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In metals and plasmas the Coulomb interaction between mobile charged particles is screened. The main
long-range interaction between the particles is then the magnetic interaction. When radiation is negligible the
simplest way to study this interaction is to use the Darwin approximation. In this way one retains a conserva-
tive finite degree of freedom problem. We review the derivation of the Darwin Lagrangian and present careful
derivations of the corresponding Hamiltonian in various limits. Our results go beyond those of previous authors
in several respects. We point out some consequences of the magnetic interaction energy for the dynamics of
charged particles with screened Coulomb interaction. Applications to metallic conduction electrons and to
plasmas are considered.

PACS number~s!: 52.25.Kn, 41.20.Gz, 74.20.2z, 98.62.En

I. INTRODUCTION

The Coulomb potential energy is known to describe the
interaction of charged particles with sufficient accuracy for a
wide range of applications, especially in atomic, molecular,
and condensed matter physics. In cases where radiation is of
importance the electrostatic Coulomb treatment does not suf-
fice and must be replaced by a full treatment of the electro-
magnetic field obeying Maxwell’s equations. It is frequently
the case, however, that radiation is not of importance, even
though the electrostatic approximation is not good enough.
For all these cases one may use the Darwin approximation
@1,2#. This approximation, which goes beyond the electro-
static one in giving a correct description of magnetic effects,
while retaining a finite degree of freedom conservative prob-
lem, seems to be fairly unknown in spite of its wide range of
applications. Only a few advanced textbooks@3–5# mention
it at all. In atomic physics the corresponding physical effect
is described by a perturbation to the Hamiltonian that some-
times is called the Breit@6,7# term. This term, however, is of
purely classical origin and is identical to the Darwin mag-
netic interaction energy; see@2#.

Under what circumstances can one expect the Darwin
magnetic interaction to be responsible for observable physi-
cal effects? In atomic physics the interaction represents a
well established perturbation together with several other,
purely quantum mechanical perturbations~from spin and sta-
tistics!. Otherwise neutral systems, such as metals and plas-
mas, where there are moving charged particles but in which
the Coulomb interaction is screened, should be of special
interest@2#. In such systems the magnetic Darwin interaction
will be the dominating long-range interaction. The reason
that very few authors in the past have considered the ap-
proach taken in this paper is probably that the concepts of
magnetic energy and magnetic force are quite subtle and
have caused much conceptual difficulty and speculation
@8–11#. It is the purpose of this paper to clear up some of this
confusion and to advocate the view that the magnetic inter-
action energy is responsible both for low-temperature super-
conductivity and for the ubiquity of cosmic magnetic fields.

We first review the derivation of the Darwin Lagrangian.
It is usually considered to result from an expansion in the

small parameterv/c to second order. While this certainly is
one way of viewing it, the conventional way, in fact, its
actual validity goes somewhat beyond this. High speeds in
themselves need not cause radiation since radiation comes
from accelerated dipoles. The Darwin Lagrangian has apost-
Galilean @12# character and it can be regarded as implying
Maxwell’s equations without time derivatives of the trans-
verse electric field@13,14#.

The wide range of applicability of the Darwin Lagrang-
ian, however, does not extend to its approximate Hamil-
tonian as derived by Darwin. The Darwin interaction energy
need not be small even if the individual terms in it are small.
The r21 distance dependence and the absence of the screen-
ing effect that limits the Coulomb interaction mean that it
can integrate to considerable amounts, as pointed out by
Trubnikov and Kosachev@15#. Under such circumstances the
first-order ~or simplified! Hamiltonian, which is usually
found in the literature, is not qualitatively correct. Apart
from v/c there is thus also the important dimensionless pa-
rameterNR0 /R, whereN is the number of particles,R0 the
classical electron radius, andR the length scale of the sys-
tem. When this parameter is not small higher-order terms
must be included in the Hamiltonian. One of our main results
is an expression for the second-order term in the Hamiltonian
Eq. ~63! that becomes exact in the nonrelativistic limit.

We thus first carefully derive various expressions for the
Hamiltonian corresponding to the Darwin Lagrangian. Exact
~as well as approximate!, relativistic ~as well as nonrelativ-
istic! expressions are given. The main result is the nonrela-
tivistic second-order Hamiltonian

HD25(
i

F pi22mi
2

qi
2mic

pi•A~ i !
1 1

qi
2

2mic
2A~ i !

1
•A~ i !

1 G , ~1!

where

A~ i !
1 5 (

j ~Þ i !

qj@pj1~pj•ei j !ei j #

2mjcri j
. ~2!

The Hamiltonian that is normally used does not have the last
term and thus predicts that the magnetic energy goes to mi-
nus infinity as the volume containing a constant current dis-
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tribution goes to infinity. The HamiltonianHD2 predicts a
positive infinite energy for such a situation and there is thus
some hope that it is can be useful in improving our qualita-
tive understanding of the physics of long-range magnetic in-
teractions.

Some consequences of this Hamiltonian, corresponding to
the Darwin Lagrangian, are then indicated. It is pointed out
that it predicts a curiousr23 repulsive force between moving
charged particles. After that, results for the conduction elec-
trons in a metal, previously found by the present author@16#,
are reviewed and elaborated. Finally, we discuss applications
to the magnetism of plasmas. According to the second-order
Darwin Hamiltonian~1! magnetic structures are shown to
have a typical sizeRm;1/AR0rn, wherern is the effective
number density of the effective current producing the mag-
netic field.

II. THE DARWIN APPROXIMATION
AND ITS LAGRANGIAN

Everyone knows that there usually is no need to introduce
the electric field explicitly in calculations involving the low-
energy behavior of charged particles; it is sufficient to use
the Coulomb potential energy. The reason is that, at low
energies, the electric field is completely determined by the
positions of the charged particles so that it does not have any
independent degrees of freedom. On the other hand, when
there are large accelerations the system will radiate and it is
necessary to include an independent field. When this happens
the energy of the particle system is no longer conserved and
no Lagrangian or Hamiltonian involving only the particles
can exist.

It turns out that one can regard the Coulomb interaction as
the zeroth-order term in an expansion in the~small! param-
eterv/c, wherev is a typical speed of the system andc the
speed of light. Darwin realized that it is possible to carry this
expansion one step further and still have only particle de-
grees of freedom in the problem. The next nonzero terms that
appear are of order (v/c)2 and represent magnetic interac-
tions. In this way the Darwin approximation means that one
can include the effects of the magnetic field in the problem
without introducing the magnetic field explicitly; all that is
needed is a velocity-dependent particle-particle interaction.

We now proceed to sketch the derivation of the Darwin
Lagrangian. We follow the treatment by Landau and Lifshitz
@4,5#. Alternative derivations can be found in@1–3# and from
a generalized point of view in@12#. One can appreciate the
subtlety of the derivation by studying Bethe and Fro¨hlich’s
@17# slightly erroneous, independent rederivation.

The relativistic Lagrangian of a particle in an external
electromagnetic field (f,A) is

Li~r i ,vi !52mic
2A12

v i
2

c2
2qif1

qi
c
vi•A. ~3!

Now assume that the particle is moving in the field of an-
other particle j . Starting from the retarded potentials, ex-
panding in terms of the small timer i j /c, and finally intro-
ducing the Coulomb gauge (“•A50) one finds that the field
produced ati by j is given by

f j~r i ,t !5
qj
r i j

, Aj~r i ,t !5
qj@vj1~vj•r i j !r i j /r i j

2 #

2cri j
, ~4!

wherer i j[r i2r j and r i j[ur i j u. The Coulomb gauge is cho-
sen because it is only in this gauge that the Coulomb inter-
action is independent of the velocities.

The Lagrangian for particlei in the fields produced by
particlesj is now

L ~ i !5Li2 (
j ~Þ i !

Ui j , ~5!

whereUi j denotes

Ui j5qif j2
qi
c
vi•Aj5

qiqj
r i j

2
qiqj@vi•vj1~vi•ei j !~vj•ei j !#

2c2r i j
.

~6!

Here we have setei j[r i j /r i j . From this one concludes that
the full Lagrangian of the system of particles is
L5(( iL i2

1
2( j (Þ i )Ui j ). If we define

f~ i ![ (
j ~Þ i !

f j , A~ i ![ (
j ~Þ i !

Aj ,

Ui[ (
j ~Þ i !

Ui j5qif~ i !2
qi
c
vi•A~ i ! ~7!

and

Ui
C[qif~ i ! , Ui

D[2
qi
c
vi•A~ i ! , ~8!

so thatf ( i ) andA( i ) represent the internal scalar and vector
potential, we can write the Darwin Lagrangian

L5(
i

~Li2
1
2Ui !5(

i
L i2(

i, j
Ui j . ~9!

More explicitly we can express it in the form

L5(
i

FLi2 1

2
~Ui

C1Ui
D!G5(

i
L i2(

i, j

qiqj
r i j

2VD , ~10!

whereVD is given by

VD5
1

2(i Ui
D52

1

2(i
qi
c
vi•A~ i !

52(
i, j

qiqj@vi•vj1~vi•ei j !~vj•ei j !#
2c2r i j

~11!

and represents a magnetic interaction energy. The quantities
A( i ) will be called theinternal vector potential.

Physically, the approximation arises from the full La-
grangian of particles plus electromagnetic fields when the
independent degrees of freedom of the fields are neglected.
This corresponds to radiation being negligible so that there
are no~nonvirtual! photons present. The field equations cor-
responding to this Lagrangian can be shown to differ from
Maxwell’s full equations in the omission of time derivatives
of the transverse electric field@13,14#. As long as such de-

53 5229DARWIN MAGNETIC INTERACTION ENERGY AND ITS . . .



rivatives are small, one can expect the Darwin approximation
to be good, independently of the value ofv/c.

The velocity-dependent partVD of L is called the
Darwin~-Breit! term. That these relativistic terms are of im-
portance even in ordinary macroscopic physics when mag-
netic phenomena are considered has been shown by Coleman
and Van Vleck@8#. They are small when individual particles
are considered, but easily integrate to macroscopic values
@15#. The Darwin Lagrangian~10! can, using very general
arguments, be shown to be the best approximately relativistic
Lagrangian for classical interacting point particles that gives
the Coulomb interaction in the static limit and that contains a
vector interaction@12,18#. This type of relativistic Lagrang-
ian turns out to be singular on a surface in phase space
@18,19#.

Below we will concentrate on the nonrelativistic limit and
disregard external fields and electrostatic interactions~these
being assumed to lead simply to charge neutrality!. The rel-
evant Lagrangian is in this case

LNR5(
i

S 12mivi
21

qi
2c
vi•A~ i !D . ~12!

It is obtained from the full Lagrangian~10! if terms of order
(v/c)2 are neglected, except that the internal vector potential
is considered to be blown up by the largeness of Avogadro’s
number. This is thus only consistent if there are many par-
ticles that contribute toA( i ) ~or, possibly, if there are very
small interparticle distances!.

The one-body Hamiltonian corresponding to a one-body
LagrangianLi is, by definition,

H i5H i~r i ,pi ![pi•vi2Li . ~13!

Using the Lagrangian of Eq.~3!, the corresponding general-
ized one-body momentum is

pi[
]Li
]vi

5
mivi

A12v i
2/c2

1
qi
c
A. ~14!

The explicit expression for the one-body Hamiltonian is then

H i5
mic

2

A12v i
2/c2

1qif5Ami
2c41c2S pi2

qi
c
AD 21qif.

~15!

The next four sections are devoted to the Hamiltonian corre-
sponding to the many-body LagrangianL.

III. HAMILTONIAN FOR WEAK VELOCITY-DEPENDENT
INTERACTIONS

Assume that the one-body Lagrangian of particlei is
Li5Li(r i ,vi) and that the total Lagrangian is of the type in
Eq. ~9!, where

Ui j5Ui j ~r i ,r j ,vi ,vj ! ~16!

is the interaction of particlesi and j . The Hamiltonian is, by
definition,

H5(
i
pi•vi2L, ~17!

where the generalized momentum vector is

pi5
]L

]vi
[S ]L

]vxi
,

]L

]vyi
,

]L

]vzi
D . ~18!

If we now use Eq.~9! for L and ~14! for the one-body gen-
eralized momenta, we can write

pi5pi2 (
j ~Þ i !

]Ui j

]vi
5pi2

]Ui

]vi
. ~19!

Using Eq. ~13! for the one-body Hamiltonians, we then
get

H5(
i
H i~r i ,pi !1(

i, j
Ui j2(

i

]Ui

]vi
•vi ~20!

for the many-body Hamiltonian. Note that this Hamiltonian
is expressed in terms of the one-body momentapi instead of
the correct many-body momenta~18!.

Using formula~19!, we can express the one-body Hamil-
tonian in terms of the generalized momentum

H i~r i ,pi !5H i S r i ,pi1 ]Ui

]vi
D . ~21!

We now assume that the velocity-dependent part of the in-
teraction issmall ~or thatH i is linear inpi)

H i~r i ,pi !'H i~r i ,pi !1
]H i

]pi
•

]Ui

]vi
. ~22!

According to one of Hamilton’s equations we have

]H i

]pi
5vi ~23!

~this is also a purely algebraic result! and using this we find
that

H i~r i ,pi !'H i~r i ,pi !1
]Ui

]vi
•vi . ~24!

It should be stressed that smallness here means that
u]Ui /]vi u!upi u, i.e., weak velocity-dependent interaction. It
is then also consistent to replacevi with pi /mi to first order.

Inserting~24! into Eq. ~20! we find, finally, that

H'(
i
H i~r i ,pi !1(

i, j
Ui j

5(
i
H i~r i ,pi !1(

i, j

qiqj
r i j

1VD . ~25!

Note that this expression is the same that one would find in
the absence of velocity dependence. This result forH agrees
with a general theorem@20#, which states that a small addi-
tion to the Lagrangian appears in the Hamiltonian with op-
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posite sign. It is, nevertheless, interesting to see explicitly
how this comes about in the present case.

The Darwin term@see Eq.~8!# has the property

(
i

]Ui
D

]vi
•vi5(

i
S 2

qi
c
A~ i !D •vi5(

i
Ui
D52VD ,

~26!

so that Eq.~20!, which, assuming the explicit interactions of
Sec. II, reads

H5(
i
H i~r i ,pi !1(

i, j

qiqj
r i j

1VD2(
i

]Ui
D

]vi
•vi ,

~27!

gives us

H5(
i
H i~r i ,pi !1(

i, j

qiqj
r i j

2VD . ~28!

This equation can be found in@2,13,15#. It differs from Eq.
~25! in that no approximations have been made. On the other
hand, it has not yet been expressed in terms of the correct
many-body canonical momentapi , and this explains the sign
change in front ofVD , as formulas~24! and~26! show. Breit
@6,7# had trouble with this sign change of the velocity-
dependent interaction term, which shows that great care must
be taken to ensure correct approximations.

IV. EXACT HAMILTONIANS IN TERMS
OF THE INTERNAL VECTOR POTENTIAL

In order to complete the derivation of the Darwin Hamil-
tonian starting from the exact expression~28!, we must now
express it entirely in terms of momentapi instead of veloci-
ties. Using Eqs.~19! and ~7!, we get

pi5pi2
qi
c
A~ i ! , ~29!

so Eq.~15! gives us

H i„r i ,pi~pi ,A~ i !!…5Ami
2c41c2Fpi2 qi

c
~A1A~ i !!G2

1qif. ~30!

Formula~28! for the Darwin Hamiltonian can then be written
in the more explicit form

H5(
i

HAmi
2c41c2Fpi2 qi

c
~A1A~ i !!G21qifJ

1
1

2(i qif~ i !1
1

2(i
qi
c
vi•A~ i ! . ~31!

So far no approximations have been made in the derivation
of the Hamiltonian from the Darwin Lagrangian. This ex-
pression, however, still contains velocities, explicitly in the
last sum and implicitly inA( i ) .

In order to concentrate on essentials we assume, from
now on, that there are no external fields. We also disregard

the internal electric potential and replace it, when necessary,
with its main effect: the requirement of charge neutrality.
The Hamiltonian that we will consider is thus

H5(
i

FAmi
2c41c2S pi2 qi

c
A~ i !D 21 1

2

qi
c
vi•A~ i !G .

~32!

Combining Eqs.~29! and ~14! and introducing the nota-
tion

s~v i ![A12
v i
2

c2
51/A11@pi2~qi /c!A~ i !#

2/~mic!2,

~33!

we find that

vi5
s~v i !
mi

S pi2 qi
c
A~ i !D . ~34!

When this is inserted into Eq.~32! we find that we can ex-
press it entirely in terms ofpi andA( i ) . The result is

H5(
i

HAmi
2c41c2S pi2 qi

c
A~ i !D 21 1

2
@qicpi•A~ i !

2~qiA~ i !!
2# YAmi

2c41c2S pi2 qi
c
A~ i !D 2J . ~35!

This expression is easily manipulated to the simple expres-
sion

H5(
i

Fmi
2c41c2S pi2 qi

c
A~ i !D S pi

2
qi
2c
A~ i !D G YAmi

2c41c2S pi2 qi
c
A~ i !D 2, ~36!

for the Hamiltonian of the Darwin Lagrangian, no approxi-
mations made.

Expanding the square root, we find in the nonrelativistic
limit

HNR5(
i

S pi
2

2mi
2

qi
2mic

pi•A~ i !D ; ~37!

compare Eq.~12! for the corresponding Lagrangian. Here the
rest energy has been subtracted. If we go to second order in
@(pi2qiA( i ) /c)/(mic)#

2, we get the quasirelativistic Hamil-
tonian

HQR5HNR2(
i

1

8mi
3c2 Fpi422pi

2S qic pi•A~ i !D
12S qic pi•A~ i !D S qicA~ i !D 22S qicA~ i !D 4G . ~38!

Note that we have not assumed thatqiA( i ) /c are small. As
mentioned above, this should be avoided sinceA( i ) arises
from a sum over all particles with terms that have the dis-
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tance dependencer i j
21 . In a macroscopic system there is noa

priori reason to assume that the result of such a summation is
small.

It is tempting to consider the terms containingA( i ) in ~37!
to represent magnetic energy and, as will be discussed be-
low, it does represent the energy lowering associated with
the attraction of parallel currents. On the other hand, it is
expressed in terms of the internal vector potential~a phase
space vector function ofr i andpi) rather than the magnetic
field. What is usually called magnetic energy in textbooks is
a positive definite quantity~for a clear discussion, see@21#!;
magnetic energy is not normally a well defined concept un-
less made precise in some more or less arbitrary way@2,10#.
In contrast, the Hamiltonian corresponding to the Darwin
Lagrangianis perfectly well defined and we will therefore
pursue it further below.

V. MOMENTUM FORM OF THE NONRELATIVISTIC
INTERNAL VECTOR POTENTIAL

In order to study the behavior of a nonrelativistic system
of charges due to its internal magnetic energy we should now
express this nonrelativistic Hamiltonian~37! as a function of
r i andpi . We must thus expressA( i ) as a function of these
variables. Following Kaufman and Soda@22# we set

T i ja[
1

2r i j
@a1~a•ei j !ei j #5

1

2r i j
~11ei jei j !a ~39!

and find thatA( i ) is given by@see Eqs.~4!, ~7!, and~34!#

A~ i !5 (
j ~Þ i !

T i j ~qjvj /c!5 (
j ~Þ i !

T i j @s~v j !qjpj /~mjc!#

2 (
j ~Þ i !

T i j @s~v j !qj
2A~ j ! /~mjc

2!#. ~40!

This is an implicit expression for theA( i ) . It should be re-
membered that it containsA( i ) also via thes(v j ) according to
formula ~33!. In the nonrelativistic limit this dependence
vanishes@s(v j )'1# and the expression can be written in the
matrix form

S 1
q2
2

m2c
2T12 •••

qN
2

mNc
2T1N

q1
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m1c
2T21 1 •••

qN
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A A ••• A
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2TN1
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2

m2c
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D S A~1!

A~2!

A
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D
5S A~1!

1

A~2!
1

A

A~N!
1

D , ~41!

where we have defined

S A~1!
1

A~2!
1

A

A~N!
1

D [S 0
q2
m2c

T12 •••

qN
mNc

T1N

q1
m1c

T21 0 •••

qN
mNc

T2N

A A ••• A

q1
m1c

TN1

q2
m2c

TN2 ••• 0

D
3S p1

p2
A

pN

D . ~42!

HereN is the number of particles and1 and0 are the 333
unit matrix and zero matrix, respectively. For convenience
we define the 3N33N symmetric matrices

TI[S 0 T12 ••• T1N

T21 0 ••• T2N

A A ••• A

TN1 TN2 ••• 0
D ,

qI[S q11 0 ••• 0

0 q21 ••• 0

A A ••• A

0 0 ••• qN1
D ,

mI[S m11 0 ••• 0

0 m21 ••• 0

A A ••• A

0 0 ••• mN1
D ~43!

and, in terms of these,

RI[qI2mI21c22,UI[TIRI. ~44!

If we also define the 3N31 matrices

A¢ [S A~1!

A~2!

A

A~N!

D , A¢ 1[S A~1!
1

A~2!
1

A

A~N!
1

D , p¢[S p1
p2
A

pN

D , ~45!

we can rewrite Eq.~41! in the matrix form

~1I1TIqI2mI21c22!A¢ 5~1I1TIRI !A¢ 5~1I1UI !A¢ 5A¢ 1.
~46!

Here 1I is the 3N33N unit matrix. Equation~42! gives us

the expression forA¢ 1 in terms ofUI andp¢,

A¢ 15TIqImI21c21p¢5UIqI21cp¢. ~47!

Using this formula~46! can be solved forA¢ in terms ofp¢ as
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A¢ 5~1I1UI !21UI~qI21cp¢!. ~48!

This gives us the desired formula for theA( i ) in terms of the
pi . One notes that

A¢ 'H UI~qI21cp¢! for iUIi!1

qI21cp¢ for iUIi@1
~49!

if we denote byiUIi the norm of the matrix.

If we assume thatUI is small we can expand Eq.~48! and,
if we defineA¢ l by

A¢ l[~21!l21~UI !l~qI21cp¢! ~50!

we get

A¢ 5 (
l51

`

A¢ l. ~51!

This gives us a formal solution of the problem of expressing
the internal vector potential in terms of the generalized mo-
menta. Trubnikov and Kosachev@15# approached the prob-
lem of finding the Hamiltonian of the Darwin Lagrangian by
deriving an expansion ofvi in terms ofpi . In the present
treatment, based on the Hamiltonian~37!, that expansion is
not needed.

VI. THE NONRELATIVISTIC HAMILTONIAN
IN TERMS OF GENERALIZED MOMENTA

Let us now return to the nonrelativistic Hamiltonian. Con-
sider the interaction term in it. By means of formula~51! it
can be regarded as a sum of terms of the type

I l[2(
i

qi
2mic

pi•A~ i !
l 52

1

2
~A¢ l!T~qImI21c21p¢!. ~52!

Here a superscriptT indicates matrix transposition. Using
formula ~50! this gives

I l52
1

2
@~21!l21~UI !l~qI21cp¢!#T~qImI21c21p¢!

52
1

2
@2UI~21!l22~UI !l21~qI21cp¢!#T~qImI21c21p¢!.

~53!

Now using (BICI)T5CITBIT, we find

I l5
1

2
~A¢ l21!TUIT~qImI21c21p¢!. ~54!

Since RI and TI both are symmetric, we find that

UIT5(TRI)T5RITI and we get

I l5
1

2
~A¢ l21!TRITI~qImI21c21p¢!

5
1

2
~A¢ l21!TRI~TIqImI21c21p¢!. ~55!

According to Eq.~47! we finally get

I l5
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2
~A¢ l21!TRIA¢ 15(

i
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2

2mic
2A~ i !

1
•A~ i !

l21 . ~56!

We have thus proved that, forl.1, we have

2(
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qi
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2
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2A~ i !

1
•A~ i !

l21 . ~57!

Using this, the corresponding term in the Hamiltonian~37!
gives us

2(
i

qi
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pi•S (
l51

`

A~ i !
l D

52
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2(i F qi
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qi
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2A~ i !

1
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2
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2A~ i !

1
•S (

l52

`
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l D G . ~58!

If we now define

dA~ i ![A~ i !2A~ i !
1 5 (

l52

`

A~ i !
l , ~59!

the nonrelativistic Hamiltonian~37! can be written

HNR5(
i

F pi22mi
2

qi
2mic

pi•A~ i !
1 1

qi
2

2mic
2A~ i !

1
•A~ i !

1

1
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2

2mic
2 dA~ i !•A~ i !

1 G . ~60!

In conclusion, we will write this

HNR5HD1H21dH5HD21dH, ~61!

where the two first terms in~60! constitute the ‘‘traditional’’
Darwin Hamiltonian

HD5T1VD5(
i

S pi
2

2mi
2

qi
2mic

pi•A~ i !
1 D

5(
i

pi
2

2mi
2(

i, j

qiqj@pi•pj1~pi•ei j !~pj•ei j !#

2mimjc
2r i j

.

~62!

As the derivation above shows, the third term in~60!, which
we can split into two- and three-body interactions as

H25(
i

qi
2

2mic
2A~ i !

1
•A~ i !

1 5H221H23, ~63!
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where

H225(
i, j

qi
2qj

2

4mimj
2c4

pj
213~pj•ei j !

2

r i j
2 ~64!

and

H235(
i

qi
2

2mic
2(
j,k

8
qjqk

2mjmkc
2 ~T i jpj !•~T ikpk! ~65!

is due to second-order terms in the expansion~51!. The
fourth term

dH5(
i

qi
2

2mic
2 dA~ i !•A~ i !

1 ~66!

is thus due to the remaining third- and higher-order terms in
the expansion.

We thus now have a nonrelativistic Hamiltonian derived
from the Darwin approximation of the retarded potentials
that describes the magnetic interaction of charged particles.
It has not been assumed that the magnetic effects are small.
Its practical feasibility will of course depend on whether one
can neglect the unknown higher-order termsdH and thus
use the HamiltonianHD2 of Eq. ~1!. One notes that the
qualitative meaning of the interaction term in the traditional
Darwin Hamiltonian~62!, the attraction of parallel currents,
is opposite that of the termH2 . Its second~three-body! part,
represents a repulsion of parallel currents.

Alternative derivations of the traditional~simplified! Dar-
win Hamiltonian~62! can be found in@1,2,4,22#. In atomic
physics the Darwin term is often called the Breit@6,7# term;
for a derivation from modern quantum electrodynamics, see
@23#. In the past only Trubnikov and Kosachev@15# have
seriously considered improvements to~62!, but the result~1!
appears to be new.

VII. PECULIAR REPULSIVE R23 FORCE

The termsVD andH23 inHNR both are zero if there is no
net current distribution. In this case the main effect predicted
by HNR comes from the two-body part ofH2 as given in
Eq. ~64!. It can be rewritten as

H225(
j

1

2mj
(
i ~Þ j !

qi
2qj

2

4mimjc
4r i j

2 @pj
213~pj•ei j !

2#.

~67!

If we set

e~r i j ![
qi
2qj

2

mimjc
4

1

4 r i j
2 , ~68!

we can write this, interchanging dummy indices and denot-
ing the angle betweenpi andei j by u i j , as

H225(
i

pi
2

2mi
(
j ~Þ i !

e~r i j !~113cos2u i j !. ~69!

If we now absorb this into the kinetic energy we can rewrite
it

T85T1H225(
i

pi
2

2mi
F11 (

j ~Þ i !
e~r i j !~113cos2u i j !G

5(
i

pi
2

2mi
@11Vi~r i !#, ~70!

where we have defined

Vi~r i ![ (
j ~Þ i !

e~r i j !~113cos2u i j !

5 (
j ~Þ i !

RiRj

4r i j
2 ~113cos2u i j !. ~71!

HereRi[qi
2/(mic

2) are classical particle radii; for electrons
this radius isR05e2/(mc2)'2.82310215 m.

We thus see that when there are moving charged particles
in a system there arises~in this formalism! an r23 repulsive
force between the parts that is proportional to the kinetic
energy of the particles. A large number of questions then
arises. Is this a correct physical result? What observable con-
sequences might this force have? Can they be experimentally
verified or falsified? Superficially it seems as if this force
should have its largest consequences for stellar interiors, if
any. For the moment we have no answers to these questions.

VIII. THE TWO-PARTICLE NONRELATIVISTIC
HAMILTONIAN

In the case of two particles it is possible to derive an exact
nonrelativistic Hamiltonian. In this case it is possible, and
meaningful, to start from formula~48! in the form

SA~1!

A~2!
D 5S 1

q2
2

m2c
2T12

q1
2

m1c
2T21 1

D 21S 0
q2
2

m2c
2T12

q1
2

m1c
2T21 0

D S c

q1
p1

c

q2
p2
D , ~72!

whereT125T215(11e12e12)/(2r 12), and do the explicit matrix inversion and multiplication. After some calculation this gives
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SA~1!

A~2!
D 5@12e~r !#21S 2e~r !S 11

3

124e~r !
eeD q2

2

m2c
2

1

2r S 11
112e~r !

124e~r !
eeD

q1
2

m1c
2

1

2r S 11
112e~r !

124e~r !
eeD 2e~r !S 11

3

124e~r !
eeD D S c

q1
p1

c

q2
p2
D , ~73!

wherer5r 12, e5e12, and we definede in Eq. ~68!. Using
this and Eq.~37!, we get the ‘‘exact’’ two-body, nonrelativ-
istic, magnetic Hamiltonian, in the form

H5
1

12e~r ! F(i51

2
1

2mi
S pi21 3e~r !

124e~r !
~pi•e!

2D
2

q1q2
2m1m2c

2r S p1•p21 112e~r !

124e~r !
~p1•e!~p2•e!D G ,

~74!

after some further, elementary, calculations. The correspond-
ing relativistic Hamiltonian cannot be calculated in closed
form, but some exact results on the relativistic two-body
problem with magnetic interactions have been obtained by
Barut and Craig@24#. Other studies of the relativistic two-
body problem can be found in the works of Van Alstine and
Crater @25,26#, Landau and Lifshitz@4#, and Achieser and
Berestestezki@27#, who treat the positronium problem.

Distance scales at whiche(r ) is of importance require
very high energy. One can thus justly argue that, in the non-
relativistic limit that we are considering, we can just as well
sete(r )50 in ~74!. Dettwiller @28# used this approximation
to study the classical hydrogen atom. If we do this and also
assume that both particles are electrons we get the Hamil-
tonian

H5(
i51

2
1

2m
pi
22

e2

2m2c2r
@p1•p21~p1•e!~p2•e!#. ~75!

If we make the canonical transformation

R5
1

2
~r11r2!, r5~r12r2!, ~76!

this Hamiltonian becomes

H5
P2

2~2m!
1

p2

2~m/2!
2

e2

8m2c2
P21~P•e!2

r

1
e2

2m2c2
p21~p•e!2

r
. ~77!

This Hamiltonian has the peculiar property that the center of
mass momentum acts as an attractive coupling parameter. If
one adds the Coulomb repulsione2/r , one sees that it will
always dominate over this attraction, so in vacuum this leads
only to the well-known stabilization of a relativistic beam of
charged particles~see, e.g.,@29#!. In a neutral medium, with

a screened Coulomb repulsion, there is nothing remarkable
about such a velocity-dependent interaction since there is a
preferred rest frame.

Consider the free Fermi electron gas and assume that all
states withuku,kF , the Fermi wave number, are filled, but
that there are two electrons on the Fermi surface with
uku5kF . All the electrons inside the Fermi surface have zero
net momentum and current density, so only the two on the
surface contribute. We now assume that the motion of these
is described by the Hamiltonian~77!. Clearly the lowest en-
ergy is obtained when they have a maximum center-of-mass
momentum and this is the case when they have~essentially!
the same momentump5\k5\kFek . As an ansatz for the
wave function we thus use

C~R,r!5
1

L3
exp~ ik•r1!exp~ ik•r2!F~r!

5
1

L3
exp~ i2kFek•R!F~r!, ~78!

whereF(r) is a symmetric function since the electrons must
have opposite spins.

If our ansatz is consistent the relative momentump must
be much smaller than the common plane wave momentum
P, so we neglect the last term in the Hamiltonian~77! com-
pared to the second to last. If we do this our ansatz leads to
the Schro¨dinger equation

S 2EF2
\2

2~m/2!
¹22

EF

mc2
e2

r
@11cos2u# DF~r!5EF~r!,

~79!

whereEF[\2kF
2/(2m) is the Fermi energy, for the relative

motion.
To roughly estimate the properties of the solution we re-

place 11cos2q by its spherical average 11cos2q54/3. If
we further setDE[E22EF we get the hydrogenlike equa-
tion

S 2
\2

2~m/2!
¹22

4EF

3mc2
e2

r DF~r!5DEF~r!. ~80!

Because of ther21 character of the potential this equation
has bound states independently of the weakness of the inter-
action. The Bohr radius and energy of the ground state of
this equation are

RDF5
3mc2

2EF
RB'83104RB ~81!

and
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DE52
8

9

@e2EF /~mc2!#2

2\2 '4310210EH , ~82!

respectively, where the numerical values refer to a typical
metal in whichEF'10 eV andRB and EH are the usual
Bohr-radius and ground-state energy of the hydrogen atom.
~Minor errors in the corresponding results in@16# have been
corrected.!

IX. MAGNETIC INTERACTIONS
BETWEEN CONDUCTION ELECTRONS

We have seen that the magnetic Hamiltonians have as
their first-order term the Darwin term, an interaction that
lowers the energy when currents are parallel. This means that
in any system where charged particles already have kinetic
energy~as in a metal because of the Pauli principle and in a
plasma because of the temperature! the energy is lowered if
the motions are correlated in such a way that a collective
current results.

Heisenberg, long ago, suggested that current flows in the
superconducting ground state@30#. The mechanism sug-
gested by Heisenberg was, however, not convincing. The
idea that superconductivity might be due to magnetic inter-
actions was first advanced long ago by Frenkel@31#. Fren-
kel’s mechanism was wrong, however, as shown by Bethe
and Fröhlich @17#. Later Welker@32# speculated in this di-
rection and in@33# suggested that the magnetic attraction of
parallel currents might be responsible for superconductivity.
Welker’s specific calculations were, however, also wrong
and at that point the scientific community seems to have
given up the idea. None of the above authors seem to have
been aware of the Darwin Hamiltonian~even if Bethe and
Fröhlich came close to rediscovering it! and without a
Hamiltonian it is very hard to do good quantum mechanics.
The present author investigated the problem of the metallic
ground state using the Darwin Hamiltonian and the free elec-
tron gas model. A rather elementary study@16# then shows
that the maximum energy lowering~per conduction electron!
that can be obtained in fact agrees quite well with the ob-
served energy gap in low-temperature superconductors. This
investigation is reviewed briefly below.

The ground state of the metallic conduction electrons re-
garded as a Fermi, free electron gas, is normally considered
to be characterized by a single parameter, the Fermi energy
EF . If we use periodic~Born–von Kármán! boundary con-
ditions, the allowed states are

c i~r!5
1

AL3
exp~ iki•r!, ~83!

where the wave number vectorski must obey

ki5
2p

L
~nix ,niy ,niz! with nix ,niy ,niz50,61,62, . . . .

~84!

For a given density

N/L35
1

3p2 kF
3 , ~85!

i.e., a given numberN of electrons, it is, however, very un-
likely that the electrons exactly fill the ‘‘shell’’~Fermi sur-
face! with uku5kF . The number of possible states on the
Fermi surface is

Ns5
2

p
kF
2L25

6p

kFL
N ~86!

and an important parameter that characterizes the ground
state of the gas is then the fraction

g5Nc /Ns ~87!

of these that are filled. HereNc is the number of electrons on
the Fermi surface~the ‘‘zero temperature conduction’’ elec-
trons!. Thus, apart from the Fermi energy~or wave number!
the ground state is characterized by the parameterg. For
g50 or g51 the ground state is nondegenerate, but for
other values ofg it is degenerate,g5 1

2 corresponding to
maximal degeneracy.

When the Darwin magnetic interaction energy is included
in the Hamiltonian all the various degenerate states, corre-
sponding to different distributions of theNc k vectors on the
Fermi surface, are no longer degenerate. Instead a maximally
anisotropic distribution will minimize the energy since such
a distribution will correspond to maximal current density. It
is easy to make an estimate of the optimum energy that the
Darwin term in the Hamiltonian might produce and Esse´n
@16# has shown that, forg values near 1/2, the energy low-
ering per conduction electron is at best

DD[2
ED

N
'1.4R0kFEF . ~88!

HereR0[e2/mc2 is the classical electron radius andED is
the expectation value of the Darwin termVD in the Hamil-
tonian for a Hartree wave function consisting of a product of
one-electron wave functions~83!.

When numerical values are inserted it is found that for-
mula ~88! gives values that agree closely with the energy
gaps associated with superconductivity for low-temperature
superconductors. Arguments that the magnetic interaction
should be too weak or otherwise unsuitable to explain super-
conductivity are thus wrong. On the other hand, formula~88!
contains no free parameters and would thus be falsified by
the recently discovered high-temperature superconductivity.
It can be shown, however, that the interaction of the conduc-
tion electrons with the lattice is qualitatively much like a
magnetic interaction@16#. These two effects are therefore
likely to both contribute to the phenomenon.

X. STATISTICAL MECHANICS AND MAGNETISM

Early studies of the interaction of magnetism with matter,
as reviewed by Van Vleck@34#, came to the conclusion that,
according to classical statistical mechanics, matter does not
interact with the magnetic field~it has zero susceptibility!
and that therefore all magnetic effects must be explained by
quantum mechanics. This finding is a bit worrying since it is
found empirically that cosmic plasmas nearly always are
connected with intense magnetic activity@35#, while theories
of plasma physics usually do not take account of quantum
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effects. Plasma phenomena, on the other hand, are rarely
equilibrium phenomena so the discrepancy is not glaring.
More relevantly, however, the zero classical susceptibility
proofs did not take account of the Darwin magnetic interac-
tion. Since this interaction lowers the energy for parallel cur-
rents it seems to be a promising candidate for an explanation
of cosmic magnetic fields via classical statistical mechanics.
We will look into this a bit more closely below.

Using classical statistical mechanics one can also show
that the current density must be zero; see@36#. This again
neglects magnetic interactions and is contrary to Heisen-
berg’s suggestion of ground-state currents@30# and the find-
ings in @16# reviewed in Sec. IX. London also claims that
Bethe and Fro¨hlich @17# showed that this still holds if mag-
netic interactions are included, but this is clearly not correct.
Bethe and Fro¨hlich studied only the effect of the magnetic
~Darwin! interaction on the effective mass of the electron
and this effect is, of course, completely negligible. In con-
clusion thus, when magnetic interactions are included, cur-
rents are actually not forbidden, but, on the contrary, are in
good agreement with classical statistical mechanics, as long
as there is kinetic energy present in the system.

Krizan and Havas@37# developed statistical mechanics
including the~first-order! Darwin term in the Hamiltonian.
They applied it to plasmas, but had to exclude long-range
interactions for technical reasons. They try to argue that
these should be small, but that is not convincing. On the
contrary, the~first-order! Darwin term will diverge if there is
a bulk current density over an extended volume. This diver-
gence was called ‘‘magnetische Katastrophe’’ by Welker
@32#. In metals the divergence is prevented by the current
density being essentially two dimensional@16#, but in plas-
mas there is no such restriction. Trubnikov and Kosachev
@15# managed to derive results for plasmas that do not rely
on the~simplified! Darwin Hamiltonian~61! but that include
the full Hamiltonian without approximation. There is, how-
ever, reason to be suspicious about all thermodynamics deal-
ing with magnetic effects caused by the Darwin Hamiltonian
since the interaction is long range. It is one of the fundamen-
tal assumptions of statistical physics that subsystems are ap-
proximately closed, or ‘‘quasiclosed,’’ as discussed by Lan-
dau and Lifshitz@38#.

The electrostatic interaction is also long range, but in this
case the Debye screening makes it effectively short range.
For magnetism there is no analog to this screening. This may
be one reason why plasmas rarely appear to be near thermal
equilibrium. I have not been able to find any analysis of
these problems in the literature.

Kaufman and Soda@22# also made a study of statistical
mechanics that included the Darwin term. They, however,
did not apply it to plasmas. Many authors have applied the
Darwin approximation to plasmas via particle code models
@13,14,39#, i.e., by directly integrating the equations of mo-
tion. It is, however, very difficult to draw general conclu-
sions from specific numerical simulations.

An alternative velocity-dependent interaction between
charged particles, suggested by Weber, has been ruled out
@40# as leading to unphysical results when applied to plasma
physics. The Darwin interaction, on the other hand, agrees
well with known plasma phenomena as well as with other
aspects of charged particle dynamics@39,41#.

XI. MAGNETIC SELF-ENERGY OF ROTATING
SPHERICAL CURRENT DISTRIBUTION

When the Darwin energy is a perturbation, as it is in
metals, it is enough to consider the Darwin Hamiltonian~62!.
If, however, we envisage a situation where the magnetic en-
ergy according to the Darwin term seems to diverge, we
must also include, at least, the next term in the expansion of
A( i ) and use the ‘‘magnetic’’ HamiltonianHD2 , as defined
by Eqs.~1! and ~2!. In this section we calculate the contri-
bution to the three terms ofHD2 from the current arising
from a rotating spherical distribution of charge. We assume
charge neutrality, i.e., that there is a compensating immobile
distribution of the opposite charge.

Assume that the number density

rn5H N

4pR3/3
if r<R

0 otherwise

~89!

of charged particles with chargee and massm rotates with
angular velocity

v5vez . ~90!

This means that we assume the momenta to be given by

pi5mv3r i ~91!

and that there is a current distribution

j~r!5ernv3r ~92!

that is proportional to the momentum distribution. From this
we can calculate the vector potential

A~r!5
1

cE j~r8!

ur2r8u
dV85

Ne

2R S 12
3

5

r 2

R2D 1c ~v3r!

5
2p

5c S 53R22r 2D j~r!. ~93!

This vector potential is chosen to match, atr5R, one that
goes to zero asr→`. The calculation is elementary, but
some relevant formulas can be found in@42#. We see that
“•A50, so that we are automatically in the Coulomb gauge.

The total kinetic energy can be calculated to be

T5
1

2m(
i51

N

pi
25

m

2 E ~v3r!2rndV5
1

5
mN~Rv!2 ~94!

and the Darwin magnetic self-energy of this current distribu-
tion is approximately

VD52
1

2mc(i epi•A~ i !52
1

2cE j~r!•A~r!dV

52
2

35

~Ne!2

R S vR

c D 2. ~95!

Here we assume thatA'A1. Finally, we get
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H25
e2

2mc2(i A~ i !•A~ i !5
e2

2mc2E uA~r!u2rndV

5
3

175

e4N3v2

mc4
~96!

for the diamagnetic term.
For the total energy, kinetic plus magnetic, one thus finds

thatE5HD25T1VD1H2 is

E5
1

5
mN~Rv!2F12

2

7 SNR0

R D1
3

35SNR0

R D 2G . ~97!

Here we have introduced the notation

R05
e2

mc2
~98!

for the classical electron radius. If we optimize this energy
with respect to the dimensionless parameterx5NR0 /R we
find that there is a minimum atxmin55/3 and the value of the
energy at this minimum is

Emin5
16

21S 15mN~Rv!2D50.762T. ~99!

Evidently the kinetic energy of the moving particles is re-
duced by roughly 24%, by the magnetic self-energy, if the
motion causes flow of an electric current.

The quantityx5NR0 /R corresponds to a given number
of particles per unit length. If one assumes instead that there
is a constant number densityrn of particles that contributes
to the effective current density it is more interesting to ex-
pressx in terms of rn . This givesx5rn4pR2R0/3. The
magnetic energy minimization atx55/3 is then seen to cor-
respond to roughly to the length scale

Rm;
1

AR0rn
. ~100!

This result that there is a characteristic length scale associ-
ated with the magnetic activity seems to be a new prediction
of the Hamiltonian~1!. One cannot, of course, be completely
sure that this is not an artifact of the second-order approxi-
mation that vanishes in a more exact treatment.

XII. CONCLUSION

In mechanics the Hamiltonian formalism often seems like
a purely formal, and trivial, reformulation of the Lagrangian
one. In quantum mechanics and statistical mechanics, on the
other hand, the Hamiltonian is crucial for obtaining energy
eigenstates and statistical equilibrium distributions. The
~relativistic or nonrelativistic! Darwin Lagrangian is one of
the few examples for which the reformulation is nontrivial
and for which no closed form Hamiltonian is known. It
seems likely that no such closed form Hamiltonian can be
found, at least not in the relativistic case. This paper has
improved the situation for the nonrelativistic case. These for-
mal difficulties probably reflect corresponding subtleties in
the physical problem.

Several facts regarding the Hamiltonian corresponding to
the Darwin Lagrangian have been presented. The general
result for weak velocity-dependent interactions as given in
Eqs. ~16!–~25! appears to be new. The same goes for the
relativistic result~36! and the quasirelativistic Hamiltonian
~38!.

The matrix treatment of the problem of finding the inter-
nal vector potential as a function of the generalized mo-
menta, the explicit formula~48!, and the expansion~50! is
different from those previously presented. The most useful
outcome of the matrix formalism, namely, the result that the
second-order term beyond the traditional Darwin Hamil-
tonian can be obtained in closed form, is one of the most
elegant results of this paper.

One notes that the qualitative meaning of the Darwin
Hamiltonian, the energy lowering due to the attraction of
parallel currents, is opposite to that of the present second-
order term. The unphysical divergence of this energy lower-
ing, as predicted by the traditional Darwin Hamiltonian for
constant current densities, is thus prevented by the present
term.

The parallel current attraction energy lowering is an effect
that is not manifest in the energy when it is expressed in
terms of velocities; see Eq.~28!. This means that this is a
rather subtle effect related to the behavior of phase space
volume elements. This may be one of the reasons that it is
not well understood or discussed, in spite of the fact that the
attraction of parallel currents is one of the more fundamental
elementary facts of electromagnetism and represents one
way of measuring current accurately. Extensive arguments
that this attraction manifests itself physically as the attractive
force behind low-temperature superconductivity have been
published before by the present author@16# and are thus only
briefly touched upon in this paper. That this attraction also
might be responsible for the abundance and persistence of
cosmic magnetic fields seems to be a new point of view. It is
hoped that it will contribute to a deeper understanding of
these, in general, quite difficult problems.
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@10# A. N. Kaufman and T. Soda, J. Chem. Phys.37, 1988~1962!.
@11# A. Schild, Phys. Rev.131, 2762~1963!.
@12# H. W. Woodcock and P. Havas, Phys. Rev. D12, 3422~1972!.
@13# A. N. Kaufman and P. S. Rostler, Phys. Fluids14, 446~1971!.
@14# C. W. Nielson and H. R. Lewis, inMethods in Computational

Physics, edited by J. Killeen~Academic, New York, 1976!,
Vol. 16, pp. 367–388.

@15# B. A. Trubnikov and V. V. Kosachev, Zh. E´ksp. Teor. Fiz.54,
939 ~1968! @Sov. Phys. JETP27, 501 ~1968!#.

@16# H. Esse´n, Phys. Scr.52, 388 ~1995!.
@17# H. Bethe and H. Fro¨hlich, Z. Phys.85, 389 ~1933!.
@18# I. P. Pavlotsky and G. Vilasi, Physica A214, 68 ~1995!.
@19# E. Laserra, M. Strianese, and I. P. Pavlotsky, Int. J. Mod. Phys.

B 9, 563 ~1995!.
@20# L. D. Landau and E. M. Lifshitz,Mechanics, 3rd ed.~Perga-

mon, Oxford, 1976!, p. 132.
@21# A. Kovetz, The Principles of Electromagnetic Theory~Cam-

bridge University Press, Cambridge, 1990!, Secs. 15 and 27.
@22# A. N. Kaufman and T. Soda, Phys. Rev.136, A1614 ~1964!.
@23# W. Greiner and J. Reinhardt,Quantum Electrodynamics, 2nd

ed. ~Springer, Berlin, 1994!, pp. 318–322.
@24# A. O. Barut and G. Craig, Physica A197, 275 ~1993!.
@25# P. Van Alstine and H. W. Crater, Phys. Rev. D33, 1037

~1986!.
@26# H. W. Crater and P. Van Alstine, Phys. Rev. D46, 766~1992!.
@27# A. I. Achieser and W. B. Berestezki,Quantenelektrodynamik

~Teubner, Leipzig, 1962!, Sec. 39.
@28# L. Dettwiller, Eur. J. Phys16, 154 ~1995!.
@29# H. Wiedemann,Particle Accelerator Physics, Basic Principles

and Linear Beam Dynamics~Springer-Verlag, Berlin, 1993!,
Sec. 1.4.1.

@30# W. Heisenberg,Two Lectures~Cambridge University Press,
Cambridge, 1949!.

@31# J. Frenkel, Phys. Rev.43, 907 ~1933!.
@32# H. Welker, Phys. Z.39, 920 ~1938!.
@33# H. Welker, Z. Phys.114, 525 ~1939!.
@34# J. H. Van Vleck,The Theory of Electric and Magnetic Suscep-

tibilities ~Clarendon, Oxford, 1932!, Chap. IV.
@35# H. Alfvén and C.-G. Fa¨lthammar,Cosmical Electrodynamics,

2nd ed.~Oxford University Press, Oxford, 1963!.
@36# F. London,Superfluids, Volume 1, Macroscopic Theory of Su-

perconductivity, 2nd ed.~Dover, New York, 1961!, Secs. 25
and 26.

@37# J. E. Krizan and P. Havas, Phys. Rev.128, 2916~1962!.
@38# L. D. Landau and E. M. Lifshitz,Statistical Physics, 3rd ed.

~Pergamon, Oxford, 1980!, Sec. 2.
@39# D. Q. Ding, L. C. Lee, and D. W. Swift, J. Geophys. Res.97,

8453 ~1992!.
@40# R. A. Clemente and R. G. F. Cesar, Int. J. Theor. Phys.32,

1257 ~1993!.
@41# R. Giovanelli, Nuovo Cimento D15, 23 ~1993!.
@42# H. Esse´n, Phys. Scr.40, 761 ~1989!.

53 5239DARWIN MAGNETIC INTERACTION ENERGY AND ITS . . .


