp[F <t—t1)}, (76)
1 1 €L

wherea= D (w)+4(m—2)°a’y;. Finally, (Ax5(t))p,, can be evaluated in the limit of both small and large values of the
argument of the exponential in E(/6), respectively, the physical meaning of which will be discussed below:

Bax, ,
—)\Q—t small argument
1L
(AXE())p, = \2 (77
LXL 8at large argument
P % ge arg '
The decorrelation time is determined from the equation
<Xﬁ1(zp(t))>bu+<Axé(t)>bm:)\f’ (78

where the first term i§x2),,=2D(w)t. In the quasistaticlimiiw—0, the first term is negligiblésince D(0)=0] and the
solution of Eq.(78) is obtained from the second term:
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A2 of Eqg. (79) and thus, the validity condition for this result is
small argument Lxp/Lk<<1, which corresponds to the Kadomtsev-Pogutse

ty= 2\2ay, (79y  collisional regime(see Ref[13]). The second line of Eq.
)\f (79) was obtained for large values of the argument of the

sa In o large argument. exponential in Eq(76), which correspond to the condition

Lcp/Lc>1, i.e., to the Rechester-Rosenbluth regime. A ran-
The argument of the exponential in EJ6) is ~2L.p/Ly ~ dom walk estimate of the diffusion coefficiefD, (w)
(whereLyp=\, Vx;/x.) at the time given by the first line E)\f/thJr D(w)] gives in the limit of smallw:

V2[4(7m—2)B%a’x;+ D(w)]x, +D(w), K-P regime
4(77—2)Bza2)(“+D(w)
4(77—2),32a2XH+D(w)
n 4
XL

D, (o)=Y 4 +D(w), (80)

R-R regime.

D(w) is here a small correction to the static values that areyz()\mfp/)\”)z. They are described by Eg&5) and (66). In
recovered as the well-known Kadomtsev-Pogutse oboth cases the diffusion grows withup to a maximum and
Rechester-Rosenbluth diffusion coefficient, respectiveky  then decays as 4/ (see Fig. 2 but the position and the
cept for numerical factors of order unjtyThe upper limit of  amplitude of the maximum are different for the two cases.
the frequencies for which the diffusion coefficie(@0) is These results are in agreement with the heuristic analysis
valid can be estimated from the condition that the first termpresented in Refl9]. A similar maximum of the diffusion

in Eqg. (78 is negligible, i.e., from <x2m(zp(td)))bH coefficient was also obtaingdumerically in Ref.[11] for a
=2D(w)ty<\ 2. This gives single coherent perturbation of the magnetic field.

o= 2x. /A, K-P regime 81) VIl. CONCLUSIONS
m=12x,/L2, R-R regime. _
We have shown here that, due to the curvature drifts al-
At larger values ofw, the first term in Eq(78) cannot be  ways present along stochastic magnetic lines, the particles
neglected: one can show that it becomes dominant compareatkcorrelate from the lines, leading to an intrinsic diffusion
with the second term and the decorrelation time can be approcess. The mechanism of particle-field line decorrelation
proximated byty=\ 2/[2D(w)], which shows that in this by the stochastic drifts always contributes, in principle, to
case, particle behavior in a stochastic magnetic field. However, it
_ is the dominant process only when the drift velocity is
D,]L(w)=D(w). (82) greater than the root mean squared perpendicular collisional
This proves that for high frequency the =0 results(65)  Velocity (x,» This condition corresponds to high tem-
and (66) are valid. perature, weakly collisional plasmas having a small cross
The conclusion of this estimation is that the perpendiculafield collisional diffusivity such thag, <x;(p8/\))?. In this
collisional velocity influences the effective particle diffusion case the effective diffusion coefficiet®0) applies. A clear
only for smallw. For wswy, , 7, has no significant effect on image of the physical domain corresponding to the validity
particle diffusion. We note thaby,,/» is much smaller thary ~ ©Of the diffusion co_eff|C|ent(5_0) induced by the stochastic
for y<1 and that it is much smaller than 1 fee-1, which  drifts is presented in Ref13] in the context of a systematic
shows that the smaidb range is well before the maximum of analySiS of the various diffusion regimeS that characterize
D(w) [see Egs(65) and (66)]. Thus, the effective diffusion colliding particles in a stochastic magnetic field.
coefficient for collisional particles in the time-dependent sto- We have also determined the diffusion coefficient induced
chastic magnetic field can be approximated by @g) for by the comt?lr?ed process Qf drift and CO||I§I0n decorrelation.
w<wj,, and by Eq(65) or (66) for w>w;;, . These equations At high collision frequencies, corresponding to Rechester-

determine four possibilities for the dependence of the diffuRosenbluth and Kadomtsev-Pogutse regimes, the stochastic
sion coefficient onw. At =0, D, starts from the drifts do not contribute significantly to the effective diffusion
1L

ﬁoefﬁcient. However, for weakly collisional plasmas charac-
}erized by Lx<\mg, We have obtained the resulb3) in
which both processes are important.

In the second part of this paper, particle diffusion in a

. . . time varying stochastic magnetic field is studied. We have
becomes faster % yw) and in both cases the diffusion shown that the time variation of the magnetic fluctuations

. . . _ 2 . . . .
coefficient isD,, = /26N Vxw [i.e., the firstline in EQ. 255 very strong effect on particle diffusion in all collisional

(65) or (66)]. Further, at largew, the evolution oD, splits  regimes. It consists in a strong increase of the diffusion co-
into two possibilities depending on the parameterefficient. The effect is maximum when the correlation time

Kadomtsev-Pogutse or Rechester-Rosenbluth diffusio
coefficient, depending on the value of the paramete
Lkp/Lg, then it has a slow growth witk [described by the
first or the second line of Eq80)]. For w> w;,, the growth
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of the magnetic fluctuations is comparable with the inversea small influence for the range of parameters where another
of the collision frequency. When the collisional cross fieldis efficient. For weakly collisional plasmas, the stochastic
diffusion is neglecteds, =0), the time variation of the mag- curvature drifts determine particle behavior and the effective
netic fluctuations determines the transition from the subdifdiffusion coefficient is given by E¢50). As the collisional-
fusive behavior of the particle mean square deviation to aly increases, the stochastic drifts lose their importance and
diffusive regime described by Eq&5) and(66). As w=1/, t.h{-z particle d|f_fu3|0|j cogf_ﬂment depends mam]y on the col-
increases, the diffusion coefficient increases up to a value dfsional cross field diffusivityy, [see Eq(53)]. This happens
the ordery, or B2\ V1, depending on the ratio between the in static stocha§th magnetic fields. For tlme—dep'endent sto-
parallel mean free path and the parallel correlation length ofhastic magnetic fields the effect of the perpendicular colli-
the stochastic magnetic field. For faster variation of the magsional diffusivity becomes negligible asincreases and par-
netic fluctuations, the diffusion coefficient decreases with ticle diffusion is strongly enhanced as seen in Fig. 2. _
(see Fig. 2 A similar dependence dd on w is found also The effects described above are generated by the combi-
for y, #0 [see Egs(80) and (82)]. In the limit »—0, the  Nation of the three stochastic processesz,, and 7, . A
well-known collision induced diffusion coefficients are re- Very important role is played by the first two, which enter
covered(Kadomtsev-Pogutse or Rechester-Rosenbldthe ~ Multiplicatively into Eqs.(8)—-(10). On the other hand, when
growth of w produces an amplification of the diffusion coef- Only one stochastic parameter remains in the trajectory equa-
ficient that becomes practically independentyof and the tions, th(_a e_ffect of the stochastic curvature drlft_s gnd_ of the
», =0 diffusion coefficient is found at high. The maximum  time variation ofb are co_m_pletely different. This is illus-
value of the diffusion coefficient can be much larger than thdrated by the purely collisionless cagey(t) =v,=const,
static one and corresponds to correlation times that are in th#. (t) =0] for which we have obtained from E¢62) a weak
range of the experimental ones. decreas_e of the basic coII|S|(_)nIess d|ffu5|o_n c_oeff|C|ent

We note that two different methods were used in the(Pmv) .mduced by the stochastic curvature drifts, in agree-
present paper for deriving the particle diffusion coefficient inment with Refs[10] and[6]. As for the effect of the time
time-varying stochastic magnetic field. Fa (t)=0 (Sec.  variation of the stochasth magnetic fl_el_d, it consists in a
V), the problem could be solved exactlin the frame of ~continuous decay of the diffusion coefficient asncreases
Corrsin factorizatioh while for », (t)#0, a random walk [Eq. (67)].
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