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It is possible to trap a collection of ions and cool them to cryogenic temperatures where strong correlation
effects, such as transitions to liquid and crystalline states, are observed. This paper examines the effect of
correlations on the linear normal modes of oscillation in these strongly coupled plasmas. Recently a theory has
been developed to treat such modes in the cold-fluid limit, where correlations are neglected. Here the fluid
theory is compared to molecular-dynamics simulations of the modes. Simulated mode frequencies are observed
to shift slightly compared to the cold-fluid predictions, and the modes are also observed to damp in time.
Unmagnetized simulations also reveal a set of torsional oscillations which have no counterpart in the fluid
theory. These correlation effects are also compared to a recently developed model that treats the trapped
plasma as a viscoelastic spheroid. The model allows us to extract from the simulations the values of high-
frequency bulk and shear moduli of a strongly correlated plagBE063-651X96)03805-6

PACS numbgs): 52.25.Wz, 32.80.Pj, 52.35.Fp, 62.20.Dc

[. INTRODUCTION as well as other properties of the plasma. Recently, a theory
[7] for the collective modes of a small spheroidal plasma has
It has recently been demonstrated that electromagnetiseen developed which agrees well with experimental mea-
fields can be employed to trap a collection of charges of aurement$8,9] of some of the normal mode frequencies of
single species for long periods of time. Using the techniquerapped charge clouds. However, the theory treats the cloud
of laser cooling, the charges can be cooled to extremely lovés a charged cold fluid, neglecting the granularity associated
temperatures on the order of a few mK. Although the meanyth interparticle correlations.
distance between charges is lafge the order of microns In this paper we consider the effect of the interparticle
the temperature is sufficiently small so that the ratio of av¢orrelations on low-order normal modes of the trapped
erage interaction energy to kinetic energy per chargegharge cloud. Using molecular-dynamiddD) simulations,
I'=q% (awskT), is larger than unitytHereT is the tempera-  we find that low-order mode frequencies are described well
ture, k is Boltzmann’s constany is the charge, andwsis by the aforementioned cold-fluid theory for clouds as small
the average interparticle spacirthe Wigner-Seitz radius  as 100 charges, even when the cloud has crystallized. We
defined in terms of the mean density, by 4mnyay,s/3  also find that slight frequency differences between the simu-
=1.] The parametef” is referred to as the correlation pa- lated modes and the fluid theory are systematic, and can be
rameter. In the regimE> 1, the system exhibits phenomena explained by physical effects associated with strong correla-
associated with the physics of strong correlation, such ation. In addition to the slight frequency shifts observed in the
transitions to liquid or even solid phases. These correlatiogimulated normal modes, we also observe mode damping
phenomena have been extensively studied in a series of comhich is consistent with viscous effects due to collisions in
puter simulations relevant to different trap configurationsthe strongly correlated plasmas.
[1-3], and were later observed in actual experiments in The frequency shifts and damping of the low-order modes
(magneti¢ Penning trapg4] and in (radio-frequency Paul  can be explained in detail using a viscoelastic m¢de] of
traps[5]. the cloud based on the bulk dynamical properties of a homo-
At the cryogenic temperatures of the experiments the Degeneous one-component plas(@CP. The OCP is a system
bye length\ p = VkT/(47q%n,) is usually small compared to of equal charges immersed in a static uniform neutralizing
the size of the charge cloud, so the cloud can exhibit collecbackground charge. In a Penning trap or Paul trap the applied
tive oscillations associated with non-neutral plasmas, eveelectromagnetic fields play the role of the uniform back-
though the number of trapped particles is often quite smallground, and one can show that the static thermal equilibrium
N=10*. While the collective modes of non-neutral plasmasproperties of charges trapped in these systems are the same
have been studied for decad&d, certain aspects have only as those of the OCRo a differing degree of approximation
recently been investigated. For example, when the plasmdepending on the trap geometry employed
cloud is small the low-order modes are the most easily ex- The OCP is a paradigm of condensed matter which has
cited, but the frequency of these modes depends on thieeen studied for a centurjyll]. Its properties are directly
plasma shape. Furthermore, an accurate description of thelevant to the theory of white and brown dwarf interiors,
shape dependence is desirable since measurement of taed neutron star crusfd2]. However, experimental data for
modes then provides a nondestructive diagnostic of the shajiee dynamical properties of the classical OCP are limited
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(although large-scale numerical simulations of the infinite

homogeneous OCP have been perforjrid@]. Our results Penning Trap Paul Trap
point to the possibility that mode experiments on relatively v 5
small clouds of trapped ions might be used to experimentally * /_B\
determine dynamical properties of the OCP which are of < —
importance to a range of physical systems. .
We examine the frequency and damping of several low- _l_—
order modes as a function of the shape and size of the plasma B %_; -
cloud as well as the correlation paramelerWe also con- +V —
sider the dependence of the modes on the applied magnetic i

field by examining two limits in our simulations: the unmag-
netized case, and the strongly magnetized limit where guid- FIG. 1. Di ¢ Peni d Paul t Thet h
ing center equations of motion are valid. Using the afore- - - Dlagram ot@enning and Faul traps. 1he traps are snown

. . . ith cylindrical electrodes, but more complex electrode geometries
mentioned hydrodynamic model, the frequency shift andé\vre often employed. The plasma is the black dot in the trap center,

damping are employed to extract dynamic properties of the. S . e )
. . . . hin th h h fiel h .
OCP from the simulation data. In particular, we obtain hlgh-%Ituateol within the region where the trap field is harmonic

frequency bulk and shear moduk, and u, for a range of oscillating voltages applied to a set of electrodEgy. 1).

I' values and for strongly magnetized as well as unmagnes, charges respond to the applied field with a small-

tized systems. The real parts of these modyh, along with th%mplitude rf jitter motion. This fast jitter in a spatially inho-
bulk equilibrium plasma pressure, explain the frequency

. . ; . ; mogeneous If field produces an average ponderomotive force
shifts, and the imaginary parts of the moduli describe the . T .
damping. In the limit of largd” the extracted values fot described by a time-independent effective poterfiglx).

and . aaree with recent theoretica and « values of an In a harmonic trap, this potential is a quadratic function of
m a9 . K position over a region around the center of the trap which is
amorphous solid OCPL4].

In simulations of modes in unmagnetized correlated plas_sufflmently large to encompass the plasma. We write this

mas a number of torsional ei otential as
genmodes are also observed.

These eigenmodes are shear modes that do not perturb the 1, 2,2 5
shape or density of the plasma, so the restoring force for be(X) = 2M w3z (2°+ Bp%),
these modes is due only to correlatiqing., the finite shear
modulusy of the correlated plasmaFor the special case of Where cylindrical coordinatez=(p,6,z) are aligned with
a spherical uniform plasma some theoretical results for suck€ trap axis, and is measured from the center of the trap.
modes are available in the literature on elastic deformationklere; is the axial frequency of a single particle confined in
of solid bodies[15,16, and we compare our simulations of the trap, and the positive constais referred to as the trap
the torsional modes to this work. parameter(Note thatw, must be substantially less than the

In Sec. Il we review the equilibrium properties of a frequency of the applied rf fielThe parameteg can usu-
trapped non-neutral plasma. In Sec. Il A the cold-fluid ally be experimentally adjusted, and it determines the sym-
theory of the normal modes of the plasma is reviewed, withmetry of the confined equilibrium plasma. For example, for
particular emphasis on the unmagnetized and guiding cent¢#=1 the plasma will be spherical, whereas for lagehe
limits. In Sec. Ill B the predictions of the cold-fluid theory plasma is squeezed radially, becoming a thin elongated
are compared to the results of MD simulations of unmagnespheroid, and for smajg the plasma is a flattened pancake.
tized and guiding center plasmas. The differences between In a Penning trag18] (Fig. 1), confinement is provided
the simulated modes and the cold-fluid theory are describedpy static electric and magnetic fields. In a harmonic trap, the
and compared to a perturbation theory based on the afor€lectrostatic trap potential satisfies Laplace’s equation and is
mentioned viscoelastic approximation, where frequencya quadratic function of position
shifts and damping due to bulk correlation pressure and bulk
and shear moduli are predicted. Section IV describes the tor- dr(X)=3M wi(zz— 1p?).
sional modes of the unmagnetized plasma, and in Sec. V we

discuss some outstanding questions. In Appendix A we reThjs potential is only confining in the direction, so a uni-
view the theory of spheroidal multipole moments, useful inform magnetic field is applied in this direction to provide
the diagnosis of the modes in our simulations. In Appendix Bradial confinement. The plasma rotates through the magnetic
we work out some special cases of_normal_ modes in crystalﬁem about thez axis, causing ax B force which balances
lized plasmas that can be determined without approximage centrifugal force and the electrostatic repulsion, trapping
tions. the plasma radially. In thermal equilibrium the plasma ro-
tates as a rigid body, described by a constant rotation fre-
quencyw, about the trap axis. The confinimk B force and
the centrifugal force are then proportional to radiysand in

In this section we briefly review the static thermal equi- the rotating frame they appear in the equations of motion as
librium properties of a single-species plasma trapped in théhe derivative of a pseudopotential proportionapfo Thus
applied fields of either a Paul or Penning trap. A more dein the rotating frame the charges experience a static effective
tailed account can be found in R¢L0]. In a Paul trag17],  confinement potentiab.(Xx) equal to the sum of the pseudo-
charges are confined by the rf fields that result from rapidlypotential andq¢+ [19]. This effective potential is quadratic

(2.9

Il. EQUILIBRIUM PROPERTIES
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in zandp, and so is of the same form as Eg§.1). Now the U

1
trap parametep is related to the rotation frequency p= nokT( I+ 3Nl (2.6

_mo(Qcto) 1

= > -, (2.2 and furthermordJ/NKT is a function only ofl’. The form
Wy 2 for U/NKT in the liquid phase has been determined from

] ) ] Monte Carlo simulation$24] and in the solid phase from a
and w,{.<0 is required for confinemer(electrons rotate ompination of analytic and numerical techniqueg]. At
counterclockwise, positive ions clockwise when observedymanr. U/NKT approaches zero. At large in the crystal-
from the positivez axis). Thus the plasma in the Penning |ine phaseU/NKT is proportional td”, U/NKT— AT, where
trap has the same thermal equilibrium properties in the rotaty,o Madelung constar=—0.90 for several stable lattice
ing frame as the plasma in the Paul trap. Throughout thi§yloes including bec, fec, and hep.
paper we consider properties of plasmas in Penning traps as yowever, in the trapped clouds of interest here, the cor-
observed in the rotating frame. _ relation properties are different than those of the infinite

_ The thermal equilibrium properties of low-temperature 5cp que to surface effects. In particular, the density is no
single species plasmas confined in the harmonic trap potefsnger uniform, and this affects the correlations. For small
tial in Eq. (2.1) have been discussed extensively in previous g|yes ofl" the plasma density falls monotonically to zero at
papers [20,21. If one .n_eg_lects correlations, the zero- o plasma edge on the scale of a Debye lefigf. As the
temperature thermal equilibrium state has been shown to bei@mperature decreases, the Debye length decreases and the
uniform-density spheroidellipsoid of revolution. The den- plasma edge steepens, approaching the uniform density of

sity n is related to the external confining fields cold-fluid theory. However, a§ increases beyond around
2 I'~2 the density also begins to exhibit spatially decaying
no:M—wzz(Zﬁ‘*' 1), 2.3 oscillations from the outer edge inward with a wavelength on
4mq the order ofay,s[23] (see, for example, Fig. 1 of R€fL0]).

_ o As I increases further the oscillations increase in magnitude
and the aspect ratie of the plasma spheroid is related to the until finally the density approaches zero between the peaks

trap parameter and the system forms a number of concentric shellg].
These shells may be thought of as lattice planes which are
2841 -1 (2.4 curved to satisfy the boundary conditions imposed by the
Q% al J2—1)’ : external potential into a roughly spheroidal shape. At inter-

mediate values of (I'~100), charges diffuse within these
shells, but rarely hop between them; whereas at largal-

ues ("=300-1000 the charges generally crystallize into a
distorted two-dimensional2D) hexagonal structure, al-
though for extremely oblate or prolate clouds other crystal
structures can occuf26]. Although correlations in the
trapped plasma are quite different than those of the infinite
‘OCP, we will observe in Sec. lll that their effect on the
collective modes of the trapped plasma can be explained by
reference to bulk correlation properties of a homogeneous

whereQ? is a Legendre function of the second kif@his
equation is equivalent to E@2.6) of Ref.[10].] The aspect
ratio is defined agr=L/R, where R is the diameter of the
spheroid and P is its length. When one specifies the total
number of chargesl, the length and radius are then deter-
mined by the shape and volume of the spheroid
27LR?ny=N, and this relation can be written in terms of
the aspect ratiax and the Wigner-Seitz radiusys, repro-

duced here from Ref10] for convenience: oCP.
L \3 No? R\® N 25
| =Na% | —] =—. . Il. NORMAL MODE
aws aws a © ODES

) -~ _ ) In this section we discuss the behavior of low-order nor-
Equations(2.2—(2.5 have been verified experimentally in ma| modes of oscillation of a strongly correlated plasma in a
Penning trap experimenf&1]. . . harmonic trap. We compare a recent cold-fluid theory for the

Up to this point we have not discussed correlations. Wénodes to the results of molecular-dynamics simulations of
now briefly review the effect of interparticle correlations on ggcillations in low-temperature ion clouds. We first discuss
the plasma equilibrium. When the correlation parametés  the cold-fluid theory for the modes. This theory neglects cor-
larger than unity, the interparticle correlations increasinglyre|ation effects and treats the plasma as a cold uniform fluid.
favor the establishment of order within the plasma. A more detailed review of the theory can be found in Ref.

The thermal equilibrium properties of the strongly corre-[10). Differences between the cold-fluid theory and computer

lated infinite homogeneous OCP have been determined thegpny|ations of the modes in a strongly correlated plasma will
retically through a combination of analytic and numericalpe considered in Sec. IIl B.

techniques. The system is predicted to exhibit short-range
order characteristic of a liquid foF =2 [11], and a first-
order phase transition to a body-centered-cybix) lattice

at I'=172[22,23. Useful relations between the thermody- The normal modes of a plasma spheroid have recently
namic functions have also been found. In particular, the bullbbeen enumeratel]. This is the only known analytic solu-
pressurep of the OCP is related to the correlation contribu- tion for modes of a realistic three-dimensionally confined
tion to the internal energy through magnetized plasma. Here we will focus on the two limiting

A. Cold-fluid theory
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cases of very strong magnetic fields where the vortex frespheroid, andi—|m| equals the number of zeros one encoun-
quency[27] Q,= Q.+ 2w, is large compared to the plasma ters upon traversing a great circle from pole to pole.
frequency, and weak magnetic fields, whefk,|—0. The

vortex frequency is the cyclotron frequency as seen in a 1. Unmagnetized modes

frame rotating with the plasma; thew? frequency shift

arises from the Coriolos force, which acts like a uniformg,.e niasma oscillations on a spheroid. These unmagnetized

magnetic ﬂeld_ln the rotating frame. Since Paul trap plasm_a§urface plasma oscillations are incompressible deformations
are unmagnetized and almost always have negligible rotatiogs ihe shape of the spheroid. In the spherical limit 1 the

frequency, they fall in the unmagnetized regifie,=0, ¢ face mode frequencies are given by
whereas Penning trap plasmas can span the range between

unmagnetized and strongly magnetized limits, depending on
the values ofw, /Q); and w,/Q).. In particular, at the Bril- wi=—2" (3.2
louin limit [28] |w, /Q|=3, the vortex frequency vanishes,
and in the rotating frame the plasma is unmagnetized
whereas away from this limit a range of /Q . values exists [see Eq(3.8) of Ref. [10]]. _
for which the plasma becomes strongly magnetized provided !N addition to the surface modes, there is azlso a set of
that Q. /w,>1 [this follows from Egs.(2.2 and (2.3 and  unmagnetized bulk plasma modes for Whmﬁ:_“’p (7,10.
the definition ofQ,]. These bulk_ modes cause potential perturbatlon_s within Fhe
In cold-fluid theory, the normal modes are described bypla:tsma which do not affect the external potential; that is,
the perturbed potentiak(x,t) induced by the mode, as seen y°'=0 for these modes. For example, in a spherical plasma
in a frame rotating with the plasma at frequenay. In the @ den.S|ty perturbation that is any function of .sphencal rad_lus
rotating frame y(x,t) is assumed to vary with time as " oscillates at the pl_asma freqyency. In partlpular, there is a
exp(iwt). This assumption leads to the following differen- Pulk plasma mode in a spherical unmagnetized plasma for

In the unmagnetized limi€),=0 the modes become sur-

tial equation fory [7,10]: which the perturbed interior potential is quadratic fin
' #"=A(r>—R?). This mode corresponds to breathing oscil-
V-(e-Vi)=0, (3.1a lations of the sphergsee Fig. 2g)]. Such breathing modes

also occur for more general plasma equilibria, such as sphe-
with the boundary conditioss— 0 as|x|— (image charges roidal, cylindrical, or disc plasmas. For the particular cases
are neglected since the plasma is assumed small compareddp spherical, cylindrical, and disc plasmas, the breathing
the trap electrodgsThe tensor is the cold-fluid dielectric  mode also happens to be an exact crystal eigenntsee
tensor. Outside the plasms= 1, whereas inside the plasma Appendix B. Simulations of the breathing mode will be dis-
. cussed in Sec. llIB 7.
gp —ley O Looking ahead for a moment, we note that there is an-
e=|iey, & 0 (3.1b other class of modes in unmagnetized plasmas that does not
0 0 exist in the cold-fluid theory discussed here. These are the
&3 torsional modes, which are twisting oscillations that do not
affect the shape or density of the plasma. An example of
such a mode is shown in Fig(f2 The restoring force for
these modes arises entirely from correlation efféicts, the
shear modulus off the plasmaSuch correlation effects do
sl=1—w§/(w2—05), 82=w,2JQU/w(w2—Qf), not exist i'n cold-fluid theory. These modes occur only f(_)r
unmagnetized plasmas. In the presence of a magnetic field
(3.10 the Lorentz force dominates over the shear force, and the
' modes change character. We will return to this point in Sec.

in Cartesian coordinates. The dielectric coefficiesnts ¢,
and g5 depend on the frequenay of the mode, as well as
the plasma and vortex frequencies:

83=1—wg/w2,

wherewp=\/47-rq2n0/M is the plasma frequency. :j” A2 wh_en IW,[(.3 con?der magntgtlzde? pl_asmla mgde$- ¥Ve
In the unmagnetized limit the vortex frequeney, van- I\l/scuss simulations of unmagnetized torsional modes in Sec.

ishes, the dielectric tensar is isotropic, and Eq(3.1a can
be solved in spheroidal coordinates. However, wkinis
nonzero the solution is not as straightforward; nevertheless a
separable solution can still be obtained. For the purposes of For a spheroidal plasma in a magnetic field the mode
this paper we will have need only of the solution interior to frequencies are determined by E§.11 of Ref.[10]. When

the plasmay™, which separates in scaled spheroidal coordi-the magnetic field is large the frequencies fall into three re-
nateq 7]. The interior mode potential™ also has a relatively gimes. The highest frequency modes are upper hybrid oscil-
straightforward(though nonseparablgolynomial form in lations with frequencies nedd,. These modes consist of
cylindrical coordinates, which we will find useful when we rapid oscillations predominantly across the magnetic field.
diagnose our mode simulations. In Table | of Rgf0] we  The next set of modes are magnetized plasma oscillations
provide the cylindrical forms for several of the low-order with frequencies of ordes, or less. These modes consist of
modes. Modes are parametrized by two quantum numibersplasma motions mainly along the direction of magnetic field.
andm, =1 and|m|<I. These numbers determine the de-Finally, there are low frequendyx B drift modes with fre-
gree of variation of the mode potentidn| equals the num- quencies ofO(wf,/Qc). These modes consist of slow drift
ber of zeros in the potential as one circles the equator of thenotions mainly across the magnetic field.

2. Modes in a strong magnetic field
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of the spheroidFig. 2(@]. In the limit of strong magnetic
field the spheroid contracts and expands along the magnetic
field [a plasma mode, shown in Fig(a?] or across the mag-
netic field(an upper hybrid mode, not shoyin the unmag-
netized limit the(2,0) mode is incompressible, and the spher-
oid radius decreases as the length increases. For both
magnetized and unmagnetized plasma,(fh&) mode corre-
sponds to an incompressible tilt of the spheroid with respect
to thez axis. The tilted plasma precesses aroundzthgis at

the mode frequencisee Fig. 2)]. The (2,2) mode is also
incompressible, corresponding to a deformation of the
plasma into a triaxial ellipsoid with a major axis parallel to

z [see Fig. 2c)]. The ellipsoid then rotates about theaxis.

For the (3,0 mode, there are two different types of magne-
tized plasma oscillation in the magnetized case, shown in
unmagnetized Fig. 2(d). There is also an upper hybrid oscillatignot
shown). In the unmagnetized limit the single surface plasma
oscillation is again incompressible, also shown in Figl) 2

a)

unmagnetized guiding
(2,0)

center (2,1)

guiding center  guiding center B. Simulations of the normal modes
high fregq. low fregq. and comparison to fluid theory

(3,0) We have carried out computer simulations of the normal

modes in order to test the cold-fluid theory and examine the
effect of correlations on the normal modes. Two separate
molecular-dynamics algorithms were employed in this effort
in order to study both magnetized and unmagnetized dynam-
ics. One code followed unmagnetized charged particle trajec-
~ N = tories in the effective trap potential given by EQ.1 [1],
breathing mode torsional mode and the other employed guiding center equations to follow
the motion of charges in a Penning trap in the guiding center
FIG. 2. Deformations of the plasma due to normal modes oflimit [2], averaging over the fast cyclotron motion. Because
various types. The arrows indicate the direction of motiah(2,0) cyclotron motion is averaged out in the second code, the
mode: spheroid oscillates in radius and/or lendt).(2,1) mode:  guiding centers are described by only four variables, position
spheroid tilts and precesses around the trap 4gjs(2,2 mode:  x and thez component of velocity,. The other two com-
spheroid deforms into triaxial ellipsoid, and rotates around the trapponents of the velocity are determined by the B drift
axis. (d) (3,00 mode: in the largél,, limit, two types of magnetized velocity of the guiding center. Upper hybrid modes cannot
plasma modes exist. In the unmagnetized limit, the sin8l®) be simulated with this code: only plasma aftk B modes
surface mode is incompressiblée) Breathing mode: sphere ex- can pe followed. However, both magnetized and unmagne-
pands and contracts in radiu$) Example of a torsional mode: top  tjzeq codes are similar in that they follow the trajectories of
half of sphere twists with respect to bottom half. N charges under the influence of the external fields as well as
the Coulomb interactions with the other charges.

e) £)

For given values of andm there is a finite number of
magnetized modes. Fan=0 there are R modes. Form 1. Initial preparation of the system
#0 andl —m even there are 2 |m|)+2 modes, while for
m#0 andl —m odd there are 2¢-|m|)+ 1 modes.

As (),—0 the magnetized modes connect to the unmag
netized modes in the following manner: ii=0 all upper

Simulations of the modes were carried out in the follow-
ing manner. Initial conditions were generated using a simu-
lated plasma which was previously allowed to equilibrate.
For simulations of crystallizedI{—«) plasmas this in-

X Yolved slowly cooling the system by extracting kinetic en-
and two of the magnetized plasma modes become the surfag?gy until a potential energy minimum was obtained. For

plasma oscillations. The rest of Fhe modes approach_ Zerl%\rgeN there are many nearly identical local energy minima.
frequency.(Actually, when correlation effects are taken into

) lp some cases great care was taken to obtain a minimum
account these zero-frequency modes become torsional osclil-

lations) If m#0 the same thing happens 85—0, except energy as close as possible to the global minimum by cool-

that now only one of either the magnetized plasma oing very slowly and then annealing the crystal by reheating

Ex B modes becomes a surface plasma mode. and an u arrld recooling several times. In other cases no attempt was
. P ' PP&ade to anneal the crystal to a better minimum, but there
hybrid mode also becomes a surface plasma mode.

was negligible difference in the mode frequencies between
these cases.
For simulations of modes in finitE plasmas, the equilib-
The low-order modes have straightforward physical inter+ium was set up in a different manner. In the guiding center
pretations. Th€2,0) mode is an oscillation in the aspect ratio simulations a giver’ value was arrived at by employing the

3. Low-order modes
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TABLE I. Frequencies of2,0) modes in spherical guiding cen- X-(t=0)=X-(O)
ter and unmagnetized plasmas. ! b

vi(t=0)=v{V+C(—x{V/2,—y{92,—2?9). (3.4b

Osimulation! @7 wtheory/wz
B=0 1.0955 V6/5=1.0954 ... The perturbation amplitud€ was chosen to be suffi-
Guiding center 1.3418 3//5=1.3416 ... ciently small to be linear. The condition of linearity can be

couched in the formV 6x|<1, or, in other words, the maxi-
mum value of|8x| must be small compared to the mode
Metropolis-Rosenbluth Monte Carlo method to obtain real-wavelength, of ordeaWSN1’3 for a low-order mode.

izations of the charge positions at a givErvalue. The par- On the other hand, the amplitude must be chosen to be
ticles were then given a random distribution of kinetic ener-arger than the thermal fluctuations, otherwise the mode can-
gies with a mean corresponding to this value Iaf The  not be observed over the thermal noise. The kinetic energy
system was then integrated forward in time via guiding cenflyctuates by an amount of ordeiNkT, and the mode ki-

ter molecular dynamics for several hundred plasma periodgetic energy is of ordeNM dv?=NMw?5x?, so forN suf-

to allow full equilibration. In the unmagnetized simulations ficiently large orT sufficiently small the modes can be ob-
the system was prepared at a giervalue by introducing served above the noise even when the modes are in the linear
random components of velocity in the MD code and thenyegime: VkT/(mw?N¥?) <| x| <aywsNY3. For example, for
allowing the system to interact and equilibrate in a heat bathhe (2,00 mode this conditon implies oyl )]

(rescaling each velocity component so as to ensure that ”Ie\/E_FN7’12)<C/w<1, a condition that is easily met for large
average kinetic energy remains at a certain level, and using@ 5 largeN.
canonical touch periodically to randomize velocities of & rom these initial conditions the plasma was then allowed
fraction of the particles in order to follow the appropriate i freely evolve without additional external perturbatidtes
Boltzmann distribution tal energy and component of angular momentum along the
trap are conserved, and the center of mass position remains
fixed at the trap centgrin the unmagnetized code time steps
In order to set up a normal mode of oscillation in bothwere chosen to equal2100 times the one-particle period.
types of simulations, we extracted position® and veloci- In the guiding center simulation time steps were allowed to
ties Vi(O)’ i=1,... N, of the equilibrated charges at some Vary in size in order to_conserve energy at a level of roughly
time step. To these positions and velocities we added a pef0 °d*/aws for each time step. The system was then fol-
turbation associated with a given fluid normal mode, accordlowed for several hundred single-particle periods. The nu-

2. Addition of a mode perturbation

ing to Eq.(3.1b of Ref.[10], merical accuracy of the simulations was checked at several
points by repeating some simulations with different con-
xi(t=0)=x{"+ Re %], (3.33  straints on the energy conservati@uiding center cageand

with different sized time step@inmagnetized cage
In the guiding center simulations the magnetic field was
chosen differently for different modes. For t&0) and(3,0
modes(./w,= 10, for the(2,1) mode() /w,=10°, and for
T g ingy(0) the (2,2 mode()./w,=10/3. The magnetic field was chosen
v qno VYR, (3-39 to be relatively large for th€2,1) mode simulations in order
to make degenerate the two plasma modes with opposite
and signs of w/m (opposite phase velocitigssince at finite()
these twa(2,1) modes occur at two separate frequencies. For
oxi=—dviliw, (3.30  the(2,2 mode the magnetic field was chosen to be relatively
small because the guiding cent&,2) frequency scales as
whereo is the cold-fluid COI’ldUCtiVity tensor, wg/Qc’ and so a frequency measurement of @Q) mode
is difficult if Q). is too large. However, since guiding center
equations of motion are used in the molecular-dynamics
simulation the guiding center limit of the cold-fluid disper-
sion relation, Eqs(3.11) and (3.12 of Ref. [10], is still
Only thez component of Eq(3.3b) is required for the guid- applicable even whefl is not large.
ing center simulations. For example, in the guiding center
limit Q,—, one finds the displacements associated with a 3. Extraction of multipole moments and mode frequencies

vi(t=0)=Vv{”+Rq év;], (3.3b

w
U:m(s—l). (3.3@

(2’(_)) mode by taking’f/’i“_ from Table 1 of Ref.[_lO] and ap- The oscillations of the plasma resulting from the above-
plying it to Egs.(3.3), using Eq(3.1b for ¢. This procedure  yescriped initial conditions were diagnosed by taking multi-
yields the initial condition pole moments of the density as a function of time. If the

() v (0) 4 ~(0) multipole moments are defined properly—that is, if they are
X(t=0)=x", v (t=0)=v,"+C; (348 chosen to be spheroidal multipole moments rather than the
more common spherical multipoles—one can show that an
for some amplitudeC. For the unmagnetized),=0) (2,0 oscillation having given mode numbdrandm excites only
mode the same equations imply a single spheroidal multipole moment,(t), independent of
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FIG. 3. Multipole momentsy,,,(t) of an initially spherical crys- ‘8/ ?"
tallized cloud ofN=1000 charges with &,0) perturbation added 9 o 2+ .
with magnitudeC=0.03w,, following guiding center dynamics Al
[see Eq(3.438]. The lower plot shows a blowup of the upper plot in
order to display the moments with, (n) # (2,0), which have much
lower amplitude than th€2,00 moment. Form+#0 only the real
parts of the moments are displayed. Moments are normalized to the
Wigner-Seitz radiugyys -
the strength of the magnetic field. A review of spheroidal
multipole moments is provided in Appendix A. Like spheri- T s
cal multipoles, these spheroidal multipoles can be written as B

sums over polynomial density moments. For example,

FIG. 4. Mode frequencies for crystallized plasmas as a function
of plasma shape for different low-order modes. Dots are simulation
results for guiding center modes, crosses for unmagnetized modes.
N The solid line is the cold-fluid theory for guiding center plasmas

[Egs.(3.11) and(3.12 of Ref.[10]], and dotted line is the theory
2%\/%2 {%[Zziz(t) —Piz(t)]_ %dz}, for unmagnetized plasmagq. (3.7) of Ref.[10]]. Frequencies are
=1 normalized to the axial bounce frequeney, except for the2,2)
whered?=L2—R?. [In this form for g, we have subtracted =B mode, which is normalized 0/, whereq, is the cy-
out the contribution to the quadrupole moment of the sphe-dotlron frequ?ncyi Note that the guiding cent&2) frequency,
roidal equilibrium, so thaty, oscillates around zero in the when normalized in this manner, equals the square of the unmag-

. . netized(2,2) frequency normalized t@, (Ref.[10]). There are two
S|mulat|9ns .of th_e(Z,O) modg] The form ofq,,, for general guiding center(3,0) modes(see Fig. 2 (a) (2,0 mode. (b) (2,)
| andm is given in Appgndlx A'_ . . . . mode.(c) (2,2) mode.(d) (3,00 mode.

An example of this diagnostic is shown in Fig. 3, which

display; several multipole moments for an initially spherical4(d) the frequency of modes set up in crystallized plasmas
crystallized cloud of 1000 charges to whiclt20) perturba-  ¢o; gther values off andm is also compared to the fluid

tion has been added using E.43. The guiding center o4y and in each case very good agreement is obtained for
limit of the dynamics has been employed. The figure show§he mode frequency. Note tha;tzlwﬁ for an unmagnetized

that the(2,0) multipole is excited and oscillates sinusoidally, 2.2 mode is predicted to be the same functions is
whereas other multipole moments are smaller by roughl;} '

. wQ./w? for the guiding cente(2,2) mode[10], and this

two orders of magnitude. L2 o . .

The mode frequency can be extracted by making a sinupredlc'[Ion is verified in the simulations.
soidal fit to the oscillation ofj,o shown in the figure. The
result of the fit is displayed in Table | and compared to the
fluid theory, Eq.(3.11) in Ref.[10]. The agreement is excel- However, there are small differences between the fluid
lent. The table also shows a similar level of agreement witttheory and the simulations. There is a small but systematic
the fluid theory[Eq. (3.2] when an unmagnetize¢2,0) shift in the simulated mode frequencies which is difficult to
mode is simulated using the same initial plasma. see in Figs. 4. For various values of the trap parametere

In Fig. 4(a) we display how th&2,0) frequency varies for difference A w= wg,— wgg between the simulated mode
crystallized plasmas of different shapes. Excellent agreemeffitequencywg;,, and the cold-fluid theorwy,q is displayed in
between the fluid theory and the simulations is observed foFig. 5. We evaluate the frequency shifts of t#0), (2,1,
both magnetized and unmagnetized dynamics. In Figg—4 (2,2, and(3,0) unmagnetized surface plasma modes as well

o) = V577 | @Pxnx 013222 p7)— 50}

4. Frequency deviations from the cold-fluid theory
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+ , . , FIG. 6. Frequency shifh w,, of the (2,0) normal mode from the
o 1 2 3 4 5 fluid result in spherical ¢=1) and prolate ¢=2) clouds of vari-
B ous sizes as a function of the inverse correlation parametér, 1/

The upper plot is for a guiding center simulation with
FIG. 5. Difference between mode frequencies as observed if)./w,=10, where(), is the cyclotron frequency and, the axial
simulations of crystallized [{=) ion clouds and the cold-fluid bounce frequency. The lower plot is for an unmagnetized spherical
theory, Aw= wgn— wquiq- Frequency differences are plotted as a plasma.
function of trap paramete8 on the lowerx axis, and plasma aspect

;Iitilg ?e;?i;::e Igpngp;)a)z;. ?2 'g) dn?gz;n'snﬁi?t f(rg;ng X;arégzgczlco)l' frequencies. Second, extra restoring forces appear due to the
RSN ' : ' : elastic properties of the strongly correlated system; these are

(2,2) mode.(d) (3,00 mode. Solid lines are the theory predictions for . . . 4
the frequency shifts in the guiding center limit, dashed lines aredescrlbed by isotropic bulk and shear moduland u.. The

predicted shifts foB=0. For the(2,2) modes the predicted fre- following expressions for the frequency shifiso were de-

quency shifts for these two cases coincide when normalized ag'vgd using this elastic model of the plasma, assuming that
shown in the figure. shifts were small, the plasma was strongly correlated, and the

modes in question were not degenerate.
) o ] For the(1,0) and(1,1) modesA w=0, as befits these cen-
as their guiding center counterparts for clouds which ar§e, of mass oscillations. For the,0), (2,1), (2,2), and(3,0)

crggtgllized C—). The frequency shifts are scaled by g,rface modes in an unmagnetized plasma the following pre-
N“*in order to make contact with a theory for the shifts yictions were derived for the frequency shifts:

discussed below. For the=2 modes the shifts appear to
vanish for spherical plasmas, hence the excellent agreement

between the fluid theory and the simulations observed in 15w p+,uw§/w2
Table |I. Ao= R2+ 2L2 M 2 for (I,m)=(2,0),
ipy - w no
The frequency shift is also found to depend on the cloud P (3.53
temperature. For example, for a spherical cloud there is a '
negligible frequency shift of the guiding ceni@;0) mode at
largel [see Fig. $a) and Table ]. However, as temperature 10w p+/m;‘;/w2

is increased, a positive shift in frequency appdaee Fig. Aw
6). For an unmagnetized plasma the frequency shift is
smaller as temperature variésig. 6).

In Ref.[10] it was predicted that such frequency shifts
arise through two effects which are neglected in cold-fluid 5o P+ pw?l w?
theory. First, plasma pressure changes the equilibrium shape Aw=—5 —zp
and density of the plasma, which in turn changes the mode R® Muwgng

for (I,m)=(2,1),
(3.5b

" (L’+R)  Maw2n,

for (I,m)=(2,2, (3.50
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700(3L%+ 2R?) p+,uw§/w2 netized surface modes induce incompressible deformations
2L213RY(AL2FRD Mol of the plasma shape in fluid theory, so only the shear modu-
@pNo lus . appears, describing the elastic response to shear of the
correlated plasma. The bulk pressyréEq. (2.6)] also ap-
for (I,m)=(3,0, (3.5d  pears, describing the effect on the modes of the change in the
equilibrium shape and density when pressure is taken into
where w is the frequency of the given unmagnetized cold-account.
fluid mode as seen in the rotating frame. The bulk modulus In the guiding center limit similar expressions were de-
x does not appear in these expressions because the unmaiyed:

Aw=

5w 2p83+(K+4/L/3)wg/a)2

- for (I,m)=(2 '
TR Mw?2ng or (hm=(20, o
w_WTSHO or (I,m)=(2,1), (3.6
10w p+ powQ
A= o PTROTO e ) (I,m)=(2,2), (3.69

R Meogng

2L 2pes+ (k+4ul3) w3 w?]+ (Reg) [ 2p+ pw?l w?]
Aw= P P for (I,m)=(3,0). .
@35 Mw2no[ 8L+ 4RPL%s5+ 3R or {1.m)=(3.0 (3.6d

Equations(3.6) neglect a magnetic field effect discussed inthese modes correspond to compressions and rarefactions of
Ref.[10]: for B#0 there are more than two moduli, having the plasma along the magnetic fie(dhagnetized plasma

the effect that the moduli can have different values for dif-waves, with a wavelength\ on order of 4 for the (2,0
ferent modes. However, for frequency shifts at lafyehis ~ Mode and of orderI2 for the (3,0) mode(see Fig. 2 In both
effect is unimportantsee Ref[10] for details. cases, as the plasma becomes oblatdecreases and the

; _ frequency shift becomes more negativepposite to the
For the magnetize(2,0) and(3,0) modes the bulk mocju Bohm-Gross dispersion relatipnbecause the bulk com-

nﬁ’ressibility (x+4/3w) of the strongly correlated plasma is

presgible. For thei.S,O) guiding c;enter mode there are two negative, leading to negative dispersion of plasma waves
possible frequencies of oscillatiqsee Fig. 4, and the fre- [13, 14, 30Q.

quency shift depends on whi¢B,0) frequency one employs In order to make a more detailed comparison of these
in Eq. (3.60. _ _ theoretical predictions for the mode frequency shifts to our
All of the frequency shifts are predicted to scale ascomputer simulation results, we need expressions for the
1/(plasma sizg. This is because the effective wavelength equilibrium pressure and the bulk and shear modwuiiand
A of these low-order modes is on the order of the plasma, for a strongly correlated plasma. While the equilibrium
size, and a frequency shift due to pressure effects will be opressure is known for a strongly correlated plasma as a func-
the order ofp/(mny\?). This is the form of the frequency tion of I' [Eq. (2.6)], precise forms for the bulk and shear
shift in the Bohm-Gross dispersion relation for unmagnetizednoduli are not known. In general, these moduli are functions
warm plasma waves in an infinite uncorrelated plas@®¥,  of I as well as frequency and magnetic field. Since the
w2=w§+ y(kT/m)(2m/\)? (wherevy is the ratio of specific oscillations are generally rapid compared to equilibrium
heats. Since the plasma size scalesNi, the size of the times, the high-frequency limits fot and x may be suffi-
plasma can be scaled out of the frequency shift by multiplycient. In the very strongly correlated lindit>1, some results
ing Aw by N?3 as in Figs. 5 and 6. The scaled frequencyare then available. The dielectric function for a strongly cor-
shift AwN?% o depends on the plasma shapgcorrelation  related homogeneous isotropic amorphous solid one-
parametei’, the magnetic field strength in the rotating frame component plasma has recently been derived using a two-
scaled by the plasma frequen€y, /w,, and the particular time-scale approximation/14]. The derivation neglects
mode in question. viscous damping and diffusion, so only the high-frequency
The qualitative dependence of the frequency shift orelastic response is kept. This dielectric function allows one
plasma shape can also be understood from the idea of &@o extract the real parts of and u by comparing the long-
effective wavelength. for the modes. For example, the shift wavelength form of the dielectric function to the dispersion
becomes large and negative in oblate clouds for the guidingelations for compressional and shear modes in a homoge-
center(2,00 mode, and is even larger for the high-frequencyneous isotropic system with given bulk and shear moduli
guiding center3,0) mode in the oblate limit. This is because [31]. The results, valid fol'>1, are
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+-pu=-—=ng— : . T T
Tt 1N (3.79 Qo =10
—Eq. (3.8)
~ 1H=---Eq(3.72)
2 u 3.7h < ® N=256 0=l *
STV 379 % + N=400 a=1
; 05| & N=768 a=1
. o _ S X N=1000 =1
where U/N is the correlation internal energy per particle i o N=512 02
discussed in Sec. Il. < 0

In the limit I'—, where U/N=—0.909%/a s, these
expressions for the moduli can be used in E@5 and

(3.6) to extract predictions for the frequency shifts which can -0.5 ——

be compared to the simulation results. In Figs. 5 the theoreti- [ [—Eq. 3.7b) .
cal predictions for the shifts are shown as the solid curves for [ ':"Ee_fb:gg

guiding center modes and dashed curves for unmagnetized 0.2 % N=1000

modes. One finds good agreement between the theory and “b o N=2000

the simulations, with no adjustable parameters. For example, Nf -

for spherical plasmas the theory predicts no frequency shift 01| "'\ % X

for =2 modes, just as is observed in the simulations. The t:: i \ X
theory begins to fail only when the effective wavelength of - h x
the modes becomes comparable to the interparticle spacing. or

This occurs for the guiding cent€,0) and high-frequency [ :

(3,0 modes in very oblate plasmas, and for the guiding cen- unmagnetfzed " F_ .
ter (2,2), (2,2), and low-frequency3,0) modes in very pro- '0‘3 001 001 01

late plasmas. In these limits a theory based on elastic moduli ’ “our

loses its validity since any such theory assumes a large ef-

fective wavelength compared to the interparticle spacing. FIG. 7. Moduli extracted using the data of Fig. 6 and the pre-
However, Eqs(3.7) fail to capture the frequency shift for dictions of Eqs(3.5a and(3.63. The upper plot depicts the com-
plasmas at finitd’. Here the data are more difficult to obtain bination « +4/3 for a guiding center plasma. The plot also com-
since modes damp rather rapidly, thermal fluctuations areares the simulation data to the theory predictions of E8g.a
larger, and the frequency shifts are small. However, it isand(3.8), with y=2.5. The lower plot depicts the shear modulus
apparent from Fig. 6 that asllincreases there is a positive u extracted from the unmagnetized simulations. The solid line is
frequency shift for th&2,0) mode in a guiding center spheri- the prediction of Eq(3.7b and the connected solid squares are the
cal plasma. We have also performed firlitesimulations for ~ predictions for the low-frequency limit g& from Ref.[33].
some nonspherical plasmas, which display a different depen-
dence of the frequency shift dn [see Fig. 6a)]. 4 4 U
The rather scattered frequencies displayed in Fig. &n K+§ w=1g Moy + yngkT,
be explained using the predictions of E@8.6). Equation
(3.6g predicts how the frequency shifts depend on the
modulusx+4/3u. Thus each data point of Fig(@ can be  where one would expeai=3 in the weakly correlated limit
employed to determine an empirical valueof4/3u as a  for the one-dimensional adiabatic compressions and expan-
function of I". The equilibrium pressurp is also required in  sions associated with the guiding cenf2j0) plasma mode.
this analysis; however, it is a known functionlof given by  The data of Fig. @& show that Eq.(3.8) is in reasonably
Eq. (2.6). The empirical results fok+ 4/3u are displayed in  close agreement to the simulation results, although setting
Fig. 7(a). The scattered frequency shift data of Figp)thave  y=2.5 provides a better fit thap=3.
collapsed onto a single curve in Fig@y. Thus the frequen- A frequency shift is also predicted for an unmagnetized
cies of the(2,00 mode in plasmas of different shapes and(2,0) mode in a spherical plasma. According to E@s53,
sizes provide consistent results for-4u/3. (3.7b, (3.2, and (2.6), the shift should be given by
The theoretical prediction of Eq3.7a for the depen- NZ3(Aw,o/w,)=(\/10/3T), but this does not match the
dence ofk+4/3u on T is also displayed in Fig.(@. While  data, which show almost no shifig. 7). This suggests that
the prediction works well at larg€', at smallerl’ values there are temperature-dependent corrections to the shear
there is a discrepancy due to a well-known problem withmodulusu beyond Eq(3.7h), just as there were corrections
Egs. (3.7). Equations(3.7) imply x+4/3u—0 asI'—0, for «+4/3u. Indeed, such finitd" corrections to the low-
whereas it is known thak+4/3u— ynokT for a uniform  frequency form of the shear modulus have been discussed
weakly correlated plasma. Although rather complex theoretipreviously[33], but as far as we know there has been little
cal models that avoid this discrepancy have been constructdtleoretical work on the high-frequency limit. However, one
[32], here we observe that a better fit to the data is obtainedould expect on intuitive grounds that the high-frequency
if one replaces Eq.3.79 by thead hocexpression[In fact, = shear modulus would be larger than the low-frequency
there is some theoretical justification for E@®.8) on the = modulus, since even a liquid can have an elastic response to
basis of a sum rule; see R¢1L3].] high-frequency shear.

(3.9
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FIG. 8. Real part of the quadrupole momepgt as a function of
time for an initially spherical cloud dfl=50 ions withI" =, with
a (2,1 guiding center mode perturbation added. The solid curve is
the result of a strongly magnetized molecular-dynamics simulation
with Q, /w,=10°. Dots are the prediction from a linear superposi-
tion of the exact guiding center crystal eigenmodes, which follow
from a numerical solution of E¢3.9).

FIG. 9. Degree to which different exact unmagnetized eigen-
modes are excited by an unmagnetizd) perturbation in spheri-
The frequency shift data from Fig(l§y can be employed cal clouds of two different sizes. The energy in each eigenmode is
empirically to determine the shear modulus using Eq. plotted vs the mode frequency. The energy scale is in arbitrary units
(3.53 and the known form of the equilibrium pressyreEg. with an offset chosen for one data set in order to place both sets on
(2.6). The results are summarized in Fig. 7, which alsothe same graph without overlap.
shows the prediction fop from Eq. (3.7b), as well as the

low-frequency form from Ref|33]. Although the errors are \yhered is the potential energy of the crystallized equilib-
rather large at lowl", the high-frequency form fop ob-  (jym 7(0 js the equilibrium position of théth charge, and
talngd from our simulations is larger than th_e I(.)vy-frequer!cyézi the change in position due to a mode. Thus the mode
predlcpon of Ref[33], and appears to remain finite even in frequencies are the eigenvalues of N N matrix, so there
the fluid phase, as expected. However, for Bwalues, our _areN guiding center modegin fact, there are as always
r_esults foru appear to be somewhgt smaller than the pred|c3,\I exact eigenmodes, but the otheN 2nodes areEx B
tion of Eq.(3.7b)', although scatter in the data is too large t0 it modes and upper hybrid modes which are thrown away
make a conclusive statement. in Eq. (3.9).] We have solved for the eigenvalues and eigen-
vectors numerically, and then used these eigenmodes to de-
5. Amplitude variation and exact crystal eigenmodes termine the time evolution of the,1) multipole moment as
In addition to frequency shifts the amplitude of the nor- predicted by a linear superposition of the exact modes, start-
mal modes is sometimes observed to vary with time; genering with the same initia(2,1) perturbation as was used in the
ally this variation is slow compared to the mode frequency molecular-dynamics simulation of Fig. 8. This evolution is
We have found that this amplitude variation is due to twodisplayed as the dots in Fig. 8; one can see that the evolution
effects. The first effect stems from the choice of the initialOf d21(t) predicted by the exact crystal eigenmodes and by
conditions in the simulation, as well as the finite size of themolecular dynamics agree well. This indicates that the am-
cloud; the second is intrinsic to the plasma and is due t@litude variation observed in Fig. 8 is not due to dissipation,
collisional viscous damping of the mode. An example of thesince the harmonic oscillator equations governing the dy-
first type of amplitude variation is displayed in Fig. 8. A hamics for each eigenmode are integrable, so the evolution is
crystallized spherical cloud of 50 charges is initially excitedreversible. Rather, the amplitude variation arises from the
with a (2,1) mode perturbation according to E¢8.3) and phase_mixing of exact eigenmodes with slightly different fre-
Table | of Ref.[10], taking the strong magnetic field limit quéncies.
Q./w,=10. The amplitude of the real part af,; is first We have observed that as the size of the crystal increases,
observed to increase, then decrease. This complex amplitudge variation in the amplitude of the oscillation decreases.
variation stems from the fact that for a crystallized systemThis implies that thé2,1) fluid mode approaches one of the
any small perturbation is a sum of exact crystal eigenmode£rystal eigenmodes in the largelimit. This phenomenon is
The (2,1) fluid mode perturbation that we used as the initialdisplayed directly for a different mode in Fig. 9. Here we
condition is nearly an exact eigenmode, but more than onghow the energy excited in each exact eigenmode for an
exact eigenmode contributes, and since these modes havemagnetized2,0) fluid perturbation of a spherical cloud, as
different frequencies a complex time variation results. given by Eq.(3.4b. The unmagnetized eigenmodes are de-
Although the crystal is amorphous, the equilibrium posi-termined by numerically solving the unmagnetized eigen-
tions of the ions are known, so one can determine the exastalue equatiorM w?sx,==;VOVd. sx;. In Fig. 9 we
strongly magnetized eigenmodes of the 50-ion crystal. Sincbave analytically averaged the energy in each exact mode
motions only along are allowed in this limit, these strongly over a set of equilibria obtained by all possible rotations of
magnetized eigenmodes satisfy the equation the given spherical equilibrium, in order to obtain results
which are more or less independent of details of the particu-
lar equilibrium configuration. AN increases, the distribu-

N
Mw2sz= S, (;9)q) 552, 3.9 tion of exact eigenmodes contributing to tt&0) fluid per- _
=1 9779z, turbation becomes more sharply peaked around the fluid
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frequencyw=\6/5w,. The detailed shape of this resonance

curve is not presently understood theoretically, but the sharp- "surface modes |
ness of the peak indicates that for lafdeonly a few nearly \
degenerate modes contribute. Thus the fluid mode is nearly " N=1000 spherical

an exact eigenmode, and so there is little amplitude variation. i crystal
However, for smalleN more exact eigenmodes contribute to b \1

the fluid perturbation and the fluid mode amplitude variation

is larger. This effect does not occur in homogeneous systems
with periodic boundary conditions, where both fluid and ex-
act eigenmodes have the same spatial dependence, of the
form exp(k-x), independent of the system size.

One might ask why we do not excite a single-crystal
eigenmode rather than the fluid perturbation, which is a su-
perposition of the exact eigenmodes. First, for large clouds
there is little difference between these two cases, as one can
see from Fig. 9. Second, the exact crystal eigenmodes are
meaningful excitations only in the crystal phase, whereas the
fluid modes persist even in the weakly correlated regiate
though they may be dampkedn this sense the fluid excita-
tions are more general.

Nevertheless, some insight into the dynamics of the | ; ‘
strongly correlated cloud does follow from a brief examina- 02 04 06 08 1
tion of properties of the exact eigenmodes. For an unmagne- /o
tized plasma there aré\Bexact eigenmodes with frequencies

in the range @-w,. The frequencies obey the Kohn sum g 10. Upper plot depicts the normalized density of states
rule, written for an amorphous OCP system asp(w) for the exact unmagnetized eigenmodes of Mr 1000
3N w?=Nw?3, wherew; is the frequency of théth exact — spherical cloud, as defined in the text. The superimposed solid
eigenmode. In Fig. 10 we display the normalized density ofturve in the upper plot depicts the density of states predicted by Eq.
statesn(w) of the exact unmagnetized eigenmodes, defined3.2) for the surface modes. The lower plot depicts the normalized
by the relation 3 n(w)A w/w, =the number of modes with density of states for the modes of an infinite homogeneous unmag-
frequencies in the range to w+Aw. Here we take netized crystallized OCP. The solid curve is for a bec lattice, the
Aw=0.020,, and consider a spherical unmagnetizeddray region is for an fcc lattice.
plasma ofN=1000 charges. There are three peaks in the
distribution. The modes in the peak near=0.3 are pre-
dominantly torsional oscillations, which consist of shearing We now turn to the second type of amplitude variation,
motions that do not change the shape or density of the cloudiamping due to collisional viscosity of the plasma. Unlike
Such modes have zero frequency in fluid theory, since théne amplitude variation due to phase mixing discussed pre-
only restoring force to such motions stems from the finiteviously, this damping is an irreversible process. An example
shear modulus. The lowest frequency modes in this class aig displayed in Fig. 11. A guiding centé?2,0) mode is ex-
three w=0 modes corresponding to pure rotations of thecited in a spherical cloud. In this figure the kinetic energy of
spherical plasma. Similar shear modes are also observed ihe cloud is plotted as a function of time. The kinetic energy
the homogeneous fcc and bcc densities of states, shown foscillates as the cloud compresses, and expands along the
comparison in the lower half of Fig. 10. We will return to magnetic field. In the upper figuré is large,'~10°, and
these torsional modes in Sec. IV. there is almost no amplitude variation in the oscillations.
The class of modes in the peak nearw, are bulk  This is because we have chosBh=768, which is suffi-
plasma oscillations modified by correlations. Such modegiently large so that the initial perturbation is nearly an exact
also exist in the infinite homogeneous system, as one can segystal eigenmode.
in Fig. 10. For the spherical cloud, the highest frequency However, if the initial cloud is at higher temperature, with
mode hasw= w, exactly, and is in fact the breathing oscil- I' =90, substantial damping of th@,0) mode now occurs
lation discussed in Appendix B and at the end of this section(the lower figurg. This behavior differs from the previously
However, there is a sharp peak at intermediate frequerdiscussed amplitude variation due to phase mixing. Now the
cies in the density of states for the cloud which does notlynamics is not integrable, the evolution is irreversible, and
appear in the infinite homogeneous system. This peak is e equipartition between the degrees of freedom is the
consequence of surface plasma oscillations, which have @ventual result. This energy equipartition does not occur if
dispersion relation given by E@3.2) for a spherical cloud. there is only phase mixing between uncoupled eigenmodes
This dispersion relation leads to a divergencefw) at the as in Fig. 8, since the energy in each exact eigenmode re-
surface plasma frequenayp/ﬁ. The divergence is cut off mains fixed. The first stages of equipartition can be observed
when the mode wavelength becomes on the order of the irin the lower half of Fig. 11. The random kinetic energy of
terparticle spacing. The density of states predicted from Ecthe cloud increases, since the total energy is conserved as the
(3.2 is shown in Fig. 10 for comparison. mode damps. The temperature increase can be observed

2.5

n(®)

n(®)

6. Viscous damping
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kinetic energy

=90 .

et o ] reasonable accuracyror I'>>10 the mode damping is ob-
spherical plasma also yield a damping rate which increases
I‘ e creases is opposite to what one observes in a weakly corre-
at crease of damping with temperature is expected, since in the
N=768 charges, guiding center simulation with,=10w,. The  havior has been observed in previous simulations of homo-
(b) Initially I'=90; now the mode damps and the cloud heats.  strongly correlated plasmas.
during an oscillation. This represents an irreversible transfefions of I', some care was taken to extract frequencies and
mal fluctuations. repeated with different perturbation amplitudes to test the
ing rate y is defined by fitting the observed decay of the The damping of the modes can be employed to obtain
Q2o(t) = Aexp( — Y1) SiN @git) shifts depending on the bulk and shear moduliand .
nduce mode damping. The imaginary partskodnd u can

noise(however, the real frequency can still be extracted with
i AT A R served to increase with increasing temperatuee, increas-
H “ s ‘ R e ing 1M). Simulations of unmagnetize®,0) modes in a
it T TS O e RGO ETE TR I
LA
7 with increasing temperatuiféig. 12b)].
it it S i 1 I An increase in collisional viscosity as temperature in-
lated plasma, where the collision frequency scale¥ at?
PR — . . P . 3/, . .
o " 700 - 200 250 (i.e., I'®?). However, in strongly correlated plasmas the in-
crystalline phase waves are less damped than in the liquid
FIG. 11. Damping of2,0) mode due to viscosity in a cloud of Phase, where collisional viscosity is larger. Indeed, this be-
kinetic energy of the cloud is plotted as a function of tinte. ~ geneous strongly correlated systefdsS], but has not yet
Initially I'~10°, and almost no damping of the mode is observed.been observed in actual experiments on three-dimensional
_ _ o o . Since the plasma temperature increases as the mode
through the increase in the minimum kinetic energy achievediamps, and mode frequencies and damping rates are func-
of energy from the normal mode to random thermal motiongamping rates only during the initial stages before appre-
Eventually, the mode amplitude decays to a level set by thelgjaple heating occurred. In addition, some simulations were
The rate of mode F’a”!Pi"‘g as a fqnction of the initial effect of plasma heating on our frequency extraction algo-
correlation parameter is displayed in Fig.(42 The damp- rithms
amplitude ofg(t) to an exponential form information concerning transport coefficients of the corre-
lated plasma. Equation.5 and (3.6) provide frequency
For I'<10 the mode damping cannot be determined unam,]-hese moduli need not be real, and their imaginary parts will
biguously due to amplitude variations caused by therma
g y P 4 Le related to the coefficients of bulk and shear viscosity in
the relaxation time approximation of MaxwglB4]; how-

0.005 - ‘ ever, these transport coefficients depend on mode frequency
Q/w =10 x L . .
¢tz and magnetic field, and our review of the literature has not
0.004 [ ] : o
x uncovered any concrete theoretical predictions for these
0,003 | . ] h!gh-frequency V|scos!t|es in a strongly correlated and pos-
g sibly strongly magnetized plasma. On the other hand, the
T o002 L ¢ 4 simulation results can be employed to obtain some informa-
o ¢ N=256 a=1 . . .. .
3 X N=400 o=1 tion concerning these transport coefficients. In Figalthe
0001 Lo, o o N=512 =2 damping of the2,0) guiding center mode for clouds of dif-
aa 8 s N=768 a=1 ferent sizes and shapes is plotted. Each datum provides a
0 l T result for Im(x+4/3u) through Eq.(3.53; the results are
unmagnetized shown in Fig. 183). Note that the scattered data of Fig(d)2
0.08 [ x ] . S X
N collapse onto a single curve in Fig. (&R Thus the damping
 N=500 a of guiding center2,0) modes in clouds with different sizes
006 H x N=1000 g . . .
g o noooo| & o and shapes provides consistent results fordmé/3u) in a
® 004l b guiding center plasma. This indicates that our perturbation
theory based on bulk and shear viscosities is a useful ap-
0021 x B ] proach to understanding the damping of this mode, just as
. D " the theory based on bulk and shear moduli was useful in
0 . ‘ . :
9 oo ol o 1 explaining frequency shifts.

1T Similarly, unmagnetized2,0) simulations can be em-
ployed to obtain Imf) using Eq.(3.59 and the date of Fig.

FIG. 12. Damping rate of the (2,0 normal mode in spheroidal 12(b). The result for Inu as a function of correlation param-
cloud simulations of different sizes and shapes as a function ofter in an unmagnetized plasma is shown in FighL3As
temperaturdinverse correlation parameter’)/ The upper plot is ~€xpected, the shear viscosity of the plasma increasds as
for guiding center simulations, and the lower plot is for unmagne-decreases, although the data become less reproducible at

tized simulations. large values of 1/.
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) ] ) FIG. 14. Frequency shifAw and damping ratey of the bulk
~ FIG. 13. Imaginary moduli obtained from tii2,0) mode damp-  pjasma breathing mode in unmagnetized spherical clouds as a func-
ing of Fig. 12. The upper plot depicts the imaginary part of theion of the correlation parametdt. The solid curve is the theory
modulus ¢c+4/3u) from the guiding center damping data of Fig. prediction of Eq.(3.12.
12 (upper plo}, using Eq.(3.63. The lower plot depicts the imagi-
nary part of,u. from unmagnetized2,0) simulation of Fig. 12 whereR is the radius of the spherical plasma.
(lower plod, using Eq.(3.53. If we use Eq(2.6) for p and Eq.(3.7) for « in Eq. (3.10,
we find that in the largd’ limit Aw=0, in agreement with
i ) . the exact crystal eigenmode analysis. However, at finite tem-
Finally, we examine one of the unmagnetized bulk plasméberature Eqs(3.10 and (3.7) yield results in disagreement

oscillations. Recall that in fluid theory there are an infinite ity the simulations. so we modify the finife form for « in
number of degenerate bulk oscillations at the plasma freg,q spirit of Eq.(3.8);

guency[see the discussion following E(B.2)]. In a spheri-
cal plasma, one of these bulk oscillations is a breathing mode 4 U

with radial displacements of the plasma proportional to Re(:<)=§ nONernokT, 3.1)
spherical radiusr: Sv=Cri (see Fig. 2 This particular
mode also happens to be an exact crystal eigenmode; in f
it is the highest frequency exact eigenmode, witk w,
exactly; see Appendix B and the discussion associated wit

7. Breathing mode

a\%’nere now we expecy to be 3 for smallT" in an unmagne-
ized plasma undergoing three-dimensional spherically sym-
etric compressions. Using E3.11) in Eq. (3.10 yields

Fig. 10. . 2
This breathing mode has been simulated in a crystallizeg1e following frequency shift
spherical plasma and, as expected, the frequency is observed NZ3Re(A w) = %wp(y—4/3)/F= %wp/F. (3.12

to equal the plasma frequency to a few parts iR, 18nd

there is a negligible damping of the mode. However, at finiterys shift is in qualitative agreement with the simulation
temperature there is a frequency shift, as well as a dampingygyits, shown in Fig. 14, although the simulation results are
of this mode, shown in Fig. 15. The data are rather scatteregginer scattered. Both the real and imaginary paris fof an

but they do indicate a positive frequency shift and damping,nmagnetized plasma could also be extracted from Fig. 14,
both of which increase with increasingl’1/This is in quali- using Eq.(3.10. However, the data are not very reproduc-
tative agreement with the results of the viscoelastic approxirb|e, particularly forN=500, so we do not go through this
mation for this mode, discussed in RE0]. In this reference  oyarcise here.

an approximate form for the frequency shift of this breathing

mode is derived:
IV. RESULTS FOR TORSIONAL MODES

Aw=§ w (3.10 Torsional modes of oscillation were studied in unmagne-

@ 2 , . . . . - .
2°° Mnowa2 tized simulations of a crystallized plasma. A torsional dis-
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TORSION
INTENSITY

T T T
0.10 0.15 0.20 0.25

FREQUENCY (one-particle units)

T
TIME (one-particle periods) 0 005

FIG. 15. The amplitude of torsional oscillations as a function of
time in a crystallized [ > 10% plasma of 1000 ions. The initial step
where the perturbation was imposed is visible at a time of about tw . .
one-particle periods. The three curves represent the behavior of e summarized in Table .

same initial cloud with the perturbation added about three perpensyas chosen. with respect to this particular finite plasma
dicular axes. cloud. To better compare these, the mean frequency of each

. . . _Fourier spectrum was extracted by multiplying each fre-
placement of a plasma cloud is an incompressible shear d'%fuency component by the amplitude for this frequency ob-

placement and does not change the shape of the cloud. Th&neq'in the Fourier analysis. These mean frequencies are
perturbation has no effect on a cold fluid, and any reStor'”gjispIayed as arrows on Fig. 16.
force is a measure of the elastic shear modulus of the gjnce in the 1000-ion cloud the particles crystallize into
strongly correlated plasma. , , individual shells, one can study the extent to which the re-
A cloud of 1000 ions in isotropic confinement was al- gioring force in these torsional oscillations arises from inter-
lowed to settle into its minimum configuration, and then aactions within one shell, or between shells. The simulations
small torsional twisting motion by an angle¢ was intro-  \ere modified so that torsional motion could be investigated
duced about the axis, within single shells. The outermost shell of the 1000-ion
cloud has 384 ions. Therefore, in the simulations 384 ions
Agp=Asin(z/R), were used, with the remainder of the cloud replaced by a
central charge of 616 fixed at the origin. This resulted in a
such that az=0 the cloud was unperturbed; for positizét ~ minimum-energy configuration slightly different from the
was given a gradually increasing rotational velocity in oneouter shell of the 1000-ion system, but qualitatively the
direction and for negative in the other{see Fig. #)]. The  same. The shear oscillations in this shell were then studied,
subsequent behavior of such oscillatory motion was studiedhgain with torsional displacements about three perpendicular
Figure 15 shows the initial behavior of the cloud after theaxes and were repeated with the opposite sign for the initial
perturbation, with the torsional motion of the ions calculatedperturbation. The results for the two signs were virtually
from their coordinates and velocities in the subsequent timédentical, while the differences with choice of axis remained.
development of the system. The period of the subsequent The results were again Fourier analyzed and are summa-
oscillation appears to be slow, on the order of 14 times theized in Table Il, together with the results for the next two
period of one ion oscillating in the confining field, and sev-shells simulated in the same way. Again, no simple sharp
eral such torsional modes appear to be excited. frequency appears in these systems, and the mean frequency
To understand whether this is a general property, théncreases somewhat for the smaller shells. The complexity of
above calculation was repeated about the two other perperthe motion may perhaps be related to the fact that the density
dicular directions: thex andy axes, and the results are also of eigenmodes in this low-frequency vicinity appears to be
shown in Fig. 15. To better compare this behavior, the moalmost an order of magnitude lower than in the vicinity of
tion of the cloud(for a period eight times longer than is the hydrodynamic modeésee Fig. 1D and the 1000-ion
shown in the figurewas Fourier analyzed, and the results of sphere has no simple symmetry with respect to the three
this are shown in Fig. 16. While the patterns of the frequenaxes.
cies extracted are not identical, all of them show a centroid at An estimate of the uncertainties in the simulations is the
about 0.07 times the one-particle frequency—suggesting thdluctuations in the values from data about different axes; they
this frequency is indeed a property of the correlated plasmare on the order of 10%. For the outer shell there are six
and that the detailed behavior is dependent on the specifizalues, corresponding to clockwise and counterclockwise ro-

FIG. 16. Fourier transform of the full torsional oscillation simu-
éations, some of which are partially displayed in Fig. 15. The results



5264 DANIEL H. E. DUBIN AND J. P. SCHIFFER 53

TABLE Il. Frequencies of torsional modes.

outer second third sphere
shell shell shell
number of ions 384 273 175 1000
radius @ws) 9.26 7.78 6.29 10.0
frequencies ¢,) 0.059 0.076 0.093 0.071
0.062 0.082 0.105 0.072
0.083 0.092 0.070 0.069
0.068
0.068
0.067
mean ;) 0.066 0.079 0.097 0.071
frequencyXx radius (,ays) 0.61 0.61 0.59 0.71
estimate from Eq94.1) (w,aws) 0.75(shelly 0.86 (sphere

tations. The radii of the shells are extracted from the simuerder to obtain reproducible data. It is not presently under-

lation, and for the full sphere the radius is that of an equivasstood why there is more scatter in the unmagnetized results

lent uniform charged sphere, 108, ,s=10ays (the radius  than in the guiding center results—it may be somehow con-

of the outer shell plus half the intershell spacing would yieldnected to the greater number of degrees of freedom in un-

the same value magnetized plasma motions N3vs N for magnetized

Estimates of the frequencies for such modes in sphericgllasma motions at or below).

clouds have been made on the basis of the bulk shear modu- |n the very strongly correlated limif — o the frequency

lus of the OCP, given by E¢3.70). For a spherical cloud the shifts in the modes were compared to the results of a theo-

frequency will depend on the radii&of the cloud[10, 16,  retical model which treats the plasma as an elastic spheroid

with bulk and shear moduli. Equilibrium correlation pressure

®=2.50c/R=0.86w,aws/R (4.19 distorts the shape of the spheroid, causing one contribution

e to this shift. The remainder of the frequency shift is due to
for a full sphere where= yu/Mn, is the shear sound speed the extra restoring forces arising from the bulk and shear

of @ homogeneous amorpho.us solid OCP. For a shell of g0 qyji, When theoretical values for the high-frequency
diusR, a similar result holds:

moduli of an amorphous OCP were employed in the model,
®=2C,p/R=0.750,ays/R (4.1b good agreement with the observed shifts was obtained with-
‘ ' out adjustable parameters for both unmagnetized and guiding

where c,p=Vap/Mng is the shear sound speed of a 2D center plasma modé§ig. 5). _

amorphous OCP, angl,p, is the shear modulus of such a  For the (2,00 mode the frequency shifts were also ob-
plasma[35]. These equations predict that the product of theServed to vary wit" (Fig. 6). This variation was employed
radius and frequency should be independent of the shell siz€ extract finite temperature corrections to the high-
and this appears to be the case in the simulations. But thequency bulk modulus of a strongly magnetized OCP and
predicted value of this product is larger by about 18% tharfhe high-frequency shear modulus of an unmagnetized OCP
those extracted from the simulation. The frequency of theFig. 7). As far as we know there are no other simulation
torsional oscillation times the radius of the sphere is largefesults in the literature with which to compare these data.
than this product for the shells by the predicted amount—it Amplitude variation of the modes was also observed in

differs from the estimate by essentially the same factor. ~ the simulations. This variation was explained by two physi-
cal effects. One effect, due to the finite size of the plasma,

V. DISCUSSION was caused by phase mixing of the combination of exact
crystal eigenmodes which contributed to a given fluid eigen-
We have shown that under ideal conditions of molecularmode. For sufficiently large clouds this effect was negligible.
dynamics computer simulations it is possible to extract infor-The other type of amplitude variation was explained by vis-
mation on bulk dynamical properties of the one-componentous dissipation in the strongly correlated plasma. Results
plasma by measurement of frequency shifts and damping ifor high-frequency bulk and shear viscosities as a function of
low-order normal modes of trapped non-neutral plasmasl’ were extracted from the data on the damping of the modes
Since both the damping and the frequency shifts scale witlising the aforementioned viscoelastic modeg. 13. In the
particle number as W??, in actual experiments the effects unmagnetized limit the measured shear viscosity was found
would be easier to observe in small clouds than in largeo be about an order of magnitude larger than the bulk vis-
clouds. However, if the clouds are too small, reproducibility cosity measured under guiding center dynamics.
of the results and their interpretation in terms of bulk prop- In simulations of an unmagnetized spherical plasma, a
erties of the OCP will be compromised. Our simulation re-breathing mode of the plasma was also excited. This mode
sults indicate thall=100 is required for guiding center plas- differs from the unmagnetized surface modes in that it is a
mas, and\=1000 is required for unmagnetized plasmas, inpure compression of the plasma as opposed to an incom-
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pressible change in the shape of the plasma. The mode cdhe spheroidal coordinate systésee Eq(3.5) of Ref.[10]],
responds to an unmagnetized bulk plasma oscillation with &~ (¢£7) is the smaller(larged of ¢, and &7, P[" is a Leg-
wavelength of the order of the plasma size. An increase iendre function of the first kind, an@" is a Legendre func-
the frequency shift and damping with increasing temperaturgsn of the second kind. We have chosen forms of the Leg-
was observedFig. 14). These effects may be compared to endre functions such th@™(x) is real onxs[—1,1] and
analogous effects seen in previous simulations which have ., ! '
measured the dynamic structure factor of a homogeneous! (X)._’O as Ra— . . .
unmagnetized OCPL3]. In these simulations a plasma peak  USiNg Eq. (A1) we write the potentiakb(x) due to a
in the structure factor is observed, whose frequency widtrfensity distributiom(x),
and position vary withl" in a manner that is qualitatively ,
similar to the damping and frequency shift seen in our simu- q,(x):qf d3x’ n(x")
lations. Ix=x'["

Torsional modes of oscillation were observed in the un- )
magnetized simulations of a crystallized plasma. These torn terms of momentsj,, of the density:
sional modes are incompressible shearing oscillations which 4
do not change the shape of the cloud, but which instead rely _ 77 m
entirely on the finite shear modulus of the system. As such (D(X)_qum 2151 CimAimYim(&2, $)QI(£1/d). (A2)
these modes are sensitive measures of the shear modulus of
the strongly correlated plasma, so it would be particularlyHere,
interesting if these modes could be excited in real experi-
ments. Unlike the surface plasma modes, the torsional modes 21+1)(1—m)! imopm
cannot be easily excited in experiments by oscillation of the Yim(é2,¢)= “Aa(tmyp © P(&2)
potentials on the external electrodes. However, it might be '
possible to excite these modes by means of the lasers WhiG8 the ysual spherical harmonig,, is a coefficient chosen as
are used to control the rotation frequency of the ion cloud
[21]. These lasers are typically directed through the edge of
the cloud. Two such laser beams directed at the outer edges (=)™ 2171+ 3/2)
of the upper and lower parts of the cloud could be used to Cim= I+ ml
excite torsional oscillations. By varying the intensity of the N '
laser light at the mode frequency, one could excite the oscil-

lations while sweeping the rotation frequency through the" order that Eq(A2) approaches the usual expressf8f]

Brillouin limit to create unmagnetized conditions in the ro- In the spherical limiti—0, andqy, is a spheroidal multipole

tating frame. Thus it may be possible to obtain a direct ex/noment, defined as

perimental measure of the unmagnetized shear modulus of a
strongly correlated plasma. Oim= i J &X' N [Yim(£,6")P(E/A)T*, (A3)
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APPENDIX A: SPHEROIDAL HARMONICS from the form of the potentia}®'t exterior to the plasmisee
The separable solution of Laplace’s equation in spheroiEd- (3.6D of Ref.[10]]. By recording the time evolution of
dal coordinates allows a generalization of spherical multipoldNiS multipole moment in our simulations, we are then able to
moments which is of use in the diagnosis of the normalPick out a mode with giveh andm for examination.
modes of a spheroidal plasma. The spheroidal multipoles fol- Furthermore, the multipoles have a relatively straightfor-

low from the expansion in spheroidal coordinates of theV@rd form in cylindrical coordinates. As discussed in con-
vacuum Greens function for Laplace’s equation: nection with the form of the mode potential, the combination

Y"(&,,4)P"(£1/d) can be written as a finite power series in
p andz. Some results foq,, are displayed in Table IlI.

©

1 1
> X (—i)™2+1)

Ix—x| =Y

(I=m)!7? My ey mm my e< My o> APPENDIX B: EXACT CRYSTAL EIGENMODES
(I+m)! PH(&2)PI (62 Pr(&y /d) Q{1 /d) FOR SOME SPECIAL GEOMETRIES
X im(é=¢"). (A1) In this appendix we consider some exact analytic solu-

tions for the unmagnetized crystal eigenmodes of a trapped
where we use spheroidal coordinate representationsdod  single-species plasma cooled to a crystalline state. The
X', Xx=(&1,€2,9), X' =(£1,€5,¢"), d is the parameter of modes correspond to breathing motions of the crystal. There
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TABLE lIl. Spheroidal multipole moments in cylindrical coor- Equation(B1) then becomes
dinates p, ¢,2).

fo-(o):—q—z i > L me2ix®
I m Cim ! 2 ox\ 017 |Xi(o)—XJ(O)| o
0 0 1, However, Eq(B2) implies that we may factor out the terms
2\/;fOI x'n(x’) depending orf to obtain

2Blmfd3x z'n(x")
— 332w d3 p’e ¢ n(x’)
S\Blmfd3x’ (62'2—3p'2—2d)n(x’)

; . 1
Mf+Ma)Z f_f—z

x\9=0. (B3)

This nonlinear equation, when linearized around the equilib-

—~ 3 /5l6mfd3x'z'p’e ¢ ' n(x") rium f=1, describes radial breathing oscillations which sat-
V1527 [d3x p'2e 2" n(x") isfy
35\ Tlm[d®'2' (102'2~ 15p'2 = 6d)n (") 5f=—3025f.

_ 3 ] 37 12_ 12_ 2\ 1 a—ig’ ’
ao\73m[d°X' 202/ =5p""~4d%)p’e ¥ n(x") Note that the frequency of oscillationg3w, equals the

W W W W N NN PP
w N b O N BB O B+, O

N7130m[d3x' 2 p'2e 2 n(x") plasma frequencys, of the spherical equilibriunisee Eq.
—g\/ﬁfdgx’pﬁe*?’i‘/’/n(x’) (23)]

2. Coulomb chain, g>1
are three cases where such modes can be described analyti-|n the limit that 8> 1, the equilibrium is a line of charges

cally. along thez axis, referred to as a Coulomb string or chain.
Now we consider breathing oscillations of the form
1. Spherical cloud,B=a=1 z=f(t)2(?. Sincex;=y;=0 during this motion, the analy-

The fully nonlinear equations of motion for the chargesSis again leads to EqB3), so these oscillations also have

are frequency\3w, .
. oP . I <
M = — — (B1) 3. 2D disc equilibrium, <1
i

In the limit 8<<1, the charges are nearly unconfined radi-
ally and form a 2D disc of charge in they plane. Now we

where the potential energy of the charges is
P » g take ;,y;)=f(t)(x(?,y{?), so thatz;=0 at all times and

2 . . . . .
q _ P the disc oscillates in radius. The analysis now leads to the
O=2 1 > ———+ M+ B YD) equation
i i>] |X| XJ|
For B=1, consider the transformatiox=f(t)x{®), >0, e _,gwg( fo %) ,
wherex(? is the equilibrium position, satisfying f
2 so the frequency of linear oscillations i{88w,. The fre-
—07=0. (B2)  quency is small, of orde{/, since the density of the disc is
28 low, so restoring forces are small.
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