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Bifurcations from Taylor vortices between corotating concentric cylinders
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Taylor vortex flow between corotating concentric cylinders bifurcates to a variety of wavy vortex
flows. '%e have experimentally studied the vicinity of onset of these flows as the axial wavelength, the
inner cylinder speed, and the outer cylinder speed are changed. The selection of secondary flows de-

pends strongly on the Taylor vortex size. At small Taylor vortex wavelength an m =1 mode as well as a
combination of modes are described. The wavy flows are the result of secondary instabilities that devel-

op either at the inflow boundary, the outflow boundary, or inside of vortices near their cores.

PACS number(s) 47.32.—y

I. INTRODUCTION

The Taylor-Couette system consists of two indepen-
dently rotating concentric cylinders with a Quid-filled

gap. The simplicity and symmetry of the geometry and
the richness of the observed Qow behavior have made it a
popular system for studying nonequilibrium transitions
leading to spatiotemporal turbulence [1,2]. However,
much of the behavior remains poorly understood, partic-
ularly when the outer cylinder rotates. In this paper we
will systematically explore the effects of varying the inner
and outer cylinder rotation rates and the wavelength of
the fundamental pattern on the emergence of secondary
Qows.

Previous studies [2—4] have revealed difFering se-
quences of flow transitions in the corotating and
counter-rotating cases. For infinitely long cylinders the
base Qow in either case is the well-known circular
Couette Qow with an azimuthal velocity that varies with
radius as [5] V(r)= dr+8/r. Neglecting end effects, the
primary instability of the base Qow, in the corotating
case, results in an axially uniform time independent sys-
tem of axisymmetric Taylor vortices [Taylor vortex flow

(TVF)], as shown in Fig. 1. For our purposes, the driving
of the Qow by the inner cylinder is characterized by the
inner cylinder Reynolds number R, =Q,.r,.d/v, where 0;
is the inner cylinder angular velocity, r; is the outer ra-
dius of the inner cylinder, r, is the inner radius of the
outer cylinder, d =r, —r, is the gap between the
cylinders, and v is the kinematic viscosity. The corre-
sponding parameter for the outer cylinder is the Rey-
nolds number R, =0,r, d /v, where 0, is the outer
cylinder angular velocity.

As R, and R, are varied Taylor vortices become unsta-
ble to various types of azimuthal traveling waves. The
specific pattern that appears depends on R, and R, . At
low R„when R; is increased sufficiently, the wavy vortex
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FIG. 1. Shown are the following photographs of Taylor vor-
tex flows (TVF): (a) at Ro=400, R; =900, and A, =250; (b) at
R0=500, R;=1000, and A.=2.31; (c) at R, =500, R;=1100,and
A, =2. 14; (d) at R, =400, R;=1450, and A, =2.00; (e) at R, =350,
R;=1000, and A, =1.88. The azimuthal direction is along the
parallel black lines (horizontal) and the axial direction is per-
pendicular to these lines (vertical). The black parallel lines are
inflow and outflow boundaries. Between these black lines are
vortices. Adjacent to each vortex is another vortex that circu-
lates in the opposite sense. Neighboring vortices appear darker
or lighter. Below each bright vortex is an outflow boundary and
above each bright vortex is an inflow boundary. The distortion
along the azimuth is due to the refraction effects in viewing the
flow through the cylindrical outer cylinder.
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flow (WVF) pattern appears and this pattern, shown in
Pig. 2, is characterized by a strong distortion of each vor-
tex. The inAow and outflow boundary waves travel to-
gether with the same azimuthal wave number and wave
speed but with a constant phase difference between them.
At higher R„when R; is increased suKciently, the TVF
pattern bifurcates to one or a combination of the follow-
ing azimuthal traveling wave patterns: the wavy inAow
boundaries (WIB) pattern, the wavy outflow boundaries
(WOB) pattern, or the twisted vortices (TWI) pattern (see
Figs. 3 and 4) [2,4]. The WIB and WOB are, as their
names suggest, azimuthal traveling waves which appear
localized near the inAow boundaries or the outAow boun-
daries of the vortices. WIB and WOB are subharmonic
with respect to the axial wavelength, i.e., waves on adjaRR

cent inflow (or outflow) boundaries are out of phase, so
that the pattern repeats itself every four cells or two
wavelengths (one axial wavelength consists of two cells
because adjacent cells circulate in opposite senses). The
TWI pattern, which gives each vortex the appearance of
braided rope, consists of azimuthal traveling waves that
are localized inside .the vortices, leaving the inAow and
outflow boundaries stationary. In addition to these pat-
terns we have observed low amplitude time dependent

motion that is also confined to the interior of the vortices.
Several of these Aows and their interactions have been in-
vestigated numerically [6—9] and analytically [10—12].
We restrict ourselves to these secondary, and some terti-
ary, bifurcations, since the Aows beyond these become
considerably more complicated to experimentally charac-
terize and are presently less accessible to theory.

It is well known that the wavelength of rolls in
Rayleigh-Benard convection and vortices in the Taylor-
Couette system influences the nature and location in pa-
rameter space of the secondary bifurcations [2,13]. We
have pursued this observation by systematically varying
the wavelength of the Taylor vortices above and below
the critical wavelength. The critical size cells, which
have an approximately square cross section, are obtained
when the inner cylinder is slowly ramped from Couette
liow to somewhat above the Rayleigh stability line [5].
At the critical wavelength (approximately twice the gap)
WVF, WIB, WOB, and TWI are all present as secondary
bifurcations (see Fig. 5). For low outer cylinder speeds
TVF always bifurcates to WVF although the axial wave-
length does affect the particular onset values. Increasing
the outer cylinder rotation rate stabilizes TVF against
WVF. For large outer cylinder speeds there is a long
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FIGR 2. Shown are the following photographs of wavy vortex
Rows (WVF): (a) at R, =250, R;=900, and X=2.50; (b) at
Ro=300, R;=1000, and A, =2.31, (c) at R, =300, R; =1100,and
k= 2. 14; (d) at R, =300, R; = 1450, and A, =2.00; (e) at R, =200,
R; =900, and A, = 1.88; (f) m = 1 at R, =350, R;= 1100, and
A, =1.88.

FIG. 3. Shown are the following photographs of twisted vor-
tex Rows (TWI): (a) at R, =550, R;=900, and A, =2.50; (b) at
RO=650, R;=1000, and X=2.31; (c) TWI plus wavy inAow

boundaries (%'IB) at R, =650, R; =1200, and A, =2.31; (d) at
R, =750, R;=1050, and X=2«14; (e} at R, =650, R;=1000, and
A. =2.00.
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wavelength preference for WIB and TWI, and a short
wavelength preference for WOB. At the smallest wave-
length surveyed we have observed a WVF with only one
azimuthal wave (m =1). In addition we have observed
weak time dependent activity in the vortices prior to the
onset of WVF, WIB, WOB, and TWI at each wavelength
surveyed.

In the remainder of the paper we will present the de-
tailed results of our experimental study of these bifurca-
tions. We will first describe our system, data acquisition
techniques, and procedures. This will be followed by a
discussion of the flow regimes observed and how they de-
pend on the axial wavelength. We will end with a com-
parison of our results with present theory.

II. APPARATUS

2000

1500

1000

500

Our Taylor-Couette apparatus consists of two
cylinders, each of which is driven by Compumotor
stepper motors (model M83-93). The inner cylinder is
made of black Delrin plastic and has a radius of r,. =5.26
cm, while the outer cylinder is made of Plexiglas and has
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FIG. 5. The How regime diagram for N =30 and
I =30 (X=2.00). Labels refer to regions of stable states. The
lines indicate the stability boundaries separating these stable
states. Shown are the critical R, and R; for transitions to WVF,
TWI, WIB, WOB, TWI+WIB, and WVL. The straight line
above the AZI region is the Rayleigh stability line.
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FIG. 4. Shown are the following photographs of wavy Aows:
(a) WIB at R, =650, R; = 1450, and X=2.31; (b) WIB at
R, =525, R; = 1450, and A. =2.14; (c) WVL at R, =600,
R;=1450, and A, =2.14; (d) WIB at R, =450, R;=1450, and
A, =2.00; (e) wavelets (WVL) at R, =500, R; = 1450, and
k =2.00; (f) wavy outAow boundaries (WOB) at R, =600,,
R; =1100,and A. =1.88.

a radius r, =5.96 cm, giving a radius ratio q=0. 882 and
gap d=r, r; =0.—70 cm. The inner and outer cylinder
radii are known to within 0, 005 cm. Coaxial with the
two cylinders is an independently rotating table also con-
trolled by a Compumotor stepper motor (model M106-
178). The rotating table makes it possible to make obser-
vations and measurements in the rotating frame of refer-
ence. Electrical connections to instruments are provided
by 25 coaxial cables connected through brushes to the
laboratory frame of reference. The Compumotor stepper
motors are controlled through Compumotor indexers
(models 172 and 2100). The rotation speeds are precise to
0.001 Hz and may be changed or ramped through com-
puter control. In the procedures used here we ramp the
speed of one of the motors while the other motor's speed
is fixed. The inner cylinder is directly driven by one mo-
tor, while the outer cylinder is linked to the second motor
by means two sprockets and a timing belt, which pro-
duces a speed reduction of the cylinder by a factor of 4.

By operating the apparatus in a controlled environ-
ment room, the fluid temperature is kept constant to
within 0. 1'C during a run. The resulting uncertainty in
Reynolds number is 1% for moderate to large values of
R;, .

In order to maintain consistent end conditions the
working fiuid region (the region of experimental interest)
is bounded by two Teflon collars which are attached to
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the outer cylinder by rubber 0 rings. The aspect ratio
I ( = I—/d, where I is the axial length of the working re-
gion) was fixed at 30 for this study, although the system
will accommodate I up to 73 by changing the location of
the Teflon rings. This aspect ratio is known within
=1.0%. The Tefion collars ensure, via Ekman pumping,
an inflow boundary at both the top and bottom boun-
daries and thus an even number of Taylor vortices in the
working Auid region. We specify the local dimensionless
axial wavelength, using d as our length scale, as A, =A, "/d
where k* is the unscaled size of a particular vortex pair.
This may or may not be identical to the average over a11
the vortices A, =2I /X, where X is the number of vortices
in the system.

We used distilled water for our working Auid together
with 1% by volume mixture of Kalliroscope A@1000 for
Aow visualization. The Kalliroscope consists of an aque-
ous suspension of reflective =30X6X0.07 pm crystal-
line platelets [14]. We have maximized the contrast by
viewing the Aow radially toward the cylinders while il-
luminating the Aow from nearly an axial direction. Savas
[15] has made a quantitative analysis of refiective ellip-
soidal particles suspended in a viscous fluid. His work
shows that the particles tend to align along the stream
surfaces (surfaces of constant velocity of the entire three
dimensional (3D) fiow, also called streamlines in a 2D
fiow) of the fiow. Therefore the base Couette fiow looks
like a uniform cylinder because the stream surfaces are
cylinders that are coaxial with the inner and outer
cylinders. Any radial Aow is indicated by a lack of
reflection, revealing the black inner cylinder. The vor-
tices in TVF look like donuts because their stream sur-
faces are approximately tori with their axes perpendicu-
lar to the cylinders' axes. The centers of the vortices ap-
pear white because the stream surfaces are primarily
parallel to the cylinder wall in the (O, z) plane (where r, 0,
and z are the radial, azimuthal, and axial coordinates, re-
spectively). The infiow and outfiow boundaries appear
dark because the stream surfaces are primarily in the
(r, O) plane. Because the stream surfaces in the center of
the vortices tend to tilt radially outward near an outflow
boundary and radially inward near an inAow boundary
[6—9) there is a difference in the refiected brightness be-
tween adjacent Taylor vortices (see Fig. 1). Schwarz [16]
has found that fakes which initially have random orien-
tations will, when subjected to a shearing velocity field
such as dV„/dz, develop substantial alignment in the
stream planes in a time of order (dV„/dz) '. The fiakes
respond quickly to the change in the local velocity fields,
especially in regions of strong shear. The distilled water
is boiled prior to mixing with the Kalliroscope to remove
dissolved air that sometimes leads to bubble formation on
the end rings. The Auid mixture lasts 2 —3 days before it
deteriorates. The system is cleaned by Aushing it with a
dilute solution of NaOH, which dissolves the platelets.
The NaOH is then Aushed out with multiples rinses of
distilled water. The presence of Kalliroscope may lead to
gravity-induced Taylor vortex nonuniformities [17]. We
have checked our results by slowly ramping the system
with the rotation axis horizontal in order to ensure that
gravity does not aFect the results.

III. PROCEDURES AND DATA ACQUISTION

The initial step in any run is the establishment of the
desired axial wavelength. The wavelength is varied by
changing the number of vortex pairs for a fixed I. In
general terms this is accomplished by slowly rotating the
outer cylinder (keeping R, ~ 50) and then quickly ramp-
ing R,. above the onset of TVF. This produces disloca-
tions in the vortices that can rapidly be removed by in-
creasing R; to above 4000 where the vortices are highly
turbulent. In this turbulent state the vortices rapidly be-
come more uniform in size [18]. Depending on the exact
protocol followed, diFerent numbers of vortices will re-
sult. The procedure is repeated until the desired number
of vortices is obtained. The system is then quickly
ramped in parameter space into a WVF state where the
vortices are allow to reach a more uniform axial wave-
length. After some time the system is ramped to ihe ini-
tial point of the run and allowed to relax to a uniform
TVF state. A uniform initial state is generally achieved
within 30 min.

Baxter and Andereck [13]found, in the corotating case
and once a uniform state had been produced, that the
ramping rate had little eFect on the secondary Aow onset
values if the dimensionless ramping [19]rate a, defined as

a = (dR, , /dt) [l(ro r, ) /v—],
was less than 20. We have kept to this protocol to ensure
quasistatic conditions and consistency from run to run.
For comparison, Park, Crawford, and Donnelly [19]
found that, for the transition from Couette Aow to TVF
with a stationary outer cylinder, quasistatic conditions
were achieved for a ~ 10.

The onset of instabilities in the visualized Aow could
sometimes be observed in real time. However, due to the
low ramping rates necessary, time lapse video recordings
were typically used to assist in the determination of these
instability points. The video recorder (Panasonic model
AG-6010) was usually set for a time interval between
frames of 0.4 sec. This allowed the recording of 24 h of
ramping on one 2 h video cassette. Since for the largest
ramping rates used, velocity changes were made once a
minute, and then in increments of only 0.00025 Hz, the
time resolution of the recorder was sufhcient to obtain ac-
curate onset values.

To monitor the wavelength of the Taylor vortices we
used a linear 1024 pixel charge coupled device (CCD)
camera. The line of pixels was oriented parallel to the
cylinder axis and a telephoto lens formed an image of the
visualized Aow on the array. With our system size the
resolution of the image was 0.2 mm. The signals from all
1024 pixels were digitized with a 12 bit analog to digital
(A/D) converter and this frame was then sent to our
computer. The computer averaged 50 randomly chosen
frames, thus removing the eFects of vortex boundary
waves, and stored the result.

After either R; or R, has been ramped to the desired
final value each set of averaged frames is analyzed. The
positions of the inflow and outflow boundaries are found
by least squares fitting of parabolas to the intensity mini-
ma. We know that adjacent to the two end collars are
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the inAow boundaries of the Ekman-pumped cells. By lo-
cating the first minimum away from each collar the
Ekman-pumped cell sizes are determined. The Ekman
wavelength is the axial length of both Ekman-pumped
cells. Next, the axial distance between every other
minimum is found. This is the axial distance between
consecutive infIow or outAow boundaries and thus also
the local axial wavelength. The local wavelengths in the
bulk are then averaged (the bulk excludes the vortex pairs
immediately adjacent to the Ekman-pumped cells since
they are sometimes influenced by end effects). The wave-
lengths in the bulk and the Ekman wavelengths are calcu-
lated for each averaged frame and displayed as a function
of inner or outer cylinder Reynolds number.

We also used the CCD camera to record the light
reAectance of the patterns along the axis of the system as
a function of time to produce space-time diagrams. A
frame (a 1024X1 array of intensity versus axial position
data) was recorded every 0.14 s. The data are then pro-
cessed and displayed in a two dimensional format with
the intensity and time coordinates sharing an axis.

The radial and axial cross section of the Aow was visu-
alized by shining a high intensity planar sheet of white
light radially into the gap. The light sheet was produced
by either placing a slide of a thin slit into a slide projector
or by passing high intensity white light through a thin slit
cut into a screen placed next to the outer cylinder. This
technique efFectively visualizes the interior of the vortices
and was used to determine the onset of the weak time
dependent activity internal to the vortices.

We used a single point reflectance technique and a ro-
tating table to determine the frequencies and azimuthal
wave numbers of the WIB, WOB, and WVF [20] at
selected parameter values. The azimuthal wave number
is the integer number of wavelengths in one azimuthal
traverse of the cylinders. Spectra of the Aow were ob-
tained by shining monochromatic laser light into the How
and collecting light rejected from the Kalliroscope with
a photodiode. The signal from the photodiode was digi-
tized and Fourier transformed to obtain a spectrum.
This apparatus was mounted on a rotating table so that
spectra of the time dependent Aows could be taken in a
rotating frame of reference that is coaxial with the coro-
tating cylinders. As shown by Zhang and Swinney [20],
the slope of a plot of azimuthal wave frequency versus
table frequency is the negative of the azimuthal wave
number while the x intercept is proportional to the wave
speed.

To And the critical values of R; and R, for bifurcations
from TVF to WVF, WOB, WIB, or TWI we tried both
increasing R; with Axed R, and increasing R, for fixed
R;. The transitions from TVF to WVF were only slightly
affected by the different ramping procedures (shifting an
amount comparable to the run-to-run repeatability). The
transitions from TVF to WIB, WOB, or TWI were more
sensitive to the ramping procedure. The Taylor vortices
tended to remain more uniform at higher R, if we Axed

R; and varied R, instead. This is probably due to the
larger end effects generated by Ekman pumping at higher
R, . Nonuniformities in the TVF wavelength cause some

ambiguity in the onset values of instabilities since
different size Taylor vortices have different onset values.
We note, however, that for a run at a given X in the
range of R; and R, surveyed, the variation in local wave-
length AA, is smaller than the change in average wave-
length hA, between runs with different X (b,A, =0. 1 for
N =26 while AA, =0.19 between %=24 and %=26,
AA, =0.05 for %=32 while EA, =0.12 between %=30 and
%=32). Although there is some uncertainty in the axial
wavelength of the vortices at a given X, we argue that
since AA, & AX we are justified in plotting the fiow regime
diagrams for fixed I and X because the parameter spaces
at different X do not overlap. A more precise procedure
would involve continuously varying I during a run to
maintain a constant A, , but this has not been attempted.

IV. RESULTS

The main results of this work are shown in Fig. 6—8,
the Aow regime diagrams for the %=26, 28, and 32
cases. Figures 5 and 9 are subsets of previous surveys
[2,13]. Figure 10 is a composite of these results. These
diagrams show the critical Reynolds numbers for bifurca-
tions from Taylor vortices for a range of A, from 1.88 to
2.50. In all cases the bifurcations were found to be super-
critical within experimental error, except as otherwise
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FIG. 6. The How regime diagram for X=26 and
I =30 (A, =2.31). Labels refer to regions of stable states. The
lines indicate the stability boundaries separating these stable
states. Shown are the critical R, and R; for transitions to WVF,
TWI, WIB, TWI + WIB, and WVL. The straight line above
the AZI region is the Rayleigh stability line.
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FIG. 11. Shown is the space-time diagram
of the weak time dependent activity at
A. =2.00, R, =500, and R; =1000. Two inAow
and three outQow boundaries are shown (the
large intensity minima). Inside of these vor-
tices are weaker dark lines that exhibit time
dependence.
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that the TVF to WVF transition line increases in slope as
the average axial wavelength decreases (this effect was
first noted by Coles [3]). In other words, compared to the
larger wavelength vortices, smaller wavelength vortices
at a given R, suppress the onset of WVF to higher R,
The most obvious difFerences for the various wavelengths
occur in the fast outer cylinder rotation case (R, ~ 450)
where we observed TWI, WIB, WOB, and combinations
of these. As can be seen in Fig. 8 transitions to WOB and
WVF occur at %=32, including a transition to a novel
m =1 WVF. WIB are not present for %=32. WIB,
WOB, and TWI are all found for %=30, as can be seen
in Fig. S. The %=26 and 28 diagrams shown in Figs. 6
and 7 show that WIB are present at larger R, and TWI
are present at lower R, Waves form on the outAow
boundaries only after WIB have formed and this com-
bination is called wavelets (WVL) [2,10]. In Fig. 9 for
%=24, the largest wavelength surveyed, TWI and TWI
in combination with WIB [13] occur while WOB are ab-
sent. A comparison of the diagrams shows that increas-
ing A, destabilizes TVF to TWI while stabilizing TVF
against WIB and WOB. In summary, vortex pairs larger
than the critical axial wavelength prefer WIB and TWI
while vortex pairs smaller than the critical axial wave-
length prefer WOB.

We also observed weak time dependent activity in TVF
prior to the onset of WIB, WOB, and TWI. This weak
activity was observed inside of the vortices using light
sheet visualization. Prior to this activity dark lines inside
of the vortices can be detected by illuminating the Aow
from an almost axial direction while observing the
rejected light from a radial direction. These dark lines
can be seen in the photographs of TVF shown in Fig. 1

and are present in WVF, WIB, and WOB at all the wave-
lengths surveyed, as can be seen in Figs. 1, 2, and 4. Cor-

responding to the weak time dependence seen with the
light sheet visualization is the weak motion of these dark
lines. The space-time plot in Fig. 11 shows this weak
time dependence. The onset of the weak time dependent
activity in TVF has been observed at X=26—32. The on-
set of this activity ranges from AR, =100 to 600 above
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FIG. 12. The Ekman wavelength (the axial extent of the two
end cells adjacent to the top and bottom collars) changes as R,
is ramped. The data were taken for X=26 and
I =30 (A, =2.31) at R; = 1000, 1100, 1200, 1300, and 1SOO.
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TABLE I. Wavy inAow boundary (WIB) experimental (m, )

and theoretical (m, ) azimuthal wave numbers at various N
(numbers of vortices), R, (outer cylinder Reynolds number), and
R; (inner cylinder Reynolds number).
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the Rayleigh line for these wave numbers.
Our method for varying and maintaining the axial

wavelength is limited by end effects. In particular the
Ekman cells, and the vortex pairs adjacent to them, in-
crease in size as R, and R; are increased. Since the as-
pect ratio is held constant the vortices in the bulk must
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FIG. 13. The Ekman wavelength (the axial extent of the two
end cells adjacent to the top and bottom collars) changes as R,
is ramped. The data were taken for N =28 and
I =30 (A, =2.14) at R;=1100, 1200, 1300, and 1500.

decrease in wavelength. We found that for large R, and
A, the wavelength of the vortices in the bulk tended to
stay more uniform if R; was held constant as R, was
ramped. We show in Figs. 12 and 13 the variation of the
sizes of the Ekman-pumped cells as R, is ramped for
%=26 and 28. In Fig. 14 we show some examples of the
average axial wavelength of the vortices in the bulk at
%=26 and 28. These figures show that the process of
fixing the aspect ratio and varying the number of vortices
may break down at some point because the average axial
wavelength of the bulk may change too much. We reem-
phasize that the average axial wavelength of the vortices
in the bulk at the transition points are we11 separated for
large R, for each Aow regime diagram. This shows that
our procedure for varying the wavelength was still mean-
ingful for the parameter values necessary for observing
bifurcations from TVF. The Ekman-pumped end cells
also increase in size with R, at %=32. As in the other
cases the average wavelength in the bulk tends to de-
crease as the Ekman cell size increases. These axially
compressed vortices tend to stay uniform when either R,
and R; is ramped (in fact the data points in Fig. 8 were
obtained by ramping R, while R, was held constant).
They also tend to break down to an %=30 or 28 state,
sufficiently far above onset, by developing dislocations
that result in annihilation of vortex pairs. We have not
attempted to survey the X=34 parameter region because
of the difficulty in maintaining this state. We have also
observed a novel combination of wavy Bows near the
Rayleigh line for large R, (R, =900) at %=32. As R; is
increased the thickness of each Taylor vortex becomes
distorted azimuthally such that, in the laboratory frame,
the axial wavelength of each vortex appears to alternately
increase and then decrease. The largest distortions occur
in the center of the working region with the vortices near

2.00—

1.95—

1.90
I I I I I I I I

100 200 300 400 500 600 700 800 900 1000

TABLE II. Wavy outfiow boundary (WOB) experimental
(m, ) and theoretical (m, ) azimuthal wave numbers at various N
(number of vortices), R, (outer cylinder Reynolds number), and
R; (inner cylinder Reynolds number).

FIG. 14. The average wavelength (exc1uding the cells near
the top and bottom collars) changes as R, is ramped. The top
data were taken for N=26 and I =30 (A, =2.31) at R;=1000,
1100, 1200, 1300, and 1500. The bottom data were taken for
N=28 and I =30 (A, =2.14) at R;=1100, 1200, 1300, and 1500.
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FIG. 15. Shown is the space-time diagram
of the vortex thickness variations with TWI at
the largest axial part of each vortex. The three
oscillating dark lines which have been drawn
on the figure each follow an intensity
Ininimum of a vortex boundary as it moves up
and down along the axis. The sloping lines be-
tween vortex boundary oscillations connect
points of equal phase. This shows that they
propagate along the cylinder axis with con-
stant speed. This propagation is caused by the
rotation of the spiral formed by the thick and
thin parts of the vortices. This spiral pattern
appears to propagate down the cylinder axis.
These data were taken for N =32 and
I =30 ( A. = 1.88) at R, =950 and R; = 1275.

the end cell almost unaffected. These distortions form a
large scale pattern that appears to travel axially and az-
imuthally with the thick and thin parts of each vortex
collectively forming a spiral. This spiral pattern becomes
more apparent when, as R; is increased, this large scale
pattern distortion increases in amplitude and TWI form
on the thick parts of the vortices. This large scale mode
with a spiral of TWI is shown in the space-time diagram
in Fig. 15 (the framing rate of our CCD camera is not
high enough to resolve the TWI, WIB, or WOB in the
laboratory frame). As R; is increased WVL form on the
thin parts of the vortices and a spiral of WVL and TWI
forms. This state, shown in Fig. 16, is transient and can

last for several hours before dislocations form which des-
troy one or two vortex pairs, leaving the system in an
X =30 or 28 state.

As mentioned above, azimuthal wave numbers and
wave speeds were measured at selected parameter values
by taking several spectra in a rotating frame of reference
at different table rotation speeds. Using this method we
found that the central branch of the X=32 diagram is an
m =1 WVF. We have also measured the azimuthal wave
number and wave speed of the WIB and WOB at
different A, but similar R, and R; (the R, and R; values
were chosen such that the parameters would be as close
as possible between wavelengths in order to compare az-
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FIG. 16. Shown is the space-time diagram
of the vortex thickness variations with TWI at
the largest axial part of each vortex and WVL
at the thinnest part of each vortex. As in Fig.
14 the thick and thin parts of the vortices form
a rotating spiral. These data were taken for
+=32 and r=30 (a= 1.88), at R.=950 and
R; = 1350.
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80.OO



J. J. HEGSETH, G. %'. BAXTER, AND C. D. ANDERECK

imuthal wave numbers and wave speeds at different axial
wavelengths). Tables I and II show the results of these
measurements. The WOB do not change in m as A,

changes. The m of WIB increases by 1 each time X is in-
creased by 2.

V. DISCUSSIQN GF RESULTS

In this section we examine the implications of the re-
sults presented above. We will give some qualitative ar-
guments for the causes of these patterns given the weight
of our results and previous experimental, numerical, and
analytical results.

Several mechanisms have been suggested to explain the
origin of the WVF instability at R, =Q. These mecha-
nisms suggest that the local structure of the high speed
flow regions between Taylor vortices becomes unstable.
Because a fluid particle follows a roughly helical trajecto-
ry in a Taylor vortex, these high speed regions, or jets,
have both azimuthal and radial velocity components.
The following two scenarios focus on the azimuthal ve-
locity components and the radial velocity components,
respectively, of these jets. One scenario notes that the
Taylor vortices produce an axially periodic azimuthal ve-
locity with jets in the azimuthal flow in the inflow and
outflow boundaries. In light of this fact it was suggested
[7,21,22] that the WVF is caused by an Orr-Sommerfeld
type of shear instability associated with inflection points
in the axial variation of the azimuthal velocity (i.e.,
points where 8 V&/Bz =0) which occur between the
inflow and outfiow boundaries. Jones [7] examined the
stability of TVF for wide gaps (g (0.8) in order to un-
derstand a subharmonic wavy mode observed at g=0. 5
and R, =O. This wavy mode, like WIB and WOB, re-
peats itself every 2A, with waves on adjacent outflow
boundaries shifted by half a wavelength. Jones found
that for wide gaps the azimuthal outflow jet is strong
while the azimuthal inflow jet is weak. This suggests that
a shear instability was responsible for the destabilization
of the TVF because the waves only appear at the outflow
boundary, where BV&(z)/i3z is large. He also suggests
that in small gap TVF, where both azimuthal jets are
strong, this same mechanism destabilizes both the inflow
and the outflow boundaries, causing WVF. Another
scenario, given by Marcus [8], argues that a centrifugal
instability due to the strong radial outflow jets leads to
WVF, i.e., there is a local centrifugal instability in the
Taylor vortices. In his scenario the radial outflow jet
causes TVF to destabilize by locally violating the Ray-
leigh stability criterion, i.e., the angular momentum of
the flow in the Taylor vortices decreases outward from
their centers. Calculations by Marcus [8] of the WVF ve-
locity field have shown that, for g=0. 875 and R, =0, the
strong radial outflow boundaries that develop in TVF are
diminished after the WVF instability develops. That is,
the system finds a stable state by reducing this radial
outflow kinetic energy while the energy in the azimuthal
and axial velocity components increases. This increase is

manifested as radial vorticity centered about the outflow
boundary [8], just as would be expected from a centrifu-
gal instability (centrifugal instabilities generally produce
secondary flows with vorticity perpendicular to the vorti-
city of the primary fiow, e.g., TVF or Dean rolls). In
contrast, the shear instability scenario should lead to ra-
dial vorticity centered about the inflection points at the
center of the vortices.

The TVF to WVF transition lines in all five flow re-
gime diagrams have slopes greater than the slope of the
Rayleigh line. This implies that the corotation of the
outer cylinder suppresses the mechanism which destabi-
lizes TVF to WVF. If WVF were the result of a shear in-
stability associated with the infiection points in V&(z) one
would not expect that corotating the outer cylinder
would stabilize TVF against WVF. This is because the
azimuthal jets result from the circulation in TVF and
therefore the inflection points should appear after TVF
has gained suScient strength. At R, =0 when the TVF
to WVF transition occurs, the Taylor vortices are still
relatively weak, i.e., they do not appear to have well-
defined (high contrast) inflow and outflow boundaries.
When R, &0 the Taylor vortices appear to have well-
defined inflow and outflow boundaries long before WVF
appears. In fact the inflow and outflow boundaries are
very sharp at approximately the same M; above the Ray-
leigh line. This suggests that the TVF to WVF instability
line should be consistently close to the Rayleigh line, con-
trary to the data in Figs. 5 —9. The centrifugal instability
scenario, by contrast, gives a simpler qualitative under-
standing of the WVF transitions shown in Figs. 5 —9.
The TVP structure, in addition to modifying the azimu-
thal fiow, produces a P component of angular momentum
per unit mass, L&. Coughlin and Marcus [9] have shown
that the TVF structure neutralizes the basic centrifugal
instability from Couette flow and that the WVF transi-
tion from TVF is associated with the strong outflow
boundaries. They have also shown that at R, =O these
outflow boundaries decrease in axial width as R, in-
creases. To see how a circulating vortex violates the
Rayleigh stability criterion we need only examine L&, i.e.,
the flow in the cross section between the cylinders, ignor-
ing the azimuthal flow. This is accomplished by defining
a 2D polar coordinate system, (p, 8), at the center of a
vortex. With this coordinate system the Rayleigh stabili-
ty criterion is

alI.pl -~0
P

and TVF will become centrifugally unstable (in the ab-
sence of viscosity) when

The first term is always positive ( Ve is defined to be posi-
tive) while the second may be negative. In words, the
vortex will tend to destabilize if Vz decreases with dis-
tance away from the vortex core. Because the boundary
condition forces this derivative to be negative near the
cylinder walls, a significant viscous boundary layer must
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exist there to stabilize TVF. Away from the wall, howev-
er, there is a destabilizing tendency which is observed in
numerical simulations [6—9] and shown in Fig. 17. As R;
is increased the streamlines become concentrated toward
the outer cylinder near an outAow boundary and toward
the inner cylinder near an inAow boundary. This change
in streamline shape pulls the maximum velocity stream-
line closer to the vortex core. This makes BV& jap nega-
tive in the region where the streamlines are not concen-
trated. This potentially unstable region is toward the
inner cylinder at an outAow boundary and toward the
outer cylinder at an inAow boundary, as shown in the
figure.

Increasing R, at a given R; is equivalent to decreasing
the primary forcing of TVF. In fact, as can be seen in
Figs. 5-9, one may start in TVF and increase R, until
Couette Aow returns. This can also be understood by
noting that the onset of TVF occurs above the Rayleigh
line so that when the outer cylinder rotates TVF occurs
at much larger average angular frequency of the cylinders
Q =(0,+0;)/2. In a frame of reference rotating with 0
a Auid particle traveling radially outward is affected by a
Coriolis force pulling it in the azimuthal direction. This
weakens and spatially diffuses the radial outAow jet so
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FIG. 17. Shown schematically are the projections of the
streamlines in the axial plane (streamlines of the V„and V, ve-

locity components) based on Refs. [6—9]. {a) The streamlines
near onset. (b) The projections of the streamlines above onset
where the streamlines become concentrated toward the outer
cylinder near an outAow boundary and the streamlines become
concentrated toward the inner cylinder near an inAow bound-
ary. The maximum velocity streamline is indicated by a bold
line. The areas marked with the U in (b) are the potentially cen-
trifugally unstable regions due to the decrease in velocity away
from the vortex center and the relatively large distance from the
cylinder walls.

that the inflow and outAow jets become more symmetric.
The streamlines are forced into the more stable shapes
with the maximum velocity streamline pushed back to
the boundary layer. This changing of the streamline
shapes gives us an explanation of why R, stabilizes TVF
against WVF.

The centrifugal instability and the Rayleigh criterion
have their origins in the balance between the inertial
forces of the circulating Auid and the pressure gradient in
the Auid. Increasing the wavelength of TVF structures,
i.e., elongating the structure in the axial direction, should
increase the spatial extent of the potentially unstable re-
gions. It should also, a11 other things being equal, de-
crease the bulk pressure gradient in the axial direction,
5P ~5z, between the vortex core and its boundaries. Be-
cause WVF affects the entire vortex this bulk decrease
should also tend to destabilize the vortices, consistent
with our observations that larger TVF wavelengths lead
to WVF at lower R, values.

B. WIB and WOB

Although it appears that the centrifugal instability is
the most likely scenario for WVF, at higher R, there are
other types of azimuthal traveling waves that form near
Taylor vortex boundaries. These waves, the WIB and the
WOB, occur at lower R, values than one would expect
for WVF. The WIB and WOB have a shorter azimuthal
wavelength and a higher frequency than the WVF. These
waves appear more localized than WVF, i.e., for WOB
the inAow boundary is stationary and for WIB the
outAow boundary is stationary. The stationary boun-
daries are not forced into motion by their oscillating
neighbors, i.e., the oscillating neighbors are 180 out of
phase. This subharmonic configuration of the WIB and
WOB allows for an axial displacement of the oscillating
inAow or outAow boundary without displacing their sta-
tionary neighbor boundary.

Because these waves form well below the R, that one
would expect for WVF (by extrapolating the WVF insta-
bility line) and the R, is relatively large we do not expect
the radial outAow jets to dominate as much as for WVF.
In fact we expect the inAow and outAow boundaries to be
of comparable magnitude. At %=30 the WIB and WOB
transitions are quite close and cross twice as R; and R,
are varied (see Fig. 5), indicating that these changes in R;
and R, will slightly favor destabilization of one boundary
over the other. The most striking feature of WIB and
WOB is the systematic destabilization of TVF to WOB
by axially compressed vortices and the destabilization of
TVF to WIB by axially elongated vortices over a wide
range of R; and R„asshown in Figs. 6—9. Because both
WIB and WOB are localized near a vortex boundary with
almost no motion near the vortex center, it is likely that
the radial vorticity generated by these waves is centered
about the inAow or outAow boundary, indicating that
these jets became centrifugally unstable. The centrifugal
instability scenario implies that the axially elongated
(compressed) vortices should have their maximum veloci-
ty streamlines near the walls at the outflow (inflow) boun-
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daries so that the outflow (inflow) boundaries are stabi-
lized. It also implies that a potentially unstable region
with maximum velocity streamlines closer to the core
should occur at the inflow (outflow) boundaries so that
the inflow (outflow) boundaries are potentially unstable.

The large values of V& for this large R, region of pa-
rameter space could make WIB and WOB good candi-
dates for the shear instability scenario as well. Nagata's
[6] calculations showed inflection points in the r-averaged
V&(z) of TVF for corotating cylinders, especially when

Q; —Q, is small. Jones [7] used a simple model to de-
scribe the azimuthal velocity profile for 0, =0, which we
adopt here. It consists of a periodic V& that varies with z
as a triangle wave. The stability of this approximate
form of the azimuthal velocity profile can be calculated
using Rayleigh's equation [21]. Jones found that the
maximum growth occurs at azimuthal wave number
k=0.8031/(1,/4) where A, is the axial wave number. IfI is, as before, the number of azimuthal waves, then the
wave number is k=2m/(r;+r, )=2(1—g)m/d(l+rI).
Taking k=kd we get I=0.427K. Tables I and II show
that the resu. its agree well with this model for WIB even
though this model assumes that both the azimuthal
inAow jet and the azimuthal outAow jet become unstable.
The WOB, however, do not change azimuthal wave num-
ber with X, suggesting that either they are not a shear in-
stability, or that the model breaks down for axia11y
compressed vortices. The insensitivity of the WOB I to
1V implies that the disturbance is localized near the
outAow jet as would be expected in the centrifugal insta-
bility scenario. On the other hand, the sensitivity of the
WIB m to 1V may be because disturbances in axially
elongated vortices are less localized than they are in axi-
ally compressed vortices. The WIB, which prefer axially
elongated vortices, are sensitive to changes in X possibly
because there is a larger region inside of the vortices that
becomes centrifugally unstable. The negative result of
the shear instability hypothesis for the WOB makes it
likely that they are a result of a centrifugal instability
while the WIB could be either.

C. %"eak activity in TVF

The weak activity inside of TVF is characterized by
dark lines near the vortex cores which Auctuate axially in
time. These dark lines are indicative of radial Aow and
possibly small tertiary vortices. In addition to WIB and
WOB, Nagata's [6] calculations also found another insta-
bility in which small vortices alternately grow and decay
inside of neighboring Taylor vortices. These dark lines
did not grow and decay, however, and the parameter
values of the weak motion did not correspond to the pa-
rameter values of this predicted instability. The space-
time diagram in Fig. 11 and the photograph in Fig. 1

show these dark lines. Before the weak time dependent
activity begins the dark lines are stationary and first ap-
pear close to the onset of TVF. This suggests that weakly
nonlinear theory may be able to describe the stationary
hnes. Davey [23] calculated an amplitude equation
which showed that very close to onset a second harmonic

in A, is generated which is time independent after satura-
tion. Higher above onset many more stationary harmon-
ics are generated as predicted by Davey [23] and mea-
sured by Heinrichs et al. [24]. It may be possible that
these many harmonics produce this eAect through a non-
linear mixing process.

At higher R, the stationary lines begin to move. The
fact that the time dependent activity does not grow in
strength like WIB, WOB, WVF, or TWI suggests that it
is not an instability but rather the result of some pertur-
bations in the system exciting these harmonics. In sup-
port of this idea we have found that similar, but not sus-
tained, time dependent activity can be generated by
slightly changing the inner or outer cylinder frequency.

D. TWI

Figures 5 —7 and 9 show that the TWI pattern bifur-
cates from TVF when R, is large and R; is close to the
Rayleigh stability line. The figures also show that in the
same range of parameter values the larger Taylor vortices
are destabilized to T%'I at lower R, and R;. Andereck,
Dickman, and Swinney [4] reported that when the TWI
pattern forms the secondary Aow is strongest near the
vortex core while the inAow and outAow boundaries are
apparently undisturbed. Nagata [6] found a set of modes
that become unstable at parameter values corresponding
roughly to the parameter values of the TWI pattern ob-
served by Andereck and co-workers [2,4]. The velocity
field calculated by Nagata also reveals that the periodic
motion is in the region of the vortex core. The centrifu-
gal instability scenario could apply here because the wall
forces BV/Bp negative between the inAow and outAow
boundaries. The wall boundary layer, as noted above,
also stabilizes the Aow near the wall. If the maximum ve-
locity streamline of TVF were closer to the core, howev-
er, this gradient could be negative farther away from the
wall, leading to motion in the vortex core. In addition,
Nagata reported an inAection point in the average azimu-
thal velocity implying the shear instability scenario.
Here we present an alternative explanation.

The range of A, and 8; where TWI form is character-
ized by a large average cylinder angular velocity
Q=Q0+Q, /2 and a small AQ=Q, —Q, . To look at the
behavior of the Aow in the region of the vortex core we
transform to the rest frame of a vortex core as follows
(see Fig. 18). The origin of this coordinate system is

placed at the center of a vortex, between the two
cylinders, and rotates with the average speed of the
cylinders. About this accelerating origin the system also
rotates with Q, the average angular velocity of the two
cylinders, so that one of the axes, y', points in the inertial
frame P direction. This rotating frame also rotates about
y' at Q„the angular velocity of the Aow about the vortex
core, so that the core becomes approximately stationary.
In other words Q points in the (inertial frame) axial
direction and Q, points in the (inertial frame) azimuthal
direction and this frame rotates at Q =Q+ Q, (this
operation is similar to transforming from the inertial
frame centered at the sun to the body centered frame of
the rotating earth). The characteristic length in this
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FIG.G. 18. The geometry for transforming from the inertial
frame of reference (x,y, z) to the accelerating frame of reference
( I I I i I(,y, z ). LIRe ongin of the new axis rotates about the z axis.
In addition the (x',y', z'} axis rotates at Q=(Q0+Q;)/2 and

„

i.e., a total rotation of Q=Q+Q, . This frame follows the
Auid in the vortex core so that this Quid is stationary in the
x',y', z'} frame. The wave vector k of the inertial waves is

directed in the azimuthal direction and the coordinate g points
in the direction of Q.

frame of reference is d and a characteristic velocity is
d AQ. With these scales the advective term
(V V)V-d(bQ) and the Coriolis force is
2Q X V —d AQQ, . The advective term can be ignored in
comparison to the Coriolis force if b,Q/Q « l. This is
exactly the condition present when the TWI pattern ap-
pears. When this condition is satisfied the Navier-Stokes
equations may be written as

av— -+2QXV= — VP, —1

8t P

where the other fictitious forces are included in the pres-
sure term [5]. We have assumed viscosity is negligible. If
we take the curl of both sides to eliminate the pressure
and take the direction of Q to be the g axis then the equa-
tion can be written [5] as

BV XV BV
Bt Bg

This equation has a plane wave so»tron [5]
i (k.r —mt )e . These waves, called inertial waves, are

driven by the Coriolis force. They are also transverse
(k A=O) and circularly polarized [5]. Near the vortex
core the Auid would appear to be approximately station-
ary, farther away from the core near the cylinders and
near the radial jets the Auid would be in motion relative
to this reference frame. In fact, away from the vortex
core the Coriolis force would produce a forcing on the
Aow that would be approximately radially inward or out-
ward near the cylinders and approximately azimuthally
forward or backward near the radial jets. Thus there
would appear to be a forcing in this rotating frame which
could generate inertial waves. As the wavelength of TVF
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FIG. 19. The experimental data for the onset of TWI from
TVF and the numerical results of %'eisshaar, Busse, and Nagata
(WBN) at comparable wavelengths.

increases the Aow becomes less circular closer to the core
and this forcing would tend to increase, accounting for
our results. The wave vector k points in the (inertial
frame) azimuthal direction because the waves travel az-
imuthally along the vortex. This means that the velocity
oscillates in the (inertial frame) axial (r, z) plane. Figure 3
shows typical TWI patterns where white and dark lines
inside of each vortex are inclined relative to the inAow
and outAow boundaries, indicating radial Aow inside of
each vortex. The inertial wave frequency is [5]
co=2Q cos(0) in the rotating frame. Andereck et al. re-
ported a 14 wave state with a frequency of =12.5A;. If
the TWI pattern were stationary in the rotating frame
one would expect to see a frequency of =140, in the
inertial or laboratory frame, where we have used the ap-
proximation

~
Q

~

=Q;. The difference could be accounted
for by the inertial wave frequency which is less than

An extensive numerical study of TWI has been per-
formed by Weisshaar, Busse, and Nagata [25] in which
they calculated the onset of TWI as a function of Rey-
nolds number, rotation rate, and axial wavelength. They
report that the bifurcation to TWI is supercritical, which
agrees well with our finding of no detectable hysteresis in
t is transition. Some of their TWI onset data are plotted
in Fig. 19 along with our experimental data. For the ex-
perimental data the k shown is the wavelength of the vor-
tices in the bulk which excludes the end vortices as dis-
cussed above. There is excellent agreement with the
shapes of the onset lines, and there is reasonable agree-
ment as to the positions of these onset lines.

The study of Weisshaar, Busse, and Nagata also finds
TWI to be unstable to a skewed varicose type instability
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at higher Reynolds numbers. Our results show that at
%=28 there is a region of WVI. +TWI above the TWI as
shown in Fig. 7. Since WVL+TWI are vortices which
have the TWI instability and have waves on both the
infiow and outfIow boundaries this Row is similar to the
Aow observed in the skewed varicose instability in
Rayleigh-Benard convection [25]. However, unlike the
WBN results, we find this instability to be wavelength
dependent. At X =24, 26, and 30 the TWI are bounded
above by a region with waves on the inAow boundary
only (TWI+WIB). This behavior is quite different from
the skewed varicose instability.

Weisshaar, Busse, and Nagata have also found another
twisted vortex solution they call "wavy twists. " This
solution has a much longer azimuthal wavelength, waves
on both the infIow and outAow boundaries, and the same
symmetry as WVF. Their numerical results predict the
occurrence of this second solution over a wide range of
axial wavelengths and at higher rotation rates than the
TWI. For the parameter ranges studied here, we see no
experimental evidence of "wavy twists. "

F. Stability of TVF

The stability of Taylor vortex Aow is best shown with
the volumetric plot of Fig. 10. The stable region resem-
bles a pork loin with slices at constant X having the
shape of pork chops. Because the end vortices are larger
than the bulk vortices as discussed above, the axial wave
number, I/A, , of bulk vortices is close to but larger than
1/A, . For convenience we have plotted%=21"/I, . To a
good approximation Fig. 10 is a representation of the
volume of stable TVF in (R, ,R„21/A, ) space. Clearly,
TVF is most stable between 28 & X & 30 which is where
X=2.0 would occur. At both larger and smaller values
of X, TVF is found to be more unstable to other Bows.
At low R„TVFis always bounded above by WVF, and
WVF occurs at lower R; as X becomes smaller (or X be-
comes larger). At higher R„TVFis bounded by a
variety of fIow states. Again, these bifurcations occur at
increasingly lower values of both R; and R, as A, gets fur-
ther from 2.0.

VI. CONCI. USION

E. Domains

Baxter and Andereck [13] observed domains of
separate fIow patterns characterized by distinctly
difterent axial wavelengths. Nonuniform wavelength
states have also been observed in Rayleigh-Benard slot
convection [26]. Brand and Deissler [27] have used a
phase dynamics approach to describe such nonuniformi-
ties. In this work we observed similar phenomena at
%=26 and 28. The system tended to develop a nonuni-
form axial wavelength after it was rarnped above the
threshold of secondary instabilities. Sometimes the TVF
would develop weak nonuniformities at the onset of WIB
or TWI and this would lead to either WIB or TWI in one
part of the cylinder and TVF in the other. The only bi-
modality seen in the X=32 case was the TWI and WVL
combination discussed above. These bimodal patterns
varied both axially and azimuthally such that on each
vortex there was an axial wavelength change (and an as-
sociated pattern change) as a function of azimuth.

In the numerical simulations of Weisshaar, Busse, and
Nagata [25], TWI solutions are found to undergo an Eck-
haus type instability over a wide range of Q and at all axi-
al wavelengths. Although their simulation is unable to
determine the final Sow state following this instability,
they cite the domains of large and small vortices at
X=24 as a likely result. Although the domains at %=24
arise from twisted vortices with waves on one or both
boundaries, the Eckhaus instability remains a likely ex-
planation. We anticipate that the domains found at
N=26 and 28 are probably due to the same instability.
Busse and Auer [28] have also analyzed domain forma-
tion in Rayleigh-Benard convection using an amplitude
equation approach and cite these domains as an analo-
gous case.

By systematically surveying the (R„R,., A, ) parameter
space of Taylor vortices we have found the following
basic results: increasing R, stabilizes TVF against WVF;
increasing A, destabilizes TVF against WVF and TWI
while stabilizing TVF against WIB and WQB; WIB and
TWI bifurcate from TVF for large A, ; and finally WOB
bifurate from TVF for small k. We have also observed
weak time dependent activity inside of the Taylor vor-
tices before the onset of WVF, WIB, WOB, and TWI at
all A, surveyed. At A, = 1.88, the smallest axial wavelength
surveyed, we observed an m =1 WVF as well as a spiral
of TWI and WVL. We measured the I values of WIB
and WOB at different X (or X) and noted that the m of
WIB depends on X while the m of WOB is independent
of X. We have attempted to physically interpret our re-
sults with the help of previous numerical results. The
most likely scenarios for these instabilities are a shear in-
stability associated with the azimuthal jets near the
infIow and outAow boundaries or a centrifugal instability
associated with the radial inAow and outAow jets. Our
judgment from the available evidence is that WVF and
WOB are the result of a centrifugal instability. WIB, al-
though very similar to WOB, may be either. The TWI
pattern may be a result of inertial waves that form in the
interior of the vortices. We have also visualized internal
structure that may represent the axial harmonics predict-
ed in weakly nonlinear theory and conjecture that the
weak time dependent activity is not an instability but is
related to weak driving by instrumental imperfections of
these harmonics.
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