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It is possible to trap a collection of ions and cool them to cryogenic temperatures where strong correlation
effects, such as transitions to liquid and crystalline states, are observed. This paper examines the effect of
correlations on the linear normal modes of oscillation in these strongly coupled plasmas. Recently a theory has
been developed to treat such modes in the cold-fluid limit, where correlations are neglected. Here the fluid
theory is compared to molecular-dynamics simulations of the modes. Simulated mode frequencies are observed
to shift slightly compared to the cold-fluid predictions, and the modes are also observed to damp in time.
Unmagnetized simulations also reveal a set of torsional oscillations which have no counterpart in the fluid
theory. These correlation effects are also compared to a recently developed model that treats the trapped
plasma as a viscoelastic spheroid. The model allows us to extract from the simulations the values of high-
frequency bulk and shear moduli of a strongly correlated plasma.@S1063-651X~96!03805-6#

PACS number~s!: 52.25.Wz, 32.80.Pj, 52.35.Fp, 62.20.Dc

I. INTRODUCTION

It has recently been demonstrated that electromagnetic
fields can be employed to trap a collection of charges of a
single species for long periods of time. Using the technique
of laser cooling, the charges can be cooled to extremely low
temperatures on the order of a few mK. Although the mean
distance between charges is large~on the order of microns!
the temperature is sufficiently small so that the ratio of av-
erage interaction energy to kinetic energy per charge,
G[q2/(aWSkT), is larger than unity.@HereT is the tempera-
ture,k is Boltzmann’s constant,q is the charge, andaWS is
the average interparticle spacing~the Wigner-Seitz radius!
defined in terms of the mean densityn0 by 4pn0aWS

3 /3
51.] The parameterG is referred to as the correlation pa-
rameter. In the regimeG.1, the system exhibits phenomena
associated with the physics of strong correlation, such as
transitions to liquid or even solid phases. These correlation
phenomena have been extensively studied in a series of com-
puter simulations relevant to different trap configurations
@1–3#, and were later observed in actual experiments in
~magnetic! Penning traps@4# and in ~radio-frequency! Paul
traps@5#.

At the cryogenic temperatures of the experiments the De-
bye lengthlD[AkT/(4pq2n0) is usually small compared to
the size of the charge cloud, so the cloud can exhibit collec-
tive oscillations associated with non-neutral plasmas, even
though the number of trapped particles is often quite small,
N&104. While the collective modes of non-neutral plasmas
have been studied for decades@6#, certain aspects have only
recently been investigated. For example, when the plasma
cloud is small the low-order modes are the most easily ex-
cited, but the frequency of these modes depends on the
plasma shape. Furthermore, an accurate description of the
shape dependence is desirable since measurement of the
modes then provides a nondestructive diagnostic of the shape

as well as other properties of the plasma. Recently, a theory
@7# for the collective modes of a small spheroidal plasma has
been developed which agrees well with experimental mea-
surements@8,9# of some of the normal mode frequencies of
trapped charge clouds. However, the theory treats the cloud
as a charged cold fluid, neglecting the granularity associated
with interparticle correlations.

In this paper we consider the effect of the interparticle
correlations on low-order normal modes of the trapped
charge cloud. Using molecular-dynamics~MD! simulations,
we find that low-order mode frequencies are described well
by the aforementioned cold-fluid theory for clouds as small
as 100 charges, even when the cloud has crystallized. We
also find that slight frequency differences between the simu-
lated modes and the fluid theory are systematic, and can be
explained by physical effects associated with strong correla-
tion. In addition to the slight frequency shifts observed in the
simulated normal modes, we also observe mode damping
which is consistent with viscous effects due to collisions in
the strongly correlated plasmas.

The frequency shifts and damping of the low-order modes
can be explained in detail using a viscoelastic model@10# of
the cloud based on the bulk dynamical properties of a homo-
geneous one-component plasma~OCP!. The OCP is a system
of equal charges immersed in a static uniform neutralizing
background charge. In a Penning trap or Paul trap the applied
electromagnetic fields play the role of the uniform back-
ground, and one can show that the static thermal equilibrium
properties of charges trapped in these systems are the same
as those of the OCP~to a differing degree of approximation
depending on the trap geometry employed!.

The OCP is a paradigm of condensed matter which has
been studied for a century@11#. Its properties are directly
relevant to the theory of white and brown dwarf interiors,
and neutron star crusts@12#. However, experimental data for
the dynamical properties of the classical OCP are limited
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~although large-scale numerical simulations of the infinite
homogeneous OCP have been performed! @13#. Our results
point to the possibility that mode experiments on relatively
small clouds of trapped ions might be used to experimentally
determine dynamical properties of the OCP which are of
importance to a range of physical systems.

We examine the frequency and damping of several low-
order modes as a function of the shape and size of the plasma
cloud as well as the correlation parameterG. We also con-
sider the dependence of the modes on the applied magnetic
field by examining two limits in our simulations: the unmag-
netized case, and the strongly magnetized limit where guid-
ing center equations of motion are valid. Using the afore-
mentioned hydrodynamic model, the frequency shift and
damping are employed to extract dynamic properties of the
OCP from the simulation data. In particular, we obtain high-
frequency bulk and shear moduli,k andm, for a range of
G values and for strongly magnetized as well as unmagne-
tized systems. The real parts of these moduli, along with the
bulk equilibrium plasma pressure, explain the frequency
shifts, and the imaginary parts of the moduli describe the
damping. In the limit of largeG the extracted values fork
andm agree with recent theoreticalk andm values of an
amorphous solid OCP@14#.

In simulations of modes in unmagnetized correlated plas-
mas a number of torsional eigenmodes are also observed.
These eigenmodes are shear modes that do not perturb the
shape or density of the plasma, so the restoring force for
these modes is due only to correlations~i.e., the finite shear
modulusm of the correlated plasma!. For the special case of
a spherical uniform plasma some theoretical results for such
modes are available in the literature on elastic deformations
of solid bodies@15,16#, and we compare our simulations of
the torsional modes to this work.

In Sec. II we review the equilibrium properties of a
trapped non-neutral plasma. In Sec. III A the cold-fluid
theory of the normal modes of the plasma is reviewed, with
particular emphasis on the unmagnetized and guiding center
limits. In Sec. III B the predictions of the cold-fluid theory
are compared to the results of MD simulations of unmagne-
tized and guiding center plasmas. The differences between
the simulated modes and the cold-fluid theory are described,
and compared to a perturbation theory based on the afore-
mentioned viscoelastic approximation, where frequency
shifts and damping due to bulk correlation pressure and bulk
and shear moduli are predicted. Section IV describes the tor-
sional modes of the unmagnetized plasma, and in Sec. V we
discuss some outstanding questions. In Appendix A we re-
view the theory of spheroidal multipole moments, useful in
the diagnosis of the modes in our simulations. In Appendix B
we work out some special cases of normal modes in crystal-
lized plasmas that can be determined without approxima-
tions.

II. EQUILIBRIUM PROPERTIES

In this section we briefly review the static thermal equi-
librium properties of a single-species plasma trapped in the
applied fields of either a Paul or Penning trap. A more de-
tailed account can be found in Ref.@10#. In a Paul trap@17#,
charges are confined by the rf fields that result from rapidly

oscillating voltages applied to a set of electrodes~Fig. 1!.
The charges respond to the applied field with a small-
amplitude rf jitter motion. This fast jitter in a spatially inho-
mogeneous rf field produces an average ponderomotive force
described by a time-independent effective potentialfe(x).
In a harmonic trap, this potential is a quadratic function of
position over a region around the center of the trap which is
sufficiently large to encompass the plasma. We write this
potential as

fe~x!5 1
2Mvz

2~z21br2!, ~2.1!

where cylindrical coordinatesx5(r,u,z) are aligned with
the trap axis, andx is measured from the center of the trap.
Herevz is the axial frequency of a single particle confined in
the trap, and the positive constantb is referred to as the trap
parameter.~Note thatvz must be substantially less than the
frequency of the applied rf field.! The parameterb can usu-
ally be experimentally adjusted, and it determines the sym-
metry of the confined equilibrium plasma. For example, for
b51 the plasma will be spherical, whereas for largeb the
plasma is squeezed radially, becoming a thin elongated
spheroid, and for smallb the plasma is a flattened pancake.

In a Penning trap@18# ~Fig. 1!, confinement is provided
by static electric and magnetic fields. In a harmonic trap, the
electrostatic trap potential satisfies Laplace’s equation and is
a quadratic function of position

fT~x!5 1
2Mvz

2~z22 1
2r2!.

This potential is only confining in thez direction, so a uni-
form magnetic field is applied in this direction to provide
radial confinement. The plasma rotates through the magnetic
field about thez axis, causing av3B force which balances
the centrifugal force and the electrostatic repulsion, trapping
the plasma radially. In thermal equilibrium the plasma ro-
tates as a rigid body, described by a constant rotation fre-
quencyv r about the trap axis. The confiningv3B force and
the centrifugal force are then proportional to radiusr, and in
the rotating frame they appear in the equations of motion as
the derivative of a pseudopotential proportional tor2. Thus
in the rotating frame the charges experience a static effective
confinement potentialfe(x) equal to the sum of the pseudo-
potential andqfT @19#. This effective potential is quadratic

FIG. 1. Diagram of Penning and Paul traps. The traps are shown
with cylindrical electrodes, but more complex electrode geometries
are often employed. The plasma is the black dot in the trap center,
situated within the region where the trap field is harmonic.
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in z andr, and so is of the same form as Eq.~2.1!. Now the
trap parameterb is related to the rotation frequency

b5
2v r~Vc1v r !

vz
2 2

1

2
, ~2.2!

and v rVc,0 is required for confinement~electrons rotate
counterclockwise, positive ions clockwise when observed
from the positivez axis!. Thus the plasma in the Penning
trap has the same thermal equilibrium properties in the rotat-
ing frame as the plasma in the Paul trap. Throughout this
paper we consider properties of plasmas in Penning traps as
observed in the rotating frame.

The thermal equilibrium properties of low-temperature
single species plasmas confined in the harmonic trap poten-
tial in Eq. ~2.1! have been discussed extensively in previous
papers @20,21#. If one neglects correlations, the zero-
temperature thermal equilibrium state has been shown to be a
uniform-density spheroid~ellipsoid of revolution!. The den-
sity n0 is related to the external confining fields

n05
Mvz

2

4pq2
~2b11!, ~2.3!

and the aspect ratioa of the plasma spheroid is related to the
trap parameter

2b115
a221

Q1
0~a/Aa221!

, ~2.4!

whereQ1
0 is a Legendre function of the second kind.@This

equation is equivalent to Eq.~2.6! of Ref. @10#.# The aspect
ratio is defined asa5L/R, where 2R is the diameter of the
spheroid and 2L is its length. When one specifies the total
number of chargesN, the length and radius are then deter-
mined by the shape and volume of the spheroid:
4
3pLR2n05N, and this relation can be written in terms of
the aspect ratioa and the Wigner-Seitz radiusaWS, repro-
duced here from Ref.@10# for convenience:

S L

aWS
D 35Na2, S R

aWS
D 35N

a
. ~2.5!

Equations~2.2!–~2.5! have been verified experimentally in
Penning trap experiments@21#.

Up to this point we have not discussed correlations. We
now briefly review the effect of interparticle correlations on
the plasma equilibrium. When the correlation parameterG is
larger than unity, the interparticle correlations increasingly
favor the establishment of order within the plasma.

The thermal equilibrium properties of the strongly corre-
lated infinite homogeneous OCP have been determined theo-
retically through a combination of analytic and numerical
techniques. The system is predicted to exhibit short-range
order characteristic of a liquid forG*2 @11#, and a first-
order phase transition to a body-centered-cubic~bcc! lattice
at G.172 @22,23#. Useful relations between the thermody-
namic functions have also been found. In particular, the bulk
pressurep of the OCP is related to the correlation contribu-
tion to the internal energyU through

p5n0kTS 11
1

3

U

NkTD , ~2.6!

and furthermoreU/NkT is a function only ofG. The form
for U/NkT in the liquid phase has been determined from
Monte Carlo simulations@24# and in the solid phase from a
combination of analytic and numerical techniques@22#. At
smallG, U/NkT approaches zero. At largeG in the crystal-
line phaseU/NkT is proportional toG, U/NkT→AG, where
the Madelung constantA.20.90 for several stable lattice
types including bcc, fcc, and hcp.

However, in the trapped clouds of interest here, the cor-
relation properties are different than those of the infinite
OCP due to surface effects. In particular, the density is no
longer uniform, and this affects the correlations. For small
values ofG the plasma density falls monotonically to zero at
the plasma edge on the scale of a Debye length@25#. As the
temperature decreases, the Debye length decreases and the
plasma edge steepens, approaching the uniform density of
cold-fluid theory. However, asG increases beyond around
G;2 the density also begins to exhibit spatially decaying
oscillations from the outer edge inward with a wavelength on
the order ofaWS @23# ~see, for example, Fig. 1 of Ref.@10#!.
As G increases further the oscillations increase in magnitude
until finally the density approaches zero between the peaks
and the system forms a number of concentric shells@1,2#.
These shells may be thought of as lattice planes which are
curved to satisfy the boundary conditions imposed by the
external potential into a roughly spheroidal shape. At inter-
mediate values ofG (G;100), charges diffuse within these
shells, but rarely hop between them; whereas at largeG val-
ues (G>300–1000! the charges generally crystallize into a
distorted two-dimensional~2D! hexagonal structure, al-
though for extremely oblate or prolate clouds other crystal
structures can occur@26#. Although correlations in the
trapped plasma are quite different than those of the infinite
OCP, we will observe in Sec. III that their effect on the
collective modes of the trapped plasma can be explained by
reference to bulk correlation properties of a homogeneous
OCP.

III. NORMAL MODES

In this section we discuss the behavior of low-order nor-
mal modes of oscillation of a strongly correlated plasma in a
harmonic trap. We compare a recent cold-fluid theory for the
modes to the results of molecular-dynamics simulations of
oscillations in low-temperature ion clouds. We first discuss
the cold-fluid theory for the modes. This theory neglects cor-
relation effects and treats the plasma as a cold uniform fluid.
A more detailed review of the theory can be found in Ref.
@10#. Differences between the cold-fluid theory and computer
simulations of the modes in a strongly correlated plasma will
be considered in Sec. III B.

A. Cold-fluid theory

The normal modes of a plasma spheroid have recently
been enumerated@7#. This is the only known analytic solu-
tion for modes of a realistic three-dimensionally confined
magnetized plasma. Here we will focus on the two limiting
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cases of very strong magnetic fields where the vortex fre-
quency@27# Vv5Vc12v r is large compared to the plasma
frequency, and weak magnetic fields, whereuVvu→0. The
vortex frequency is the cyclotron frequency as seen in a
frame rotating with the plasma; the 2v r frequency shift
arises from the Coriolos force, which acts like a uniform
magnetic field in the rotating frame. Since Paul trap plasmas
are unmagnetized and almost always have negligible rotation
frequency, they fall in the unmagnetized regimeVv50,
whereas Penning trap plasmas can span the range between
unmagnetized and strongly magnetized limits, depending on
the values ofv r /Vc andvz /Vc . In particular, at the Bril-
louin limit @28# uv r /Vcu5

1
2, the vortex frequency vanishes,

and in the rotating frame the plasma is unmagnetized,
whereas away from this limit a range ofv r /Vc values exists
for which the plasma becomes strongly magnetized provided
that Vc /vz@1 @this follows from Eqs.~2.2! and ~2.3! and
the definition ofVv#.

In cold-fluid theory, the normal modes are described by
the perturbed potentialc(x,t) induced by the mode, as seen
in a frame rotating with the plasma at frequencyv r . In the
rotating framec(x,t) is assumed to vary with time as
exp(2ivt). This assumption leads to the following differen-
tial equation forc @7,10#:

“•~«•“c!50, ~3.1a!

with the boundary conditionc→0 asuxu→` ~image charges
are neglected since the plasma is assumed small compared to
the trap electrodes!. The tensor« is the cold-fluid dielectric
tensor. Outside the plasma«51, whereas inside the plasma

«5S «1 2 i«2 0

i«2 «1 0

0 0 «3
D ~3.1b!

in Cartesian coordinates. The dielectric coefficients«1 , «2 ,
and«3 depend on the frequencyv of the mode, as well as
the plasma and vortex frequencies:

«1512vp
2/~v22Vv

2!, «25vp
2Vv /v~v22Vv

2!,

«3512vp
2/v2, ~3.1c!

wherevp5A4pq2n0 /M is the plasma frequency.
In the unmagnetized limit the vortex frequencyVv van-

ishes, the dielectric tensor« is isotropic, and Eq.~3.1a! can
be solved in spheroidal coordinates. However, whenVv is
nonzero the solution is not as straightforward; nevertheless a
separable solution can still be obtained. For the purposes of
this paper we will have need only of the solution interior to
the plasma,c in, which separates in scaled spheroidal coordi-
nates@7#. The interior mode potentialc in also has a relatively
straightforward~though nonseparable! polynomial form in
cylindrical coordinates, which we will find useful when we
diagnose our mode simulations. In Table I of Ref.@10# we
provide the cylindrical forms for several of the low-order
modes. Modes are parametrized by two quantum numbersl
andm, l>1 and umu< l . These numbers determine the de-
gree of variation of the mode potential;umu equals the num-
ber of zeros in the potential as one circles the equator of the

spheroid, andl2umu equals the number of zeros one encoun-
ters upon traversing a great circle from pole to pole.

1. Unmagnetized modes

In the unmagnetized limitVv50 the modes become sur-
face plasma oscillations on a spheroid. These unmagnetized
surface plasma oscillations are incompressible deformations
of the shape of the spheroid. In the spherical limita51 the
surface mode frequencies are given by

v25
vp
2l

2l11
~3.2!

@see Eq.~3.8! of Ref. @10##.
In addition to the surface modes, there is also a set of

unmagnetized bulk plasma modes for whichv25vp
2 @7,10#.

These bulk modes cause potential perturbations within the
plasma which do not affect the external potential; that is,
cout50 for these modes. For example, in a spherical plasma
a density perturbation that is any function of spherical radius
r oscillates at the plasma frequency. In particular, there is a
bulk plasma mode in a spherical unmagnetized plasma for
which the perturbed interior potential is quadratic inr :
c in5A(r 22R2). This mode corresponds to breathing oscil-
lations of the sphere@see Fig. 2~e!#. Such breathing modes
also occur for more general plasma equilibria, such as sphe-
roidal, cylindrical, or disc plasmas. For the particular cases
of spherical, cylindrical, and disc plasmas, the breathing
mode also happens to be an exact crystal eigenmode~see
Appendix B!. Simulations of the breathing mode will be dis-
cussed in Sec. III B 7.

Looking ahead for a moment, we note that there is an-
other class of modes in unmagnetized plasmas that does not
exist in the cold-fluid theory discussed here. These are the
torsional modes, which are twisting oscillations that do not
affect the shape or density of the plasma. An example of
such a mode is shown in Fig. 2~f!. The restoring force for
these modes arises entirely from correlation effects~i.e., the
shear modulus off the plasma!. Such correlation effects do
not exist in cold-fluid theory. These modes occur only for
unmagnetized plasmas. In the presence of a magnetic field
the Lorentz force dominates over the shear force, and the
modes change character. We will return to this point in Sec.
III A 2 when we consider magnetized plasma modes. We
discuss simulations of unmagnetized torsional modes in Sec.
IV.

2. Modes in a strong magnetic field

For a spheroidal plasma in a magnetic field the mode
frequencies are determined by Eq.~3.11! of Ref. @10#. When
the magnetic field is large the frequencies fall into three re-
gimes. The highest frequency modes are upper hybrid oscil-
lations with frequencies nearVv . These modes consist of
rapid oscillations predominantly across the magnetic field.
The next set of modes are magnetized plasma oscillations
with frequencies of ordervp or less. These modes consist of
plasma motions mainly along the direction of magnetic field.
Finally, there are low frequencyE3B drift modes with fre-
quencies ofO(vp

2/Vc). These modes consist of slow drift
motions mainly across the magnetic field.
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For given values ofl andm there is a finite number of
magnetized modes. Form50 there are 2l modes. Form
Þ0 andl2m even there are 2(l2umu)12 modes, while for
mÞ0 andl2m odd there are 2(l2umu)11 modes.

As Vv→0 the magnetized modes connect to the unmag-
netized modes in the following manner: ifm50 all upper
hybrid modes become degenerate bulk plasma oscillations,
and two of the magnetized plasma modes become the surface
plasma oscillations. The rest of the modes approach zero
frequency.~Actually, when correlation effects are taken into
account these zero-frequency modes become torsional oscil-
lations.! If mÞ0 the same thing happens asVv→0, except
that now only one of either the magnetized plasma or
E3B modes becomes a surface plasma mode, and an upper
hybrid mode also becomes a surface plasma mode.

3. Low-order modes

The low-order modes have straightforward physical inter-
pretations. The~2,0! mode is an oscillation in the aspect ratio

of the spheroid@Fig. 2~a!#. In the limit of strong magnetic
field the spheroid contracts and expands along the magnetic
field @a plasma mode, shown in Fig. 2~a!# or across the mag-
netic field~an upper hybrid mode, not shown!. In the unmag-
netized limit the~2,0! mode is incompressible, and the spher-
oid radius decreases as the length increases. For both
magnetized and unmagnetized plasma, the~2,1! mode corre-
sponds to an incompressible tilt of the spheroid with respect
to thez axis. The tilted plasma precesses around thez axis at
the mode frequency@see Fig. 2~b!#. The ~2,2! mode is also
incompressible, corresponding to a deformation of the
plasma into a triaxial ellipsoid with a major axis parallel to
z @see Fig. 2~c!#. The ellipsoid then rotates about thez axis.
For the~3,0! mode, there are two different types of magne-
tized plasma oscillation in the magnetized case, shown in
Fig. 2~d!. There is also an upper hybrid oscillation~not
shown!. In the unmagnetized limit the single surface plasma
oscillation is again incompressible, also shown in Fig. 2~d!.

B. Simulations of the normal modes
and comparison to fluid theory

We have carried out computer simulations of the normal
modes in order to test the cold-fluid theory and examine the
effect of correlations on the normal modes. Two separate
molecular-dynamics algorithms were employed in this effort
in order to study both magnetized and unmagnetized dynam-
ics. One code followed unmagnetized charged particle trajec-
tories in the effective trap potential given by Eq.~2.1! @1#,
and the other employed guiding center equations to follow
the motion of charges in a Penning trap in the guiding center
limit @2#, averaging over the fast cyclotron motion. Because
cyclotron motion is averaged out in the second code, the
guiding centers are described by only four variables, position
x and thez component of velocityvz . The other two com-
ponents of the velocity are determined by theE3B drift
velocity of the guiding center. Upper hybrid modes cannot
be simulated with this code: only plasma andE3B modes
can be followed. However, both magnetized and unmagne-
tized codes are similar in that they follow the trajectories of
N charges under the influence of the external fields as well as
the Coulomb interactions with the other charges.

1. Initial preparation of the system

Simulations of the modes were carried out in the follow-
ing manner. Initial conditions were generated using a simu-
lated plasma which was previously allowed to equilibrate.
For simulations of crystallized (G→`) plasmas this in-
volved slowly cooling the system by extracting kinetic en-
ergy until a potential energy minimum was obtained. For
largeN there are many nearly identical local energy minima.
In some cases great care was taken to obtain a minimum
energy as close as possible to the global minimum by cool-
ing very slowly and then annealing the crystal by reheating
and recooling several times. In other cases no attempt was
made to anneal the crystal to a better minimum, but there
was negligible difference in the mode frequencies between
these cases.

For simulations of modes in finiteG plasmas, the equilib-
rium was set up in a different manner. In the guiding center
simulations a givenG value was arrived at by employing the

FIG. 2. Deformations of the plasma due to normal modes of
various types. The arrows indicate the direction of motion.~a! ~2,0!
mode: spheroid oscillates in radius and/or length.~b! ~2,1! mode:
spheroid tilts and precesses around the trap axis.~c! ~2,2! mode:
spheroid deforms into triaxial ellipsoid, and rotates around the trap
axis.~d! ~3,0! mode: in the largeVv limit, two types of magnetized
plasma modes exist. In the unmagnetized limit, the single~3,0!
surface mode is incompressible.~e! Breathing mode: sphere ex-
pands and contracts in radius.~f! Example of a torsional mode: top
half of sphere twists with respect to bottom half.
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Metropolis-Rosenbluth Monte Carlo method to obtain real-
izations of the charge positions at a givenG value. The par-
ticles were then given a random distribution of kinetic ener-
gies with a mean corresponding to this value ofG. The
system was then integrated forward in time via guiding cen-
ter molecular dynamics for several hundred plasma periods
to allow full equilibration. In the unmagnetized simulations
the system was prepared at a givenG value by introducing
random components of velocity in the MD code and then
allowing the system to interact and equilibrate in a heat bath
~rescaling each velocity component so as to ensure that the
average kinetic energy remains at a certain level, and using a
canonical touch periodically to randomize velocities of a
fraction of the particles in order to follow the appropriate
Boltzmann distribution!.

2. Addition of a mode perturbation

In order to set up a normal mode of oscillation in both
types of simulations, we extracted positionsxi

(0) and veloci-
ties vi

(0) , i51, . . . ,N, of the equilibrated charges at some
time step. To these positions and velocities we added a per-
turbation associated with a given fluid normal mode, accord-
ing to Eq.~3.1b! of Ref. @10#,

xi~ t50!5xi
~0!1Re@dxi #, ~3.3a!

vi~ t50!5vi
~0!1Re@dvi #, ~3.3b!

dvi52
s

qn0
•“c in~xi

~0!!, ~3.3c!

and

dxi52dvi / iv, ~3.3d!

wheres is the cold-fluid conductivity tensor,

s5
v

4p i
~«21!. ~3.3e!

Only thez component of Eq.~3.3b! is required for the guid-
ing center simulations. For example, in the guiding center
limit Vv→`, one finds the displacements associated with a
~2,0! mode by takingc in from Table I of Ref.@10# and ap-
plying it to Eqs.~3.3!, using Eq.~3.1b! for «. This procedure
yields the initial condition

xi~ t50!5xi
~0! , vzi~ t50!5vzi

~0!1Czi
~0! ~3.4a!

for some amplitudeC. For the unmagnetized (Vv50) ~2,0!
mode the same equations imply

xi~ t50!5xi
~0! ,

vi~ t50!5vi
~0!1C~2xi

~0!/2,2yi
~0!2,2zi

~0!!. ~3.4b!

The perturbation amplitudeC was chosen to be suffi-
ciently small to be linear. The condition of linearity can be
couched in the formu“dxu!1, or, in other words, the maxi-
mum value ofudxu must be small compared to the mode
wavelength, of orderaWSN

1/3 for a low-order mode.
On the other hand, the amplitude must be chosen to be

larger than the thermal fluctuations, otherwise the mode can-
not be observed over the thermal noise. The kinetic energy
fluctuates by an amount of orderANkT, and the mode ki-
netic energy is of orderNMdv25NMv2dx2, so forN suf-
ficiently large orT sufficiently small the modes can be ob-
served above the noise even when the modes are in the linear
regime:AkT/(mv2N1/2)!udxu!aWSN

1/3. For example, for
the ~2,0! mode this condition implies (vp /v)/
(A3GN7/12)!C/v!1, a condition that is easily met for large
G and largeN.

From these initial conditions the plasma was then allowed
to freely evolve without additional external perturbations~to-
tal energy and component of angular momentum along the
trap are conserved, and the center of mass position remains
fixed at the trap center!. In the unmagnetized code time steps
were chosen to equal 2p/100 times the one-particle period.
In the guiding center simulation time steps were allowed to
vary in size in order to conserve energy at a level of roughly
1025q2/aWS for each time step. The system was then fol-
lowed for several hundred single-particle periods. The nu-
merical accuracy of the simulations was checked at several
points by repeating some simulations with different con-
straints on the energy conservation~guiding center case! and
with different sized time steps~unmagnetized case!.

In the guiding center simulations the magnetic field was
chosen differently for different modes. For the~2,0! and~3,0!
modesVc /vz510, for the~2,1! modeVc/vz5105, and for
the~2,2! modeVc /vz510/3. The magnetic field was chosen
to be relatively large for the~2,1! mode simulations in order
to make degenerate the two plasma modes with opposite
signs ofv/m ~opposite phase velocities!, since at finiteVc
these two~2,1! modes occur at two separate frequencies. For
the ~2,2! mode the magnetic field was chosen to be relatively
small because the guiding center~2,2! frequency scales as
vp
2/Vc , and so a frequency measurement of the~2,2! mode

is difficult if Vc is too large. However, since guiding center
equations of motion are used in the molecular-dynamics
simulation the guiding center limit of the cold-fluid disper-
sion relation, Eqs.~3.11! and ~3.12! of Ref. @10#, is still
applicable even whenVc is not large.

3. Extraction of multipole moments and mode frequencies

The oscillations of the plasma resulting from the above-
described initial conditions were diagnosed by taking multi-
pole moments of the density as a function of time. If the
multipole moments are defined properly—that is, if they are
chosen to be spheroidal multipole moments rather than the
more common spherical multipoles—one can show that an
oscillation having given mode numbersl andm excites only
a single spheroidal multipole momentqlm(t), independent of

TABLE I. Frequencies of~2,0! modes in spherical guiding cen-
ter and unmagnetized plasmas.

vsimulation/vz v theory/vz

B50 1.0955 A6/551.0954 . . .
Guiding center 1.3418 3/A551.3416 . . .
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the strength of the magnetic field. A review of spheroidal
multipole moments is provided in Appendix A. Like spheri-
cal multipoles, these spheroidal multipoles can be written as
sums over polynomial density moments. For example,

q20~ t !5 1
3A5/pE d3xn~x,t !$ 3

4 ~2z22r2!2 3
10d

2%

5 1
3A5/p(

i51

N

$ 3
4 @2zi

2~ t !2r i
2~ t !#2 3

10d
2%,

whered25L22R2. @In this form forq20 we have subtracted
out the contribution to the quadrupole moment of the sphe-
roidal equilibrium, so thatq20 oscillates around zero in the
simulations of the~2,0! mode.# The form ofqlm for general
l andm is given in Appendix A.

An example of this diagnostic is shown in Fig. 3, which
displays several multipole moments for an initially spherical
crystallized cloud of 1000 charges to which a~2,0! perturba-
tion has been added using Eq.~3.4a!. The guiding center
limit of the dynamics has been employed. The figure shows
that the~2,0! multipole is excited and oscillates sinusoidally,
whereas other multipole moments are smaller by roughly
two orders of magnitude.

The mode frequency can be extracted by making a sinu-
soidal fit to the oscillation ofq20 shown in the figure. The
result of the fit is displayed in Table I and compared to the
fluid theory, Eq.~3.11! in Ref. @10#. The agreement is excel-
lent. The table also shows a similar level of agreement with
the fluid theory @Eq. ~3.2!# when an unmagnetized~2,0!
mode is simulated using the same initial plasma.

In Fig. 4~a! we display how the~2,0! frequency varies for
crystallized plasmas of different shapes. Excellent agreement
between the fluid theory and the simulations is observed for
both magnetized and unmagnetized dynamics. In Figs. 4~b!–

4~d! the frequency of modes set up in crystallized plasmas
for other values ofl andm is also compared to the fluid
theory, and in each case very good agreement is obtained for
the mode frequency. Note thatv2/vz

2 for an unmagnetized
~2,2! mode is predicted to be the same function ofb as is
vVc /vz

2 for the guiding center~2,2! mode @10#, and this
prediction is verified in the simulations.

4. Frequency deviations from the cold-fluid theory

However, there are small differences between the fluid
theory and the simulations. There is a small but systematic
shift in the simulated mode frequencies which is difficult to
see in Figs. 4. For various values of the trap parameterb the
difference Dv5vsim2vfluid between the simulated mode
frequencyvsim and the cold-fluid theoryvfluid is displayed in
Fig. 5. We evaluate the frequency shifts of the~2,0!, ~2,1!,
~2,2!, and~3,0! unmagnetized surface plasma modes as well

FIG. 3. Multipole momentsqlm(t) of an initially spherical crys-
tallized cloud ofN51000 charges with a~2,0! perturbation added
with magnitudeC50.03vz , following guiding center dynamics
@see Eq.~3.4a!#. The lower plot shows a blowup of the upper plot in
order to display the moments with (l ,m)Þ(2,0), which have much
lower amplitude than the~2,0! moment. FormÞ0 only the real
parts of the moments are displayed. Moments are normalized to the
Wigner-Seitz radiusaWS.

FIG. 4. Mode frequencies for crystallized plasmas as a function
of plasma shape for different low-order modes. Dots are simulation
results for guiding center modes, crosses for unmagnetized modes.
The solid line is the cold-fluid theory for guiding center plasmas
@Eqs. ~3.11! and ~3.12! of Ref. @10##, and dotted line is the theory
for unmagnetized plasmas@Eq. ~3.7! of Ref. @10##. Frequencies are
normalized to the axial bounce frequencyvz , except for the~2,2!
E3B mode, which is normalized tovz

2/Vc , whereVc is the cy-
clotron frequency. Note that the guiding center~2,2! frequency,
when normalized in this manner, equals the square of the unmag-
netized~2,2! frequency normalized tovz ~Ref. @10#!. There are two
guiding center~3,0! modes~see Fig. 2!. ~a! ~2,0! mode.~b! ~2,1!
mode.~c! ~2,2! mode.~d! ~3,0! mode.
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as their guiding center counterparts for clouds which are
crystallized (G→`). The frequency shifts are scaled by
N2/3 in order to make contact with a theory for the shifts
discussed below. For thel52 modes the shifts appear to
vanish for spherical plasmas, hence the excellent agreement
between the fluid theory and the simulations observed in
Table I.

The frequency shift is also found to depend on the cloud
temperature. For example, for a spherical cloud there is a
negligible frequency shift of the guiding center~2,0! mode at
largeG @see Fig. 5~a! and Table I#. However, as temperature
is increased, a positive shift in frequency appears~see Fig.
6!. For an unmagnetized plasma the frequency shift is
smaller as temperature varies~Fig. 6!.

In Ref. @10# it was predicted that such frequency shifts
arise through two effects which are neglected in cold-fluid
theory. First, plasma pressure changes the equilibrium shape
and density of the plasma, which in turn changes the mode

frequencies. Second, extra restoring forces appear due to the
elastic properties of the strongly correlated system; these are
described by isotropic bulk and shear modulik andm. The
following expressions for the frequency shiftsDv were de-
rived using this elastic model of the plasma, assuming that
shifts were small, the plasma was strongly correlated, and the
modes in question were not degenerate.

For the~1,0! and~1,1! modesDv50, as befits these cen-
ter of mass oscillations. For the~2,0!, ~2,1!, ~2,2!, and~3,0!
surface modes in an unmagnetized plasma the following pre-
dictions were derived for the frequency shifts:

Dv5
15v

R212L2
p1mvp

2/v2

Mvp
2n0

for ~ l ,m!5~2,0!,

~3.5a!

Dv5
10v

~L21R2!

p1mvp
2/v2

Mvp
2n0

for ~ l ,m!5~2,1!,

~3.5b!

Dv5
5v

R2

p1mvp
2/v2

Mvp
2n0

for ~ l ,m!5~2,2!, ~3.5c!

FIG. 5. Difference between mode frequencies as observed in
simulations of crystallized (G5`) ion clouds and the cold-fluid
theory,Dv5vsim2vfluid . Frequency differences are plotted as a
function of trap parameterb on the lowerx axis, and plasma aspect
ratio a on the upperx axis.a is determined fromb via the cold-
fluid relation, Eq.~2.4!. ~a! ~2,0! mode shift.~b! ~2,1! mode. ~c!
~2,2! mode.~d! ~3,0! mode. Solid lines are the theory predictions for
the frequency shifts in the guiding center limit, dashed lines are
predicted shifts forB50. For the~2,2! modes the predicted fre-
quency shifts for these two cases coincide when normalized as
shown in the figure.

FIG. 6. Frequency shiftDv20 of the~2,0! normal mode from the
fluid result in spherical (a51) and prolate (a52) clouds of vari-
ous sizes as a function of the inverse correlation parameter, 1/G.
The upper plot is for a guiding center simulation with
Vc /vz510, whereVc is the cyclotron frequency andvz the axial
bounce frequency. The lower plot is for an unmagnetized spherical
plasma.
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Dv5
70v~3L212R2!

~2L213R2!~4L21R2!

p1mvp
2/v2

Mvp
2n0

for ~ l ,m!5~3,0!, ~3.5d!

wherev is the frequency of the given unmagnetized cold-
fluid mode as seen in the rotating frame. The bulk modulus
k does not appear in these expressions because the unmag-

netized surface modes induce incompressible deformations
of the plasma shape in fluid theory, so only the shear modu-
lusm appears, describing the elastic response to shear of the
correlated plasma. The bulk pressurep @Eq. ~2.6!# also ap-
pears, describing the effect on the modes of the change in the
equilibrium shape and density when pressure is taken into
account.

In the guiding center limit similar expressions were de-
rived:

Dv5
5v

2L2
2p«31~k14m/3!vp

2/v2

Mvp
2n0

for ~ l ,m!5~2,0!, ~3.6a!

Dv5
5v

2R2

2p1mvp
2/v2

Mvp
2n0

for ~ l ,m!5~2,1!, ~3.6b!

Dv5
10v

R2

p1mvp
2/vVc

Mvp
2n0

for ~ l ,m!5~2,2!, ~3.6c!

Dv535v
2L2@2p«31~k14m/3!vp

2/v2#1~R«3!
2@2p1mvp

2/v2#

Mvp
2n0@8L

414R2L2«313R4«3
2#

for ~ l ,m!5~3,0!. ~3.6d!

Equations~3.6! neglect a magnetic field effect discussed in
Ref. @10#: for BÞ0 there are more than two moduli, having
the effect that the moduli can have different values for dif-
ferent modes. However, for frequency shifts at largeG this
effect is unimportant~see Ref.@10# for details!.

For the magnetized~2,0! and~3,0! modes the bulk modu-
lus k now appears because the modes are no longer incom-
pressible. For the~3,0! guiding center mode there are two
possible frequencies of oscillation~see Fig. 4!, and the fre-
quency shift depends on which~3,0! frequency one employs
in Eq. ~3.6d!.

All of the frequency shifts are predicted to scale as
1/~plasma size!2. This is because the effective wavelength
l of these low-order modes is on the order of the plasma
size, and a frequency shift due to pressure effects will be on
the order ofp/(mn0l

2). This is the form of the frequency
shift in the Bohm-Gross dispersion relation for unmagnetized
warm plasma waves in an infinite uncorrelated plasma@29#,
v25vp

21g(kT/m)(2p/l)2 ~whereg is the ratio of specific
heats!. Since the plasma size scales asN1/3, the size of the
plasma can be scaled out of the frequency shift by multiply-
ing Dv by N2/3, as in Figs. 5 and 6. The scaled frequency
shift DvN2/3/v depends on the plasma shapea, correlation
parameterG, the magnetic field strength in the rotating frame
scaled by the plasma frequencyVv /vp , and the particular
mode in question.

The qualitative dependence of the frequency shift on
plasma shape can also be understood from the idea of an
effective wavelengthl for the modes. For example, the shift
becomes large and negative in oblate clouds for the guiding
center~2,0! mode, and is even larger for the high-frequency
guiding center~3,0! mode in the oblate limit. This is because

these modes correspond to compressions and rarefactions of
the plasma along the magnetic field~magnetized plasma
waves!, with a wavelengthl on order of 4L for the ~2,0!
mode and of order 2L for the~3,0! mode~see Fig. 2!. In both
cases, as the plasma becomes oblatel decreases and the
frequency shift becomes more negative~opposite to the
Bohm-Gross dispersion relation!, because the bulk com-
pressibility (k14/3m) of the strongly correlated plasma is
negative, leading to negative dispersion of plasma waves
@13, 14, 30#.

In order to make a more detailed comparison of these
theoretical predictions for the mode frequency shifts to our
computer simulation results, we need expressions for the
equilibrium pressurep and the bulk and shear modulik and
m for a strongly correlated plasma. While the equilibrium
pressure is known for a strongly correlated plasma as a func-
tion of G @Eq. ~2.6!#, precise forms for the bulk and shear
moduli are not known. In general, these moduli are functions
of G as well as frequencyv and magnetic fieldB. Since the
oscillations are generally rapid compared to equilibrium
times, the high-frequency limits fork andm may be suffi-
cient. In the very strongly correlated limitG@1, some results
are then available. The dielectric function for a strongly cor-
related homogeneous isotropic amorphous solid one-
component plasma has recently been derived using a two-
time-scale approximation@14#. The derivation neglects
viscous damping and diffusion, so only the high-frequency
elastic response is kept. This dielectric function allows one
to extract the real parts ofk andm by comparing the long-
wavelength form of the dielectric function to the dispersion
relations for compressional and shear modes in a homoge-
neous isotropic system with given bulk and shear moduli
@31#. The results, valid forG@1, are
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, ~3.7a!

m52
2

15
n0
U

N
, ~3.7b!

whereU/N is the correlation internal energy per particle
discussed in Sec. II.

In the limit G→`, whereU/N.20.90q2/a WS, these
expressions for the moduli can be used in Eqs.~3.5! and
~3.6! to extract predictions for the frequency shifts which can
be compared to the simulation results. In Figs. 5 the theoreti-
cal predictions for the shifts are shown as the solid curves for
guiding center modes and dashed curves for unmagnetized
modes. One finds good agreement between the theory and
the simulations, with no adjustable parameters. For example,
for spherical plasmas the theory predicts no frequency shift
for l52 modes, just as is observed in the simulations. The
theory begins to fail only when the effective wavelength of
the modes becomes comparable to the interparticle spacing.
This occurs for the guiding center~2,0! and high-frequency
~3,0! modes in very oblate plasmas, and for the guiding cen-
ter ~2,1!, ~2,2!, and low-frequency~3,0! modes in very pro-
late plasmas. In these limits a theory based on elastic moduli
loses its validity since any such theory assumes a large ef-
fective wavelength compared to the interparticle spacing.

However, Eqs.~3.7! fail to capture the frequency shift for
plasmas at finiteG. Here the data are more difficult to obtain
since modes damp rather rapidly, thermal fluctuations are
larger, and the frequency shifts are small. However, it is
apparent from Fig. 6 that as 1/G increases there is a positive
frequency shift for the~2,0! mode in a guiding center spheri-
cal plasma. We have also performed finiteG simulations for
some nonspherical plasmas, which display a different depen-
dence of the frequency shift onG @see Fig. 6~a!#.

The rather scattered frequencies displayed in Fig. 6~a! can
be explained using the predictions of Eqs.~3.6!. Equation
~3.6a! predicts how the frequency shifts depend on the
modulusk14/3m. Thus each data point of Fig. 6~a! can be
employed to determine an empirical value ofk14/3m as a
function ofG. The equilibrium pressurep is also required in
this analysis; however, it is a known function ofG, given by
Eq. ~2.6!. The empirical results fork14/3m are displayed in
Fig. 7~a!. The scattered frequency shift data of Fig. 6~a! have
collapsed onto a single curve in Fig. 7~a!. Thus the frequen-
cies of the~2,0! mode in plasmas of different shapes and
sizes provide consistent results fork14m/3.

The theoretical prediction of Eq.~3.7a! for the depen-
dence ofk14/3m on G is also displayed in Fig. 7~a!. While
the prediction works well at largeG, at smallerG values
there is a discrepancy due to a well-known problem with
Eqs. ~3.7!. Equations~3.7! imply k14/3m→0 as G→0,
whereas it is known thatk14/3m→gn0kT for a uniform
weakly correlated plasma. Although rather complex theoreti-
cal models that avoid this discrepancy have been constructed
@32#, here we observe that a better fit to the data is obtained
if one replaces Eq.~3.7a! by thead hocexpression.@In fact,
there is some theoretical justification for Eq.~3.8! on the
basis of a sum rule; see Ref.@13#.#

k1
4

3
m5

4

15
n0
U

N
1gn0kT, ~3.8!

where one would expectg53 in the weakly correlated limit
for the one-dimensional adiabatic compressions and expan-
sions associated with the guiding center~2,0! plasma mode.
The data of Fig. 7~a! show that Eq.~3.8! is in reasonably
close agreement to the simulation results, although setting
g52.5 provides a better fit thang53.

A frequency shift is also predicted for an unmagnetized
~2,0! mode in a spherical plasma. According to Eqs.~3.5a!,
~3.7b!, ~3.2!, and ~2.6!, the shift should be given by
N2/3(Dv20/vz)5(A10/3/G), but this does not match the
data, which show almost no shift~Fig. 7!. This suggests that
there are temperature-dependent corrections to the shear
modulusm beyond Eq.~3.7b!, just as there were corrections
for k14/3m. Indeed, such finiteG corrections to the low-
frequency form of the shear modulus have been discussed
previously@33#, but as far as we know there has been little
theoretical work on the high-frequency limit. However, one
would expect on intuitive grounds that the high-frequency
shear modulus would be larger than the low-frequency
modulus, since even a liquid can have an elastic response to
high-frequency shear.

FIG. 7. Moduli extracted using the data of Fig. 6 and the pre-
dictions of Eqs.~3.5a! and ~3.6a!. The upper plot depicts the com-
binationk14m/3 for a guiding center plasma. The plot also com-
pares the simulation data to the theory predictions of Eqs.~3.7a!
and ~3.8!, with g52.5. The lower plot depicts the shear modulus
m extracted from the unmagnetized simulations. The solid line is
the prediction of Eq.~3.7b! and the connected solid squares are the
predictions for the low-frequency limit ofm from Ref. @33#.
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The frequency shift data from Fig. 6~b! can be employed
empirically to determine the shear modulusm using Eq.
~3.5a! and the known form of the equilibrium pressurep, Eq.
~2.6!. The results are summarized in Fig. 7, which also
shows the prediction form from Eq. ~3.7b!, as well as the
low-frequency form from Ref.@33#. Although the errors are
rather large at lowG, the high-frequency form form ob-
tained from our simulations is larger than the low-frequency
prediction of Ref.@33#, and appears to remain finite even in
the fluid phase, as expected. However, for lowG values, our
results form appear to be somewhat smaller than the predic-
tion of Eq. ~3.7b!, although scatter in the data is too large to
make a conclusive statement.

5. Amplitude variation and exact crystal eigenmodes

In addition to frequency shifts the amplitude of the nor-
mal modes is sometimes observed to vary with time; gener-
ally this variation is slow compared to the mode frequency.
We have found that this amplitude variation is due to two
effects. The first effect stems from the choice of the initial
conditions in the simulation, as well as the finite size of the
cloud; the second is intrinsic to the plasma and is due to
collisional viscous damping of the mode. An example of the
first type of amplitude variation is displayed in Fig. 8. A
crystallized spherical cloud of 50 charges is initially excited
with a ~2,1! mode perturbation according to Eqs.~3.3! and
Table I of Ref.@10#, taking the strong magnetic field limit
Vc /vz5105. The amplitude of the real part ofq21 is first
observed to increase, then decrease. This complex amplitude
variation stems from the fact that for a crystallized system
any small perturbation is a sum of exact crystal eigenmodes.
The ~2,1! fluid mode perturbation that we used as the initial
condition is nearly an exact eigenmode, but more than one
exact eigenmode contributes, and since these modes have
different frequencies a complex time variation results.

Although the crystal is amorphous, the equilibrium posi-
tions of the ions are known, so one can determine the exact
strongly magnetized eigenmodes of the 50-ion crystal. Since
motions only alongz are allowed in this limit, these strongly
magnetized eigenmodes satisfy the equation

Mv2dzi5(
j51

N
]F

]zi
~0!]zj

~0! dzj , ~3.9!

whereF is the potential energy of the crystallized equilib-
rium, zi

(0) is the equilibrium position of thei th charge, and
dzi the change in position due to a mode. Thus the mode
frequencies are the eigenvalues of anN3N matrix, so there
are N guiding center modes.@In fact, there are as always
3N exact eigenmodes, but the other 2N modes areE3B
drift modes and upper hybrid modes which are thrown away
in Eq. ~3.9!.# We have solved for the eigenvalues and eigen-
vectors numerically, and then used these eigenmodes to de-
termine the time evolution of the~2,1! multipole moment as
predicted by a linear superposition of the exact modes, start-
ing with the same initial~2,1! perturbation as was used in the
molecular-dynamics simulation of Fig. 8. This evolution is
displayed as the dots in Fig. 8; one can see that the evolution
of q21(t) predicted by the exact crystal eigenmodes and by
molecular dynamics agree well. This indicates that the am-
plitude variation observed in Fig. 8 is not due to dissipation,
since the harmonic oscillator equations governing the dy-
namics for each eigenmode are integrable, so the evolution is
reversible. Rather, the amplitude variation arises from the
phase mixing of exact eigenmodes with slightly different fre-
quencies.

We have observed that as the size of the crystal increases,
the variation in the amplitude of the oscillation decreases.
This implies that the~2,1! fluid mode approaches one of the
crystal eigenmodes in the largeN limit. This phenomenon is
displayed directly for a different mode in Fig. 9. Here we
show the energy excited in each exact eigenmode for an
unmagnetized~2,0! fluid perturbation of a spherical cloud, as
given by Eq.~3.4b!. The unmagnetized eigenmodes are de-
termined by numerically solving the unmagnetized eigen-
value equationMv2dxi5( j“ i

(0)
“ j

(0)F•dxj . In Fig. 9 we
have analytically averaged the energy in each exact mode
over a set of equilibria obtained by all possible rotations of
the given spherical equilibrium, in order to obtain results
which are more or less independent of details of the particu-
lar equilibrium configuration. AsN increases, the distribu-
tion of exact eigenmodes contributing to the~2,0! fluid per-
turbation becomes more sharply peaked around the fluid

FIG. 8. Real part of the quadrupole momentq21 as a function of
time for an initially spherical cloud ofN550 ions withG5`, with
a ~2,1! guiding center mode perturbation added. The solid curve is
the result of a strongly magnetized molecular-dynamics simulation
with Vv /vz5105. Dots are the prediction from a linear superposi-
tion of the exact guiding center crystal eigenmodes, which follow
from a numerical solution of Eq.~3.9!. FIG. 9. Degree to which different exact unmagnetized eigen-

modes are excited by an unmagnetized~2,0! perturbation in spheri-
cal clouds of two different sizes. The energy in each eigenmode is
plotted vs the mode frequency. The energy scale is in arbitrary units
with an offset chosen for one data set in order to place both sets on
the same graph without overlap.
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frequencyv5A6/5vz . The detailed shape of this resonance
curve is not presently understood theoretically, but the sharp-
ness of the peak indicates that for largeN only a few nearly
degenerate modes contribute. Thus the fluid mode is nearly
an exact eigenmode, and so there is little amplitude variation.
However, for smallerN more exact eigenmodes contribute to
the fluid perturbation and the fluid mode amplitude variation
is larger. This effect does not occur in homogeneous systems
with periodic boundary conditions, where both fluid and ex-
act eigenmodes have the same spatial dependence, of the
form exp(ik•x), independent of the system size.

One might ask why we do not excite a single-crystal
eigenmode rather than the fluid perturbation, which is a su-
perposition of the exact eigenmodes. First, for large clouds
there is little difference between these two cases, as one can
see from Fig. 9. Second, the exact crystal eigenmodes are
meaningful excitations only in the crystal phase, whereas the
fluid modes persist even in the weakly correlated regime~al-
though they may be damped!. In this sense the fluid excita-
tions are more general.

Nevertheless, some insight into the dynamics of the
strongly correlated cloud does follow from a brief examina-
tion of properties of the exact eigenmodes. For an unmagne-
tized plasma there are 3N exact eigenmodes with frequencies
in the range 0↔vp . The frequencies obey the Kohn sum
rule, written for an amorphous OCP system as
( i51
3N v i

25Nvp
2 , wherev i is the frequency of thei th exact

eigenmode. In Fig. 10 we display the normalized density of
statesn(v) of the exact unmagnetized eigenmodes, defined
by the relation 3N n(v)Dv/vp 5the number of modes with
frequencies in the rangev to v1Dv. Here we take
Dv50.02vp , and consider a spherical unmagnetized
plasma ofN51000 charges. There are three peaks in the
distribution. The modes in the peak nearv.0.3 are pre-
dominantly torsional oscillations, which consist of shearing
motions that do not change the shape or density of the cloud.
Such modes have zero frequency in fluid theory, since the
only restoring force to such motions stems from the finite
shear modulus. The lowest frequency modes in this class are
three v50 modes corresponding to pure rotations of the
spherical plasma. Similar shear modes are also observed in
the homogeneous fcc and bcc densities of states, shown for
comparison in the lower half of Fig. 10. We will return to
these torsional modes in Sec. IV.

The class of modes in the peak nearv5vp are bulk
plasma oscillations modified by correlations. Such modes
also exist in the infinite homogeneous system, as one can see
in Fig. 10. For the spherical cloud, the highest frequency
mode hasv5vp exactly, and is in fact the breathing oscil-
lation discussed in Appendix B and at the end of this section.

However, there is a sharp peak at intermediate frequen-
cies in the density of states for the cloud which does not
appear in the infinite homogeneous system. This peak is a
consequence of surface plasma oscillations, which have a
dispersion relation given by Eq.~3.2! for a spherical cloud.
This dispersion relation leads to a divergence inn(v) at the
surface plasma frequencyvp /A2. The divergence is cut off
when the mode wavelength becomes on the order of the in-
terparticle spacing. The density of states predicted from Eq.
~3.2! is shown in Fig. 10 for comparison.

6. Viscous damping

We now turn to the second type of amplitude variation,
damping due to collisional viscosity of the plasma. Unlike
the amplitude variation due to phase mixing discussed pre-
viously, this damping is an irreversible process. An example
is displayed in Fig. 11. A guiding center~2,0! mode is ex-
cited in a spherical cloud. In this figure the kinetic energy of
the cloud is plotted as a function of time. The kinetic energy
oscillates as the cloud compresses, and expands along the
magnetic field. In the upper figureG is large,G;105, and
there is almost no amplitude variation in the oscillations.
This is because we have chosenN5768, which is suffi-
ciently large so that the initial perturbation is nearly an exact
crystal eigenmode.

However, if the initial cloud is at higher temperature, with
G590, substantial damping of the~2,0! mode now occurs
~the lower figure!. This behavior differs from the previously
discussed amplitude variation due to phase mixing. Now the
dynamics is not integrable, the evolution is irreversible, and
true equipartition between the degrees of freedom is the
eventual result. This energy equipartition does not occur if
there is only phase mixing between uncoupled eigenmodes
as in Fig. 8, since the energy in each exact eigenmode re-
mains fixed. The first stages of equipartition can be observed
in the lower half of Fig. 11. The random kinetic energy of
the cloud increases, since the total energy is conserved as the
mode damps. The temperature increase can be observed

FIG. 10. Upper plot depicts the normalized density of states
n(v) for the exact unmagnetized eigenmodes of anN51000
spherical cloud, as defined in the text. The superimposed solid
curve in the upper plot depicts the density of states predicted by Eq.
~3.2! for the surface modes. The lower plot depicts the normalized
density of states for the modes of an infinite homogeneous unmag-
netized crystallized OCP. The solid curve is for a bcc lattice, the
gray region is for an fcc lattice.
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through the increase in the minimum kinetic energy achieved
during an oscillation. This represents an irreversible transfer
of energy from the normal mode to random thermal motion.
Eventually, the mode amplitude decays to a level set by ther-
mal fluctuations.

The rate of mode damping as a function of the initial
correlation parameter is displayed in Fig. 12~a!. The damp-
ing rate g is defined by fitting the observed decay of the
amplitude ofq20(t) to an exponential form

q20~ t !5Aexp~2gt !sin~vsimt !.

For G,10 the mode damping cannot be determined unam-
biguously due to amplitude variations caused by thermal

noise~however, the real frequency can still be extracted with
reasonable accuracy!. For G.10 the mode damping is ob-
served to increase with increasing temperature~i.e., increas-
ing 1/G). Simulations of unmagnetized~2,0! modes in a
spherical plasma also yield a damping rate which increases
with increasing temperature@Fig. 12~b!#.

An increase in collisional viscosity as temperature in-
creases is opposite to what one observes in a weakly corre-
lated plasma, where the collision frequency scales atT23/2

~i.e., G3/2). However, in strongly correlated plasmas the in-
crease of damping with temperature is expected, since in the
crystalline phase waves are less damped than in the liquid
phase, where collisional viscosity is larger. Indeed, this be-
havior has been observed in previous simulations of homo-
geneous strongly correlated systems@13#, but has not yet
been observed in actual experiments on three-dimensional
strongly correlated plasmas.

Since the plasma temperature increases as the mode
damps, and mode frequencies and damping rates are func-
tions of G, some care was taken to extract frequencies and
damping rates only during the initial stages before appre-
ciable heating occurred. In addition, some simulations were
repeated with different perturbation amplitudes to test the
effect of plasma heating on our frequency extraction algo-
rithms.

The damping of the modes can be employed to obtain
information concerning transport coefficients of the corre-
lated plasma. Equations~3.5! and ~3.6! provide frequency
shifts depending on the bulk and shear modulik and m.
These moduli need not be real, and their imaginary parts will
induce mode damping. The imaginary parts ofk andm can
be related to the coefficients of bulk and shear viscosity in
the relaxation time approximation of Maxwell@34#; how-
ever, these transport coefficients depend on mode frequency
and magnetic field, and our review of the literature has not
uncovered any concrete theoretical predictions for these
high-frequency viscosities in a strongly correlated and pos-
sibly strongly magnetized plasma. On the other hand, the
simulation results can be employed to obtain some informa-
tion concerning these transport coefficients. In Fig. 12~a! the
damping of the~2,0! guiding center mode for clouds of dif-
ferent sizes and shapes is plotted. Each datum provides a
result for Im(k14/3m) through Eq.~3.5a!; the results are
shown in Fig. 13~a!. Note that the scattered data of Fig. 12~a!
collapse onto a single curve in Fig. 13~a!. Thus the damping
of guiding center~2,0! modes in clouds with different sizes
and shapes provides consistent results for Im(k14/3m) in a
guiding center plasma. This indicates that our perturbation
theory based on bulk and shear viscosities is a useful ap-
proach to understanding the damping of this mode, just as
the theory based on bulk and shear moduli was useful in
explaining frequency shifts.

Similarly, unmagnetized~2,0! simulations can be em-
ployed to obtain Im(m) using Eq.~3.5a! and the date of Fig.
12~b!. The result for Imm as a function of correlation param-
eter in an unmagnetized plasma is shown in Fig. 13~b!. As
expected, the shear viscosity of the plasma increases asG
decreases, although the data become less reproducible at
large values of 1/G.

FIG. 11. Damping of~2,0! mode due to viscosity in a cloud of
N5768 charges, guiding center simulation withVc510vz . The
kinetic energy of the cloud is plotted as a function of time.~a!
Initially G;105, and almost no damping of the mode is observed.
~b! Initially G590; now the mode damps and the cloud heats.

FIG. 12. Damping rateg of the~2,0! normal mode in spheroidal
cloud simulations of different sizes and shapes as a function of
temperature~inverse correlation parameter 1/G). The upper plot is
for guiding center simulations, and the lower plot is for unmagne-
tized simulations.
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7. Breathing mode

Finally, we examine one of the unmagnetized bulk plasma
oscillations. Recall that in fluid theory there are an infinite
number of degenerate bulk oscillations at the plasma fre-
quency@see the discussion following Eq.~3.2!#. In a spheri-
cal plasma, one of these bulk oscillations is a breathing mode
with radial displacements of the plasma proportional to
spherical radiusr : dv5Cr r̂ ~see Fig. 2!. This particular
mode also happens to be an exact crystal eigenmode; in fact
it is the highest frequency exact eigenmode, withv5vp
exactly; see Appendix B and the discussion associated with
Fig. 10.

This breathing mode has been simulated in a crystallized
spherical plasma and, as expected, the frequency is observed
to equal the plasma frequency to a few parts in 105, and
there is a negligible damping of the mode. However, at finite
temperature there is a frequency shift, as well as a damping
of this mode, shown in Fig. 15. The data are rather scattered,
but they do indicate a positive frequency shift and damping,
both of which increase with increasing 1/G. This is in quali-
tative agreement with the results of the viscoelastic approxi-
mation for this mode, discussed in Ref.@10#. In this reference
an approximate form for the frequency shift of this breathing
mode is derived:

Dv5
5

2
vp

$24p13k%

Mn0vp
2R2 , ~3.10!

whereR is the radius of the spherical plasma.
If we use Eq.~2.6! for p and Eq.~3.7! for k in Eq. ~3.10!,

we find that in the largeG limit Dv50, in agreement with
the exact crystal eigenmode analysis. However, at finite tem-
perature Eqs.~3.10! and ~3.7! yield results in disagreement
with the simulations, so we modify the finiteG form for k in
the spirit of Eq.~3.8!:

Re~k!5
4

9
n0
U

N
1gn0kT, ~3.11!

where now we expectg to be 5
3 for smallG in an unmagne-

tized plasma undergoing three-dimensional spherically sym-
metric compressions. Using Eq.~3.11! in Eq. ~3.10! yields
the following frequency shift:

N2/3Re~Dv!5 5
2vp~g24/3!/G5 5

6vp /G. ~3.12!

This shift is in qualitative agreement with the simulation
results, shown in Fig. 14, although the simulation results are
rather scattered. Both the real and imaginary parts ofk for an
unmagnetized plasma could also be extracted from Fig. 14,
using Eq.~3.10!. However, the data are not very reproduc-
ible, particularly forN5500, so we do not go through this
exercise here.

IV. RESULTS FOR TORSIONAL MODES

Torsional modes of oscillation were studied in unmagne-
tized simulations of a crystallized plasma. A torsional dis-

FIG. 13. Imaginary moduli obtained from the~2,0! mode damp-
ing of Fig. 12. The upper plot depicts the imaginary part of the
modulus (k14/3m) from the guiding center damping data of Fig.
12 ~upper plot!, using Eq.~3.6a!. The lower plot depicts the imagi-
nary part ofm from unmagnetized~2,0! simulation of Fig. 12
~lower plot!, using Eq.~3.5a!.

FIG. 14. Frequency shiftDv and damping rateg of the bulk
plasma breathing mode in unmagnetized spherical clouds as a func-
tion of the correlation parameterG. The solid curve is the theory
prediction of Eq.~3.12!.
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placement of a plasma cloud is an incompressible shear dis-
placement and does not change the shape of the cloud. The
perturbation has no effect on a cold fluid, and any restoring
force is a measure of the elastic shear modulus of the
strongly correlated plasma.

A cloud of 1000 ions in isotropic confinement was al-
lowed to settle into its minimum configuration, and then a
small torsional twisting motion by an angleDf was intro-
duced about thez axis,

Df5Asin~z/R!,

such that atz50 the cloud was unperturbed; for positivez it
was given a gradually increasing rotational velocity in one
direction and for negativez in the other@see Fig. 2~f!#. The
subsequent behavior of such oscillatory motion was studied.
Figure 15 shows the initial behavior of the cloud after the
perturbation, with the torsional motion of the ions calculated
from their coordinates and velocities in the subsequent time
development of the system. The period of the subsequent
oscillation appears to be slow, on the order of 14 times the
period of one ion oscillating in the confining field, and sev-
eral such torsional modes appear to be excited.

To understand whether this is a general property, the
above calculation was repeated about the two other perpen-
dicular directions: thex andy axes, and the results are also
shown in Fig. 15. To better compare this behavior, the mo-
tion of the cloud~for a period eight times longer than is
shown in the figure! was Fourier analyzed, and the results of
this are shown in Fig. 16. While the patterns of the frequen-
cies extracted are not identical, all of them show a centroid at
about 0.07 times the one-particle frequency—suggesting that
this frequency is indeed a property of the correlated plasma,
and that the detailed behavior is dependent on the specific

axes chosen, with respect to this particular finite plasma
cloud. To better compare these, the mean frequency of each
Fourier spectrum was extracted by multiplying each fre-
quency component by the amplitude for this frequency ob-
tained in the Fourier analysis. These mean frequencies are
displayed as arrows on Fig. 16.

Since in the 1000-ion cloud the particles crystallize into
individual shells, one can study the extent to which the re-
storing force in these torsional oscillations arises from inter-
actions within one shell, or between shells. The simulations
were modified so that torsional motion could be investigated
within single shells. The outermost shell of the 1000-ion
cloud has 384 ions. Therefore, in the simulations 384 ions
were used, with the remainder of the cloud replaced by a
central charge of 616 fixed at the origin. This resulted in a
minimum-energy configuration slightly different from the
outer shell of the 1000-ion system, but qualitatively the
same. The shear oscillations in this shell were then studied,
again with torsional displacements about three perpendicular
axes and were repeated with the opposite sign for the initial
perturbation. The results for the two signs were virtually
identical, while the differences with choice of axis remained.

The results were again Fourier analyzed and are summa-
rized in Table II, together with the results for the next two
shells simulated in the same way. Again, no simple sharp
frequency appears in these systems, and the mean frequency
increases somewhat for the smaller shells. The complexity of
the motion may perhaps be related to the fact that the density
of eigenmodes in this low-frequency vicinity appears to be
almost an order of magnitude lower than in the vicinity of
the hydrodynamic modes~see Fig. 10! and the 1000-ion
sphere has no simple symmetry with respect to the three
axes.

An estimate of the uncertainties in the simulations is the
fluctuations in the values from data about different axes; they
are on the order of 10%. For the outer shell there are six
values, corresponding to clockwise and counterclockwise ro-

FIG. 15. The amplitude of torsional oscillations as a function of
time in a crystallized (G.104) plasma of 1000 ions. The initial step
where the perturbation was imposed is visible at a time of about two
one-particle periods. The three curves represent the behavior of the
same initial cloud with the perturbation added about three perpen-
dicular axes.

FIG. 16. Fourier transform of the full torsional oscillation simu-
lations, some of which are partially displayed in Fig. 15. The results
are summarized in Table II.
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tations. The radii of the shells are extracted from the simu-
lation, and for the full sphere the radius is that of an equiva-
lent uniform charged sphere, 10001/3aWS510aWS ~the radius
of the outer shell plus half the intershell spacing would yield
the same value!.

Estimates of the frequencies for such modes in spherical
clouds have been made on the basis of the bulk shear modu-
lus of the OCP, given by Eq.~3.7b!. For a spherical cloud the
frequency will depend on the radiusR of the cloud@10, 16#,

v52.50c/R.0.86vzaWS/R ~4.1a!

for a full sphere wherec5Am/Mn0 is the shear sound speed
of a homogeneous amorphous solid OCP. For a shell of ra-
diusR, a similar result holds:

v52c2D/R.0.75vzaWS/R, ~4.1b!

where c2D5Am2D /Mn0 is the shear sound speed of a 2D
amorphous OCP, andm2D is the shear modulus of such a
plasma@35#. These equations predict that the product of the
radius and frequency should be independent of the shell size,
and this appears to be the case in the simulations. But the
predicted value of this product is larger by about 18% than
those extracted from the simulation. The frequency of the
torsional oscillation times the radius of the sphere is larger
than this product for the shells by the predicted amount—it
differs from the estimate by essentially the same factor.

V. DISCUSSION

We have shown that under ideal conditions of molecular-
dynamics computer simulations it is possible to extract infor-
mation on bulk dynamical properties of the one-component
plasma by measurement of frequency shifts and damping in
low-order normal modes of trapped non-neutral plasmas.
Since both the damping and the frequency shifts scale with
particle number as 1/N2/3, in actual experiments the effects
would be easier to observe in small clouds than in large
clouds. However, if the clouds are too small, reproducibility
of the results and their interpretation in terms of bulk prop-
erties of the OCP will be compromised. Our simulation re-
sults indicate thatN*100 is required for guiding center plas-
mas, andN*1000 is required for unmagnetized plasmas, in

order to obtain reproducible data. It is not presently under-
stood why there is more scatter in the unmagnetized results
than in the guiding center results—it may be somehow con-
nected to the greater number of degrees of freedom in un-
magnetized plasma motions (3N vs N for magnetized
plasma motions at or belowvp).

In the very strongly correlated limitG→` the frequency
shifts in the modes were compared to the results of a theo-
retical model which treats the plasma as an elastic spheroid
with bulk and shear moduli. Equilibrium correlation pressure
distorts the shape of the spheroid, causing one contribution
to this shift. The remainder of the frequency shift is due to
the extra restoring forces arising from the bulk and shear
moduli. When theoretical values for the high-frequency
moduli of an amorphous OCP were employed in the model,
good agreement with the observed shifts was obtained with-
out adjustable parameters for both unmagnetized and guiding
center plasma modes~Fig. 5!.

For the ~2,0! mode the frequency shifts were also ob-
served to vary withG ~Fig. 6!. This variation was employed
to extract finite temperature corrections to the high-
frequency bulk modulus of a strongly magnetized OCP and
the high-frequency shear modulus of an unmagnetized OCP
~Fig. 7!. As far as we know there are no other simulation
results in the literature with which to compare these data.

Amplitude variation of the modes was also observed in
the simulations. This variation was explained by two physi-
cal effects. One effect, due to the finite size of the plasma,
was caused by phase mixing of the combination of exact
crystal eigenmodes which contributed to a given fluid eigen-
mode. For sufficiently large clouds this effect was negligible.
The other type of amplitude variation was explained by vis-
cous dissipation in the strongly correlated plasma. Results
for high-frequency bulk and shear viscosities as a function of
G were extracted from the data on the damping of the modes
using the aforementioned viscoelastic model~Fig. 13!. In the
unmagnetized limit the measured shear viscosity was found
to be about an order of magnitude larger than the bulk vis-
cosity measured under guiding center dynamics.

In simulations of an unmagnetized spherical plasma, a
breathing mode of the plasma was also excited. This mode
differs from the unmagnetized surface modes in that it is a
pure compression of the plasma as opposed to an incom-

TABLE II. Frequencies of torsional modes.

outer second third sphere
shell shell shell

number of ions 384 273 175 1000
radius (aWS) 9.26 7.78 6.29 10.0
frequencies (vz) 0.059 0.076 0.093 0.071

0.062 0.082 0.105 0.072
0.083 0.092 0.070 0.069
0.068
0.068
0.067

mean (vz) 0.066 0.079 0.097 0.071
frequency3 radius (vzaWS! 0.61 0.61 0.59 0.71
estimate from Eqs.~4.1! (vzaWS! 0.75 ~shells! 0.86 ~sphere!
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pressible change in the shape of the plasma. The mode cor-
responds to an unmagnetized bulk plasma oscillation with a
wavelength of the order of the plasma size. An increase in
the frequency shift and damping with increasing temperature
was observed~Fig. 14!. These effects may be compared to
analogous effects seen in previous simulations which have
measured the dynamic structure factor of a homogeneous
unmagnetized OCP@13#. In these simulations a plasma peak
in the structure factor is observed, whose frequency width
and position vary withG in a manner that is qualitatively
similar to the damping and frequency shift seen in our simu-
lations.

Torsional modes of oscillation were observed in the un-
magnetized simulations of a crystallized plasma. These tor-
sional modes are incompressible shearing oscillations which
do not change the shape of the cloud, but which instead rely
entirely on the finite shear modulus of the system. As such
these modes are sensitive measures of the shear modulus of
the strongly correlated plasma, so it would be particularly
interesting if these modes could be excited in real experi-
ments. Unlike the surface plasma modes, the torsional modes
cannot be easily excited in experiments by oscillation of the
potentials on the external electrodes. However, it might be
possible to excite these modes by means of the lasers which
are used to control the rotation frequency of the ion cloud
@21#. These lasers are typically directed through the edge of
the cloud. Two such laser beams directed at the outer edges
of the upper and lower parts of the cloud could be used to
excite torsional oscillations. By varying the intensity of the
laser light at the mode frequency, one could excite the oscil-
lations while sweeping the rotation frequency through the
Brillouin limit to create unmagnetized conditions in the ro-
tating frame. Thus it may be possible to obtain a direct ex-
perimental measure of the unmagnetized shear modulus of a
strongly correlated plasma.
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APPENDIX A: SPHEROIDAL HARMONICS

The separable solution of Laplace’s equation in spheroi-
dal coordinates allows a generalization of spherical multipole
moments which is of use in the diagnosis of the normal
modes of a spheroidal plasma. The spheroidal multipoles fol-
low from the expansion in spheroidal coordinates of the
vacuum Greens function for Laplace’s equation:

1

ux2x8u
5
1

d(l50

`

(
m< l

~2 i !m~2l11!

3F ~ l2m!!

~ l1m!! G
2

Pl
m~j28!Pl

m~j2!Pl
m~j1

,/d!Ql
m~j1

./d!

3eim~f2f8!, ~A1!

where we use spheroidal coordinate representations forx and
x8, x5(j1 ,j2 ,f), x85(j18 ,j28 ,f8), d is the parameter of

the spheroidal coordinate system@see Eq.~3.5! of Ref. @10##,
j1

, (j1
.) is the smaller~larger! of j1 and j18 , Pl

m is a Leg-
endre function of the first kind, andQl

m is a Legendre func-
tion of the second kind. We have chosen forms of the Leg-
endre functions such thatPl

m(x) is real onx«@21,1# and
Ql
m(x)→0 as Rex→`.
Using Eq. ~A1! we write the potentialF(x) due to a

density distributionn(x),

F~x!5qE d3x8
n~x8!

ux2x8u
,

in terms of momentsqlm of the density:

F~x!5q(
l ,m

4p

2l11
clmqlmYlm~j2 ,f!Ql

m~j1 /d!. ~A2!

Here,

Ylm~j2 ,f!5A~2l11!~ l2m!!

4p~ l1m!!
eimfPl

m~j2!

is the usual spherical harmonic,clm is a coefficient chosen as

clm5
~2 i !m

Ap

2l11G~ l13/2!

dl11~ l1m!!

in order that Eq.~A2! approaches the usual expression@36#
in the spherical limitd→0, andqlm is a spheroidal multipole
moment, defined as

qlm5dlmE d3x8n~x8!@Ylm~j28 ,f8!Pl
m~j18/d!#* , ~A3!

wheredlm is another coefficient determined by our choice of
clm :

dlm5
Ap~ l2m!!dl~ i !m

2lG~ l11/2!
.

A given normal mode consists of a single oscillating mul-
tipole momentqlm . This follows from Eq.~A2! as well as
from the form of the potentialcout exterior to the plasma@see
Eq. ~3.6b! of Ref. @10##. By recording the time evolution of
this multipole moment in our simulations, we are then able to
pick out a mode with givenl andm for examination.

Furthermore, the multipoles have a relatively straightfor-
ward form in cylindrical coordinates. As discussed in con-
nection with the form of the mode potential, the combination
Yl
m(j2 ,f)Pl

m(j1 /d) can be written as a finite power series in
r andz. Some results forqlm are displayed in Table III.

APPENDIX B: EXACT CRYSTAL EIGENMODES
FOR SOME SPECIAL GEOMETRIES

In this appendix we consider some exact analytic solu-
tions for the unmagnetized crystal eigenmodes of a trapped
single-species plasma cooled to a crystalline state. The
modes correspond to breathing motions of the crystal. There
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are three cases where such modes can be described analyti-
cally.

1. Spherical cloud,b5a51

The fully nonlinear equations of motion for the charges
are

M ẍi52
]F

]xi
, ~B1!

where the potential energy of the charges is

F5(
i

H(
i. j

q2

uxi2xj u
1 1

2Mvz
2@zi

21b~xi
21yi

2!#J .
For b51, consider the transformationxi5 f (t)xi

(0) , f.0,
wherexi

(0) is the equilibrium position, satisfying

]F

]xi
~0! 50. ~B2!

Equation~B1! then becomes

M f̈xi
~0!52

q2

f 2
]

]xi
~0!(

jÞ i

1

uxi
~0!2xj

~0!u
2mvz

2fxi
~0! .

However, Eq.~B2! implies that we may factor out the terms
depending onf to obtain

FM f̈1Mvz
2S f2 1

f 2D Gxi~0!50. ~B3!

This nonlinear equation, when linearized around the equilib-
rium f51, describes radial breathing oscillations which sat-
isfy

d f̈523vz
2d f .

Note that the frequency of oscillationsA3vz equals the
plasma frequencyvp of the spherical equilibrium@see Eq.
~2.3!#.

2. Coulomb chain,b@1

In the limit thatb@1, the equilibrium is a line of charges
along thez axis, referred to as a Coulomb string or chain.
Now we consider breathing oscillations of the form
zi5 f (t)zi

(0) . Sincexi5yi50 during this motion, the analy-
sis again leads to Eq.~B3!, so these oscillations also have
frequencyA3vz .

3. 2D disc equilibrium, b!1

In the limit b!1, the charges are nearly unconfined radi-
ally and form a 2D disc of charge in thex-y plane. Now we
take (xi ,yi)5 f (t)(xi

(0) ,yi
(0)), so thatzi50 at all times and

the disc oscillates in radius. The analysis now leads to the
equation

f̈52bvz
2S f2 1

f 2D ,
so the frequency of linear oscillations isA3bvz . The fre-
quency is small, of orderAb, since the density of the disc is
low, so restoring forces are small.
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