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Topological effects in ring polymers: A computer simulation study
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Unconcatenated, unknotted polymer rings in the melt are subject to strong interactions with neighboring
chains due to the presence of topological constraints. We study this by computer simulation using the bond-
fluctuation algorithm for chains with up td=512 statistical segments at a volume fractibs 0.5 and show
that rings in the melt are more compact than Gaussian chains. A careful finite-size analysis of the average ring
size R«N” yields an exponenv~0.39+0.03 in agreement with a Flory-like argument for the topological
interactions. We showusing the same algorithnthat the dynamics of molten rings is similar to that of linear
chains of the same mass, confirming recent experimental findings. The diffusion constant varies effectively as
DyxN~1223) and is slightlyhigherthan that of corresponding linear chains. For the ring sizes considaped
to 256 statistical segmentwe find only one characteristic time scalgxN?%?; this is shown by the collapse
of several mean-square displacements and correlation functions onto corresponding master curves. Because of
the shrunken state of the chain, this scalingascompatible with simple Rouse motion. It applies for all sizes
of ring studied and no sign of a crossover to any entangled regime is found.

PACS numbes): 61.25.Hq, 61.4%e

I. INTRODUCTION tinguishable from that of linear polystyrene of high enough
molecular weight; all viscosities display classical Williams-
Ring polymers have been extensively studied experimenkandel-Ferry(WLF) or Vogel-type temperature dependence
tally by several groups, not always leading to completelyand they can be superimposed on a single master curve. For
consistent resultsl—7]. Indeed, the synthesis of the sampleslinear chains, two power-law regimes arise in the mass de-
of unknotted and nonconcatenated ririgee Fig. 1remains  pendence of the viscosity, corresponding to Rouse-like and
a very delicate issug5]. Nevertheless, the general conclu- entangled motion. Unexpectedly, the same is found for ring
sion emerging from these studies is that the dynamics opolymers. Below a critical mash! the viscosity seems to
rings is quite similar to that of linear chains of the sameincrease with an exponeat;~3/2, which is larger than the
molecular mass and densit§,7]. This is certainly a surpris- expecteda;=1 for ideal Rouse behavior. The values for
ing result from the point of view of the reptation model, rings and linear chains of the same molecular weight are of
which describes the flow behavior of entangled linear poly-similar magnitude. In the high mass regimel &M.) the
mer chaing9,10]. In this effectively single-chain model, the viscosities increase more strongly, again with a power simi-
constraints on the motion of a reference chain due to théar to the linear case. An exponential increase in the range of
interactions with its neighbors are replaced by a curvilinear
“tube” within which the chain “reptates:” relaxation of the

constraints occurs only at the chain ends. Clearly, a closed

ring polymer(having no endscannot reptate in this conven-

tional sense. Accordingly, the motion in a melt of rings %
should be quite different from that of an analogous linear @)

chain system and at first sight one would expect it to be
slower. Indeed it was argueld 1,10 that motion of ring
polymers should be exponentially slow and comparable with
that of star polymer§12].

This is, however, not borne out by rheological measure-
ments on polystyrenéPS and polybutadyengPB) rings,
which showed that the zero-shear viscositigsfor melts of C\/) o)

rings for all molecular weights considered are similar to, but
even slightly smaller than, those for linear chais]. The
temperature dependence gf in PS rings is virtually indis-

. . . FIG. 1. Sketch of the opposed topological constrai@sOn the
*Permanent address: Institiit fehysik, Johannes-Gutenberg Uni- |eft is a permitted configuration of an unknotted ring. It cannot turn
versitd, 55099 Mainz, Germany. into the forbidden(knotted configuration on the rightnor vice
TAuthor to whom correspondence should be addressed. Permanerdrsa. (b) On the left is a permitted configuration of a pair of
address: Cavendish Laboratory, Madingley Road, Cambridgeinknotted, unconcatenated rings. It cannot turn into the forbidden
CB3 OHE, United Kingdom. (concatenatedconfiguration on the righfnor vice versa

1063-651X/96/58)/506312)/$10.00 53 5063 © 1996 The American Physical Society



5064 M. MULLER, J. P. WITTMER, AND M. E. CATES 53

masses availablgup to M~1.85<10°) is explicitly ex- In view of those experimental difficulties, a detailed simu-
cluded[5,13]. lation study to investigate both the statics and the dynamics
The similarity of the dynamics of ring molecules to their in a melt of rings is certainly warranted. Most previous at-
linear counterparts is also reported on a more microscopitempts are based on Pakula’s “cooperative motion algo-
level from tracer diffusion measuremerf®,7]. Dilute la-  rithm” [16,17. While this algorithm can give correct results
beled PS chains of madd, in a matrix of massP, were for the statics(especially for melts its value for studying
measured using forward recoil spectroscopy. Different todynamics is questionablsee Sec. Il belo In the follow--
pologies (fings in linear matrice$6], linear chains in ring N9 We study melts of .nonkno‘t‘ted, nonconcatenated rings
matriceg 7], and rings in microgdi7]) were investigated and within the weII-estqbll_sheq bo.nd—fluptuatlon mode_l
compared to linear chains in linear matrices. Unfortunately(BFM) to get better insight in their statics and dynamics.
there exist so far no systematic measurements of ring tracef§?art from its computational efficiency, an advantage of the
in matrices of ringgof identical siz¢ in which the molecular Method is that comprehensive data for linear chains have
mass covers a significant range. However, consistent witgl'éady been obtain€d8,19 with which quantitative com-
the rheological measurements quoted above, the tracer diff22risons can be made. Indeed, even if ring polymers did not
sion of linear PS in ring matrices was found to be nearlyeX'St experlmental!y, this comparison mlgh'g help illuminate
identical to that of linear PS in linear PS matridgs14]. several long-standing but still controversial issues in the dy-
This is again a surprising result in view of theoretical con-n@mics of entangled linear chaifi20]. _
cepts of matrix-dependent tracer diffusifir]. The article is organized as follows. In Sec. Il we give
A suggestion by Lodget al.[10] is that the experiments briefly some technical comments on the BFM simulation
on rings may be reconciled with the reptation concept b)performed. In Sec. lll results on the conformation of isolated
taking into account the higher entanglement length. The critifings (in an athermal solvepaire presented, showing that the
cal mass for entanglement can be estimated from the viscodinknottedness constraint is insufficient to swell the rings sig-
ties or from the shear modulus. PS rings exhibit a plateadificantly beyond what would be caused by excluded volume
modulus approximately one-halbne-fifth for PB that for forces alone. Molten rings, on the other hand, are found to be
linear polymers, suggesting that rings are less effective aiUite compact with an exponemt=0.4, consistent with the
forming entanglements. Rubber elasticity arguments indicat8SSUmptior{15] that roughly one degree of freedom is lost
a critical mass for polystyrene cycles bf,=58 000 com- for every topologlcal interaction with a nelghbonng chain.
pared toM .= 30 000 for linear chains. If one now makes a & then show, in Sec. 1V, that the dynamics of rings and
comparisorat an equal number of entanglemenitsgy melts linear chains are qualitatively similar over much of the range

in fact have higher viscosities than linear chains. The experi©f chain length that we are able to simulate. For the largest

mental viscosity data then lie in the unentangled-entanglefin9S, however, a perfect scalirigvolving a single charac-

crossover region, where it is clear from the linear polymeri€ristic time for each chain lenghs still obeyed, whereas

results that reptation is not the only available mode. Thido" this size of linear chain significant departures are ob-
explanation would allow a crossover to much slower ringserved. This allows us to confirm the suggestion that the

dynamics at very high molecular weights. entanglement mass is much larger for ripgs.

No theoretical explanation for this increase of the critical Ve also study the degree to which rings thread through
mass exists, but it seems reasonable to relate it to the id&§'€ another, a question addressed in both Secs. Ill and IV.
that ring conformations in the melt may be partially col- This seems to be msqfﬂment fco allow large clusters of mu-
lapsed[15]. Besides the usual excluded volume interactiontU@lly eéntangled material to build up. The extent of entangle-
between two neighboring chains there is a topological interMent, guantified roughly as the number of neighboring rings
action due to the exclusion of knotted and concatenated rin§ontacting a given molecule, nevertheless appears relevant
configurationdsee Fig. 1 While the excluded volume inter- 107 dy_nam|cs: for b_oth rings and their linear counterparts the
action is screened out whenever the overlap with othefliffusion constant is shown to scale as the mass of the cor-
chains is largdi.e., as long aR%Ns1, which is true for rglatlon hole(at least, m_the range of ch_am Iengthg stuglied
large chains ifv>1/d) the topological interaction in three- inally, in Sec. V we give our conclusions and discuss the
dimensions need not be screened and should cause a redif@Pact of these ring investigations on our understanding of
tion in the size exponenw below the Gaussian value €ntangled polymer dynamics.

(v=1/2).

Despite this argument, no experimental study of the ra-
dius of gyration of rings in the melt appears to have been
made. A good understanding of the static properties of the The algorithm used in this investigation is the well-
system is of course an indispensable starting point for a reastablished bond-fluctuation model of Carmesin and Kremer
sonable description of the dynamics, so this is unfortunatg.21]. This coarse-grained three-dimensional lattice model has
Detailed static measurement® both dilute and concen- proven to be especially useful for investigating the universal
trated systemscould also provide a stringent test on the features of statics and dynamics in dense polymeric melts
quality of the ring synthesis, as McKeneaal. have pointed [18]. A small number of chemical repeat uniis., a Kuh-
out[8]. Without them, for many synthesis routes it is hard tonian segmentis mapped onto a lattice monomer such that
exclude the possibility of knotted or concatenated ringsthe relevant characteristics of polymers are retained: connec-
along with that of a small fraction of linear chain contami- tivity of the monomers along a chain and excluded volume
nants, which might modify the viscosity substantiallyy = of the monomers. Each monomer occupies a whole unit cell
threading the rings, for examplEs]. of a simple cubic lattice with periodic boundary conditions.

II. A BOND-FLUCTUATION MODEL STUDY
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Adjacent monomers along a polymer are connected via one TABLE |. Mean-square bond lengttb?), radius of gyration
of 108 allowed bond vectors. These are chosen such that tH&%). ring gliameter(Rﬁ), and diffusion constanDy for single
local excluded volume interactions prevent the chains frontnknotted rings.

crossing each other during their motion. This conservation of

the topology ensures that the rin@ghich are set up initially N (%) <Rs> (RS) Dy (units of 10°%)
as thin loopg remain neither knotted with themselves nor 16 7.436 17.5 59.9 20(80)
concatenated with one another during the relaxation ang» 7.455 411 140.2 12)
sampling. In our athermal simulation, “local jumps” are re- g4 7.464 95.9 322.9 52
alized by choosing one monomer at random and attemptingg 7.468 221.9 739.6 2.6%)

to jump over the distance of one lattice spacing in one of thesg 7.470 510 1698 1.280)

six basic directiongalso randomly chos@nThe attempt is gq2 7.472 1159 3740 0.70)

accepted if excluded volume restrictions are satisfied and the
new bond vectors to the neighbors along the ring belong to

the allowed set. Ill. STATICS: CONFORMATIONS OF RINGS

A simulation study of ring polymers has already been IN THE MELT

made by Frischet al. [22] in the framework of the BFM. ) , i
However, due to the large CPU time demands, that stud In this section we coq3|der the effects of the unknottgd-
was restricted to single rings; also the dynamical propertie\]a:/'eSS and nonconcatenation constraints on the conformational
were not very directly addressed. The only existing simula.Properties of dilute and molten rings. While the effect of the

tion data on the statics and dynamics of rings in the melt usgﬂrmer constraint on isolated rings turns out to be irrelevant,
Pakula’s “cooperative rearrangement algorithfi23,24. In the nonconcatenation requirement significantly compacts

contrast to the local jumps utilized in the BFM, this algo- Molten rings. o _ ,
rithm changes simultaneously and collectively the monomer 1he€ size of the rings is rnegsured first with the usual
positions on a number of different chains. While giving cor-Mean-square radius of gyrati¢R;); as a second measure,
rectly the static properties, a clear correspondence betwedhe define the average distance between pairs of monomers
Monte Carlo time and real time is yet to be established fothat are N/2 monomers apart along the ring contour
this algorithm and its dynamical interpretation is accordingly(R2)=((R,— Rn;n/»)?) and call this the mean-square ring
unclear. diameter. For isolated rings in an athermal solvent, results
In the present BFM investigation we want to extend thefor both quantities are presented in Table I. In agreement
careful study of linear chains made by Patibl.[18]to ring  with previous Monte Carlo studies by Frisehal. [22], the
polymers and compare our results to their data on lineasimulation vyields a ring sizeRxN” with exponent
chains. At a filling fractiond=0.5 of occupied lattice sites, v~0.595 for the radius of gyration ang=0.605 for the ring
many static and dynamic features of molten polymeric madiameter. These values are only slightly larger than the ex-
terials are reproduced by the BFM. For example, the singleeluded volume exponentv&0.588) for linear athermal
chain conformations obey Gaussian statistics down to thehains, the difference lying within the range of the statistical
screening lengtli=6 (in units of the lattice constanof the  error. The influence of the topological constraints on the
excluded volume interaction obtained from the static strucstatic properties of isolated rings thus appears not to alter the
ture factor{ 18]. There are extensive results on the dynamicalkhain-swelling exponent in three dimensioftsough there
properties covering the range from an unentangled behavionay be a prefactor effecf26]. This finding concurs with the
for short chain lengths up to the onset of reptationlike motioranalytical studies of des Cloizeaux and Mefl23] and is
for chain lengthN=200. Of course, the dynamics of long now also confirmed experimentally. Indeed, while early
polymers in a dense melt slows down dramatically withsmall-angle neutron-scattering data of Dogson and Higgins
growing chain length and therefore poses huge demands d¢i] seemed to indicate a nearly Gaussian statistics for rings in
CPU time requirements. For the present investigation we engood solvent, later the delicate dependence of the ring prop-
ploy a very efficient implementation of the BFM on a mas-erties on preparation conditions was overcome by Had-
sively parallel CRAY T3D supercomputg25]. Using a two-  ziioannou[3] and Rooverg?2] corroborating that the statis-
dimensional geometrical decomposition of the simulationtics are the same as for linear chains in a good solvent. How-
grid of linear extensioh. =128, we employ 64 T3D proces- ever, a decrease of thetemperature of isolated ringsom-
sors. This permits us to equilibrate systems comprisingared to linear chainsby several degrees kelvin has been
131 072 monomers and ring lengths up to 5%fatic3 or  measured. This is defined by the point at which the second
256 (dynamicg statistical segments. This study involved virial coefficient from the light scattering measurements
about 5000 h of single processor CPU time. equals zero and seems to be the only manifestation of the
The starting configurations consisted of straight ringsunknottedness constraif2,5]. A Monte Carlo study of the
(loops enclosing no ar¢géhat were carefully equilibrated for #-point depression of isolated rings, including a careful
at least one relaxation timé.e., the center of mass had finite-size analysis, could certainly yield interesting addi-
moved a distance comparable to the chain)sbefore any tional information; we do not attempt this here.
data were taken. Indeed, for all but the longest chains, runs The situation changes completely in the other limit of
were continued well beyond thiso as to generate dynami- molten rings where, confirming Pakula’s simulatidi®], we
cal data, which enabled us to confirm that the static chainfind very compact ring¢Table 1l). When naively fitted with-
extensions had settled to their equilibrium values by thisout any finite-size analysis, the ring sizes yield an exponent
time. v~0.44 for the ring diameteR, and a slightly higher value
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TABLE Il. Mean-square bond lengt{b?), radius of gyratior(Ré), ring diameter R2), ring surfaceA, number of neighbors touching
a reference chainy, monomer mobilityW, diffusion constanDy, and rotational relaxation time,, for unknotted, unconcatenated rings
in the melt at volume fractiod =0.5.

N (b?) (RZ) (R3) A Ny W (units of 10°%) Dy (units of 10°%) Tee (UNits of 107%)
16 6.904 12.9 42.3 12.36 10.88 5.2 325 0.58

32 6.913 25.7 80.6 23.30 13.60 6.6 13D 2.2

64 6.920 49.3 150.3 42.46 17.01 7.3 BB 8.7

128 6.924 92.2 274.8 76.66 21.15 7.5 0.8 35

256 6.926 169.7 497.2 135.36 26.18 6.6 0(22p 160

512 6.927 304.0 878.0 229.88 31.50

v~0.45 for the radius of gyratioRy. Those values are quite infinite masses does the short-scale excluded volume effect
similar to the ones obtained by Pakula. However, finite-sizevanish and the two lines foR, and R; merge at a value
corrections are clearly detactable in the curvature of the data=0.39*+0.03.
points and a more careful fitting is necessary, as explained This value is consistent with a crude but interesting Flory-
below and in Fig. 2. This yields in an extrapolation to thelike estimate of the free energy of a polymer ring given by
limit of infinite masses a distinctly lower exponent Cates and Deutsdii5]. They argued that, if a ring of poly-
»=0.39+0.03, which(as it should becomes the same for Merization indexN has sizeR, it is overlapped with a num-
our two measures of ring siZR, andR, . ber of nelghbonng rings of ordeRd/_N (in d dimensions _
At the volume fractiond =0.5 used in the simulation, the 11€ more spatially extended the ring, the more entropy is
excluded volume interaction is not completely screened, alfSt Py the nonconcatenation constraint with its neighbors.
pointed out in Sec. Il. This explains why the radius of gyra- he simplest possible estimate of this is to say that. th? num-
tion, which is more sensitive to short-scale structure, tends t er of degrees of freedom lost due to the constraint is pro-

give larger exponents(N) than the diameter that probes portional to the numbeRYN of neighbors that the ring is

: . - ) revented from threading. This gives a contribution to the
larger distanceFig. 2. At high masses this short-scale ef— lPree energy oFockTRd/N%endinggto decrease the ring size.
fect of the excluded volume will become less and less iM-On the other hand, there is also an entropy penalty if the ring

portant, so both the ratio of diameter to the radius of gyrationecomes too squashed: the free energy required to squash a
(inset of Fig. 2 and the running exponent&(N) tend 10 Gaussian chain dfl steps into a region of linear sif less
become smaller. These exponents are plotted against thganN'2 scales akTN/R2. Adding these contributions and
natural variable of the screenirigroportional to¢/Rg) [30l;  minimizing overR gives a characteristic size scaling Rs

the procedure brings all the measured valug) to lie on  «N*” with »=2/(d+2). Hence, in three dimensions the ex-
straight lines, which permit a precise finite-size scalingponent isv=2/5, very close to the value found by our simu-
analysis[31]. As one sees from Fig. 2, the low masses givelation. Note that the latter value is definitely smaller than the
exponents close to those obtained previously; the highestsult v=1/2—1/6m put forth recently by Brereton and
masses used yield an exponent0.42. Only in the limit of  Vilgis [32].

0.50 F 0.386+0.327 N*¥
- —- 0.388+0.232 N**

FIG. 2. Running exponents
] v(N) obtained from the radius of
gyration (Ré) (circles and the
ring diameter(R2) (square} ver-
LI sus the natural variable of the
screeningN™". Both the two ex-
3 A ponents and the ratigRZ)/(R?) in
the inset lay on straight lines.
From this finite-size analysis we
obtain the exponent »~0.39
0.2 0.3 +0.03 in the limit of infinite mass.

0.35
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o N=16
AR © N=32
v%%
A A N=64
10 ¢ v<l A < N=128 FIG. 3. Distribution function
v N=256 of the ring diameteR, as a func-
-5 o o tion of the reduced variable
o R./(R)2  Data for various
E masses are distinguished by dif-
ferent symbols, as indicated in the
05 F figure. Apart from the very small
chains, all distributions superim-
pose.
0.0 : —S——
0.0 0.5 1.0 1.5 2.0

L2 12
x=R/<R >

We note that from the measured exponents of the chainated in the mechanism of partial collapse and may also have
size of an isolated chairvy=~0.6 and of ring chains dynamical consequences by way of long-lived clusters of
v,~0.4 a crossover scaling can be obtained in the usuatntangled material slowing down the relaxation times. It is
way. This yields, for the ring size in the semidilute concen-difficult to define precisely what is meant by threaditig
tration rangeR~Ry(®/P*) 4 where the monomer den- either static or dynamical termsut a partial measure of the
sity is ® and the usual crossover densitwerlap threshold  ease with which a ring can be threaded is to measure the area
is ®*. The decrease in the size of a ring widh is much  of its projection onto a random direction. This a#s de-
more pronounced than for linear chains whBere ® ~ 18, fined as a signed quantiffhe component in that direction of

In Fig. 3 we show simulation data for the probability dis- the vector area of the ringhat vanishes for any configura-
tribution P(R) of the diameter of a ring as a function of the tion in which the ring exactly retraces its own steps. A mea-
characteristic variablex=R,/(R2)"2. Data are given for sure of the “threadability” is provided bp=(|a|); it turns
various masses up 9= 256. The scaling collapse becomes 0ut thatA=R?, as shown in Fig. 5. The scaling is the same
more and more perfect with increasing mass, indicatingts would be naively expected. Note that looplike configura-
again that the local interactions become irrelevant for ringions would involve very small values &. The magnitude
sizes much larger than the excluded volume screening Iength/ngl indicates that the rings have no tendency to retrace
£. In principle, this distribution should define some further their own steps, a fact also revealed by inspection of snap-
characteristic exponents, assuming that, as for linear chairghots.

[33], the distribution rises with a powd?(x)«x? for small Another quantity that may be relevant in measuring the
x and drops off essentially aB(x)xx?exp(—x°) for large  strength of the topological interactions is the number of
x. For isolated linear chains the exponegtend § can be  chains touching a reference chaiy. Two chains are de-
written in terms ofy and y (the latter is the exponent con- fined to be “touching” whenever their monomers include
trolling theN dependence of the free eneygynfortunately,  pairs separated by a distance less than or equdbttattice
although the scaling in Fig. 3 is good, the data are not preciseonstants.(This somewhat arbitrary microscopic distance
enough to extract any corresponding exponents in this caseas chosen to include all the monomers within the first peak
Accordingly, we leave this issue for future investigations. of the monomer-monomer correlation functipimtuitively,

A quantity of more direct experimental relevance thanny should vary as the number of chains within the “correla-
P(r) is the static structure fact®(q). In Fig. 4 the values tion hole” spanned by a given chain, and we see in Fig. 5
of S(g)/N for masses up tt=512, expressed as a function that ny indeed scales alég/N. The plateau at high enough
of the characteristic variablRyq, superimposdapart from masses confirms the self-similarity of rings in the melt,
the spurious Bragg peak in each caeato a single master which was already indicated by the scale invariance of the
curve. Consistent with our earlier discussion of the scaling ofliameter distribution in Fig. 3.
the ring size, a self-similar power-law regime is apparent and
shows_ a fr_actal _dimension A+ 1/0.4, as expected. The IV. DYNAMICS OF RINGS IN THE MELT
Gaussian dimension 2 is clearly ruled out by our d84.

As mentioned in the Introduction and above, the probabil- As pointed out in the Introduction, there is some experi-
ity of threading of a ring polymer by its neighbors is impli- mental evidence that the dynamics of rings are similar to
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1.000 v
Gaussian ring
o N=16
0.100 ¢ 0 N=32 monomer structure - FIG. 4. Structure factor
v N=64 o S(q)/N versus the characteristic
pd variable Ryq for various masses
’(\3- > N=128 N as indicated in the figure. The
Preg o N=256 A . dashed line confirms the fractal
» N VVvVVVvWV dimension 1/=2.5=1/0.4. The
0.010 & N=512 AL \ > solid slope 2 for rings with Gauss-
) X D% ian statistics cannot match the
Ko O measured structure factor.
slope -2.5 Q <><> o0
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Crant
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their linear counterparts, at least up to the largest moleculag,(t) =([ R, n(t) — Rc.m(0)]?). The mean-square displace-

masses that can readily be obtained. Our simulation datapent functions for molten rings are given in Fig. 6. These

presented below, confirms this for rings of up No=256  quantities are scaled by the mean-square characteristic ring

monomers by comparing mean-square displacements, chMe(RS), whereas the time coordinate is scaled by the rota-

and cooperative motion correlation functions, and the resulttional relaxation timer,.. This rotational time is the decay

ing diffusion coefficients and relaxation times. time for relaxation of a ring diametéthe vectorial displace-
We characterize the dynamics by measuring three differment between monomei$/2 apart in the sequengevhich

ent mean-square displacement functions describing the mds obtained from the correlation functioB.(t) described

tion of monomersy;(t) =([R,(t) —R,(0)]?) in the labora-  below (shown in Fig. 10, and its scaling wittN is shown in

tory frame, the motion of monomers in the center-of-massrig. 11. Apart from the masd =16 all curves perfectly su-

frame of a given ringg,(t)=([Rn(t) —Rcm(t)—Rn(0)  perimpose with the use of this single scale factor for each

+R.m(0)]%)/2, and the motion of the center of mass itself chain. This indicates that no second time scale is present as

4-0 v v v ¥ ¢

3.0 | - 0 o

o]
[=>)

Q: FIG. 5. Surface circumscribed
CZ by a ring in the meltA, plotted as
A/Rg (circles, and the number of
20 A neighborsny, plotted asnyN/R3
(squares versus N. The mass-
independent plateaus 0.8 and 3,
N respectively, are reached for
o 1.0 F N masses larger thad=100.
< ©o o

0.0 .
0 100 200 300 400 500 600



53 TOPOLOGICAL EFFECTS IN RING POLYMERSA . .. 5069

FIG. 6. Mean-square displace-
ments of a ring monomeg,(t),
of a monomer in the frame of the
center of masg,(t) and of the
center of masgs(t) versus the re-
duced timet/ 7. The three times
7123 (vertical dashed lingsare
defined in the text. The two hori-
zontal dashed lines correspond to
mean-square displacements of
2/3(R%) and (R?), respectively.
The Fickian behavior at long
times is indicated by the solid
line. The effective exponent
x=0.81 of the center of mass mo-
tion at shorter times due to net
forces of neighboring chains is
displayed by the broken line. The
anomalous diffusion of a mono-
mer for molten rings with expo-
nent »=0.4 is indicated by the
dash-dotted line.

would be expected for an entangled systéhe entangle- uncorrelated random forces, this exponent would have the
ment timg. Such scaling is sometimes called Rouse behavioFickian value of unity at all times.This effect was also
[18], but here we describe it as “unentangled scaling” sinceobserved for linear chains with a slightly higher effective
the power laws involved need not be those of the Rousexponentx~0.85 at the same densiy=0.5[18,19. There
model. Notably, no crossover whatsoever is detectable front was also verified that the exponents density dependent,
this scaling to a modifie¢reptation or othe@rmotion, involv-  approaching 1 in the low density limit; it is very likely that
ing a second time scale, even for the largest rings studiethis is similar for rings. We can therefore conclude that, as
(N=256). This contrasts with the fact that for linear chainsfor linear chains, there is a net force acting on the center of
of mass larger thahl=200 the unentangled scaling starts to mass generated by the interaction of the test chain with sur-
break down, with clear signs of a crossover to a new regimeounding ones, slowing down the chain motion at short
(whose exponents could not, however, be reliably meaguredimes.
[19]. This finding confirms that any entanglement length for The monomer motion may also be split into two regimes
rings is larger than that for linear chains of the same type, ircharacteristic of short and long times. While in the latter the
agreement with experimental inferenek8]. monomeric displacements approach asymptotically that of
As mentioned before, it is tempting to associate this withthe whole chair g;(t)ct], the conformational properties of
the fact that the rings are partially collapsed. Crudely, onehe rings in the melt are reflected in the short-time anoma-
could argue that for a given degree of entanglement, théous diffusion regime. The involvement of more and more
number of chains in the correlation hofehich scales as ring monomers as the lifetime of a fluctuation increases gives
RS/N) should be the same for rings and linear chains. Thidy general scaling arguments a mean-square monomer dis-
would give a rough estimate &f=1000 BFM monomers as placement ofg, o (t/ 79 ¥ *Y2") For our rings ¢~0.4)
the breakdown point of the unentangled scaling in the ringhis yields an exponent of about 0.45, which agrees well with
case. This estimate is broadly consistent with the entangldhe dynamical simulation data shown in Fig.[8he agree-
ment mass for rings reported in experiments as lying bement is even better if one uses for each chain length the
tween 2(for PS or 5 (for PB) times as large as for linear measured exponem{N), which is somewhat larger than the
chains, as discussed in the Introduction. extrapolated value(), as explained in Sec. I[IDefining a
Qualitatively, the mean-square displacements of rings dismonomeric mobilityW by g;=b?(Wt)¥E"12) whereb is
played here show behavior very similar to that of short lineathe monomer size, perhaps surprisingly we fiad shown in
chains, up to masses of ordsr=100[18,19. (However, as Table Il) that W~7x 102 for rings is about 4 times larger
mentioned above, for larger masses the scaling breaks dowhan for linear chains, wherg#/~1.6x10 3. The mean-
in the linear chain case, and in this regime the rings angquare monomer displacement in the frame of the center of
linear chains are no longer precisely aliké/hile the center massg, follows (as expected for small times, the same
of mass follows the Fickian type of diffusion at long times behavior as that in the laboratory frarge, while for long
(t/7ee>1), a clear signature of net forces acting on the centimes it approachey definition) the mean-square radius of
ter of mass of the chains is displayed at short times, when thgyration of the rings.
center-of-mass displacemegy is proportional to {/7.¢)*, In order to characterize succinctly the mean-square dis-
with an effective exponent~0.81. (Within a true Rouse placement curves for rings and to compare them with the
model, in which each monomer in the system is subject tdinear chain counterparts, we defirifollowing Ref. [18])
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three characteristic times, , 3 according to the following the diffusion constants obe\~0.034N; these are virtu-
criteria: gl(rl)=<R§>, gz(rz)=2/3<R§>, and g,(r3)  ally identical to their linear counterpar(sig. 8), as one ex-
=gs(73). Eachr parameter is a measure of the decay of thepects from an essentially Rouse dynamics in this lithit-
corresponding displacement function, as indicated in Fig. 6drodynamic forces are of course excluded in our mpdéie
Apart from a bit of scatter we obtain, independently of masssituation is somewhat different for the diffusion constants
the ratios7,/7,~3.3 (compared to~0.9 for linear chains Dy obtained for rings in the melt. The first striking point is
and 73/ 7,~8 (compared to~3). This means that, normal- that the rings diffusdasterthan linear chains of same mass
izing by the motion of a monomer in the laboratory frame,and density. This confirms the trend found experimentally in
both the center-of-mass motion and that of monomers in theero-shear viscosities for PS and PB melts of rif&js
center-of-mass frame take longer to reach their long-time Second, for rings, there is no sign of curvature on the log
asymptotic limits than is the case for linear chains. plot, which is consistent with the idea that the entanglement
We now discuss therobability distribution Rx) for the  mass for rings is larger than for linear chains. In fact, the
mean-square center-of-mass displacement[R.,,(t)  diffusion constant of linear chains, also shown in Fig. 9, has
—R¢m(0)]%. In linear chain systems, all chains behavepreviously been interpreted in terms of a crossover from true
roughly alike and, on the time scale of motion over Rouse behavior for smaN (which would appear as a pla-
one or more gyration radii, the distribution d®.,, is teau on this representatioto a new, entangled regime, with
essentially Gaussian. This would lead tdP(x) the crossover effects first appearing for £¥19<200. For
xg4(t) ~ ¥~ Y2exd —3x/2g5(t)]. For rings, another sce- linear chains(but not ring$ this crossover behavior was
nario is possible, in which at a given time a small number ofmuch more clearly seen gy andgz. Looking at the center-
rings are relatively “unentangled(for example, with worm-  of-mass diffusion data alone, however, there is no sign of a
like configurationy as discussed by Kleirl1], while others  smallN plateau and no firm evidence of a crossover to a new
form entangled clusters that can scarcely move. This wouldegime of entangled behavior, even in the linear chain case.
yield, in the crudest picture, a bimodal distribution for This suggests that other interpretations might also be worth
P(x) at times shorter than the lifetime of a cluster. Thisinvestigating.
possibility is apparently ruled out by the distributioR§x) If one assumes that, within the range of masses studied,
we obtained, such as, for instance, in Fig. 7 for a melt ofboth linear chains and rings follow single power-law be-
rings of massN=256. The distribution for times ranging havior, then one finds, respectivelyp~N~** and
from much smaller than the relaxation timg,=1.6x10°  D~N~2for the two case$35]. Remarkably, therefore, in
Monte Carlo steps up to times much larger could be supereach case that the diffusion constant varies inversely with the
imposed on one single master curve, which shows preciseljnass of the “correlation hole” of surrounding chairi3y
the form expected for Gaussian scaling as considered abovel/RS. This suggests a mental picture in which the center-
From the mean-square displacement of the center of masg-mass mobility of any given chain is governed by having
05(t) one obtains the diffusion coefficienBs, as shown in  to “drag” the contents of the correlation hole along with it.
Fig. 8 for isolated rings and in Fig. 9 for rings at a volume Although this picture should clearly break down for long
fraction ®=0.5. Forisolatedrings in athermal conditions, linear chains(where a more conventional reptation picture



53 TOPOLOGICAL EFFECTS IN RING POLYMERSA . .. 5071

0.050 '
O single ring
0.045 } - O linear chain ®=0.025 4
0.040 .
Z O T FIG. 8. Diffusion coefficient
2 0.035 | O i NDy versus mass\ for isolated
a rings (circles and linear chains
— - (squares
0.030 m .
0.025 §
0.020 .
10 100 1000
N

becomes approprigtet could provide some insight into the used for linear chainkB]. It describes the decay of the diam-
behavior at intermediathl. For rings, this “intermediate” eter vecto R¢(t) - R¢(0)) between two monomers of a ring
regime appears to be more strongly developed. If one conseparated byN/2 monomers. The relaxation time,., used
pares rings and linear chains at equal mean-square gyratiaa scale the time axis in the various plots discussed already,
radius, then the rings have slightly smaller diffusion con-is defined as the time at which this correlation function has
stants than linear chains. Assuming that any increase in thdecayed by a factor &/ Note that this correlation function
entanglement length of rings is due to partial collapse, this ishows a near-exponential decay.
consistent with the experimental fact that the viscosities of This contrasts with the second correlation function
ring melts, compared with linear chains at an equal numbeC,(t), which measures the decay in the mean number of
of entanglements, have slightly higher viscosities. chains, “touching” (in the sense defined abgwa given ref-
Master curves for some further correlation functions areerence chain at time zero, that are still touchingpittouch-
presented in Fig. 10. The correlation functi@pgt) is ing it agaip at timet. From this quantity an asymptotic
analogous to the end-end vector correlation function usuallplateau valugarising from the finite size of the simulation

v L] L] L] v
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FIG. 9. Diffusion constant of
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(squaresas a function of the mass
=z 3 i N. The diffusion constant of rings
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= Ne «N~%22 (solid line). Neglecting
o) N any curvature of the data points,
+ N \
o o | 2N \ i the diffusion constants of linear
A \ slope -1 chains are showfdashed lingto
. \ vary asNDyxN®5. This is com-
Orings \ pared to the reptation prediction
¢ linear chains © \ for linear chains (dash-dotted
\ line).
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cell) is subtracted so that the correlation function vanishes gprobability is not large enough to form large clusters whose
long time; we normalize t&€,(0)=1. ThisC,(t) apparently  percolation(for examplé¢ could lead to new dynamical phe-
decays with a power laWFig. 10. This correlation function nhomena.

C,(t) was defined in an attempt to monitor any possible In Fig. 11 we compare the relaxation times, as defined
clustering of entangled ringdeading to a fraction of slow- from the decay of the diameter correlation functiOgg(t)
moving materigl by detecting possible long-lived contacts (and used above for the scaling of the time axisth the
between rings that might arise from threading of one ring byquantity( Ré)/D, which also defines a characteristic time. To
another. Although the number of contacting rings remainsa good accuracy, these are proportional, but the latter is
large for times much longer than the measured diffusive relarger by a factor of about 10. The scaling of the relaxation
laxation times, there is nothing like a plateau; the power-lawtime, by either definition, follows approximately & law
decay ofC,, apparently scales with,e, SO there is no new (as do the times;, 7,, and; we obtained from the mean-
time scale due to clusteriri@7]. It seems that the threading square displacementsas predicted from the simple Rouse

8
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107 F slope 2.06 E dotted ling by the relaxation time
o RZ/Dy for rings (diamonds. The
o1, relaxation times of linear chains
4 | s R.4D i can be fitted by a power law with
10 0 o
0 ot linear exponenF 2.58, as indicated by the
dashed line.
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model for Gaussian chains or rings. However, we believe{D(N)~Rg(N)‘3]. This very simple picture may have
that this is fortuitous, the diffusion constant being the moresomething to offer for understanding the diffusion of molten
fundamental quantity; indeed, true Rouse motion for pardinear polymers in what is classically viewed as the crossover
tially collapsed object$as we know the rings to bavould  region between entangled and unentangled motion, although
give a higher power. For comparison, the relaxation timefurther work is required to check whether the same relation
obtained from the diffusion coefficient VRS/DN for linear  holds over a range of volume fractions. Note that the diffu-
chains is also plotted. In the range Mfstudied, this follows sion constants and relaxation times for linear chains obtained
anN2® power law.(The linear chain values are taken out of with the BFM agree perfectly with simulations obtained with
Ref.[18] and some data for short chains are added. molecular dynamics by Kremer and Gré¢48] and experi-
mental values of Richteet al. by RNA [40]; these were
always analyzed previously in terms of a crossover, although
V. CONCLUSION such data do not show true Rouse behavior even for small
N (neither does the experimental data unless corrections are
In this article we have demonstrated, using the bondmade for the dependence of the effective segmental mobility
fluctuation model, various pronounced effects of topologicalyn chain lengt41]).
constraints on the static and dynamic properties of rings. | jkewise for rings one has to choose whether to assume a
While the size of isolated rings scale as their linear countergrossover or fit an intermediate power law to the data. The
parts, molten rings are quite compact objects characterizeglossover interpretation is rather forced for rings, since for
by an exponent=0.390.03 for the chain siz&. Thisis  the ring sizes studied here, the intermediég@parently
consistent with a crude Flory-like argumdib] suggesting  power-law behavior shows no sign of breaking down at ei-
that one degree of freedom is lost for every nonconcatenatiogher the small or large mass end of the range. Since the
constraint. nature of entanglements in ring systems remains to be clari-
Experimentally, melt of rings seem to show dynamicalfied, it is possible that this behavior could extend to quite
behavior very similar to linear chains, at least for the massegigh massesor even, in principle, be the true limiting result
of rings usually studie@B]. The same seems to be true in our for high N). Certainly, if an entanglement crossover is
computational study, which is of course limited to relatively present for rings we can say that it is at substantially higher
modest masses, though ones for which, in linear chains, th@asses than for linear chains of the same type. In the range
onset of entanglements would clearly be detectable. We se§ N studied, there is in particular no evidence for a cross-
no sign of a similar effect for rings, suggesting a larger ef-gyer to a regime in which the rings have exponentially long
fective entanglement length in the rings case. Indeed, in oYglaxation times. Such behavior would anyway be surprising
simulation (which ignores hydrodynamics but respects thesjnce even rings in a fixed network show an algebraic depen-
topological constrain}s conformational relaxation of the dence of the diffusion constant on mdds,42. In molten
rings is well described by a dynamical scaling involving ajinear chains, it is known that reptation cannot be the only
single characteristic time scalg, for each chain, whereas mode of relaxatiorithe prefactors predicted from the repta-
an entanglement crossover would introduce a second timgon picture for the diffusion coefficient and for the viscosity
scale. Nonetheless, the motion is not that of a simple Rousgystematically underestimate the relaxatjoso there are
model(chains moving independently subject to local friction probably enough alternative modes of motion to allow relax-
and uncorrelated noigeinterchain forces are manifest in the ation of molten rings on an algebraic time scale even in the
reduced effective exponent for the center-of-mass motion afmit of high masses. A full investigation of that limit must
short time scales or, equivalently, in an increase in the expogf course await further increases of computer power, espe-
nent for the dependence of the Single-Chain relaxation t|m%|a”y Since, as emphasized above, any crossover to the en-

Tee ON chain length. This increase, fortuitously, approxi-tangled regime occurs for substantially higher masses than in
mately restores the exponent to the value 2 predicted by fhe case of linear chains.

simple Rouse model for Gaussian rings, despite the fact that
our rings are partially collapsed.
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