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Violation of the electroneutrality condition in confined charged fluids
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The three point extension to the hypernetted chain —mean spherical theory of liquids is solved for a
system formed by two charged plates immersed in a restricted primitive model electrolyte, under several
boundary conditions. It is shown that the charged Quid confined by the plates and in equilibrium with a
reservoir does not necessarily satisfy the local electroneutrality condition. This depends on the bound-

ary conditions imposed on the plates. The whole system, however, does satisfy a general electroneutrali-

ty condition. The plate-plate force is calculated and compared to that from existing Monte Carlo simu-

lations.

PACS number(s}: 61.20.Qg, 61.20.Cry

I. INTR(ODUCTIQN

Important examples of classical charged fluids are con-
densed classical plasmas, electrolyte solutions, complex
fluids, and confined charged fluids. These systems are,
overall, electroneutral. However, in a volume element
suKciently close to, say, one of the particles of the sys-
tem, one can assume this volume element not to be elec-
troneutral. That is, the particles with an opposite charge
to that of the central particle do not cancel the central
particle's charge. A clear example is that of a lyophobic
colloidal dispersion. The knowledge of the net charge in
this volume element is important in quasiparticle s mod-
els. In inhomogeneous charged fIuids, such as a two
species electrolyte next to a charged electrode, there is a
charge profile, i.e., the counterions' concentration is
higher next to the electrode, while the concentration of
particles with the same sign to that of the electrode
coions is lower. The concentration of both species of par-
ticles become equal in the bulk. However, if this charge
distribution is integrated from the electrode's surface to a
point in the bulk, the net charge obtained cancels exactly
that on the electrode. In the chemical physics of charged
liquids this charge distribution is known as the electrical
double layer (EDL). In confined fluids, for example, elec-
trolyte solutions confined in a slit pore, one can intuitive-
ly assume that the EDL inside the pore will not, in gen-
eral, cancel the charge on the inside surfaces of pore,
while the EDL on the outside of the pore will cancel the
charge on the external surfaces of the pore plus the
charge on the internal surfaces which was not canceled
by the inside EDL. An obvious case is that when the slit
gap is too narrow to allow ions to get inside the pore [1].
In this case there is no inside EDL and the external EDL
will cancel the charge on the whole slit pore. In the field
of colloidal dispersions two types of boundary conditions
are used to model the interaction of two colloidal parti-
cles: (i) constant potential and (ii) constant charge. In

the constant potential case, the surface potential on both
walls of the slit pore is fixed and is assumed to be in-
dependent of the slit's width. In the constant charge
case, the surface charge on the slit's walls is fixed and as-
sumed to be independent of the slit's width. If the con-
stant potential boundary condition is chosen, it has been
shown that a local electroneutrality condition (LEC) is al-

ways satisfied inside the pore [1,2], i.e., the EDL inside
the plate cancels the charge on the surfaces inside the
pore and the external EDL cancels that on the surfaces
outside the pore. If the constant charge boundary condi-
tions are chosen, no general statement can be shown; oth-
er than a general electroneutrality condition (GEC), i.e.,
the inside plus the outside EDL's cancels the total charge
on the slit pore [2]. A similar statement can probably be
made for fluids confined by pores of di6'erent geometries;
for example, cylindrical or spherical pores. However, in
the literature a LEC for constant charge boundary condi-
tions has been assumed, i.e. , in Monte Carlo (MC) [3—8],
integral equation [9—15], density functional [16—19], and
semiphenological theories [20,21] studies.

An important example of a confined charged fIuid is
that of an electrolyte solution confined by two charged,
parallel plates fixed at a distance ~ of each other. A large
number of experimental results for the force between
these two charged plates have been performed in the past
by a several authors, noticeably by Pashley and Israelach-
vili [22,23]. A widely used model for this system is that
of a charged slit immersed into a restricted primitive
model electrolyte (RPM). In this model the electrolyte is
assumed to be a Quid of charged hard spheres of charge
ez; and diameter a, in a dielectric continuum of dielectric
constant c. Where e is the electronic charge and z; is the
valence of an ion of species i. The plates of the slit are
considered to be flat, parallel, hard walls with a surface
charge density o.;„on the inside surfaces of the slit and a
surface charge de"lsity o,„,on the exterior surfaces of the
slit. The walls of the slit have a width d and are com-
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posed of a dielectric material with a dielectric constant
chosen to be equal to that of the solvent, for simplicity,
such that image forces need not be considered (see Fig. 1).
The electrolyte confined by the slit is in chemical equilib-
rium with the bulk electrolyte. The two plates are equal-
ly charged, i.e., the charge on the two plates have the
same sign and magnitude. This is a model useful for bio-
logical and colloidal systems. This model or similar mod-
els have been studied through computer simulations by
various authors [4—8]. However, to have a better under-
standing of the physics of this system, grand-canonical
Monte Carlo simulations (GCMC) are needed. The
GCMC simulations of Valleau, Ivkov, and Torrie [8] are
particularly useful.

The electroneutrality condition for charged interfaces
states that the bulk electrolyte provides the necessary
number of coions and counterions to cancel the electrical
field produced by a given surface; for example, a single,
planar electrode. As a result an ionic concentration
profile is produced near the surface, i.e., an EDL is pro-
duced. In thermodynamical equilibrium the structure of
the EDL is such that the chemical potential of the ionic
Quid is a constant throughout all the Quid, i.e., in the bulk
electrolyte and near the surface.

In the past, a general approach to study homogeneous
and inhomogeneous liquids has been proposed
[1,2,24 —27]. In this approach, a liquid theory can be sys-
tematically improved by progressively including more
bridge diagrams. The first order approximation of this
perturbationlike theory is the so-called three point exten-
sion (TPE). In particular the three point extension to the
hypernetted chain —mean spherical approximation (TPE-
HNC-MSA) has been successfully applied to study of the
interaction of two plates [2,25 —27]. In our previous work
we have applied the TPE-HNC-MSA equation to the in-
teraction of two plates for constant potential boundary

conditions. In this paper we solve the TPE-HNC-MSA
equation for constant charge boundary conditions. We
show that for these boundary conditions the LEC is
violated; that is, the ionic Quids inside the slit do not can-
cel the charge on the inside surfaces of the plates. We
show that the boundary conditions used in the literature,
as constant charge boundary conditions, because they
force the LEC to be valid, are really constant potential
boundary conditions. In Sec. II we outline the TPE-
HNC-MSA theory, mathematically define the LEC, and
discuss different boundary conditions. In Sec. III we
show our results and compared them with GCMC re-
sults. In Sec. IV we give some conclusions.

II.THEORY

The TPE-HNC-MSA equation for the interaction of
two charged plates immersed into a two species RPM
electrolyte is [2]

2

g, (x)=exp —Pu;(x)+ g p Jc; (s)h (y)du3
m=1

where p is the bulk concentration of the ions of species

m;c; (s) is the MSA direct correlation function for ions

of species i and m, a distant s apart; p;g,.(x) is the local
concentration of ions of species i, at a distance x perpen-
dicular to the midplane between the two walls of the slit;
h (y), defined as h (y)—:g (y) —1, is the total corre-
lation function; du3 is the volume dilferential; P=—1/kT,
where k is the Boltzmann constant and T is the system
temperature; u;(x) is the direct interaction potential be-

tween an ion of species i and the slit, represented by the
subindex cz. For our model, this potential can be separat-
ed into a hard sphere —hard wall term, u*, (x), and an
electrostatic part u",.(x). The hard sphere —hard wall po-
tential simply takes into account the fact that the ions
can not penetrate to deform the walls. From Gauss law,
the electrostatic potential can be found to be

2nPez, .
—Pu",.(x)= [(x+r/2+d + ix —r/2 —d

~ )o,„,

+(x+r/2+d+ ~x —r/2 —d
~ )o;„]

x=-h
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for 0&x &r/2 and r/2+d &x. Equation (1) is a non-
linear integral equation that we solve numerically with
advanced finite element techniques. The solution of Eq.
(1) gives the concentration profile p,.g, (x) inside and out-
side the slit. This concentration profile satisfies the con-
dition of chemical equilibrium. That is, there is a con-
stant chemical potential throughout all the solution.

The charge distribution in the solution, around and in-
side the slit, is given by p„(x)=g, ez p g (x).
With this charge distribution function the Poisson equa-
tion,

FICi. 1. Geometry for a charged slit immersed in a restricted
primitive model electrolyte.

7 0'(x ) = —(4m /E )p,i(x ),
can be solved, in terms of p,&(x), for various boundary
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conditions. While many different boundary conditions
are possible, two cases are often explored in the study of
plates interaction: o.;„=o.,„,=const, independent of ~,
referred to as constant charge case, and
%';„=%,„,=const, independent of ~, referred to as con-
stant potential case. 4;„and %',„,are the electrostatic po-
tential on the inside and outside surfaces of the slit, re-
spectively.

The general electroneutrality condition for the slit plus
the electrolyte system states that the charge induced in
the liquid, by the slit, must cancel that on the slit; that is,
o.;„+o.,„,=—,'„—,'„„where o.,'„and o.,'„, are the in-
duced charges in the liquid between the plates and out-
side the plates, respectively. Mathematically this condi-
tion is expressed as [1,2]

v./2 oo

cr;„+cr,„,= — p, i(x)dx — p,i(x)dx, (4)
0 ~/2+ d

where the first and second integrals define o. „and o.,'„„
respectively. That is, the induced electrical charge in the
solution cancel exactly the electrical field produced by
the surface charge on the slit. Only half of the space is
considered in Eq. (4), since, by symmetry, the other half
is its mirror image.

The conservation of the total charge in classical sys-
tems is a well established principle. If constant charge or
constant potential boundary conditions are imposed, any
reasonable liquids theory should satisfy Eq. (4). From
Eq. (1) it can be seen that the concentration profile inside
the slit depends on that on the outside and on the thick-
ness of the walls of the plates. Hence, in general, it is
reasonable to expect —o. „and —o.,'„, not to be equal to
o.;„and o,„„respectively. However, mathematical ma-
nipulation of Eqs. (3) and (4) shows that [1,2] for the con
stant potential boundary conditions, in addition to Eq. (4),

~/2
cr;„= cr „=—— p,i(x)dx,

cr,„,= —cr,'„,= —J p, i(x )dx .
~/2+ d

(5)

(6)

That is, if 4;„=4',„, a local electroneutrality condition
(LEC) is satisfied. In this case the fiuid inside the slit can-
cels the electrical field produced on the inside surfaces of
the slit, whereas the electrolyte on the outside cancels the
field of the outside surfaces of the slit. For the constant
charge case no proof has been given for a general validity
or invalidity of a LEC. Using Eqs. (5) and (6) it can be
shown [1,2] that, for the constant potential boundary
conditions, the solution to Eq. (1) inside the slit is in-
dependent of that in the outside and of the thickness of
the walls. Thus, if the surface potential is fixed, the in-
duced surface charge density on the inside surfaces of the
slit will depend on the distance between the walls,
whereas that on the outside surfaces will be constant and
in general cr;„Acr,„,. On the other hand, if the surface
charge is fixed Eq. (4) must be used and the solution to
Eq. (1) inside the slit will in general depend on that on the
outside of the slit. Hence, the surface potential will be a
function of the distance between the walls and the thick-
ness of the walls and in general O';„W%,„,.

In the past, it has been pointed out that for the con-

stant charge case the more general electroneutrality con-
dition Eq. (4) should be used instead of a LEC [1,2], since
no proof existed of the validity of a LEC for this impor-
tant case. Clearly, at least in the limit of ~—+0 a LEC can
not be satisfied. The validity or invalidity of a LEC, for
larger values of ~ will depend on a balance between the
need of the counterions to cancel the plates' electrical
field and their own repulsion. Thus, it is not obvious un-
der which circumstances a LEC will be valid for constant
charge boundary conditions. To prove the validity or in-
validity of a LEC, a liquid theory as Eq. (1) must be
solved. This is because, as we show in this paper, the va-
lidity of a LEC at constant charge boundary conditions
depends on the system's parameters and, hence, no gen-
eral proof can be given. In the literature the LEC of Eq.
(5) has been forced on the confined fiuid, while the fluid
outside the plates is ignored. That is, in the literature o.;„
is fixed and the condition of Eq. (5) is arbitrarily forced
on the confined liquid, while no condition is imposed on
the external surfaces of the slit or the external Auid; in
fact they are completely ignored. One can fix o.;„and use
the LEC for the confined fluid Eq. (5) as boundary condi-
tions in the solution of Eqs. (1) and (3). It will be shown
here that this forces the system to accomplish the condi-
tion %';„=4,„,but, in this case, the surface potential ad-
justs to a different value for every distance ~ between the
plates. Let us call these boundary conditions the local
electroneutrality (LE) boundary conditions. For these
boundary conditions the result of the integral on the right
hand side of Eq. (5), say cr „iE, is equal to cr;„, by con-
struction. However, the result of the integral on the right
hand side of Eq. (6), say cr,'„,LE will be in general a func-
tion of z. We have solved the TPE-HNC-MSA equation
for the constant charge, constant potential and LE
boundary conditions for several electrolyte and slit pa-
rameters. In this paper we show our results for electro-
lyte and plates parameters that are suitable for compar-
ison with existing [8] GCMC results. In their simulation
the authors Axed the charge on two sheets of charge, as a
function of ~. However, they also imposed a LEC on the
confined Quid. As a result, they in fact did a correct
simulation for LE boundary conditions and not for con-
stant charge boundary conditions, as they said they were
doing.

III. RESULTS

We solved the TPE-HNC-MSA equation for two
charged plates immersed in a RPM electrolyte solution,
for constant charge, constant potential, and local elec-
troneutrality boundary conditions. This equation was
solved also for the limit case of zero ionic diameter. The
concentration profiles and the charge induced in the solu-
tion were obtained. The net pressure between the plates
as a function of the plates' separation was calculated. We
have made calculations for 1:1 and 2:2 electrolytes for
various electrolyte's concentrations and plates' surface
charges. All the calculations were made for T =298 K,
v=78. 5, and a =4.25 A. All the results reported here,
except those in Fig. 5, which are for a point ion model
(PIM) for electrolytes, are for a RPM electrolyte.
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We have organized our results in two sections. In Sec.
III A, we show results for the charge induced on the elec-
trolyte by the charge slit. We present TPE-HNC-MSA
results for constant charge, constant potential, and local
electroneutrality boundary conditions. Counterion con-
centration profiles for the RPM and the PIM are also
presented. In Sec. III 8, we calculate the net pressure
between the plates for these three boundary conditions
but our emphasis is on the local electroneutrality bound-
ary conditions, since there are computer simulations re-
sults only for this case.

A. Local electroneutrality condition range of validity

0.6—
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0.272 C/m'

In Fig. 2 we show the negative of the charge induced,
by the slit, on the fIuid, for the LE and constant charge
o;„=o.,„,boundary conditions, as a function of ~. That
is, we show the values of the right hand integral of Eqs.
(5) and (6). We have denoted these quantities as cr „and
,'„„for the constant charge case, and o. „LE and o.,'„,LE'

for the LE case. The total induced charge on both sides
of one plate of the slit and for the two boundary condi-
tions considered here are: 0.,'„=a „+o.,'„, and
o.,'«LE= cr „LE o.,'„,LE. In Fig. 2, the Auid is a 2:2, 0.971
M electrolyte and o.;„=o.,„,=0.272 C/m . As the plates
approach each other, for the LE case, o.j„LE is a constant
equal to 0.272 C/m, by construction. However, o.,'„, iE
and ~,'„zE are non-monotonic functions of ~. On the
other hand, for the constant charge case, o.;„and o.,'„, are
nonlinear functions of ~, whereas o.,'„ is a constant equal
to 0.544 C/m . This shows that if the charge is fixed on
the plates, the LEC will not be satisfied in narrow slits.

For the constant charge case the LEC is satisfied for large
distances between the plates, compared to the thickness
of the EDL. The lower the electrolyte concentration
and/or the electrolyte valence and/or the thinner the
plates of the slit the larger the distance between the plates
at which the LEC begins not to be satisfies. As a rule, the
thicker the EDL, the larger the value of ~ at which the
LEC is not satisfied and the larger the deviation of the in-
duced charge, from its limit value at ~~ ~. A 2:2, 0.971
M electrolyte has a very narrow EDL. Therefore, for
these conditions, the effect is noticeably only for small
values of ~ and d. However, for a, say, 1:1,0.01 M elec-
trolyte this efFect is significant for values of r and d of the
order of 100a, i.e., 400 A. For electrolytes with even
thicker EDL's the violation of the LEC shows for values
of ~ or d up to 40000 A. In Fig. 2, we have chosen to
plot the curves for d =0 and d =a, for better showing the
violation of the LEC. For these electrolyte parameters,
the LEC is approximately satisfied even for very small
values of ~ if d is. equal to 10a or larger, i.e., o.

,'„and o.,'„,
are approximately equal to 0.272 C/m, for every value of

We performed calculations for values of d as high as
100a and 10000a. For d =100a the LEC, for this very
short EDL system, is satisfied 99.986%. For d = 10a, the
LEC is satisfied 99.872%. For d =10000a the LEC is
satisfied 99.99986%. Clearly, if r is lower than a the
LEC is never valid in this model. If from the LE bound-
ary conditions calculations we get the surface mean elec-
trostatic potential on the inside surfaces of the slit and
make this potential equal to that on the outside and use
these potentials to feed the TPE-HNC-MSA equation for
constant potential boundary conditions, we find exactly
the same results as those with the LE boundary condi-
tions. This is of course to be expected since if the LEC is
forced in Eq. (5), from Eq. (4), the Eq. (6) is obtained and
from Appendix B of Ref. [1], it follows that the surface
mean electrostatic potential on both sides of the plate
must be equal.

In Fig. 3 we show the induced charge for the constant
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FIG. 2. Charge density induced into a 2:2 restricted primitive
model (RPM), symmetrical electrolyte by a charged slit, as a
function of the plates' separation ~. The electrolyte's bulk con-
centration is 0.971 M and the surface charge density on the
plates is o.;„=o.,„,=0.272 C/m . o „and o.,'„, are the induced
charge in the Auid inside and outside the slit, respectively, for
the constant charge boundary conditions and d =0. o.,'„ is the
sum of o j and o,'„,. o.,'„«and o.,'««are the induced charge in
the Quid inside and outside the slit, respectively, for the LE
boundary conditions. o.,'„~E is the sum of o. „LE and o.,'„,zE. a
is the ionic diameter. The white dots and triangles are results
for o. „and o.,'„„respectively, for d =a. The crosses are values
of o t t for d =a.
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FIG. 3. Charge density induced into a 2:2 RPM symmetrical
electrolyte by a charged slit, as a function of the plates' separa-
tion ~. o. „+and o,'„,+ are the induced charge in the Quid inside
and outside the slit, respectively, for the constant potential
boundary conditions. o.,'„+ is the sum of o. „+ and o.,'„,+. a is
the ionic diameter.
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potential boundary condition, O';„=O',„,. The fluid is also
a 2:2, 01971 M electrolyte and o;„=o,„,=0.272 C/m for
an infinite separation of the plates. Here, as mentioned
above, the surface potential on the plates is kept constant
for every plates separation and, hence, the surface charge
will be equal to that induced in the liquid. In this case,
o,'„,+ remains a constant equal to 0.272 C/m, but o. „~
and o.,'„q, are nonmonotonic functions ~. This case, as
that of LE, implies a nonconstant Gibbs free energy of
the system as a function of the plates' separation, due to
changes in the total charge, even though the chemical po-
tential of the salt is a constant.

In Fig. 4 we show the negative of the charge induced,
by the slit, on the fluid, for the constant charge o.;„=o.,„„
boundary conditions, as a function of ~. The fluid is a
1:1,0.01 M electrolyte and o.;„=o,„,=0.012 C/m . Two
main differences with the constant charge results of Fig. 2
can be seen: The LEC is violated up to much longer dis-
tances between the plates and o. „and o,'„, are now mono-
tonic. For the 2:2 case cr,'„oscillates between higher and
lower values of that of 0.;„,whereas in Fig. 4 o „is always
lower than o.;„. This, of course, implies that for the 1:1
case the confined electrolyte does not cancel the electrical
field produced by the inside surfaces of the slit, but for
large distances between the plates, and for the 2:2 case
the induced field can be higher than that produced by the
inside surfaces of the slit. The charge induced in the
confined electrolyte can be higher than o.;„since, as
pointed out before, the induced charge depends on the to-
tal charge on the slit and the structure of the confined
electrolyte depends on that in the outside of the slit. This
shows a nonlinear dependence of the induced field on the
ionic valence and the slit's surface charge. In Fig. 4 we
have not shown results for PIM. However, we did this
calculation and the 0.,'„and 0.,'„, curves for the PIM are
on top of those for the RPM. This is not surprising since
for this very low ionic concentration the ionic size effects
are not expected to be significant. The distance between
the plates at which the LEC begins to be violated in-
creases with lower ionic valence and concentration .

In Fig. 5 we show results for the same conditions to
those in Fig. 4, but here we have taken the width of the
slit's plates ten times thicker, i.e., d =10a. The results
shown here are for the PIM. The effect of increasing the
value of d is that of decreasing the violation of the LEC.

In Fig. 6 counterion concentration profiles around one
of the plates of a charged slit, as a function of the dis-
tance to an imaginary plane located at the mid distance
between the plates, are shown. The fluid is a 1:1,0.01 M
electrolyte. The plates are one ionic diameter of width
and a.;„=o,„,=0.012 C/m . These values of the system's
parameters corresponded to those of Fig. 4. The dis-
tance between the plates r is (a) 100a, (b) 10a, (c) 3a. In
the three figures the curve on the left correspond the
confined fluid and that on the right to the fluid outside
the slit. As the distance between the plates decreases the
counterion concentration near the plate increases. How-
ever, the counterion concentration of the confined fluid
clearly increases more than that for the fluid outside the
slit. At this very low concentration the ionic size should
not play a relevant role. Counterion concentration
profiles for the PIM have a similar behavior. From Figs.
4—6 it is clear that the violation of the LEC has less than
nothing to do with ionic size effects. The violation of the
LEC is also not a consequence of the fact that for short
distances between the plates the integral in Eq. (5) is of
shorter range than that in Eq. (6), since, as has been
shown in the past [1,2j, the LEC is always satisfied for
constant potential boundary conditions.

In Fig. 7 counterion concentration profile around one
of the plates of a charged slit, as a function of the dis-
tance to an imaginary plane located at the rnid distance
between the plates, are shown. The fluid is a 2:2 0.971 M
electrolyte. The plates are zero ionic diameter of width
and 0 jn 0 gUt 0 272 C/m . These values of the system's
parameters correspond to those for constant charge
boundary conditions and d =0 of Fig. 2. The distance
between the plates r is (a) 2. 52a, (b) 1.52a. In the two
figures the curve on the left corresponds to the confined
fluid and that on the right to the fluid outside the slit.
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FIG. 4. Charge density induced into a 1:1RPM symmetrical
electrolyte by a charged slit, as a function of the plates' separa-
tion ~. o. „and o,'„, are the induced charge in the Quid inside
and outside the slit, respectively, for the constant charge bound-
ary conditions and d =a. o-,'„is the sum of o. „and o.,'„,.

FIT&. S. Charge density induced into a 1:1 point ion symme-
trical electrolyte by a charged slit, as a function of the plates'
separation ~. o. „and o.'„, are the induced charge in the Quid in-
side and outside the slit, respectively, for the constant charge
boundary conditions and d =10a. o.,'„ is the sum of o. „and
o out.
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From Figs. 2 and 7 we see that when o. „ is lower than
0 j~ i.e., cr,'« is higher than 0 o«, the count erion concen-
tration of the confined Quid is lower than that on the out-
side Fig. 7(a). However, if o „is higher than o;„,i.e, . cr,'„,
is lower than o.,«, the counterion concentration of the
confined fiuid is higher than that on the outside Fig. 7(b).

B.Plate-plate interaction force

The force between two plates immersed into an electro-
lyte solution is a quantity of interest in the study of com-
plex liquids. The general expression for the calculation of
this force is [1]

r

10

2&P(r)= kTp, (r;t —a/2) — f p,~(r;y )dy
E, a/2

2

X

CD

1:1
0.01 M
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kTp, (r;t+d+a)

2'7T 2f

0 I I I
I

I I I
I

I I
I

I I I
I

I I I
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where t is the distance from the center of the slit to the
surface of the right hand side plate (see Fig. i), p, (try) is
the charge profile, as defined in Sec. II, for a distance be-
tween the plates of ~, and
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FKx. 6. Counterion concentration profile around one of the
plates of a charged slit, as a function of the distance to an imagi-
nary plane located at the mid distance between the plates. The
counterion concentration profile around the other plate is, by
symmetry, its mirror image. The TPE-HNC-MSA equation was
here solved for constant charge boundary conditions. The fiuid
is a 1:1,0.1 M electrolyte. The plates are one ionic diameter of
width and cr;„=cr,„,=0.012 C/m . The distance between the
plates ~ is (a) 100a, (b) 10a, (c) 3a. In the three figures the curve
on the left corresponds to the confined fluid and that on the
right to the fiuid outside the slit.

FIG. 7. Counterion concentration profile around one of the
plates of a charged slit, as a function of the distance to an imagi-
nary plane located at the mid distance between the plates. The
counterion concentration profile around the other plate is, by
symmetry, its mirror image. The TPE-HNC-MSA equation was
solved here for constant charge boundary conditions. The fiuid
is a 2:2, 0.971 M electrolyte. The plates are zero ionic diameter
of width and cr;„=o. „,=0.272 C/m . The distance between the
plates ~ is (a) 2. 52a, (b) 1.52a. In the two figures the curve on
the left corresponds to the confined Quid and that on the right
to the Quid outside the slit.
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2

p, (r;t —a/2)= g p g (r;t —a/2),
rn =1

(8)

such that the reduced concentration profile is evaluated
for x =t —a/2, i.e., at contact with the inside surface of
the slit and

2

p, (r;t+d+a)= g p g ( rt+d+a), (9)

such that the reduced concentration profile is evaluated
at contact with the outside surface of the slit. Equation
(7) takes into account the fact that a LEC not necessarily
is satisfied.

In Sec. IIIA we showed that the LEC is not satisfied
for constant charge boundary conditions. However, if
constant potential boundary conditions are imposed to
the slit the LEC will always be satisfied [1,2]. As pointed
out in the Introduction, in the literature, calculations
have been made for special boundary conditions in which
they fix the charge on the inside surfaces of the slit, force
the LEC to be valid and simply ignore the fluid outside.
We have named these boundary conditions as local elec-
troneutrality (LE) boundary conditions. These boundary
conditions have been mistakenly taken in the literature is
our constant charge boundary conditions. In complex
fluids, in particular for lyophobic colloids, it is more real-
istic to assume our constant charge boundary conditions
than LE boundary conditions. Since for whatever reason
all the MC simulations [3—8], integral equation results
[9—15], and density functionals results [16—19] we know
are for LE boundary conditions, in this section we calcu-
late the force for LE boundary conditions and compare
our results with those of GCMC simulations [8] to show
the accuracy of our results. In addition, we show the
plate-plate force for constant charge and constant poten-
tial boundary conditions for comparison.

As pointed out above, the GCMC simulation of Val-
leau, Ivkov, and Torrie [8] was made, for two sheets of
charge, with LE boundary conditions. In Fig. 8 we com-
pare, in principle, the exact pressure on the plates, in
units of pkT, reported by Valleau, Ivkov, and Torrie with
that obtained form the TPE-HNC-MSA for the three
boundary conditions analyzed above, i.e., constant
charge, LE, and constant potential. The fluid is a 2:2,
0.971 M symmetrical electrolyte. The plates are zero ion-
ic diameter of width and o.;„=o.,„,=0.272 C/m . It is
seen as a very good agreement of the LE curve with the
GCMC data. This result tests the theory. The constant
charge case exaggerates the attractive minimum and the
constant potential case exaggerates this minimum consid-
erably more. The dash curve is the TPE-HNC-MSA cal-
culation for the constant charge case, for d =0 (sheets of
charge). The case for d = 10a (i.e., d =42 A) is on top on
the constant potential case TPE-HNC-MSA curve (i.e.,
the solid line} and it is not explicitly shown. It is to be ex-
pected that for sufticiently large values of d the constant
charge pressure agrees with the LE boundary conditions
pressure, since for large values of d the constant charge
calculations satisfy the LEC, as shown in Fig. 2. Thus,
for d =10a the TPE-HNC-MSA constant charge curve

(a) 22
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FICx. 8. Interaction force per unit area P between two
charged plates immersed into a 2:2, 0.971 M symmetrical elec-
trolyte, as a function of the distance between the plates. The
plates are zero ionic diameter of width and cr;„=o.,„,=0.272
C/m . p is the total bulk electrolyte concentration. The black
and the white dots are GCMC results [8]. The solid, dashed,
and dot-dashed curves are the TPE-HNC-MSA results for LE,
constant charge, and constant potential boundary conditions on
the plates, respectively. In (a) linear scales are used for the pres-
sure and the distance between the plates. In (b) nonlinear scales
are used and no results for the constant potential boundary con-
ditions are shown.

also has a Uery good agreement with the GCMC results.
The role of the parameter d increases with increasing
thickness of the EDL's associated to the plates of the slit.
In Fig. 8(b), we present the LE and constant charge re-
sults in a scale suitable to see the accuracy of our theory
for small values of the pressure. The white dots are
GCMC results also obtained in Ref. [8]. We have singled
them out because if they are multiplied by —1 they have
good agreement with our results.

In Fig. 9 we show the interaction force per unit area
between two charged plates immersed into a 2:2, 0.971 M
symmetrical electrolyte, as a function of the distance be-
tween the plates. The plates are zero ionic diameter of
width and o;„=cr«,=0.091 C/m . The TPE-HNC-MSA
pressure for constant charge and LE boundary conditions
are compared to GCMC calculations [8]. The constant
charge pressure is more negative, around ~=2a, then the
LE pressure. This behavior is similar to that seen in Fig.
8. For this lower surface charge density the absolute
value of the pressure (negative or positive} is lower. The
agreement between the constant charge and LE pressure
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curves is similar to that in Fig. 8. For large values of d,
the constant charge pressure becomes higher than the LE
pressure. The agreement of our results with the GCMC
data is not as good as that seen in Fig. 8. This is puzzling
since a higher surface charge is a more demanding pa-
rameter for the TPE-HNC-MSA theory. In Fig. 9(b) the
pressure is shown in a nonlinear scale. The white GCMC
dots are from the same source as the black ones. We, as
in Fig. 8, have singled them out to point out that if they
are multiplied by —1 they fall on the TPE-HNC-MSA
curves. The sequence of the black dots seems to indicate
that the white dots may have a sign misprint.

For constant potential boundary conditions Eq. (1) can
be solved for the Quid inside independently of its solution
for the Quid outside. This is not possible for the constant
charge boundary conditions, i.e., Eq. (1) must also be
solved simultaneously for the Quid inside and outside the
slit. This is a much more demanding calculation. For
the LE boundary conditions, Eq. (1) must be solved
simultaneously for the Quid inside and outside the slit.
The net pressure is obtained by subtracting the pressure

35 I I ~ I I I I ~ I I I I I I I

on the surface of the plates by the outside Quid from that
on the inside. In the literature, the net pressure is found
by calculating the pressure on the inside surface of the
plates of the sht and then subtracting that pressure when
the plates are infinitely apart. It is interesting that in our
LE calculation the induced charge on the Quid outside
adjust to give the net pressure as calculated by Valleau.
If in our constant potential program we fix the surface
potential such that the induced charge on the Quid is
equal to that of Valleau and with this same potential and
program we calculate the pressure for an infinitely wide
slit we find the same induced charge on the Quid and
pressure on the walls as that obtained with our LE pro-
gram. The net pressure obtained in this way is equal to
that of the LE program and Valleau. Therefore, for the
net pressure quantity one can just ignore the Quid outside
and calculate the net pressure by subtracting the pressure
at infinite plate s separation. However, if the system is,
for example, a vesicle, the charge induced on the Quid
outside will be very different to that of a vesicle of infinite
radius.

In Fig. 10 we show the interaction force per unit area
between two charged plates immersed into a 1:1,0.495 M
symmetrical electrolyte, as a function of the distance be-
tween the plates. The plates have a surface charge densi-
ty rr;„=o,„,=0.227 C/m . The TPE-HNC-MSA pres-
sure for LE boundary conditions are compared to aniso-
tropic hypernetted chain (AHNC) equation results [10]
and a GCMC point [8]. Professor Valleau and co-
workers obtained this GCMC point to compare with the
AHNC results of Professors Kjellander and Marcelja. In
their paper Valleua, Ivkov, and Torrie did this calcula-
tion for a distance between the plates of 8.5 A and mis-
takenly compared it to the AHNC pressure for
~—a =8.5 A. This leads them to say in their paper that
the AHNC equation had an excellent agreement with the
GCMC results. This was an unfortunate error [28].
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FICz. 9. Interaction force per unit area P between two
charged plates immersed into a 2:2, 0.971 M symmetrical elec-
trolyte, as a function of the distance between the plates. The
plates are zero ionic diameter of width and o.;„=o.,„,=0.091
C/m . p is the total bulk electrolyte concentration. The black
and the white dots are GCMC results [8]. The solid, dashed,
and dot-dashed curves are the TPE-HNC-MSA results for LE,
constant charge, and constant potential boundary conditions on
the plates, respectively. In (a) linear scales are used for the pres-
sure and the distance between the plates. In (b) nonlinear scales
are used.
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FIG. 10. Interaction force per unit area P between two
charged plates immersed into a 1:1,0.495 M symmetrical elec-
trolyte, as a function of the distance between the plates. The
plates have a surface charge density o.;„=o.,„,=0.227 C/m . p
is the total bulk electrolyte concentration. The black dot is a
CxCMC result [g]. The solid curve is the TPE-HNC-MSA re-
sults for LE boundary conditions. The dash —white squares
curve are anisotropic hypernetted chain (AHNC) equation re-
sults from Fig. 4 of Ref. [10].
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From Fig. 10 it is clear that the AHNC result is very far
away from the GCMC data and the TPE-HNC-MSA re-
sult. On the other hand, in view of Figs. 8 and 9, it is not
surprising that we find a good agreement of this GCMC
point with the TPE-HNC-MSA result. One point does
not prove that the AHNC result is wrong. However, the
qualitative behavior of the AHNC pressure curve is in to-
tal disagreement with the GCMC and TPE-HNC-MSA
results shown in Figs. 8 and 10. The hump shown by the
AHNC equation is probably a feature of the theory [29].

IV. CONCLUSIONS

When two charged plates are immersed into a electro-
lyte solution, the Quid around them polarizes. The gen-
eral electron eutrality condition establishes that: the
charge on the plates plus the induced charge in the Auid
gives a net zero charge. This general statement is corro-
borated by our TPE-HNC-MSA calculations of this sys-
tem, under several boundary conditions. However, in the
literature it has often been assumed a local electron, eutral-
ity condition (LEC) for the fiuid confined by the slit, while
the Auid outside is ignored. The general electroneutrality
condition does not invalidate, in principle, the LEC. In
the past [1,2], a LEC was shown to be valid for constant
potential boundary conditions, whereas no proof of gen-
eral validity or invalidity of the LEC was given for con-
stant charge boundary conditions. In this paper we
showed, by solving the TPE-HNC-MSA theory, that if
the charge on the plates is fixed, for short distances be-

tween the plates, the LEC is violated. The total charge of
the system is a constant independent of the distance be-
tween the plates. If the electrostatic potential on the
plates is fixed the LEC is satisfied, but the total charge is
a function of the distance between the plates. If the sur-
face charge is fixed only on the inner surfaces of the slit
and the LEC is forced on the liquid between the plates,
the LEC for the confined liquid is obviously satisfied
since it is used as a boundary condition. However, the
LEC is satisfied at the expenses of no conservation of the
total charge and Gibbs --."ee energy of the system, as a
function of the distance between the plates. For
sufBciently large values of ~ or d the TPE-HNC-MSA
force between the plates, obtained with the constant
charge boundary conditions, becomes equal to that from
the TPE-HNC-MSA solved with the LE boundary condi-
tions, since for large values of ~ or d the LEC is satisfied,
and these two have a very good agreement with GCMC
simulations obtained with LE boundary conditions. It
has been said that the AHNC equation is the best theory
for inhomogeneous Auids; the results presented here do
not seem to support this statement. These findings could
be relevant for some biological and complex liquids sys-
tems.
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