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The effect on the guiding center trajectories of the stochastic drifts due to the curvature of the stochastic
magnetic lines is studied in the first part of this paper. It is shown that the subdiffusiveAt behavior of the mean
square displacement of the particles cannot exist in a realistic magnetic configuration. The particles undergo a
diffusive process even in the absence of the perpendicular collisional diffusion. The anomalous diffusion
coefficient is estimated. The second part of this work deals with time-dependent stochastic perturbations of the
confining magnetic field. It is shown that the time variation has a strong effect of decorrelating the particles
from the magnetic lines. The diffusion coefficient is determined as a function of the correlation time of the
stochastic field. The influence of a cross field collisional diffusion on the results of the two problems presented
here is also estimated.@S1063-651X~96!10405-0#
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I. INTRODUCTION

A large number of theoretical and experimental studies
@1–16# led to the conclusion that the fluctuations of the mag-
netic field observed in fusion plasmas~tokamak, stellarator,
etc.! provide a major contribution to the enhanced particle
and energy transport. Even a very small stochastic compo-
nent of the magnetic field in the radial direction combined
with the high velocity motion of the particles along field
lines determines high radial displacements. However, these
two processes do not produce a radial diffusion but rather a
slower time growth of the dispersion of the trajectories~pro-
portional toAt). It was shown@3,5,9,15# that only when a
supplementary mechanism acts to decouple the particles
from the magnetic lines is this subdiffusive behavior domi-
nated asymptotically by a diffusion process. Such a decou-
pling mechanism, provided by the collisions producing a
small cross field diffusion that is strongly enhanced due to
the fast parallel motion along the stochastic magnetic lines,
is presented in detail in Ref.@5# ~see also Ref.@9#!.

In the present paper we study two other mechanisms of
decoupling the particles from the magnetic lines: these are
not related to collisions.

First, we show that there exists an intrinsic decorrelation
mechanism in any space-dependent stochastic magnetic field.
It consists in the stochastic drifts determined by the gradients
of the magnetic field, which are always present along a sto-
chastic magnetic line. As a consequence, the subdiffusive
At behavior of the mean square displacement cannot exist
even when the perpendicular collisional diffusion can be ne-
glected. We evaluate the diffusion coefficient determined by
the stochastic drifts and show that, in weakly collisional

plasmas, this mechanism may provide the major contribution
to trajectory dispersion. This problem was previously studied
by Coronado, Vitela, and Akcasu@6# starting from a model
similar to ours and by Mynick and Krommes in Ref.@10# for
the magnetic configuration of the tokamak in a more general
context including stochasticity criteria. However, both stud-
ies consider only a constant velocity motion of the particles
along perturbed magnetic lines. In our model the parallel
velocity is a stochastic function of time determined by colli-
sions. We show that, even in the weakly collisional limit, the
results of the two models are different and that the constant
velocity is not a good approximation of the physical prob-
lem. This is in agreement with the conclusion of several
papers@4,8,14# that the fluctuating nature of the particle ve-
locity along field lines is essential for an appropriate descrip-
tion of plasma transport processes in magnetic turbulence.

The decorrelation of the particles from the magnetic lines
can also be produced by the time variation of the stochastic
magnetic field. We show that this mechanism is very effi-
cient when the correlation time of the fluctuating fieldtc is
of the order of the inverse of the collision frequencyn and
that particle diffusion is strongly enhanced in these condi-
tions. We determine the diffusion coefficient as a function of
tc and demonstrate that the collisional cross field diffusivity
has no decisive influence on the shape of this curve. This
problem was previously treated in several papers@6,9,11,12#.
Our results are in qualitative agreement with the heuristic
analysis presented in Ref.@9# and with part of the conclu-
sions obtained in Ref.@11# from numerical calculations of
the confinement time in the case of a single coherent pertur-
bation of the magnetic field. In Ref.@6#, the problem is
treated in a simplified frame~stochastic magnetic field de-
pending only on time or space-time fluctuating field but with
constant velocity parallel motion! that prevents a direct com-
parison with our results. In Ref.@12#, the time dependence of
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the stochastic magnetic field is folded into the Lagrangian
correlation function, which is introduced arbitrarily and re-
sults that are typical for the static case are eventually ob-
tained.

Our approach is based on Langevin-type equations that
describe both magnetic lines and particle guiding center tra-
jectories. We use the methods and some of the results ob-
tained in our previous paper@5#, which contains a study of
the stochastic magnetic line configuration and of particle mo-
tion in such fields. The Lagrangian nonlinearity determined
by the dependence of the fluctuating field on spatial position
appears there to play an essential role in particle-field line
separation due to perpendicular collisions. The influence of
the stochastic drift on the particle mean square displacement
is shown to act through the Lagrangian nonlinearity as well
but the diffusion induced by the time variation of the sto-
chastic magnetic field is not conditioned by the chaoticity of
the latter.

The present work belongs to a series of papers~initiated
by @4#, @5#, and@13#! which is devoted to various aspects of
the problem of particle and energy transport in regions where
the magnetic field is stochastic. The text is organized as fol-
lows. The model and the system of equations describing the
particle guiding center trajectories are presented in Sec. II. It
also contains the statistical assumptions about the fluctuating
quantities: magnetic field and collisional velocity. The model
is rather general. It contains three decorrelation mechanisms:
the perpendicular collisional velocity, the stochastic curva-
ture drifts, and the time dependence of the stochastic mag-
netic field. Our strategy in dealing with this problem is to
study first the effect of each of the three decoupling mecha-
nisms taken separately. The decorrelation due to collisions
was presented in our previous paper@5# while the intrinsic
mechanism of particle-field line decoupling is studied in Sec.
III of the present paper and the time-dependence-induced
diffusion in Sec. V. Then the combined action of the decor-
relation mechanisms is analyzed: stochastic drifts and colli-
sions in Sec. IV and collisional particles in time dependent
stochastic magnetic field in Sec. VI. The results obtained
there allow us to draw conclusions about the full physical
problem, in the frame of the Langevin model presented in
Sec. II. They are summarized in Sec. VII.

II. THE MODEL

We consider a shearless slab geometry for the confining
magnetic field with a strong~constant! componentB0 along
thez axis and a fluctuating perpendicular componentB0b~x!
in the (x,y) plane:

B~x,t !5B0~ez1bx~x,t !ex1by~x,t !ey!. ~1!

The time variation is slow~with characteristic frequencies
v&1 MHz, as observed in tokamak plasmas@16#! so that the
induced electric field is negligible. The stochastic component
b is represented by a vector potentialC~x,t!ez in order to
have the condition of zero divergence automatically fulfilled:

b~x,t !5“3„C~x,t !ez…. ~2!

The configuration of the magnetic lines is studied in detail in
our previous paper@5#. The particle guiding centers move

along the field lines with a velocity that can be modeled by a
stochastic function of time. We assume that the unperturbed
field is strong enough so that the motion of the particles can
be described in the drift approximation. In Ref.@5# the per-
pendicular drift motion is neglected and the equations of
motion are obtained by combining the field line equation
with the collisional velocity parallel and perpendicular to the
magnetic field, respectively. We are now interested in evalu-
ating the influence of the drifts on particle behavior and also
in studying the effect of time variation of the stochastic mag-
netic field. Thus, the guiding center trajectoriesxp(t) are
described by the following set of equations:

d

dt
xp~ t !5bx@xp~ t !,t#h i~ t !1vDx@xp~ t !,t#1h'

x ~ t !, ~3!

d

dt
yp~ t !5by@xp~ t !,t#h i~ t !1vDy@xp~ t !,t#1h'

y ~ t !, ~4!

d

dt
zp~ t !5h i~ t !. ~5!

The drift velocityvD is given by@17#

vD5
1

V
n3@m“B1v i

2~n•“ !n#1
v i

V S n3
]n

]t D , ~6!

where V5eB/mc is the gyration frequency,n5B/B is
the unit vector along the field line,m5v'

2 /2B is the magnetic
moment, andv i ,v' are the components of the particle ve-
locity parallel and perpendicular to the reference magnetic
field, respectively. Thez component of the drift velocity is
neglected since it combines with the much larger collisional
parallel velocity. We note that the Lagrangian nonlinearity
consisting in the trajectory dependence appears in the first
two terms in the right-hand side~rhs! of Eqs.~3! and ~4!.

The drift determined by the time variation of the magnetic
field @third term in Eq.~6!# will be neglected since it is much
smaller than the first two terms@see Ref.@17#, Chap. 1#.

Two additional approximations can be introduced in Eqs.
~3! and ~4! although they are not compulsory in developing
the model. They simplify considerably the calculations with-
out sensibly affecting the results. First, since the amplitude
of the magnetic field fluctuations is very small, we can ne-
glect the terms inbn, n>2, in the drift velocity and retain
only the dominant, first order, terms:

vDx>2
v i
2

V

]by
]z

, vDy>
v i
2

V

]bx
]z

. ~7!

Secondly, the parallel velocityv i appearing in Eq.~7! is the
particle collisional velocity along magnetic lines
[v i[h i(t)]. Thus, the drift velocity is a doubly stochastic
process: it fluctuates due tob and due to collisions. An im-
portant simplification is obtained if we average the drift over
the fluctuating parallel velocity. This is an acceptable ap-
proximation since the drift velocity does not depend on the
sign of the parallel velocity. We have also checked that in
both cases there is no correlation between the two terms in
the rhs of Eqs.~3! and ~4!. Thus, in doing this approxima-
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tion, we do not lose any important cross term correlation
effect. With these simplifications, the system~3!–~5! be-
comes

d

dt
xp~x!5bx„xp~ t !,t…h i~ t !2

VT
2

V
by,z„xp~ t !,t…1h'

x ~ t !,

~8!

d

dt
yp~ t !5by„xp~ t !,t…h i~ t ! 1

VT
2

V
bx,z„xp~ t !,t…1h'

y ~ t !,

~9!

d

dt
zp~ t !5h i~ t !, ~10!

wherebn,z5]bn/]z, n5x,y.
Equations~8!–~10! must be completed by specifying the

statistical properties of the random quantities. We assume~as
in Ref. @5#! that both parallel and perpendicular collisional
velocitieshi andh' , respectively, have zero average and are
modeled by a Gaussian colored noise:

^h i~ t !h i~ t8!&5x in exp~2nut2t8u![R~ ut2t8u!, ~11!

^h'
x ~ t !h'

x ~ t8!&5^h'
y ~ t !h'

y ~ t8!&5x'n exp~2nut2t8u!

[R'~ ut2t8u!, ~12!

^h i~ t !h'
x ~ t8!&5^h i~ t !h'

y ~ t8!&5^h'
x ~ t !h'

y ~ t8!&50,
~13!

where n is interpreted as the collision frequency of the
plasma,xi as the~classical! parallel diffusion coefficient, and
x' as the cross field diffusion coefficient. In terms of the
thermal velocityVT5A2T/m ~m is the mass of the particle
and T the temperature of the plasma!, xi5VT

2/2n and
x'5VT

2n/2V2.
For the description of the fluctuating magnetic field, we

make an assumption about the statistical properties of the
vector potentialC~x,t!ez and then derive from it the statisti-
cal characteristics of the magnetic field and of its gradients
~as in Ref.@5#!. This procedure ensures the zero divergence
condition for the fluctuating magnetic field.C~x,t! is taken
as a Gaussian random field, spatially homogeneous, isotropic
in the (x,y) plane, and stationary. The Eulerian autocorrela-
tion function is taken as

A~r ,t![^C~x1r ,t1t!C~x,t !&

5b2l'
2 expS 2

r z
2

2l i
22

r'
2

2l'
2 D expS 2

utu
tc

D . ~14!

Here, two characteristic lengths are defined: the parallel cor-
relation lengthli and the perpendicular correlation length
l', and a characteristic timetc . The dimensionless param-
eterb is a measure of the intensity of the fluctuations of the
magnetic field.

Using the methods presented in Ref.@5#, we derive the
Eulerian correlations for the magnetic field components:

Bmn~r ,t![^bm~x1r ,t1t!bn~x,t !&5^bm~r ,t!bn~0,0!&
~15!

and for their gradientsbm,a~x![]bm~x!/]a, m5x,y, and
a5x,y,z:

Bmn
ab~r ,t![^bm,a~x1r ,t1t!bn,b~x,t !&

5^bm,a~r ,t!bn,b~0,0!&. ~16!

We extend this notation to the Eulerian correlation function
of a field componentbm with a gradientbn,a by introducing
the valuea50, which means that no derivative is taken on
the corresponding component ofb. Nonzero expressions are
obtained for all the components of the matrixBmn and of the
tensorB mn

ab. All are proportional toA~r ,t!, the correlation
of the potentialC and contain various factors that are poly-
nomials in the componentsr x ,r y ,r z of the distancer be-
tween the two points.

Using these expressions, it is easy to show that the fluc-
tuating drift velocity~6! has zero average.

An order of magnitude estimation shows that the drift
terms are much smaller than the parallel motion terms~their
ratio is of the orderrL/li whererL is the Larmor radius!.
However, the small stochastic drift can have a stronger con-
tribution than the collisional perpendicular diffusivity if
x',xi~r L

2/li
2!b2. For the classical transport model, which

givesxi/x'5V2/n2, this condition becomeslmfpb/li.1 ~lmfp
is the parallel mean free path of the particles!, hence it cor-
responds to high temperature, weakly collisional plasmas.
An extended and very clear derivation of the equations of
particle motion relevant for the transport studies in the elec-
trostatic and magnetic turbulence in tokamak plasmas is pre-
sented in Ref.@6#. The system~8!–~10! is in agreement with
the model presented there.

III. AN INTRINSIC PROCESS OF PARTICLE-FIELD LINE
DECORRELATION

The aim of the present study is to answer the following
question: could the stochastic¹b drifts provide a decorrela-
tion mechanism of the particles from the magnetic lines? If
the decorrelation exists, then the subdiffusive behavior of the
particle mean square displacement is not possible and the
particles diffuse even in the absence of the perpendicular
collisional diffusion. In order to answer this question, we
neglect in this section the collisional perpendicular stochastic
velocities in Eqs.~8! and~9! @h'(t)50# and consider a static
stochastic perturbation of the main field@b5b~x! andtc→`
in the Eulerian correlation function for the potentialC, Eq.
~14!#.

We use the same method as in Ref.@5#, which consists of
studying the time evolution of the perpendicular deviation
Dxp(t) of a particle from the magnetic line on which it was
located at time 0:

Dxp~ t !5xp'~ t !2xm'@zp~ t !#, ~17!

wherexm'[zp(t)] is the position where the particle would be
at time t had it followed the initial field line. By definition
Dxp~0!50. The evolution equation for this quantity follows
from Eqs.~8!–~10!:

d

dt
Dxp~ t !5$b@xp'~ t !,zp~ t !#2b@xm'„zp~ t !…,zp~ t !#%

dzp~ t !

dt

1vD@xp'~ t !,zp~ t !#. ~18!
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The statistical description ofDxp(t) requires the determination of~at least! three moments:̂Dx p
2(t)&b , ^Dy p

2(t)&b , and
^Dxp(t)Dyp(t)&b , where the average is taken over the statistical ensemble of the stochastic magnetic field. We use here the
method presented in detail in Ref.@5#. Similar problems were treated previously in Refs.@8# and @9#.

Being interested in the first stage of the evolution of the distance particle-field line„uDx p
2(t)u,uDy p

2(t)u!l'
2
… we linearize

Eq. ~18! around the magnetic linexm'[zp(t)]:

d

dt
Dxp~ t !>bx,x@xm'@zp~ t !#,zp~ t !#h i~ t !Dxp~ t !1bx,y@xm'@zp~ t !#,zp~ t !#h i~ t !Dyp~ t !2

VT
2

V H ]

]z
by@xm'@zp~ t !#,zp~ t !#

1
]

]z
by,x@xm'@zp~ t !#,zp~ t !#Dxp~ t !1

]

]z
by,y@xm'@zp~ t !#,zp~ t !#Dyp~ t !J , ~19!

d

dt
Dyp~ t !>by,x@xm'@zp~ t !#,zp~ t !#h i~ t !Dxp~ t !1by,y@xm'@zp~ t !#,zp~ t !#h i~ t !Dyp~ t !1

VT
2

V H ]

]z
bx@xm'@zp~ t !#,zp~ t !#

1
]

]z
bx,x@xm'@zp~ t !#,zp~ t !#Dxp~ t !1

]

]z
bx,y@xm'@zp~ t !#,zp~ t !#Dyp~ t !J . ~20!

We note that in these equations all the magnetic field com-
ponents and gradients are evaluated in the (x,y) plane along
the magnetic line~not along the trajectory!. Thez component
of the particle trajectoryzp(t) is here considered as a given
function of time. Thus, we treat the doubly stochastic process
in two steps: we first consider the stochastic magnetic field,
solve the Lagrangian nonlinearity, and obtain the square rela-
tive displacement averaged overb, and then we average this
result over the stochastic collisions. We have checked, in the
simpler case where the stochastic drifts are neglected, that
the order of performing the averages overb andhi does not
influence the result: the two operations commute.

Multiplying Eqs. ~19! and ~20! by Dxp(t),Dyp(t), en-
semble averaging over the realizations of the stochastic mag-
netic field, then treating the resulting equations in the spirit
of the quasilinear approximation and using the well-known
asymptotic Markovianization procedure@17#, one obtains a
rather complicated system of coupled equations for the mo-
ments~see Ref.@5# for more details on this long but straight-
forward calculation!. The coefficients appearing in this sys-
tem are time integrals of the Lagrangian correlations of
various gradients and components of the magnetic field. The
latter represent the Lagrangian version of the Eulerian corre-
lations defined in Eqs.~15! and~16!. Using as in Ref.@5# the
Corrsin approximation@18,19#, the Lagrangian correlations
can be related to the corresponding Eulerian correlations by

Lmn
ab~z!5E dr'Bmn

ab~r' ,z!g~r' ,z!, ~21!

whereg~r' ,z! is the probability of finding the current point
on a field line at the perpendicular positionr' when a paral-
lel distancez is covered. Its definition and estimation are
given in Ref. @5#. We recall thatzp(t) is, at this stage, a
function of time and thusz denotes the parallel position at a

given time moment. Using this equation and the expressions
of the Eulerian correlations, one finds that, for thehomoge-
neous, gyrotropic,and stationary turbulence we are study-
ing, the table of correlations simplifies considerably in the
Lagrangian frame. Some of them are zero and all the others
can be expressed in terms of two scalar functionsL~z! and
K ~z! ~see Ref.@5#!:

Lmn
00 ~z!5dmnL~z!, ~22!

Lxx
xx~z!5Lyy

yy~z!52Lxy
xy~z!52Lxy

yx~z!5K ~z!,
~23!

Lxx
yy~z!5Lyy

xx~z!53K ~z!, ~24!

Lxx
xy~z!5Lxy

yy~z!5Lyy
xy~z!5Lyx

xx~z!50, ~25!

Lmn
zz ~z!5

1

l i
2 S 12

z2

l i
2D dmnL~z!, ~26!

Lmn
lz ~z!5Lmn

l0 ~z!50, l5x,y, ~27!

Lmn
z0 ~z!52

z

l i
2 dmnL~z!, ~28!

whereL~z! is the solution of the integral equation deduced
in @5#:

L~z!5b2 expS 2
z2

2l i
2D l'

4

@l'
212*0

zdz1~z2z1!L~z1!#
2

~29!

andK ~z! is the following function ofL~z!:

K ~z!5b2 expS 2
z2

2l i
2D l'

4

@l'
212*0

zdz1~z2z1!L~z1!#
3 .

~30!
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The equations for the moments become

d

dt
^Dxp

2~ t !&b52E
0

t

dt K ~j!h i~t!h i~ t !^Dxp
2~ t !&b16E

0

t

dt K ~j!h i~t!h i~ t !^Dyp
2~ t !&b24

VT
2

V E
0

t

dt
j

l i
2 K ~j!h i~t!

3^Dxp~ t !Dyp~ t !&b212
VT
2

V E
0

t

dt
j

l i
2 K ~j!h i~ t !^Dxp~ t !Dyp~ t !&b114

VT
4

V2l i
2 E

0

t

dtS 12
j2

l i
2DK ~j!

3^Dxp
2~ t !&b12

VT
4

V2l i
2 E

0

t

dtS 12
j2

l i
2DK ~j!^Dyp

2~ t !&b12
VT
4

V2l i
2 E

0

t

dtS 12
j2

l i
2DL~j!, ~31!

d

dt
^Dyp

2~ t !&b56E
0

t

dt K ~j!h i~t!h i~ t !^Dxp
2~ t !&b12E

0

t

dt K ~j!h i~t!h i~ t !^Dyp
2~ t !&b14

VT
2

V E
0

t

dt
j

l i
2 K ~j!h i~t!

3^Dxp~ t !Dyp~ t !&b112
VT
2

V E
0

t

dt
j

l i
2 K ~j!h i~ t !^Dxp~ t !Dyp~ t !&b12

VT
4

V2l i
2 E

0

t

dtS 12
j2

l i
2DK ~j!^Dxp

2~ t !&b

114
VT
4

V2l i
2 E

0

t

dtS 12
j2

l i
2DK ~j!^Dyp

2~ t !&b12
VT
4

V2l i
2 E

0

t

dtS 12
j2

l i
2DL~j!, ~32!

d

dt
^Dxp~ t !Dyp~ t !&b524E

0

t

dt K ~j!h i~t!h i~ t !^Dxp~ t !Dyp~ t !&b112
VT
4

V2l i
2 E

0

t

dtS 12
j2

l i
2DK ~j!^Dxp~ t !Dyp~ t !&b

12
VT
2

Vl i
E
0

t

dt jK ~j!@h i~t!13h i~ t !#@^Dxp
2~ t !&b2^Dyp

2~ t !&b#, ~33!

wherej[zp(t)2zp(t).
We first note that the equation for^DxpDyp&b is homoge-

neous~it does not contain a source term as the other two!.
Thus, the solution corresponding to the initial condition

Dxp~0!5Dyp~0!50 ~34!

is ^Dxp(t)Dyp(t)&b50. This means that the stochastic drifts
do not generate a cross correlation in particle trajectories.
The first two terms in the rhs of Eqs.~31! and ~32! are the
same as those appearing in the equation for the distance be-
tween two magnetic lines@Eqs.~54! in Ref. @5## and the last
five are produced by the stochastic drifts. Particularly impor-
tant is the last term, which is a source term. The solution of
~31! and ~32! corresponding to the initial condition~34! is
obtained from the simpler equation, which describes the evo-
lution of ^Dr p

2(t)&b5^Dx p
2(t)&b1^Dy p

2(t)&b :

d

dt
^Dr p

2~ t !&b5F8E
0

t

dt K ~j!h i~t!h i~ t !

116
VT
4

V2l i
2 E

0

t

dtS 12
j2

l i
2DK ~j!G ^Dr p2~ t !&b

14
VT
4

V2l i
2 E

0

t

dtS 12
j2

l i
2DL~j!. ~35!

Thus, the stochastic drifts determine a nonhomogeneous~de-
coupling! term and a modification of the exponentiation rate

@second term in the square bracket in Eq.~35!#. However, the
latter is very small compared with the first term in the square
bracket and will be neglected for simplicity. The solution of
Eq. ~35! with the initial condition~34! is

^Dr p
2~ t !&b54

VT
4

V2l i
2 E

0

t

dt1f ~ t1!

3expS 8E
zp~ t1!

zp~ t !
dzE

0

z

dz1 K ~z12z! D ,
~36!

where

f ~ t1!5E
0

t1
dtS 12

~zp~ t1!2zp~t!!2

l i
2 DL@zp~ t1!2zp~t!#.

~37!

The argument of the exponential appearing in Eq.~36! can
be evaluated asymptotically, forzp(t),zp(t1)@li , i.e., in the
magnetic diffusion regime as

8E
zp~ t1!

zp~ t !
dzE

0

z

dz1 K ~z2z1!>2
zp~ t !2zp~ t1!

LK
, ~38!

whereLK is the Kolmogorov length:

LK
2154E

0

`

dj K ~j!. ~39!

5306 53M. VLAD, F. SPINEANU, J. H. MISGUICH, AND R. BALESCU



All the previous calculations are performed in a given realization of the stochastic parallel velocityhi(t). The solution~36!
and ~37! still has to be averaged overhi . We use the same method as in Ref.@5# for calculating the average overhi of the
following function of two variables:

F~z2z1 ,z12z![S 12
~z12z!2

l i
2 DL~z12z!expS 2 z2z1

LK
D , ~40!

wherez[zp(t), z1[zp(t1), andz[zp(t). Performing the Fourier transform in the two variables, the average is given by

^F~z2z1 ,z12z!& i5E
2`

` E
2`

`

dk dq F~k,q!K expF2 ikE
t1

t

du h i~u!2 iqE
t

t1
du h i~u!G L

i

5
1

~2p!2
E E

2`

`

dj1 dj2 F~j1 ,j2!E E
2`

`

dk dq exp@ ikj11 iqj2#

3expF2
1

2
k2^zp

2~ t2t1!& i2
1

2
q2^zp

2~ t12t!& i2qk^zp~ t2t1!zp~ t12t!& iG . ~41!

After integrating overdk, dq, dj1, dj2, one obtains the following expression for the average of the particle displacement from
the magnetic line:

^Dr p
2~ t !&bi54

VT
4

V2l i
2 E

0

t

dt1E
0

t1
dtS l i

2

l i
21^zp

2~ t12t!& i
D 3/2S 114

^zp~ t2t1!zp~ t12t!& i
2

LK
2 @l i

21^zp
2~ t12t!& i#

D
3expS 2 ^zp

2~ t12t!& i^zp
2~ t2t1!& i2^zp~ t2t1!zp~ t12t!& i

21l i
2^zp

2~ t2t1!& i

LK
2 @l i

21^zp
2~ t12t!& i#

D . ~42!

The decorrelation of the trajectory from the initial field line is produced when the distance^Dr p
2(t)&bi is of the orderl'

2 . The
model considered here applies to high temperature, weak collisional plasmas. We have neglected the perpendicular collisional
velocity in the trajectory equations~8! and~9! but have retained the stochastic¹b drift. This approximation is justified when
lmfpb/li.1. In these conditions, it is natural to consider that the decorrelation is produced during the ballistic regime of the
parallel motion and to approximate the parallel mean square displacements appearing in Eq.~42! by ^zp

2(t1)& i5
1
2VT

2t 1
2,

^zp(t1)zp(t2)& i5
1
2VT

2t1t2 . This gives

^Dr p
2~ t !&bi54b2

VT
4

V2l i
2 E

0

t

dt1E
0

t1
dtS 11

VT
2t2

2l i
2 D 23/2F11

~VT
4/l i

2!t1
2t2

LK
2 ~11VT

2t2/2l i
2!GexpF VT

2t1
2

LK
2 ~11VT

2t2/2l i
2!G . ~43!

We thus find a continuous growth of the distance between
the particle and the initial magnetic line that is more compli-
cated than in the case of the perpendicular collisional veloc-
ity @Eq. ~102! in Ref. @5## but is essentially exponential. The
growth rate is related to the exponentiation length of the field
linesLK .

In order to analyze this result it is useful to introduce the
following dimensionless quantities:Y(t)5^Dr p

2(t)&bi/l'
2 ,

a15lmfp/LK , a25LK/l i , c54b2(r L
2/l'

2 )LK/l i , andt5tn.
Equation~43! becomes

Y~t!5cE
0

a1t

dx1 h~x1!, ~44!

where

h~x1!5E
0

a2x1
dx expS x1

2

11x2/2D ~11x2/2!23/2

3S 112
x1
2x2

11x2/2D . ~45!

The integrand in Eq.~45! is a fastly decreasing function ofx,
which becomes negligible atx>2. As a consequence, the
functionh(x1) is practically independent of the parametera2
@it only affects the behavior ofh(x1) at smallx1 where the
values of this function are very small and do not contribute
to Y(t)#. Thus, the dependence ofY(t) on the parameters
enters only through the multiplicative factorc and through
the upper limit of the integral in Eq.~44!. The numerical
calculation of the functionh(x1) showed that it can be ap-
proximated by

h~x1!>exp@e~x11x1
2!#, e50.767, ~46!

53 5307EFFECTS OF STOCHASTIC DRIFTS AND TIME VARIATION . . .



which gives the following estimate for the dimensionless
relative dispersionY(t):

Y~ t !5
c

e

1

112a1t
exp@e~a1t1a1

2t2!#. ~47!

Thus, the curvature stochastic drift determined by the gra-
dients of the fluctuating magnetic field~a1Þ0! provides an
efficient mechanism of decoupling the particles from the
field lines producing an exponential departure between the
trajectories and the field lines. This result, based on the lin-
earized equation, describes only the first stage in the evolu-
tion of the distance particle magnetic line, when
^Dr p

2(t)&bi&l'
2 . Beyond that limit, a diffusion process of

the particles is expected. The decorrelation time, defined as
the time interval during whicĥDr p

2(t)&bi grows from 0 to
l'
2 , is determined from the equationY(td)51, which has the

solution

td5
LK

lmfp

A114s21

2
, s5

1

e
lnS e1

l i
2

rL
2 D , ~48!

wheree15(3/ln 2)Ap/2e55.42e.
The representation of the particle diffusion process as an

effective random walk permits us to evaluate the diffusion
coefficient as

Ddr5
l'
2

2td
>
1

2

l'
2VT

LKAs
~h'50!. ~49!

In the quasilinear limit~a[bli/l'!1!, LK5l'
2 /4Dm and

the diffusion coefficient~49! can be approximated by

Ddr5
2AeDmVT

ln1/2~e1l i
2/rL

2!
~h'50!, ~50!

whereDm is the diffusion coefficient of the magnetic lines
(Dm5Ap/2b2l i).

We note that a different result is obtained for a constant
velocity motion of the particles along the unperturbed mag-
netic field@i.e., forh i(t)5v i5const andVT5v i in Eqs.~8!–
~10!#. From the mathematical point of view, the problem
simplifies considerably since the trajectories are determined
by a single stochastic functionb~x!. The following expres-
sion is obtained in this case for the mean square deviation of
the trajectories:

^xp
2~ t !&52E

0

v it

dz L tr~z!F11
rL
2

l i
2 S 12

z2

l i
2D G ~v it2z!,

~51!

whereL tr~z! is the Lagrangian correlation of the magnetic
field along particle trajectories. Using the method presented
in Ref. @5#, one can derive an integral equation@similar to
Eq. ~29!# for L tr:

L tr~z!5b2 expS 2
z2

2l i
2D l'

4

$l'
212*0

zdzL tr~z!@11~rL
2/l i

2!~12z2/l i
2!#~z2z!%2

. ~52!

For rL50, Eq.~52! reduces to Eq.~29! andL tr(z) toL(z),
the Lagrangian correlation of the magnetic field on magnetic
lines, which, introduced in Eq.~51!, determines the well-
known collisionless diffusion coefficientDmv i . Equation
~52! shows thatrLÞ0 contributes to the decrease of the La-
grangian correlation and thus of the effective diffusion coef-
ficient. The relative decrease is proportional toa2r L

2/li
2 ,

which is rather small for the parameters of tokamak plasmas.
This result is in qualitative agreement with Ref.@6# and also
with the conclusions deduced in a more general context in
Ref. @10#. It applies to collisionless particles, e.g., to the run-
away electrons in tokamak plasmas. Thus, the stochastic cur-
vature drifts have an opposite effect on collisionless par-
ticles: they reduce the diffusion coefficient while the
collisional particle diffusion increase withrL/li as seen in
Eq. ~50!.

IV. DIFFUSION DETERMINED BY COLLISIONS AND
STOCHASTIC DRIFTS

The perpendicular collisional velocity is now taken into
account together with the stochastic curvature drift. The tra-
jectories are thus represented by the complete system~8!–

~10! but with a static stochastic field@b5b~x! andtc→` in
Eq. ~14!#. Sinceh' is not correlated with the other two sto-
chastic functions, it determines only an additional free term
in Eqs. ~31! and ~32! for the moments^Dx p

2(t)&b' and
^Dy p

2(t)&b' , respectively, which is of the form
2* 0

t dt R'(t2t). The decorrelation time is calculated fol-
lowing the same steps as in the previous section. With the
approximatione>1, the result can be written as a simple,
compact expression. Eventually, we obtain the following es-
timation for particle diffusion coefficient when both the
small stochastic drift and the collisional perpendicular veloc-
ity are considered:

D>
2DmVT

ln1/2F 1

~1/16!LK
2 /LKP

2 1~1/e1!rL
2/l i

2G ~weak collisions!

~53!

where LKP[l'Ax i /x' is the Kadomtsev-Pogutse charac-
teristic length. In the limit of very small collision frequency
n→0 ~x'/xi→0 or LKP→`! the diffusion coefficient~53!
reduces toDdr given by Eq.~50!, showing that the particle
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behavior remains diffusive when the perpendicular colli-
sional diffusivity can be neglected.

The drift induced diffusion coefficient can also be calcu-
lated at higher collision frequencies corresponding to the
Rechester-Rosenbluth regime~Refs. @3# and @13#!. In fact,
the perpendicular collisional stochastic velocity could not be
neglected in these conditions. However, we study this prob-
lem in order to show that the stochastic drifts have a negli-
gible effect at higher collision frequency. The average mean
square particle deviation from the magnetic line can be esti-
mated in this case from Eq.~42!, using the asymptotic ex-
pression̂ zp

2(t)&>2x it instead of the ballistic approximation
that leads to Eq.~43!. The following result is obtained:

Ddr5
l'
2x i

LK
2 ln@l'x i /brLVTLK#

~strong collisions!.

~54!

Comparing Eq.~54! with the collision induced diffusion co-
efficient @Eq. ~98! in Ref. @5##, one finds thatDdr is always
smaller~as long asb,1/2&!. Thus, we can conclude that in
this high collisional regime the stochastic drifts could not
represent the dominant diffusion mechanism. Particle diffu-
sion is mainly determined by the collisional cross field dif-
fusivity and the stochastic drifts contribute only with a~posi-
tive! correction to the Rechester-Rosenbluth diffusion
coefficient.

V. PARTICLE DIFFUSION IN TIME-DEPENDENT
STOCHASTIC MAGNETIC FIELD

We concentrate in this section on the effect of time varia-
tion of the stochastic magnetic field on particle diffusion.
Therefore, we consider Eqs.~8!–~10! with b5b~x,t! @and
with finite correlation timetc in Eq. ~14!#, but with vD50
andh'50.

In this case, the mean square displacement^x p
2(t)&bi can

be calculated for anyt and it is possible to show that its
asymptotic behavior is diffusive. Thus we do not need to
evaluate the decorrelation time and to perform a random
walk estimation of the diffusion coefficient.

The time dependence of the magnetic fluctuations does
not affect the instantaneous geometry, i.e., thez dependence
of the magnetic lines. It determines, however, a parametrical
dependence on time of the Lagrangian correlation of the sto-
chastic magnetic field along magnetic lines. For finitetc , the
integral equation~29! becomes

L~z,t !5b2 expS 2
z2

2l i
2D

3expS 2
utu
tc

D l'
4

@l'
212*0

zdz1~z2z1!L~z1 ,t !#
2 .

~55!

Introducing the nondimensional quantitiesj5z/li and
Lnd(j,t)5L~j,t!/@b2 exp~2utu/tc!#, Eq. ~55! becomes

Lnd~j,t !5expS 2
j2

2 D
3

1

@112a2~ t !*0
jdj1~j2j1!L

nd~j1 ,t !#
2 ,

~56!

where a2(t)5b2~li/l'!2 exp~2utu/tc!. Except for the time
dependence in the nonlinearity parametera, this equation is
identical with the equation for the static case~29!. Thus, an
effect of the time dependence is to gradually decrease the
nonlinearity impact as time goes on.

When calculating the mean square deviation of the mag-
netic lines, one has, of course, to taket50 in Eq.~55!, which
reduces to the static case, Eq.~29!. The time dependence
becomes important when particles moving along magnetic
lines are considered. Then, a time dependence is introduced
in the Lagrangian correlationL through particle motion
z5zp(t) and the exponential time factor determined by the
time variation of the magnetic fluctuations contributes be-
sides particle motion to the Lagrangian correlation of the
stochastic field along trajectories.

The mean square particle deviation averaged over the
fluctuating magnetic field is

^xp
2~ t !&b5E

0

tE
0

t

dt1 dt2h i~ t1!h i~ t2!

3L@z~ t1!2z~ t2!,t12t2#. ~57!

Averaging over the second stochastic parameterhi , Eq. ~57!
becomes

^xp
2~ t !&bi5E

0

tE
0

t

dt1 dt2Lv~ t12t2!, ~58!

where

Lv~ t12t2!5^L@z~ t1!2z~ t2!,t12t2#h i~ t1!h i~ t2!& i

~59!

is the Lagrangian correlation of the stochastic perpendicular
velocity v[bhi determined by particle motion along per-
turbed field lines.Lv can be calculated by performing a Fou-
rier transform ofL(z,t) in its first argument:

Lv~ t12t2!5E
2`

`

dk L~k,t12t2!K h i~ t1!h i~ t2!expS 2 ikE
t2

t1
du h i~u! D L

i

5E
2`

`

dk L~k,t12t2!
1

k2
]2

]t1]t2 K expS 2 ikE
t2

t1
du h i~u! D L

i

. ~60!
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Straightforward calculations consisting in performing the av-
erage of the exponential, the time derivatives, the inverse
Fourier transform, and eventually the integrations, lead to the
following expression for the Lagrangian correlation of the
velocity v:

Lv~ t !5E
2`

`

dz L~z,t ! f ~z,t !, ~61!

where

f ~z,t !5
1

2

d

dt Fd^zp
2~ t !& i

dt

1

A2p^zp
2~ t !& i

3expS 2
z2

2^zp
2~ t !& i

D G . ~62!

^zp
2(t)& i52* 0

t dt(t2t)R(t) is the mean square deviation in
the z direction resulting from Eq.~10! and the correlation
function ~11!. Equation~61! differs from the corresponding
equation obtained in the static problem only through the ex-
plicit time dependence appearing in the correlation function
L~z,t!. We show that this modification produces the transi-
tion from the well-known subdiffusive regime of the static
case to particle diffusion. To this aim, we note that when
L5L~z!, the time dependence of the correlationLv(t) com-
ing only from the functionf (z,t) has the following shape:
for small t it is a positive, decreasing function, then it be-
comes negative, and at larget it approaches zero asymptoti-
cally as t23/2 ~Fig. 1!. The negative and positive parts of
Lv(t) have equal areas so that the diffusion coefficient is
zero:D5* 0

`dt Lv(t)50. This is the reason for the subdif-
fusive behavior appearing in the static case. When there is a
time variation of the magnetic fluctuations that makes the
correlation timetc finite, the supplementary time dependence
contained inL~z,t! destroys the ‘‘equilibrium’’ of the posi-
tive and negative parts of the correlationLv . Equation~55!
shows that the explicit time dependence ofL~z,t! consists in
an attenuation that is effective at larget (t*tc). Thus, the
negative part of the correlation is affected more than the
positive one and a nonzero, finite diffusion coefficient will
result from the time integral ofLv(t) for time-dependent
magnetic fluctuations. This image also gives the qualitative

behavior of the diffusion coefficient as a function of the cor-
relation timetc . Thus, attc→`, the diffusion coefficient is
zero and astc decreases it grows due to the fact that the
negative part of the correlationLv is gradually attenuated. A
maximum ofD is reached at a value oftc corresponding to
a complete cutoff of the large time, negative part ofLv(t). At
smaller values oftc , the decay due to time variation of the
magnetic fluctuations becomes efficient also on the small
time, positive part ofLv so that the diffusion coefficient de-
creases as 1/tc increases.

In the quasilinear limit, ata~0!!1, the Lagrangian corre-
lation of b on the magnetic lines resulting from Eq.~55! is
simply

L~z,t !5b2 expS 2
z2

2l i
2DexpS 2

utu
tc

D ~63!

and the Lagrangian correlation ofv on the trajectories can be
calculated easily:

Lv~ t !5b2l i

1

Al i
21^zp

2~ t !& i

FR~ t !2
w2~ t !

l i
21^zp

2~ t !& i
G

3expS 2
utu
tc

D . ~64!

The diffusion coefficient obtained by numerically integrating
Eq. ~64! is represented in Fig. 2~by the continuous line! as a
function of ln~v/n! ~wherev[1/tc!. It has indeed the shape
described above. Astc→0 ~v→`!, the diffusion coefficient
goes to zero. But this is not a correct result since asv→`,
first the time-dependent drift cannot be neglected in Eq.~6!
and further, the guiding center approximation is not valid
and also the induced electric field becomes important.

Simple analytical expressions for the diffusion coefficient
in limited ranges of the parameterv can be obtained easily
from Eq. ~64!. For the strongly collisional regime character-
ized by the conditiong[~lmfp/li!

2!1, the integral of Eq.
~64! can be approximated by

FIG. 1. The Lagrangian correlationL̄v5Lv/~b
2xi! @Eq. ~64!# for

the following values ofv/n: 0 ~curve 1!, 0.1 ~curve 2!, and 1~curve
3! @g[~lmfp/li!

2520#.

FIG. 2. The normalized particle diffusion coefficient

D̄[D(v)/Dmax, Dmax5~1/&!b2liVT@12~2/g!1/41~1/g!1/2# as a
function of ln~v/n!; continuous line: the time integral of Eq.~64!;
dashed line: the approximation given in Eq.~66! ~g520!.
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D~v!55
Ap

2
b2l iAx iv,

v

n
!g

b2x i~12Ag/2!, g!
v

n
!1~g!1!

1

2
b2

VT
2

v
, 1!

v

n
.

~65!

Equation~65! shows that an anomalous diffusion is obtained

if b2xi/x'.1, i.e., if lmfp.rL/b. The two conditions for the
mean free path~rL/b,lmfp!li! indicate that the magnetic
field fluctuations produce a strong anomalous diffusion of
the particles in this strongly collisional regime only if
b@blim[rL/li . The bracket in the second line of Eq.~65! is
a correction.

For the weakly collisional regime characterized by the
conditiong@1, the diffusion coefficient can be approximated
by

D~v!55
Ap

2
b2l iAx iv,

v

n
!1

1

&
b2l iVT~12~2/g!1/41A1/g!, 1!

v

n
!Ag ~g@1!

1

2
b2

VT
2

v
, Ag!

v

n
.

~66!

Again a correction was retained in the second line of this
equation. The condition that the maximum value of this dif-
fusion coefficient is larger thanx' is lmfp.r L

2/~b2li!. This
shows that the diffusion can be anomalous also at levels of
the fluctuating magnetic field smaller than the limitblim de-
termined in the previous case. These analytical approxima-
tions are represented in Fig. 2~for g520! together with the
numerical integral of the correlation function~64!.

The Lagrangian correlation function~64! and the diffu-
sion coefficients~65!, ~66! are the main results of this sec-
tion, which concernsh'50. Let us end with the following
two remarks about the effect of the nonlinearity and the dif-
fusion of purely noncollisional particles, respectively.

The result presented in Fig. 2 is obtained in the limit
l'→` ~or a→0! where the Kolmogorov length is infinite.
Thus the chaoticity of the stochastic magnetic field does not
play an important qualitative role in the diffusion induced by
its time variation. Moreover, we have found that nonlinearity
parametersa&1 produce only slight quantitative modifica-
tions of the previous, linear results. Numerical integration of
Eq. ~61! with L~z,t! given by the numerical solution of Eq.
~55! yields a diffusion coefficient very similar to the linear
one presented in Fig. 2. The effect of the nonlinearity con-
sists in a small decrease of the value of the maximum to-
gether with a slight displacement of it towards larger values
of v.

We also note that particle diffusion in a time-dependent
stochastic magnetic field is completely different in the purely
collisionless case. When the parallel velocity is constant
@hi(t)5v i5const#, the Lagrangian correlation of the stochas-
tic perpendicular velocity v5bv i is simply Lv(t)
5v i

2L~v it,t! instead of Eq.~61!. As the time dependence of
the magnetic fluctuations determines an additional attenua-
tion factor inL~z,t! @see Eq.~55!#, one can immediately
deduce that its effect is a continuous decrease of the diffu-
sion coefficient withv[1/tc . The effect is as strong as in the
case of colliding particles but opposite: the time dependence
increases the diffusion of collisional particles forv,n ~see

Fig. 2! but strongly reduces the diffusion of collisionless
particles. In the quasilinear limit,L~z,t! is given by Eq.~63!
and the following expression results for the collisionless dif-
fusion coefficient:

D5Dmv iH expS v2l i
2

2v i
2 D F12erfS vl i

&v i
D G J , ~67!

where erf(x) is the error function. The curly bracket is in-
deed a decreasing function ofv, always smaller than 1.

VI. COLLISIONAL PARTICLES IN TIME-DEPENDENT
MAGNETIC FLUCTUATIONS

In the previous section we have studied particle diffusion
in space-time varying stochastic magnetic field neglecting
the perpendicular componenth'(t) of the stochastic velocity
determined by collisions. We evaluate here the influence of
h' on the diffusion coefficient. Thus, the corresponding
model consists of Eqs.~3!–~5! with b5b~x,t! ~tc finite!,
vD50, andh'Þ0.

This problem cannot be solved using the method of Sec.
V since it is not possible to expressLv , the Lagrangian cor-
relation of the velocityv5bhi , on particle trajectories as a
function ofL~z,t!, the correlation of the magnetic fluctua-
tions on magnetic lines@Eq. ~61!#. In fact, whenh'(t)50,
the particle paths coincide with the magnetic lines and this is
the physical basis of Eq.~61!. Whenh'(t)Þ0, one has to
determine the Lagrangian correlation ofb on particle paths
instead of magnetic lines, which is a much more complicated
~unsolved! problem. This can be avoided and the diffusion
coefficient can be estimated using the method of Sec. III and
of Ref. @5# based on the calculation of the decorrelation time.
To this aim, we determine the evolution of the moments
^Dx p

2(t)&, ^Dy p
2(t)&, and ^Dxp(t)Dyp(t)& where

Dxp(t)[xp(t)2xm„zp(t)… is the distance between the par-
ticle and the magnetic line on which it was initially located.
The following equations are obtained in the quasilinear and
Markovian approximation:
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d

dt
^Dxp

2~ t !&b'52M~ t !^Dxp
2~ t !&b'16M~ t !^Dyp

2~ t !&b'12E
0

t

dt R'~ t2t!, ~68!

d

dt
^Dyp

2~ t !&b'56M~ t !^Dxp
2~ t !&b'12M~ t !^Dyp

2~ t !&b'12E
0

t

dt R'~ t2t!, ~69!

d

dt
^Dxp~ t !Dyp~ t !&b'524M~ t !^Dxp~ t !Dyp~ t !&b' , ~70!

where

M~ t !2E
0

t

du K @z~ t !2z~u!,t2u#h i~ t !h i~u!. ~71!

Equations~68!–~70! are identical with Eqs.~75!–~77! obtained in Ref.@5# for the static problem. The only difference consists
in the explicit time dependence appearing in the functionK uz(t)2z^u&,t2uu. This function determines the Lagrangian
correlation of the gradients ofb and is given by an equation similar with Eq.~30! but with a supplementary time dependence
coming from the time variation ofb:

K ~z,t !5b2 expS 2
utu
tc

DexpS 2
z2

2l i
2D l'

4

@l'
212*0

zdz1~z2z1!L~z1 ,t !#
3 . ~72!

The solution of Eqs.~68!–~70! with zero initial condition is

^Dxp
2~ t !&b'5^Dyp

2~ t !&b'52E
0

t

dt1E
0

t1
dt R'~ t12t!expF8E

t1

t

duE
0

u

du8 K @z~u!2z~u8!,u2u8#h i~u!h i~u8!G . ~73!

This solution still has to be averaged overhi . Due to the explicit time dependence ofK ~z,t!, the averaging method used in
Ref. @5# and in Sec. III is not applicable here. As we are interested in determining particle mean square deviation at small time,
we can use the cumulant method to the lowest order. The first cumulant of the argument of the exponential in Eq.~73! is, in
the quasilinear limita!1 and fort,t1@1/v:

C1~v;t,t1!>
8

l'
2 E

t1

t

duE
0

u

du8 Lv~u2u8!>
8

l'
2 D~v!~ t2t1!, ~74!

whereD~v! is the diffusion coefficient in time-dependent stochastic magnetic field forh'50 @Eq. ~65! or ~66!#. Long but
straightforward calculations showed that the time dependence ofb determines the decay of the second cumulant, which
becomes negligible compared to its value forv50 when t,t1@1/v. It is smaller than the first cumulant except in the limit
v→0, where it is dominant and can be approximated by

C2~v50;t,t1!>32~p22!b4
l i
2@^zp

2~ t !& i2^zp
2~ t1!& i#

l'
4 . ~75!

Thus, the average overhi of the exponential in Eq.~73! becomes

K expF8E
t1

t

duE
0

u

du8 K @zp~u!2zp~u8!,u2u8#h i~u!h i~u8!G L
i

>expF8al'
2 ~ t2t1!G , ~76!

wherea5D~v!14~p22!b2a2xi . Finally, ^Dx p
2(t)&b'i can be evaluated in the limit of both small and large values of the

argument of the exponential in Eq.~76!, respectively, the physical meaning of which will be discussed below:

^Dxp
2~ t !&b'i>5

8ax'

l'
2 t2 small argument

l'
2x'

4a
expS 8al'

2 t D large argument.

~77!

The decorrelation time is determined from the equation

^xm
2
„zp~ t !…&bi1^Dxp

2~ t !&b'i5l'
2 , ~78!

where the first term iŝxm
2 &bi52D(v)t. In the quasistaticlimitv→0, the first term is negligible@sinceD~0!50# and the

solution of Eq.~78! is obtained from the second term:
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td>5
l'
2

2A2ax'

small argument

l'
2

8a
lnS 4ax'

D large argument.

~79!

The argument of the exponential in Eq.~76! is '2LKP/LK
~whereLKP[l'Ax i /x'! at the time given by the first line

of Eq. ~79! and thus, the validity condition for this result is
LKP/LK!1, which corresponds to the Kadomtsev-Pogutse
collisional regime~see Ref.@13#!. The second line of Eq.
~79! was obtained for large values of the argument of the
exponential in Eq.~76!, which correspond to the condition
LKP/LK@1, i.e., to the Rechester-Rosenbluth regime. A ran-
dom walk estimate of the diffusion coefficient@Dh'

(v)

>l'
2 /2td1D(v)# gives in the limit of smallv:

Dh'
~v!>H A2@4~p22!b2a2x i1D~v!#x'1D~v!, K-P regime

4
4~p22!b2a2x i1D~v!

lnF4 4~p22!b2a2x i1D~v!

x'
G 1D~v!,

R-R regime.
~80!

D~v! is here a small correction to the static values that are
recovered as the well-known Kadomtsev-Pogutse or
Rechester-Rosenbluth diffusion coefficient, respectively~ex-
cept for numerical factors of order unity!. The upper limit of
the frequencies for which the diffusion coefficient~80! is
valid can be estimated from the condition that the first term
in Eq. ~78! is negligible, i.e., from ^xm

2 (zp(td))&bi

52D(v)td!l'
2 . This gives

v lim>H 2x' /l'
2 ,

2x i /LK
2 ,

K-P regime
R-R regime. ~81!

At larger values ofv, the first term in Eq.~78! cannot be
neglected: one can show that it becomes dominant compared
with the second term and the decorrelation time can be ap-
proximated bytd>l'

2 /[2D(v)], which shows that in this
case,

Dh'
~v!>D~v!. ~82!

This proves that for high frequency theh'50 results~65!
and ~66! are valid.

The conclusion of this estimation is that the perpendicular
collisional velocity influences the effective particle diffusion
only for smallv. Forv@vlim , h' has no significant effect on
particle diffusion. We note thatvlim/n is much smaller thang
for g!1 and that it is much smaller than 1 forg@1, which
shows that the smallv range is well before the maximum of
D~v! @see Eqs.~65! and ~66!#. Thus, the effective diffusion
coefficient for collisional particles in the time-dependent sto-
chastic magnetic field can be approximated by Eq.~80! for
v!vlim and by Eq.~65! or ~66! for v@vlim . These equations
determine four possibilities for the dependence of the diffu-
sion coefficient onv. At v50, Dh'

starts from the
Kadomtsev-Pogutse or Rechester-Rosenbluth diffusion
coefficient, depending on the value of the parameter
LKP/LK , then it has a slow growth withv @described by the
first or the second line of Eq.~80!#. For v@vlim the growth
becomes faster ('Av) and in both cases the diffusion
coefficient isDh'

5Ap/2b2l iAx iv @i.e., the first line in Eq.

~65! or ~66!#. Further, at largerv, the evolution ofDh'
splits

into two possibilities depending on the parameter

g[~lmfp/li!
2. They are described by Eqs.~65! and ~66!. In

both cases the diffusion grows withv up to a maximum and
then decays as 1/v ~see Fig. 2! but the position and the
amplitude of the maximum are different for the two cases.

These results are in agreement with the heuristic analysis
presented in Ref.@9#. A similar maximum of the diffusion
coefficient was also obtained~numerically! in Ref. @11# for a
single coherent perturbation of the magnetic field.

VII. CONCLUSIONS

We have shown here that, due to the curvature drifts al-
ways present along stochastic magnetic lines, the particles
decorrelate from the lines, leading to an intrinsic diffusion
process. The mechanism of particle-field line decorrelation
by the stochastic drifts always contributes, in principle, to
particle behavior in a stochastic magnetic field. However, it
is the dominant process only when the drift velocity is
greater than the root mean squared perpendicular collisional
velocity ~x'n!1/2. This condition corresponds to high tem-
perature, weakly collisional plasmas having a small cross
field collisional diffusivity such thatx',xi~rLb/li!

2. In this
case the effective diffusion coefficient~50! applies. A clear
image of the physical domain corresponding to the validity
of the diffusion coefficient~50! induced by the stochastic
drifts is presented in Ref.@13# in the context of a systematic
analysis of the various diffusion regimes that characterize
colliding particles in a stochastic magnetic field.

We have also determined the diffusion coefficient induced
by the combined process of drift and collision decorrelation.
At high collision frequencies, corresponding to Rechester-
Rosenbluth and Kadomtsev-Pogutse regimes, the stochastic
drifts do not contribute significantly to the effective diffusion
coefficient. However, for weakly collisional plasmas charac-
terized by LK!lmfp we have obtained the result~53! in
which both processes are important.

In the second part of this paper, particle diffusion in a
time varying stochastic magnetic field is studied. We have
shown that the time variation of the magnetic fluctuations
has a very strong effect on particle diffusion in all collisional
regimes. It consists in a strong increase of the diffusion co-
efficient. The effect is maximum when the correlation time
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of the magnetic fluctuations is comparable with the inverse
of the collision frequency. When the collisional cross field
diffusion is neglected~h'50!, the time variation of the mag-
netic fluctuations determines the transition from the subdif-
fusive behavior of the particle mean square deviation to a
diffusive regime described by Eqs.~65! and~66!. Asv[1/tc
increases, the diffusion coefficient increases up to a value of
the orderb2xi or b2liVT , depending on the ratio between the
parallel mean free path and the parallel correlation length of
the stochastic magnetic field. For faster variation of the mag-
netic fluctuations, the diffusion coefficient decreases withv
~see Fig. 2!. A similar dependence ofD on v is found also
for x'Þ0 @see Eqs.~80! and ~82!#. In the limit v→0, the
well-known collision induced diffusion coefficients are re-
covered~Kadomtsev-Pogutse or Rechester-Rosenbluth!. The
growth ofv produces an amplification of the diffusion coef-
ficient that becomes practically independent ofx' and the
h'50 diffusion coefficient is found at highv. The maximum
value of the diffusion coefficient can be much larger than the
static one and corresponds to correlation times that are in the
range of the experimental ones.

We note that two different methods were used in the
present paper for deriving the particle diffusion coefficient in
time-varying stochastic magnetic field. Forh'(t)50 ~Sec.
V!, the problem could be solved exactly~in the frame of
Corrsin factorization! while for h'(t)Þ0, a random walk
estimate based on the calculation of the decorrelation time-
was given in Sec. VI.

The results we have obtained by studying particle diffu-
sion induced by pairs of decorrelation mechanisms~stochas-
tic drifts combined with collisions in Sec. IV and time varia-
tion of the stochastic magnetic field combined with collisions
in Sec. VI, respectively! allow us to draw conclusions on the
whole physical process described by the set of equations
~8!–~10! containing all the three decorrelation mechanisms.
This is possible since we have shown that the effects of the
three decorrelation mechanisms can be decoupled in the
sense that each is dominant for specified conditions and has

a small influence for the range of parameters where another
is efficient. For weakly collisional plasmas, the stochastic
curvature drifts determine particle behavior and the effective
diffusion coefficient is given by Eq.~50!. As the collisional-
ity increases, the stochastic drifts lose their importance and
the particle diffusion coefficient depends mainly on the col-
lisional cross field diffusivityx' @see Eq.~53!#. This happens
in static stochastic magnetic fields. For time-dependent sto-
chastic magnetic fields the effect of the perpendicular colli-
sional diffusivity becomes negligible asv increases and par-
ticle diffusion is strongly enhanced as seen in Fig. 2.

The effects described above are generated by the combi-
nation of the three stochastic processes:b, hi , andh' . A
very important role is played by the first two, which enter
multiplicatively into Eqs.~8!–~10!. On the other hand, when
only one stochastic parameter remains in the trajectory equa-
tions, the effect of the stochastic curvature drifts and of the
time variation ofb are completely different. This is illus-
trated by the purely collisionless case@h i(t)5v i5const,
h'(t)50# for which we have obtained from Eq.~52! a weak
decrease of the basic collisionless diffusion coefficient
(Dmv i) induced by the stochastic curvature drifts, in agree-
ment with Refs.@10# and @6#. As for the effect of the time
variation of the stochastic magnetic field, it consists in a
continuous decay of the diffusion coefficient asv increases
@Eq. ~67!#.
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