
Compositional segmentation and long-range fractal correlations in DNA sequences

Pedro Bernaola-Galva´n
Department of Applied Physics II, University of Ma´laga, Spain

Ramón Román-Roldán
Department of Applied Physics, University of Granada, Spain
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A segmentation algorithm based on the Jensen-Shannon entropic divergence is used to decompose long-
range correlated DNA sequences into statistically significant, compositionally homogeneous patches. By ad-
equately setting the significance level for segmenting the sequence, the underlying power-law distribution of
patch lengths can be revealed. Some of the identified DNA domains were uncorrelated, but most of them
continued to display long-range correlations even after several steps of recursive segmentation, thus indicating
a complex multi-length-scaled structure for the sequence. On the other hand, by separately shuffling each
segment, or by randomly rearranging the order in which the different segments occur in the sequence, shuffled
sequences preserving the original statistical distribution of patch lengths were generated. Both types of random
sequences displayed the same correlation scaling exponents as the original DNA sequence, thus demonstrating
that neither the internal structure of patches nor the order in which these are arranged in the sequence is critical;
therefore, long-range correlations in nucleotide sequences seem to rely only on the power-law distribution of
patch lengths.@S1063-651X~96!05905-3#

PACS number~s!: 87.10.1e

I. INTRODUCTION

The finding in 1992 of long-range power-law correlations
extending across more that 104 nucleotides@1–4# has pro-
voked intense controversy between the stance that these have
a far-reaching nature@5–7#, given the implied fractal struc-
ture, and the contention that long-range correlations can be
trivially caused by simple variations in nucleotide composi-
tion along DNA sequences@8–10#. It has been argued, how-
ever, that the way in which patches are organized, and not
the mere existence of patchiness, would be the true source
for long-range correlations@11,12#. For the evaluation of
such alternative proposals, the length distribution of compo-
sitional patches in DNA sequences needs first to be deter-
mined unambiguously.

The identification of the different compositional patches
or DNA domains in a sequence is an important issue in cur-
rent computational molecular biology, since it may be one of
the key steps in understanding the large-scale structure of the
genome. Some preliminary results on the distribution of such
patches have been obtained@13#, but, to our knowledge, a
mathematically rigorous definition of apatchis still missing.
In simple, not long-range correlated DNA sequences, such as
those predominantly integrated by coding regions, composi-
tional patches can simply be identified by eye~see, for ex-
ample, @9#!. However, for complex, long-range correlated

DNA sequences, such a method would be useless, given the
lack of a characteristic patch size@12#, and, therefore, the
presence of subsequences covering the entire range of pos-
sible lengths. What is needed, therefore, is a statistical ap-
proach capable of estimating, with a given confidence level,
the location of borders separating adjacent compositional
patches in a sequence. Here, we introduce a segmentation
algorithm, based on the Jensen-Shannon divergence@14#,
which can be used to segment DNA sequences with long-
range correlations into statistically significant, composition-
ally homogeneous patches. The shuffling of such segments in
a way that preserves the original statistical distribution of
patch lengths, raises important questions about the origin and
significance of long-range correlations in nucleotide se-
quences.

II. METHODS

A. Segmentation procedure

Our aim is to divide a sequence into segments in such a
way as to maximize the compositional divergence between
the resulting DNA domains. We therefore need a method
capable of detecting shifts in sequence composition, thus lo-
cating the possible borders or edges between adjacent do-
mains. The segmentation procedure is described in three
stages:~1! the general strategy of segmentation: sequence
splitting; ~2! the splitting decision: an entropic measure; and
~3! the halt criterion: statistical confidence.

1. Sequence splitting

Most current segmentation methods use a sliding window
along the sequence@15#. However, since our aim is to ana-
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lyze long-range correlations, an overall~not local! view of
the whole sequence may better serve a decision about seg-
mentation. On the other hand, the detection of diffuse bor-
ders of variable extent betrays an undesirable dependence on
the sliding-window size used to scan the sequence@15#. We
performed a splitting procedure one at a time, iteratively,
which is computationally simple and allows a halt at any
point. As a result, any sequence considered for segmentation
is scanned by a sliding border, and the location that opti-
mizes an appropriate measure is selected.

2. The entropic decision

Different measures may be used to quantify the distance
between probability distributions~variance, Kullback diver-
gence, etc.!. For our purposes~discussed below!, we choose
the Jensen-Shannon divergence measure@14#, used recently
by some of us@16# for segmenting textured images.

a. Subsequence probability distributions.Let
S5$a1 ,a2 , . . . ,aN% be a sequence composed ofN symbols
from the alphabetA5$A1 , . . . ,Ak%; take a given position
n(1<n,N) and consider the two resulting subsequences:

S~1!5$a1 ,a2 , . . . ,an%, S~2!5$an11 ,an12 , . . . ,aN%

and let

F ~1!5$ f 1
~1! , . . . ,f k

~1!%, F ~2!5$ f 1
~2! , . . . ,f k

~2!%

be the respective vectors of relative nucleotide frequencies,
i.e., f i

(1) is the relative proportion of the symbolAi in S(1)

and f i
(2) is the relative proportion of the symbolAi in S(2).

For DNA sequences, we can consider the alphabet
A5$A,T,C,G%, with k54, but also the binary alphabets
$R(A or G), Y(C or T)%, or $S(G or C), W(A or T)%, with
k52. Other mapping rules@4# also could be considered.

b. The Jensen-Shannon divergence.The difference be-
tweenF (1) and F (2) is quantified by the Jensen-Shannon
divergence measureDJS @14#. For two distributions,

DJS~F
~1!,F ~2!!5H~p1F

~1!1p2F
~2!!2~p1HF

~1!

1p2HF
~2!!, ~1!

where

H~F !52(
i51

k

f i log2 f i ~2!

is Shannon’s entropy of the distributionF , and
p1 ,p2>0,p11p251 are the weights ofF (1) andF (2), re-
spectively.

From the Jensen inequality, it is easy to prove that
DJS(F

(1),F (2))>0, with equality if, and only if,
F (1)5F (2). Other relevant properties of this measure are as
follows: ~1! there is symmetry with respect to the arguments;
~2! F (1) andF (2) are not required to be absolutely continu-
ous; ~3! a reachable upper bound exists@17#, which is sim-
plified to minlog2, log2 ~number of distributions!# ~in general,
not reachable!; ~4! the ability to be generalized to any num-
ber of distributions; and~5! the distributions can be
weighted.

c. Application of the Jensen-Shannon divergence for seg-
menting nucleotide sequences. Besides the above convenient
general properties, theDJSmeasure has three advantages for
our particular application. First, the weight property makes it
possible to quantify the influence of the two subsequence
lengths being compared. These different lengths must con-
tribute differently to theDJS measure; we therefore take
p15n/N andp25(N2n)/N. Second, the low value ofk,
besides the fact of having only two distributions, prevents
the risk of handlingDJS values close to the upper bound,
which would otherwise lower the discrimination power.
Third, a simple expression may be obtained for the signifi-
cance level ofDJS, which makes it possible to halt the split-
ting process when convenient~see below!.

The value ofn corresponding to the maximumDJS along
a given sequence segment is assumed to separate subseg-
ments with the maximum compositional differentiation be-
tween them. Therefore, the compositional homogeneity is
higher within each of the two resulting subsegments than in
the parental segment. A more detailed description of the al-
gorithm, generalizing it to non-DNA alphabets, will be re-
ported elsewhere@18#.

3. Halting the segmentation

A problem with this segmentation method is that, except
for equal-symbol strings, at least one position in the se-
quence always maximizes the difference between the two
resulting subsequences. Therefore, the segmentation process
will continue until the number of segments virtually reaches
the number of nucleotides in the sequence, which would be
useless. This problem can be overcome in two ways:~1! by
taking a minimum segment length beyond which further di-
vision of a given segment is not allowed; and~2! by estab-
lishing a minimum significance level for the Jensen-Shannon
entropy below which segmentation cannot take place. The
first bound can be easily established heuristically, i.e., taking
a minimum segment length of 10 nucleotides for which
short-range correlations are known to be in effect@4#. How-
ever, such a bound leads to biased distributions of lengths.

In establishing the second type of bound, we need to dis-
tinguish statistically significant differences between two po-
tential subsegments from purely random fluctuations. Let us
consider the original sequence as an outcome of a source
consisting in a series ofN independent identically distributed
~i.i.d.! random variables; then, we can ask for the probability
of obtaining a divergence value equal to or higher than the
observed one. If such a probability is lower than a given
value 12r ~with r usually close to 1!, it is inferred that the
new border establishes a difference betweenS(1) andS(2) at
a significance levelr. Choosingr is a critical question —low
values would lead to an exhaustive segmentation of the se-
quence, while high values would result in no segmentation at
all. The division of the sequence is continued while signifi-
cant differences between potential subsegments are found
and, therefore, until all significant borders in the sequence
are identified.

The statistical distribution ofDJS is unknown, being dif-
ficult to ascertain analytically~even for binary alphabets!. In
the Appendix, we present an approximation to this problem,
showing that the quantiles of the distribution are independent
of both the source probability distribution~thus allowing the
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comparison of DNA sequences of any base compositions!
and the splitting point intended. This conclusion was con-
firmed numerically through Monte Carlo experiments. A se-
ries of pseudorandom sequences with lengths ranging from
50 to 100 000 symbols were obtained by using the RAN3
random number generator@19#. Some experiments have been
replicated using the Acarry@20# and RANECU@21# random
generators, with similar results. Usingk52,4 and different
nucleotide compositions, we computed theDJS values for all
the possible segmentations.

B. Monitoring long-range correlations

DNA walks were constructed as described in@2#. In brief,
a one-dimensional walker dictated by the nucleotide se-
quence descends one step when there is a purine
@u( i )521# and rises one step when there is a pyrimidine
@u( i )51#. The displacement of the walker aftern steps,
y(n), is defined as

y~n![(
i51

n

u~ i !, ~3!

which is displayed on a graph ofy vesusn as in Fig. 1. For
monitoring long-range correlations, we used the detrended
fluctuation analysis~DFA!, as described in@12#. This method
enables the detection of long-range correlations embedded in
a patchy landscape, also avoiding the spurious detection of
apparent long-range correlations that are an artifact of patchi-
ness. DFA involves the following steps:~1! Divide the entire

sequence of lengthN into N/ l nonoverlapping boxes, each
containingl nucleotides, and define the local trend in each
box to be the ordinate of a linear-squares fit for the DNA
walk displacement in that box.~2! Define the detrended
walk, denoted byyl(n), as the difference between the origi-
nal walk y(n) and the local trend. Calculate the variance
about the detrended walk for each box, and calculate the
average of these variances over all the boxes of sizel, de-
notedFd

2( l ). Recently, this method was slightly modified by
using a sliding box@4#.

III. RESULTS

Since the long-range correlations found in DNA se-
quences are mostly based on purine-pyrimidine strand biases
@2,12#, we used mainly this alphabet throughout this work,
except where indicated.

A. Segmenting Lévy-walk sequences

A generalized Le´vy walk is an ensemble of many uncor-
related biased random walks that are spliced together, where
the length of these biased random walks follows a power-law
distribution @13#. Figure 1 shows the results of assaying our
segmentation algorithm on a computer-generated sequence
conforming to a Le´vy walk. The segmentation is shown su-
perimposed over a random walk of the sequence in order to
emphasize the power of our algorithm in uncovering the bor-
ders for purine-pyrimidine strand-biased regions. The 20 pre-
established borders in the Le´vy-walk were all identified by
segmenting the sequence at the 99.95% significance level.
True and predicted border positions showed good agreement,
taking into account the statistical nature of the segmentation
method used.

B. Segmenting DNA sequences

The segmentation algorithm was then applied to both a
human DNA sequence~HUMTCRADCV, GenBank acces-
sion number M94081, 97634 bp! and a bacterial one
~ECO110K, accession number D10483, 111401 base pair! at
different significance levels. It is known that the scaling ex-
ponents for these sequences, as determined by DFA, are 0.61
and 0.51, respectively, thus indicating long-range correla-
tions in the first but not in the second sequence@12#. Such a
difference may rely on the existence of long-range correla-
tions in non-coding, and its absence from coding DNA
@2,22,23#, given the differential abundances of both types of
regions in these sequences.

The basic statistics for the obtained distributions of seg-
ment lengths in both sequences, using three different DNA
alphabets, are shown in Table I. For a given significance
level, the number of compositional segments was higher and
the mean segment length was lower in the human sequence
than in the bacterial one. The distributions of segment
lengths in both sequences were widespread~standard devia-
tion @ mean! and always strongly skewed to the right~mean
@ median!, the skewness coefficients being clearly higher
for the human sequence~Table I!. However, when the
$S,W% alphabet was used, the skewness differences between
correlated and noncorrelated sequences were not as apparent
~in fact, at 95% significance level, the skewness coefficient

FIG. 1. Segmentation of a computer-generated sequence of
length 10 164 bp conforming to a Le´vy walk. A generalized Le´vy
walk was generated as described in detail in the Ref.@13#, except
that successive strings were taken in alternating directions. The pa-
rameters for generating the Le´vy walk were set as follows:
m52.45~the Lévy-walk parameter!, l c5150~the lower cutoff char-
acteristic length!, ande50.3 ~the bias parameter!. The borders for
different segments are shown superimposed over a random walk of
the sequence. True~preestablished! borders in the Le´vy walk are
indicated by broken lines~below the random walk!, and those pre-
dicted by the segmentation algorithm at 99.95% significance level
by dotted lines~above the random walk!. Border prediction devia-
tions~expressed in nucleotides! are indicated by numbers on the top
of the respective dotted lines.
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was slightly higher for the length distribution derived from
the bacterial sequence!. This result agrees with both the lack
of long-range correlations observed in the HUMTCRADCV
sequence when the$S,W% mapping rule was applied
(a50.52, l54 to 100!, and previous observations@24# not-
ing that $S,W% landscapes did not exhibit a power-law cor-
relation as robust as with the$R,Y% alphabet.

Figure 2 shows a double logarithmic plot with the fre-
quency distributions of lengths obtained after segmenting
both the human and the bacterial sequences. The best fit to a
straight line, indicating the presence of a power-law distribu-
tion of patch lengths, was found by segmenting the human
sequence at 80% significance level.

C. Recursive segmentation

Another way to demonstrate the structural differences be-
tween sequences with and without long-range correlations is
to segment the sequences recursively, each time to a deeper
level. In such analyses, the longer segment obtained at a
given step was again divided using a lower significance
level, the proccess being repeated over several steps. A clear
difference appears: while in the bacterial sequence composi-
tionally homogeneous, as well as relatively long segments
were soon found@Fig. 3~a!#, significant segmentations con-
tinued to appear at each step in the human sequence@Fig.
3~b!#.

As expected, each of the regions resulting from segment-
ing Lévy-walk sequences Fig. 1 lacked long-range correla-
tions ~it should be remembered that the various random
walks spliced together to construct the Le´vy walk were all

uncorrelated!. The segments from the bacterial sequence
were also uncorrelated, a result consistent with the observa-
tion that coding sequences lack long-range correlations@2#.
However, most of the regions resulting from segmenting the
human sequence at 99% significance level show scaling-

TABLE I. Results of segmenting DNA sequences with~HUMTCRADCV! and without ~ECO110K!
long-range correlations at different significance levels, and using three different DNA alphabets.

Significance No. of Mean
Sequence level segments length Median s Skewness

Alphabet$R,Y%
HUMTCRADCV 99 189 517 60 1887 7.4

95 1335 73 10 300 9.9
90 4945 20 5 82 17.9

ECO110K 99 35 3183 609 5424 2.4
95 181 615 14 1905 4.9
90 691 161 6 858 12.2

Alphabet$S,W%
HUMTCRADCV 99 121 807 226 1505 3.0

95 580 168 24 470 6.4
90 1663 59 6 226 10.2

ECO110K 99 72 1547 282 3076 2.9
95 401 278 9 1089 6.9
90 1294 86 5 532 14.3

Alphabet$A,T,C,G%
HUMTCRADCV 99 181 539 157 1114 3.7

95 1399 70 19 174 8.0
90 5306 18 8 51 17.7

ECO110K 99 75 1475 553 2002 1.9
95 388 287 22 832 5.0
90 1995 56 7 312 14.1

FIG. 2. Double logarithmic plot of frequency distributions of
segment lengths in HUMTCRADCV and ECO110K after segment-
ing at 80% significance level. The binary alphabet$R(A or G),
Y(C or T)% was used. The regression line for the length distribution
obtained in the human sequence is shown
(r 250.99,P55.81310211).
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exponent values' 0.6, as occurs in the entire sequence@Fig.
4~a!#. When the longer segment in the previous step~nucle-
otide positions 59,754-78,025! was again segmented at 95%
significance level, all the resulting subsegments also showed

scaling exponents' 0.6 @Fig. 4~b!#. This remained true in
subsequent steps, until the segment length was short enough
(,200 bp! to prevent the safe application of DFA.

Given the lack of long-range correlations in coding DNA
@2,22,23#, the few uncorrelated segments identified by our
algorithm in the human sequence were searched for the pres-
ence of genes or exons. None of the 15 exons and 55 pos-
sible gene fragments known in this sequence~see sequence
annotation! map within the coordinates of the only identified
segment with a scaling exponent below 0.50@nucleotide
positions 94,141-94,811, see@Fig. 4~a!#. Instead, what
we found there were 21 repeats of the decamer
GCCTGTGGAG. In other long-range correlated sequences,
we identified some longer uncorrelated segments. This oc-
curs, for example, in the human sequence for theb-globin on
chromosome 11~HUMHBB, accession number J00179,
73326 bp!, where two long segments without long-range cor-
relations were identified. Again, both segments included long
stretches of repetitive DNA. The first one, from nucleotide
position 22 896 to 29 407, included the LINE-1c region, and
the second one, from nucleotide position 67 089 to 73 213,
corresponded to the KpnI family repeat.

D. Shuffling the resulting segments

The higher-level organization proposed for sequences
with long-range correlations@5–7# may rely on a specific
distribution of compositional patches@11,12#. Therefore,
once a sequence is divided into compositionally homoge-
neous segments, these can be manipulated in different ways
in order to deduce some clues about the principles governing
long-range correlations. The segments identified in a given
DNA sequence were shuffled by two different procedures:
~1! by randomly reordering the nucleotides within each indi-
vidual segment~thus obtaining a shuffled sequence thereafter
called type I!, and~2! by randomly rearranging the order in
which the different segments occur within the sequence~then
obtaining a shuffled sequence of type II!. While sequences of
type I conserve both the original patchiness and its spatial
distribution along the DNA sequence~it should be remem-
bered that for a given significance level, the compositional
differences within a segment are not statistically significant!,
shuffled sequences of type II conserve the original patchi-
ness, but not the location of the different patches along the
sequence. However, the two shuffling procedures share an
important feature: both conserve the estimated distribution of
patch lengths in the natural sequence.

Figure 5 shows the detrended fluctuation analyses of
HUMTCRADCV and two random sequences derived from
it, each obtained by segmenting the original sequence at the
95% significance level, and then separately applying each of
the shuffling procedures mentioned above. The scaling expo-
nents for the two shuffled sequences, as determined by DFA,
were similar (a50.62 for both sequences! to that observed
in the natural one (a50.61), a result confirmed by standard
Fourier analysis, as implemented by@1# ~not shown!. The
significance level used for segmenting the DNA sequence
was not a critical factor, as figures ranging from 50 to 99%
equally led to shuffled sequences with unchanged values for
the scaling exponents~not shown!. For comparative pur-
poses, we also analyzed random sequences derived from

FIG. 3. Recursive segmentation of both the noncorrelated bac-
terial sequence ECO110K~a! and the long-range correlated human
one HUMTCRADCV ~b!. The longer segment obtained at a given
significance step was recursively segmented at a lower significance
level. The proportion of purines (A1G) in each segment is repre-
sented on the ordinates. The binary alphabet$R(A or G), Y(C or
T)% was used.
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HUMTCRADCV by separately shuffling~or randomly rear-
ranging! equal-length segments of a fixed length~e.g., 500 or
1000 bp!. In this third type of random sequences, the original
distribution of lengths was destroyed; consequently, the
long-range correlations were also lost (a 5 0.52, Fig. 5!.

IV. DISCUSSION

A. The statistical distribution of patch lengths

When our segmentation algorithm was applied to DNA
sequences using the$R,Y% or $A,T,C,G% alphabets, the re-
sulting distributions of lengths were more strongly skewed to
the right for long-range correlated sequences than for non-
correlated ones~Table I!. Such a difference, clearly revealed
in Fig. 2, is probably due to the power-law distribution of
lengths proposed for long-range correlated sequences
@11,12#. This figure also shows another difference in the dis-
tribution of lengths displayed by sequences with and without
long-range correlations —the shorter segments were more
frequent in the human than in the bacterial sequence, while
the contrary occurred for the longer patches.

B. Compositional scale invariance

Our segmentation algorithm provides an additional way to
look for structural differences between sequences with and
without long-range correlations; Fig. 3 shows that, after re-
cursive segmentation, only the human sequence displayed
similar distributions of lengths at different segmentation
steps. This means that compositional variations in long-range
correlated sequences show scale invariance, a feature typical

of fractal structures. The distributions of lengths shown by
the human sequence at different segmentation levels are in
fact reminiscent of fractal sets with statistical self-similarity
@25#.

While some authors@8,9# have claimed that long-range
correlations can be fully accounted for by compositional dif-
ferences between different subregions of DNA sequences,
others @13# assimilated long-range correlated DNA se-
quences to generalized Le´vy walks. A prediction shared by
both proposals is that a sequence could be decomposed into
statistically stationary subregions with no internal structure.
This was the result we obtained when segmenting either
Lévy walks ~Fig. 1! or the bacterial uncorrelated sequence
@Fig. 3~a!#. However, when we analyzed the human sequence
the results looked very different—except for domains includ-
ing repetitive DNA, most of the segments obtained at a given
significance level continued to show long-range correlations
@Fig. 4~a!#. When correlated segments were recursively di-
vided, the resulting subsegments again showed long-range
correlations@Fig. 4~b!#, until a point was reached where the
segment length was so short that DFA could not be safely
applied.

It has been claimed that compositional heterogeneity may
be present at all scales in all classes of DNA sequences@8#.
With the help of a tool such as the segmentation algorithm
presented here, we could attempt to distinguish statistically
significant heterogeneities in DNA nucleotide composition
from purely random fluctuations. Our results revealed that
statistically significant, and probably biologically meaning-
ful, compositional heterogeneities at all scales appear only in

FIG. 4. ~a! Scaling-exponent values in seg-
ments longer than 200 bp, after segmenting the
human sequence HUMTCRADCV at 99% sig-
nificance level. The corresponding values are
plotted at the middle of each segment.~b! The
longer resulting domain~18 272 bp! was again
segmented at 95% significance level, then com-
puting the scaling-exponent value for each sub-
segment longer than 200 bp. The segmentation
borders are indicated by vertical tick marks on
the horizontal bar below the figure. Broken hori-
zontal lines mark scaling exponents of 0.61~cor-
responding to the entire sequence! and 0.50~cor-
responding to the absence of long-range
correlations!.
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long-range correlated DNA sequences@Fig. 3~b!#, and not in
the noncorrelated ones@Fig. 3~a!#. In this way, in agreement
with previous observations@11,12#, only long-range corre-
lated sequences exhibit a complex, statistically significant,
multi-length-scaled structure.

C. The organization of compositional patches

Type I and type II shuffled sequences displayed scaling
exponents similar to that of the DNA sequence from which
they were derived~Fig. 5!. This means that the segmentation
algorithm described here allows us to decompose a complex,
long-range correlated sequence into segments in such a way
that, when shuffled separately or when rearranged at random,
the original correlation structure is retained. However, when
the same shuffling procedures were applied to segments of a
fixed length~say equal-length segments of 500 or 1000 bp!,
the scaling exponent dropped to' 0.5.

These results first of all demonstrate that our segmenta-
tion algorithm estimated reasonably well the distribution of
lengths present in long-range correlated sequences—once
identified, the segments could be reordered at random with-
out altering the correlation scaling exponent of the entire
sequence, at least as measured by DFA. The reason the
shuffled sequence retained long-range correlations might be,
therefore, that the length distribution in the original sequence
was not destroyed by the shuffling procedure we used. Sec-
ondly, our results also prove that the internal structure of
patches is irrelevant to the scaling exponent computed by

DFA—each segment can be independently shuffled without
changing the value of the scaling exponent for the entire
sequence. Again, the length distribution in the original se-
quence was not altered by this second shuffling procedure.
Thus, neither the internal structure of patches nor the order in
which they were arranged in the sequence seems to be rel-
evant for the obtained scaling exponent value. We conclude,
therefore, that the long-range correlated structure in a se-
quence is mainly dependent on a specific distribution of
patch lengths. Some authors@11,12# have stressed that the
way in which compositional patches are organized deter-
mines long-range correlations. According to the results pre-
sented here, such organization seems to reduce to a power-
law distribution of patch lengths. This is not to say that in
biological sequences the order of the different patches or
their internal structure would be unimportant, but only that
for the particular measure of long-range correlations we are
using—the correlation scaling exponent derived from
DFA—both of these features appear to be not critical.

D. The source for long-range correlations

Searching for the source of long-range correlations in
DNA sequences is equivalent, therefore, to seeking the evo-
lutionary mechanisms behind a power-law distribution of
patch lengths. Two models have been proposed to account
for the generation of long-range correlated sequences: The
expansion modification system@26# and the insertion-
deletion model@24#. Using the premises of these models, we
generated long-range correlated sequences, which were then
segmented by means of our algorithm. In both instances, all
the resulting segments also showed long-range correlations;
the recursive segmentation of these segments led to shorter
subsegments that were again correlated~not shown!. There-
fore, the sequences generated by both models displayed the
characteristic multi-length-scaled structure seen in DNA se-
quences.

Li’s model is based on duplication with modification~mu-
tation!, two well-documented processes in the evolution of
DNA sequences@11,27#. The second model attributed the
origin of long-range correlations to repeated cycles of dele-
tions and/or insertions of sequence segments, probably cor-
responding to retroviral insertions, partial gene duplications,
or transpositions. The recent demonstration that the size dis-
tribution of deletions and/or insertions follows a power-law
distribution @28# supports such a model. Given the higher
rate at which natural selection accepts all these mutations in
noncoding DNA, as compared to coding genome regions
@29#, the presence of long-range correlations in the first but
not in the second ones@2# can be readily explained@11,24#.
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FIG. 5. Detrended fluctuation analysis of HUMTCRADCV and
two shuffled sequences derived from it after segmenting at 95%
significance level, and then separately shuffling the resulting seg-
ments in the two ways described in the text. The solid lines, the best
fits from l 5 4 to 8192, have similar slopes (a'0.6) in the three
sequences. The analysis of a random sequence obtained by sepa-
rately shuffling equal-length segments of 500 bp is also shown for
comparison; the broken line is the best fit froml 5 4 to 362
(a50.52). The binary alphabet$R,Y% was used for the analysis of
all four sequences.
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APPENDIX: AN ANALYTICAL APPROXIMATION TO
THE PROBABILITY DISTRIBUTION OF DJS

The probability distribution ofDJS is unknown. As a first
approximation, we estimated the characteristic valueDDJS in
segmenting a sequence ofN i.i.d. random variablesai
P$A1 ,A2 , . . . ,Ak% with a probability distributionP .

Let F be the relative frequency vector corresponding to a
certain sequence; generally,H(F )<H(P ) @30#. Therefore,
the sample entropy systematically underestimates the source
entropy. In this first approximation, such an error can be
expressed as@31#

DH~N,k!5H~P !2H~F !'
k

2Nln2
. ~A1!

For the two subsequencesS(1) and S(2), and the whole
sequenceS,

H~F !'H~P !2DH~N,k!, ~A2!

H~F ~1!!'H~P !2DH~n,k!, ~A3!

H~F ~2!!'H~P !2DH~N2n,k!, ~A4!

whereF (1) andF (2) are the relative vector frequencies of
the two resulting subsequences when segmenting at position
n. Since the original sequence corresponds to a series of
i.i.d., the same source entropy is considered in all three
cases.

Taking into account that the weights arep15n/N and
p25(N2n)/N, and by replacing in Eq.~1!, we get

DDJS~N,K !'DH~N,k!'
k

2Nln2
. ~A5!

We assume that, ifDDJS is independent ofn andP , then
the distribution ofDJS is too, at least in a first approximation.
Therefore, we expect that

P$DJS<x%5 f 8S x

DJS
D5 f SNxk D ~A6!

and, therefore, the quantiles of the distribution may be ex-
pressed as

Dr~N,k!5
k

N
dr , ~A7!

whereDr(N,k) is the value ofDJS for which lower or equal
divergences occur with a probabilityr , dr being a factor
depending only onr .

The Monte Carlo experiments mentioned in the main text
allowed us to estimatedr for different significance levels
~Table II!. Note thatDr is independent of bothP ~thus al-
lowing the comparison of DNA sequences of whatever base
compositions! and n ~regardless of the splitting point in-
tended!.
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