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During the past several years, the study of interfacial instability and pattern formation phenomena has
preoccupied many researchers in the broad area of nonlinear science. These phenomena occur in a variety of
dynamical systems, far from equilibrium, especially in some practically very important physical systems,
always displaying some fascinating patterns at the interface between solid and liquid or liquid and another
liquid. A prototype of these phenomena is dendrite growth in solidification. It is now well recognized that
this phenomenon is induced by some global interfacial instabilities involved in the systems. In the present
article, we shall consider the generalized needle crystal solution and its stability properties. In terms of the
unified asymptotic approach developed in the previous papers, two different types of global instability mecha-
nisms have been identified:(1) the global trapped wave instability, ait®) the instability caused by pertur-
bations with zero frequency that we call the niiRstability. It connects the so-called microscopic solvability
condition theory. On the basis of these results, a solution to the selection problem for pattern formation is
clarified.[S1063-651X96)01605-4

PACS numbg(s): 68.70+w, 81.10.Fq, 81.10.Mx

[. INTRODUCTION Glicksman problem has been extensively studied by a large
number of investigators, and the far field condition imposed

Dendritic growth is a common interfacial phenomenon inby Nash and Glicksman has been adopted by most authors
phase transition and crystal growth. In the past several de¥ithout objection. It was discovered during the 1980s by a

cades, this important subject has preoccupied a large numbB"'mblert_Of resealrlchirs tkgtlthe'matih-glitl:ks'man fproblttra]m has

of investigators in the broad areas of condensed matter phyg'grz(r)ntétlgrn(stﬁg[ an_isoa;ch n )(;fwéurfasemt(; EZ!On ?ngnothgr

ics, materials science, applied mathematics, fluid dynamicéj : ' . Py ensten y

etc. (e.g..[1-34) Classic needle solutions for the Nash-Glicksman problem ex-
i ' ist. These results led to the so-called microscopic solvability

The first important result in dendrite growth was IV‘f’mts'condition theory, which has influenced the scientific commu-
oVv’s zero surface tension, steady needle crystal solution pub= Y

lished in 1947([1]). But the Ivantsov solution did not solve hity on a large scale for about a deca{i2.10).

the problem of dendrite growth. Specifically, being a Simi'exigteé)elii;hﬁa?r?-tc;{lri]c?listgzglafc?tl)clerrf%ﬂﬁosu?:?1?;03888 ngt
larity solution, the Ivantsov solution cannot predict the P Py

growth rate of the needle tip. The second important Comri_surface tension, the system may allow a nonclassic, nearly

bution to this subject was made by Schaefer, Glicksman, anﬁtead%/r% 0,[ shghgl.yh t.|me ev<l)lvmg, needlel/solté)tp[nf.vy;th a
Ayers, who identified the selection problem. Schaefer,ém.go IS em, hW Ic IIS Very on%,l say,lﬁf( e), bu '2' e. I
Glicksman, and Ayers performed a series of careful experi- vidently, such nonclassic needie solutions are physically
ments on dendrite growth, and measured the tip velocitiegcceftab.le‘ Thléf theletssenual (;Siue IS thetgtab|ll% of ttrt1ese
under various conditions, by using transparent organic mat%?l::a?iiﬂcaggesefeci?o% IgfnZeir:jritles ?8\?\/?;? ction with pattemn
rial succinonitrile(SCN), and correctly concluded that at the It is well understood now that thg isotré ic surface ten-
later stage of dendrite growth, the dendrite’s tip velocity is 3ion may induce oscillatory instability, the Eo-called lobal
uniquely determined function of the growth condition andtr&1 ed )(Nave(GTW) mech)r;nism Hg\;vever the ue_gtions
the material propertiessee[4,5]). From then on, a great bglﬁt the role of the anisotro 6f surface ’tensic?n for den-
effort has been made to resolve this selection problem. Th rite arowth. whether the anis%);ro mav invoke a new in-
basic p'roble.ms have ber) .what 'is the m'echanis'm' which stabilig'][y meéhanism or not, and if iFt)i/doesywhat the implica-
determines tip growth velocity ar@) what is the origin and ion of this new instability for the pattern formation and

essence of dendritic structure formation? These problems apion of thi :
sélection is, are still not fully answered.

of great significance in industrial application as well as theo-t In the present paper we intend, by using the two-

retical research. To solve these problems, understanding  nensional dendrite arowth problem as a framework. to at-
the role played by the surface tension for the instability 9 P '
tack these problems.

mechanisms involved in the system is crucial. For steady In terms of the unified asymptotic method developed in

dendrite growth with the inclusion of nonzero surface ten- ur brevious work. we found that a dendrite arowth svstem
sion, Nash and Glicksman gave a well-known mathematical o Pre Y S . 9 Sy
formulation with two parameters: the undercooling param-Wlth anisotropic surtace tension is subject to two different
eter T, and the isotropic surface tension parameteisee types of instability mechanisms.

[3]). Nash and Glicksman assumed that as the boundary con- (1) “The global trapped wave instability” mechanism,
ditions the dendrite had a smooth tip and infinitely long rootwhich is induced by perturbations with high frequency. This

approaching the Ivantsov solution in the far field. The Nashimechanism was discovered by Xu in 1991 analyticédlge
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temperature of a flat interface. The thermal lengts «/U

is used as the length scale, where the characteristic velocity
U may be a typical value or the average value of the tip
velocity U(t). The quantityAH/c, is used as the tempera-
ture scale. Hereir is the thermal diffusivity, whileAH is

the latent heat release per volume of solid phase. We adopt

S the parabolic cylindrical coardinate systefd 7 moving
— with the characteristic velocity defined as follows:

2_1cg2_ 2 2_
FIG. 1. Typical dendrite growth from a supersaturated solution. XImo=3(8=n°), ylns=E&n, 2.9

[25)) for a dendrite with sole isotropic surface tension. It is Wherea; is a constant to be determined by locating the tip of
only slightly affected by anisotropy. the steadily growing dendrite on the parabgfal. It will be

(2) The so-called “zero-frequency instabilitytnull-f ) ~ Seen later that this constant is the Peclet number for the case

mechanism, which is induced by perturbations with zero fre0f zero surface tension. The unknown functions for the
quency. This is a new mechanism generated only by th@résent problem are the temperature fields in the liquid and
anisotropy and has a close connection with the microscopig®lid phasesT(¢,7,t), T(¢,7,1), and the interface shape

solvability condition(MSC) theory of steady needle crystal 7s(é:t). The nondimensional governing equation for the
growth. problem is simply the heat conduction equation. The bound-

ary conditions include the upstream far field condition, the
Based on these findings, we are able to draw the following>ibbs-Thomson condition, and the heat balance condition on
scenario. When the anisotropy parameter is larger than #e interface. The coefficient of surface tensignmay have
critical number, the system is dominated by the riulhsta- ~ anisotropy. The commonly acceptable form-ofs
bility mechanism. Hence the selected dendrite growth solu-

tion may be the steady needle crystal solution that was first y=vA(9),
predicted by MSC theory. However, when the anisotropy (2.2
parameter is smaller than this critical number, the system A(0)=1— a,, cogmé),

will be dominated by the GTW instability mechanism. Hence

the selected dendrite growth solution in this range can nevefhere?, is the isotropic surface tension coefficieat, is the
be the steady needle solution. Instead, it will be the GTWanisotropy coefficient, and is the orientation angle. Typi-

neutral mode. When the anisotropy of surface tension tendsy|iy for the fourfold anisotropy, one can set the integer
to zero, the nullf instability mechanism disappears, while ,—4 As a result

the GTW instability mechanism remains. These conclusions

?Lemgigglogirﬁglraet?;?gnt with experimental observations and A0)=F(&)/(1+ D)2,
The present paper is arranged as follows. In Sec. Il we

briefly describe the mathematical formulation for the prob- F(€)=(1— ag)(1+£%)°+8ayé”.

lem of two-dimensional dendrite growth from a pure melt. In

Sec. Il we give a linear perturbed system for perturbationsThus the system involves three nondimensional parameters:

around the generalized needle solution. In Sec. IV we givéhe undercooling temperaturg. <0, the isotropic surface

the_ outer solu_tion. In Sec. V we give the inner_solution in thetension parametes = \/I./l+/ n3=I.U/«/ 753, and anisot-

vicinity of a singular point. In Sec. VI we derive the GTW ropy parametet,. Here, | is the capillary length defined as

mechanism and nufi-mechanism. In Sec. VIl we give the

selection conditions and discussions. ¥, Tuo

(2.3

IIl. MATHEMATICAL FORMULATION OF TWO-

DIMENSIONAL DENDRITE GROWTH
FROM A PURE MELT Ill. BASIC STATE SOLUTION

. ) . AND UNSTEADY PERTURBED SYSTEM
We study the problem of two-dimensional free dendrite

growth from a pure substance. The reasons for doing so have It is well known that for zero surface tensiga=0) and
two aspects. First, this model is practical. Two-dimensionaprbitrary undercooling, the system allows the following simi-
dendrite growth can be obtained in a Hele-Shaw cell. Seclarity solution (see[1]):
ondly, the mathematical treatment for the two-dimensional
model is relatively simpler than that for a three-dimensional B _ 2 22 [F 2
model, and the instability mechanisms for both cases are T=T,(7)=T.+ 7ge" f e "oy,
similar. 7

A typical two-dimensional dendrite growth is shown in
Fig. 1. We assume that a free dendrite is growing with a tip
velocity U(t) into an undercooled pure melt with the under-
cooling temperaturel,,<Ty,, Where Ty,q is the melting 7. =1, (3.2

TS:TS* =T*(1)=O,
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Too:_ ngeﬂglzf e*ﬂgﬂilzdnl, T:TB+T(§1771t18)1
1

TS:TSB—’_:I:S(g!?]vt!S)! (35)

(0=é<0), 7s=ng+h(&,t,8)! 75,
where the constang3 is uniquely determined as a function in which the perturbationgj=:{T;Tg;h}, are assumed to be
of the undercooling’ ... The radius of curvature of the para- generated by initial infinitesimal disturbances with a charac-
bolic interfaces, =1 at the tipé&=0 is |,= 73l and 73 is  teristic amplitudes<1. Hence a linearization i@ is appli-
actually the Peclet number, namely,Pg3. cable. The linearized perturbed system is a homogeneous
During the past decade, there has been a long argumesystem shown below:
for the existence of a steady state solution for the case of
e¢#0. The key is how to formulate the steady problem. We
point out that although the system indeed does not allow a
classic steady needle solution for the case of isotropic sur-
face tension, it always has some slightly time dependent so- [0=é=<L(e)], (3.6
lutions describing the later stage of pattern evolution.
These solutions may depend on a slow time variable, dewith the following boundary conditions.
fined ast=¢(t—ty), wherety>1. We assume that the total

2

92 ) , L T aT ﬁ)_
Y a—zT 7lo(§+7l) +770§ :

& )

lengths of dendrite in these solutions are very long, but finite, (DAs p—», T—0; (3.7
which may be increasing with time, suchlag)=(t+C)/e _
[C=0(1)]; furthermore, at the root the solutions are close to (2)As n—0, Ts=0(1). (3.8

the lvantsov parabola, namely, (3) The interface conditions: making the Taylor expansions

around the interface of the generalized needle crystal, it fol-

{TiTsyﬂs}:{T* T 177*}"_0(8) [as &= L(£)]-(3 2 lows that atny=7g(¢,€)
It can be proved that for any fixed>0, ase—0 these solu- 1~ Ts= T an h/ 75, (3.9
tions,qg=:{T,Ts, 74}, all have the same steady regular per-
turbation expansion: - 82A(d) 7h £ Jh 1
L Ts=—= —2+T——A2 ht, (3.10
Qe(&,mt,e)~q, +e’ar+etget -, (3.3 S(§) | 9&° S%(¢) d¢ SU(&)
with the Ivantsov solutiom, =:{T, ,Ts, ,7,} as the lead- — (T—-T¢)+ ,7032(5) _+§ —+h
ing term. These solutions may contain some time- dependeﬁt’l ¢

terms, but these terms are all exponentially small in the re-
gion away from the root. Thus these solutions may be physi-
cally considered as the steady solutions. We call the above

92 h [ &2 h
a_nZ[TB SB]] ( 52 [Tg— TSB]] _(2)_0

broad class of slightly time-dependent solutions the nearly
: . (3.1)
steady state solution, or the generalized steady needle solu-
tions. where
In this paper we shall not look into the exact form of such .
generalized steady needle solutions, which will be studied S(&)= &>+ 7725- (3.12

elsewhere. Instead, we shall use these generalized steady

needle solutions as the basic states, and attempt to study thé The root condition: at=L(e),

stability property. We point out that the exact form of these

basic states is not important. For our purpose, the only infor- {T,Ts,h}(L):O. (3.13
mation that we need is that these solutions exist and in th
region away from the root, they can be well approximated b
the steady Ivantsov solution, i.e.,

) The tip smoothness condition: &0,

2 AT sm=0
> 0
TB(S’WIS):T*(W)+O(8 )n
for the symmetrical mode$S modes, (3.19
TSB(g,’I],S):O(Sz), (34) {~~ —~

_ 2
78(£,€)=1+0(e”). for the antisymmetrical modesA modes. (3.15

We consider perturbations around these basic states aBystem(3.6)—(3.19 leads to a linear eigenvalue problem,
separate the general unsteady solutions into two parts: ~ when one considers the type of solutiogs; e’". The ei-
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genvalues will be a function of the parametees «,, and

7%. We shall solve this eigenvalue problem by using

matched asymptotic methods.

IV. MULTIPLE VARIABLE EXPANSION SOLUTIONS
IN THE OUTER REGION

We first look for the asymptotic expansion for solu-

tions q(¢&, n,t,e) of the linear systen(3.6—(3.19 in the
limit &—0,

ables{¢, , 7, t.}:

n—1
§+:_| 7’+: & [l t+: 3 (4'1)
and define the stretched variablgs , , 7, t,,) as
++:f k(§,e)dé,, 7 =09(&e)ny, t++:t+/77%-
4.2

In terms of these variables, we make the following multiple

variable expansion for the perturbed state:

?:{?0(517],§++ ,77++)+8?1(§,77,§++ ,77++)
+ '-}e"'t++,

’H:{FO(§15++)+8F1(§,§++)+ ..}errt++'

k:k0+8k1+82k2+-.. , (43)
g:k0+8g1+82g2+... ,

og=0gteot 820'2+ T,

in terms of the multiple variable expansion
(MVE) method. In doing so, we introduce a set of fast var
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d dhg
Ko 3 (To Teo) + 00 (€)No+koé —— 7E. =0,
++
(4.9
whereS(&) = 1+ £2.
(4) The root condition: ag—c, one should have

i_(5) The tip smoothness condition: &0,

0 ~ ~ -~
) a—g{To;Tso}ho}ZO for the S modes, (4.1)

(i) {TO;TSO;FO}=O for the A modes. (4.12

The system4.4)—(4.12) has the following normal mode
solutions:

To=Ao(&, mexplit, . —
Teo=Bo(&, mexplié, + + 7.4,

ho=Dg expli£, 4}

The coefficienD in the zeroth-order approximation is set as
a constant.

From (4.7 —(4.9), we derive that the wave number func-
tion ky(£€) must be subject to the local dispersion formula

k 2AL(£)K3 k
oo=2(¢§, ko)_sg[ —(55) K '%-

77++}’

(4.13

(4.19

For any fixed eigenvaluey, one can solve three wave num-
bers as the functions of & namely,
{ke2(e) kA k(D) with  (Relke'}>Relky’}>0

whereo=0g—iw; (w=0) is the eigenvalue and the fast vari- >Relk{ V). Thus, for a fixedoy, the system allows three

ables and slow variable&,7.¢, , ,7.+,t,4) In the eigen-

function solution are treated formally as independent varithe wave number functions{?) k{2,

fundamental wave solutio Sil,H% g)%’}) corresponding to
k™, respectively. The

ables. One can convert the above linear perturbed systesolutionH; is called the short wave branch, while the solu-

into a system with the multiple variabl€é§ 7,¢, , , 7, .t 1)

tion H; is called the long wave branch. The solutib,

as shown in[22], and successively derive each order ap-having a negative wave numbéRe(k2}<0), is ruled out.

proximation in the outer regiof0<£<L(g)]. For the zeroth-
order approximation, we derive

& 2 \- 92 # \=
e e L)

(4.9

and the following boundary conditions.
(1) As 7,,—%, Tg—0, (4.5
(2) As 74— =, Te—0, (4.6

(3) on the interface, a, =0, =1

TO Tso—i—ho, 4.7
= _ALOK; 7y “g

To="55 3.

Its corresponding perturbed temperature figldwill grow
exponentially asz—», violating the boundary condition
(4.5. Thus the general solution of the zeroth-order approxi-
mation is

ho=D1H;(&)+D3Hs(é)
=D, exp{;—J kVdé, | +Dg exp{ Jk(3)d§]
(4.15

Here, the coefficient$D,,D5} are arbitrary constants to be
determined.

It has been noted that the MVE solutié#.3) has a sin-
gular point&, in the complex plane, which is the root of the
equation

92 (Ko, £)

— 2_
T~ OAKS

(1-ig)S=0, (4.163
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Im (£} the inner solution near the singular po#t Then, the con-
nection condition between the coefficieqi3, ,D} in sector
(Sy) and{D;=0;D3;=D"} in sector(S;) will be derived.

i M%\Qé« (LQ)

V. THE INNER SOLUTIONS

(51 Re(c) NEAR THE SINGULAR POINT &

As indicated before, at; in the complex¢ plane, the
MVE solution has a singularity. However, the true solution,
) after analytical continuation, should be regular at this point.
Therefore the solution must have a different asymptotic form
in the vicinity of &. In the inner region,|é—£&|<1; |7
—1|<1, we introduce the inner variables

¢ :§_§c :77—1 5.
FIG. 2. The sketch of Stokes lir&,), (L,) emanating from the * T Tga o T T ga '

turning pointé,, in the case of complex spectrya=0(1).

wherea is to be determined. Besides, we denote the interface

or shape function as
. 2 1/2(§+i)7/4(§_i)1/4 'H ﬁ(f ,t)
"°:e_'m(z—) — = (416 MED=1F =146, s=—7,
7 f(é) 7% no

(5.2
Due to the existence of this singularity, the MVE solution

(4.3 is not uniformly valid in the whole comple&plane. In SO We have
particular, the coefficient$D,,D3} may be different con- ~ ol
stants in different sectors. These sectors are divided by the h(&,t)=e"N(&, 1) (5.3
Stokes lines emanating from the singular p@intThis is the
so-called Stokes phenomenon. The so-called Stokes line
defined as

Renote also
T(&,m)=8T(& 74 1),
£ D Brer _ A (5.4
Im L(ko —kg)dé" =0. (4.17) T(&,m)s=8"To(&x 74 ).

The sketch of these Stokes curvés), (L,),(Ls) for a typi- We look for the mode solutions and make the inner expan-

cal case is shown in Fig. 2. The Stokes cuflvg) divides the sions

whole complex¢ plane into the sectoréS;) and (S,). We - _ =

denote the coefficients of the soluti¢h.15 by {D;,Ds} in (&7 O ={vo(e)To&x  7)

(Sp, and by{D;,D3} in (Sy). In order to determine the con- Fo(e)To(E, )+ .}eat/sna

nection formula of these constants in different sectors, in
order to obtain the uniformly valid asymptotic solution, one

must divide the whole comple&plane into two regions: the Ts(&s o7 D ={vo() Tsol(&x 1 75)

inner region near the turning poidt, and the outer region + Vl(s)-]—31(§ 7e)+ e ,}eat/sng
away fromé¢, . The solution(4.15 is only the outer solution o ’
valid in the outer region. One also needs to find the inner (5.9
solution in the inner region, and match the inner solution R R R 5

with the outer solution. h={vg(e)hg+ vi(g)h,+---}eVe70,

Note that asé—e, the solutionH; increases exponen-
tially, whereasH decreases exponentially. Thus it follows In terms of the inner variables, perturbed systed6)—
that to satisfy the root conditiot4.10, one must set the (3.11) can be expressed in the form
coefficientD;=0. Hence the root condition can be replaced
by the following radiation condition that we imposed in pre-
vious work:

9? 9\ .

—2+W)T={82“_10773(§2+772)

*

ho~D4iHs (as é—). 4.1 « J J

0~DiH3 (as ) (4.19 _Mg(__,] )
‘95* 0Ny

Hereby, the constard; is proportional to the character-
istic amplitude of the initial perturbation. It is a free pa- —s"( 19 1 a )}'AI' (5.6

. ) - . - +—
rameter in the linear theory. The remaining problem now is E9E, man,
how to determine the coefficieni3;,D5 in the MVE solu-
tion (4.15 in sector(S;). In the next section, we shall study with the following boundary conditions.
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(1) As p,—», T—0. (5.7 2Aq(£)
03: - S y
(2) As 7,——®, Tg—0. (5.9
6k A BV et
(3) At the interface,s, =0, y=— %(5): —e i o % , (5.19
T=T +ﬁ+(higher-order terms (5.9
S E(k g) E (g) i /4( 2)1/2(§+i)7/4(§—i)1/4
- r &)= =g BT ] — "
. e272%A(&) ¢°h _ ¢ ¢ 27 Ji(&)
TS=TE§7+(hlgher—order terms (5.10
’ Clearly, at the singular poirg.,
gl-@ (T-T )+<752(§)ﬁ+81*a§ﬂ 00— 2c(&)=0. (5.20
ine o ® Oy oo
= (higher-order terms (5.11) Hence the singular poirg; is actually a turning point of the
inner equation5.18. The variable# in the coefficient func-
Letting e—0, under the condition tions of Eq.(5.18 also needs to be changed to the inner
variable &, by &=¢.+&%, . Next, we need to make Taylor
g2 lpp<1, (5.12 expansions aroung, for the coefficient functions and bal-

ance the leading terms on the left hand side of BdL8), in

the above inner system can be further simplified into thehe limit e—0, to determine the value ef. Note that

following third-order ordinary differential equation for the

interface perturbatioh:

2e3732A((§) PEN dh N
i > +el-ereqi + oaS?h
! S &, € (&+1) d€, 70

=O(higher-order terms (5.13

For further discussion, we transform the outer solution
into a new unknown functiolV(£), by using the transforma-
tion introduced in22]:

—~ i (¢
h=W<§>exp[; | kc<gl>d§1’ 514
&
and accordingly, in the inner region, we set
I i (¢
h=W(§*)eXpr;f kc(§1)d§1]- (5.19
éc
Letting
IS’y _ BAK: o
( 7k )kOKC— S +(1-i¢)=0 (5.16
or

1/2
kc<§>=(%<1—i§>) =e™ e+ ) M6 BE(E)

(Refke}>0),  (5.17)
Eqg. (5.13 can be transformed to
d3W 2\
373 +ig? %)
?dg 2 dg;

=0O(higher-order terms

+iS o= 3 (£)]W

(5.18

where

f(&)=(1—ay)(£2+a?)(£2+a3), (5.21
where
a;~1—2a,;, a,~1+\2a, (as az<1).
(5.22

The functionf(£) has four imaginary zeros#ia;,*ia,).
Hence, in addition tc&;, the inner equation has two more
turning points: é&=*i, and four other singular points:
&=(*iaq;*iay). The relative positions of these singular
points to&, are related to the values of the parametgysa,.

We choose the turning poirg, with Re{&:.}>0; Im{&.}<<0.

So, the singular point§=(i;ia,;ia,) are always away from

& . Their influence on the inner solution is negligible. How-
ever, as o0y—0, §&.——i, while as a,—0,
(—iaq;—iay)——i. So, the singular point§=—i, —iaq,

and —ia, may enter into the inner region @ and conse-
quently influence the behavior of the inner solution under
some circumstances. Two cases are found to be significant.
(1) 6o=0(1): all the singular pointg==*i and é&==ia; (i
=1,2) are away fromé,; (1) |op/<1 and the singular points
&=—i andé=—ia; (i=1,2 are inside the inner region. For
these two cases, the inner equation in the far field of the
inner region, ag, >1, can be reduced into the common form

d®Wo  ~p
=5 +§* WOZO,

(5.23

where

- B
b=z (660, (5.2

and the constan®, p,, and the scale numberare different

for different cases. Moreover, for both cases, the Stokes line
(L) that is tangential to the direction &¢g= 7 at the turning
point & always intersects the real axis pfat a point&,
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>0, and divides the real axis into two parts, respectively, in VI. THE SPECTRA OF EIGENVALUES
the sectorsS;) and(S,) (see Fig. 2 The general solution of AND INSTABILITY MECHANISMS
Eq.(5.23 is

A. The global trapped wave instability

Wo=D1E2HD () + DY H P () (1=2vEY%), Considero,=0g—iw andw>0. With the complex eigen-
(5.25 value gy, the physical solution in the outer region is

where v=1/(py+2) andHP(7) andH?(¢) are the first and Rel(ho(£,t)}=Re[D;H;+ D3Ha)e™ e}, (6.1)
second kinds of Hankel functions of order respectively.

The above described results are summarized: For ¢ise To satisfy the tip smooth conditions, the coefficiebts, D4
0,=0(1); =%, py=1, andv=3; for case(ll): |ao|=O(s3’7), must be subject to the following conditions(i) for the

a,=0(%"); a=1%, py=1, andv==. symmetricalS modes,
We now turn to matching the inner soluti@f.25 with
the outer solutior(4.15 in the intermediate regions in each D3/D;=—k{"(0)/k$(0), (6.2)
sector. From the Hankel function theory, we have the con-
nection formula: asr<arg({,)<2, (i) for the antisymmetricah modes,
HP(£)=H{? (¢ =2 cogvmHP(£) + € H)(0) Dy=-Ds. 6.3

[O<arg{)<r] (5.26 Combining (5.28 with (6.2), or (6.3), one obtains the fol-
lowing quantization conditions:
and the following asymptotic forms: ag—c, 1 e
0\ 12 X== f c(kgl)_kgs))df
H(l)(§)~(—> el {—i(vi2+Ud)m € Jo
mé =(2n+1+ 3+ 0p)m—i{In ap+In[2 cogvm)]},
[—w<arg{)<2],
(5.27

2 1/2 o
H(VZ)(Z)N(W—J g IEHi2rUdm ap=1, 6,=0 for the A modes,

age ™=k{(0)/k(0) for theS modes,
(6.4)

[~ 2m<arg §)=m]. n=(0,£1,£2,+3,...).
By using these formulas, we first match the inner solution- &N be proved that the system only allows the complex

: . . eigenvalues withoo|=0(1), corresponding to the cagé)
(5.29 with the outer solution(4.19 as ¢, — in the sector discussed in the last section. Consequently, one ihas

(S,). Note that in this sector, the outer solution, satisfying theThiS complex spectrum contains two discrete sets of com-

radiation condition(4.18, hasD;=0. Thus, to match with ) )

th ¢ luti t S6L.-0 and Do—D=D! plex eigenvalues foS modes andA modes, respectively,
€ outer solution, one must s€,=Y andL>=bP=Ls  given by the quantization conditior6.4) as

X const£0 in (5.25.

Furthermore, in t_erms d15.26)—(5._27), we derive that_ in _ O_E)n), (N=0,21,%2,..)~(&,a,).
order to match the inner solution with the outer solution in
the sector(S,), the parametes, must be such a function of } is found that these GTW mode solutions are slightly
e that, ase—0, varying functions of the anisotropy parametgr, and theA-
D i e modes are more stable than the corresponding neGtral
(—1) exp[ - f [k(D— kg3>]dg] =i2 cogvm). modes. _ _
Ds e Jo In Fig. 3 we show, in the complex plane, the eigenval-

(5.28  ues for theA-modes with variouse for given n=0,1,2,

) ) - . a4=0. It is very interesting to see that these eigenvalues for
So far, we have not applied the tip condition. Once the tiln=0,1,2,... appear to be located on the same curve in the
condition (4.11) or (4.12 is applied, the eigenvalue,, as complexo plane, and direct to the poit=(0),5,=0.2712
the functione and a4, can be determined by the condition 5. .0
(5.28. We find that the system allows two different types of ¢ system allows a unique neutrally stallemode
spectra (_)f eigenvalges(l) The complex eigenv_alues, (0r=0), ase=¢, ,, Wheree, ;=¢, >¢,,>¢,,> . In Fig.
7o=(0r~10); ©>0, with |oo|=0(1); and(2) the real eigen-  4(5) we show the variation of, with «,, while Fig. 4b)
values with|op|<1. As a consequence, the system is subjecthowsw. versusa,.
to two different types of instability mechanisms: the global * N
trapped wave instability, induced by perturbations with a
high frequency,|o|=0(1) and the low-frequencynull-f )
instability mechanism, induced by perturbations with low We now turn to deriving the spectrum of real eigenvalues
frequency,w=0. In the next section, we shall derive these oy. In this case, the physical solution in the outer region
results. becomes

B. The low-frequency (null-f ) instability
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FIG. 3. The variations or=0g—iw of GTW, A modes(n
=0,1,2 in the complexo plane withe for the casey,=0 anda =1,
where the parameter= k14 k7 is the ratio of the thermal diffu-

sivities in solid and liquid phases.

Re(ho(£,0)} = R(£)eo!> 5,

R(¢&)=Re{D;H;+D3Hg}.

o P°

>
®® b g gpon @

(6.9

Note that as<1, k§)(¢)=k{)(0)+i2a;¢+0(£?) (i=1,3,

whereky’ anda; are real. Hence we can write

R(£)=[D1r cosx1)~ Dy sin(x;)le” %7

+[D3g COS x3)— Dy Sin(xs)]e %75 +0(£3),

(6.6

53
Ex
0.4
& =10 A modes
0.35 -== &=0.0 A modes
& =10 S-modes
} 0.3 s=== &=00 S modes
oasp T el
\\\‘s_a_
oasp T T T T o= -
\_\
0.1}
0.05
-0.1 0.1 0.2 0.3 0.4 0.5 o
(@
W
0.4 — &= 1.0 A-modes
=== & =00 A-modes
& =10 S-modes
........ ———- &=00 S modes
—— _e3f TTTmeeeeel_L
— ] - - - - _ -
0.1
-0.1 0.1 0.2 0.3 0.4 0.5 ay

FIG. 4. (a) The variations of critical numbers, corresponding
to the neutrally stable GTWA mode andS modes versusy. (b)
The variations of frequency of oscillations, of neutrally stable
GTW A mode andS modes versug,. (The solid lines are for the
symmetric modela=1, while the dashed lines are for one-sided
model #=0.)

)
&

e—alles

R'(§)=—[Djgr sin(x1) + Dy, cogx1)]

ke¥(0)

&

. _ 2
—[D3r sin(x3) + D3 cogx3)] e e

+0(4),

(6.7)

FIG. 5. The real eigenvalues (n=0,1,2 of null-f mechanism
versuse for the casex=1, a,=0.01.
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where where

£ i : yo=Coa}®, Co~1.80205, .72~0.615622.
xi=, K§'(0) (i=13). (6.9 o 6.17

Without losing generality, we can assurbg is a positive 11US we obtain

real number and denote 1 v
) __-]_70 1177 217
Dl>01 D3:|D3|eIXO7T_ (69) Re{X} € { ‘/— Cl ay ]1 (61&
Therefore the tip condition for the symmetric modes, 1( 7 9
R’(0)=0, leads to the conditio®3 =0, or Im{x}= - { 7 2 0+C2<Tél/7%21/7] . (6.19
Dl Dl —ixom
3 3

— 3/726/7 ~
Furthermore, for the antisymmetric modes the tip condition, Cy=3(V3-1)27'3"" cog 57/14)~3.2886, 6.20
= 6.2
R(0)=0, leads to C,=3(v3—1)2373%7 sin(57/14)~6.2883.

’E‘ =—cog xom)<1. (6.11) Having substituted these results (6.12), it is shown that

D one must haverj®=0(e) ando3"a2"=0(e). This relation-

- . . . ship of the orders of magnitude between oy, ande is just
ggtr;i?]'w:g(5'28) with the tip conditiond(6.10 or (6.1, we consistent with the cas@l) discussed in the preceding sec-
tion. Hence we have=1:. Moreover, it is also shown that

Re{x}=(2n+3+xo)7m (n=0,+1,+2,..), (6.12 the system gloes not aIIo_W any growiAgmode for th_e nullf
mechanism; only growindS modes are permissible. The

quantization condition for thes® modes is obtained as fol-

‘D—l =2 cog vr)e™, (6.13  lows:
3
where Ciot 0 '=— Co a)®—e(n+3)m (6.21
0 or 1 for S modes ‘fz
—1
Xo= cos '|D,/Dg| (6.14) D
1+—Tr for A modes. ‘D—l=2cos{4w/15)e'm{x}, (6.22
3

The quantization conditio(6.12) determines the eigenvalues
a{", while the formula(6.13 determines the corresponding
eigenfunction. We did not find the real eigenvalues with D, 1, n=even integer
|og/=0(1) from (6.12. But the system does allow a real sgr{ 5 } {_’1 n—odd inteqer
spectrum withop|<1. To derive it, we can first simplify the 3 ’ ger.
quantization conditiort6.12) with the assumptiofo|<1. N For any fixede and ay, from the quantization condition
fact, from the local dispersion formuld.14) one can derive (6.21), one can solve a discrete set of the eigenvdlng
that (n=0,1,2,3,.) as shown in Fig. 5. It is seen that there is a
1 (1—|§)7’4(1+|§)5’4 3 discrete set of neutral stable modeg=0), corresponding to
72 ¢) 5 (1Figog go>e;>ey>--->gl>--- . These neutral modes coincide
with the steady needle crystal growth solutions predicted by
+o(gg)_ (6.15 MSC theory. For the neutral mode=0, we obtain

where

(6.23

[k (1) _ k(3)] —

We compute that E=ga=g(= 7a7/8 (6.29

1 (& D U3 where.72=0.811 20. This coefficient_, sugggsted by the MSC
=5, (ko' —ks")dé theory for the steady needle solutions with the largest tip
velocity (n=0), has a different value7'=1.09.
A remark should be made here that, as one can see from

—ia —i ¢
:( j ! + J' + J ¢ (4.3), the exact eigenvalue has the asymptotic expansion
0 —iag =i
o=0pteo;+e%0,+ -+ (as e—0). (6.25
1 i 1
=20 — 2= = yoti = 0p+3(V3— D)oo £t . . _
Ry S5 Yotig o0 ( )oo(écti) So far, we only calculated its leading-order approximation,

0y. For the neutral modes of the ndllmechanism, when we
set 0,=0, the effect ofoy; becomes important. Hence the
+O(higher-order terms , (6.16 critical numberse,, for the neutral modes obtained above
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will be inaccurate. For more accurate values of these critical
numbers, one needs to include higher-order terms. For in-
stance, one should solvg, from the equationry+e0,=0. 0

There are(m+1) purely growing modes and infinitely
many decaying modes, a$,,1<e<g.. As ¢—0, the first
n eigenvaluesr, (k=0,1,2...,n) all tend to the upper limit
T hax: Which can be calculated as
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As e>¢g,=¢(, all modes are purely decaying. As—0,
the nullf instability disappears, as the upper linaif,,,—0.

The above nulff instability was discovered by Kessler
and Levine numericallysee[14]). It was later confirmed by ~ FIG. 6. The neutral curvefy} and{# o}, and the stability dia-
Bensimonet al.in an analytical waysee[16]). Note that the 9ram of dendrite growth in the parameter pldng,z).
guantization condition obtained by Bensimenal. is in er-
ror. Nevertheless, through their quantization condition, thesg,qdes with the first-order approximatios=o,+sa,. The
authors were able to draw the same conclusion as ours tha{syitant critical numbe, is then reduced te,=0.1153.

the steady needle solution predicted by MSC theory was neu- The shaded region below these two curves is the unstable

trally stable. region, while the remaining region is a stable region. In gen-
eral, givena, whent—oo, the basic solution is expected to
show one of the following three types of behaviof1) It
may approach a steady solution describing a smooth growing
. . needle;(2) it may approach a time periodic solution, describ-

In the above, we havg SIUd'e.d the stability property of themg an (ogcillato);y Ig;,;ir)owing dendrit%' aB) it may have no
nonclassic, steady or slightly time-dependent, needle SOluz "<\ ion " The solution evolves with many short time
tions. The asymptotic resu_lt_s for the spectrum of complex nd length scales and exhibits a chaotic pattern. On the other
F|g§anvalues have been verified by the numerical solutions | and, on the basis of general linear stability theory, it can be
30]. ’ . : ST

. . — proved that if the state point has a steady limit, this fixed

, In the asymptotic analysis, we gehxed, anq lete—0. It point limit, in our case, must be on the the neutral curve
IS founq that the .syster.n' of dendntg growth is controll_ed by{‘{b}' furthermore, if the state point approaches a time peri-
the entirely nNEew instability mecham_sms, compared_ with .theodic’orbit this orbit must be around a point on the neutral
well-known Mulins-Sekerka instability. These new instabil- curve{ }‘ Therefore we draw the following conclusions
ity mechanisms are the GTW and niillnstability. Based on Yor: 9 '

the understanding of these instability mechanisms, the selec- (1) If the dendrite growth system exhibits a steady pattern

tion criteria of dendrite growth at the later stage of evolutionast—x, as stated in the above cadg, the limiting steady

can be naturally derived. Let us consider the evolution of ousolution must be on the neutral curf&,}, and it occurs only

basic solutions under a fixed operation conditiontasc.  whena,=a,. In other words, for the small anisotropic sur-

For this purpose, we define a new parameter as face tension case, whem<«a., the steady needle solution
cannot be observable, due to the existence of a number of
growing oscillatory GTW modes. The selection criteria

e= \/|CU/K/7](2), (7.9 given by the MSC theory are apparently not applicable in

this range.

(2) If the dendrite exhibits a time periodic oscillatory pat-
whereU is the velocity of the dendrite’s tip. Evidently, as tern ast—», as stated in the above cag®, the limit solu-
U=U, e =e. For a given operation conditiom, is fixed; the  tion must be a neutral mode on the neutral curyg and it
parameteie associated with the growing dendrite under theoccurs only when € a,<a,. The unsteady oscillatory pat-
investigation may vary. Hence the state point of our dynamitern determined by the GTW neutral mode is self-sustained.
cal system, specified bix,,e), moves with time in the pa- It can be stimulated by an imposed initial perturbation and
rameter planéa,,s). We plot the neutral curvgy,} fortheA  does not need a continuously acting noise for its persistence.
mode(n=0) of the GTW mechanism, and the neutral curve We emphasize that this statement has two implications. First,
{# o for the S mode(n=0) of the nullf mechanism in the it implies that for the large anisotropic surface tension case,
parameter planéa,,s), as shown in Fig. 6. These two neu- when a,>a,, no self-sustained, oscillatory dendrite is pos-
tral curves intersect each other at a critical numberible. In this range, one may still see a time-dependent, os-
a,=0.1840. This critical number will be reduced to cillatory structure on a steady, smooth dendrite interface in-
.=0.1334, provided one useg=1.09 in (6.24, as sug- duced by the decaying GTW modes. But this pattern can be
gested by MSC theory. As explained before, for more accusustained only by some external continuously acting forces,
rate critical numbera,, one needs to include the higher- such as noises. Once these external forces cease, such oscil-
order approximations of the GTW and niilimode solutions. latory structure would disappear with time. Second, the cri-
In fact, we have computed the neutral cufwg} of GTW  terion (a,<e.) is the necessary condition for the occurrence

VII. THE SELECTION CONDITIONS
OF DENDRITE GROWTH
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of a time-dependent, oscillatory dendrite growth. It has notmerical simulations conducted by Brener, “IMu
been proved as the sufficient condition for such a linear neuKrumbhaar, Saito, and Shiraishi in terms of quasistatic ap-
trally stable mode to be attainable with any kind of initial proximation show the same scenario. Their results suggest
conditions. 0.068<a,<0.125.

(3) If the dendrite growth system exhibits a chaotic pat- As these numerical simulations confirm the existence of
tern agt—oo, as stated in the above ca$, the state point of the unstable GTW modes, from here, one can logically de-
the system must remain in the unstable region. duce that the system must have the GTW neutral mode. This

The ab USi be i d _%TW neutral mode was indeed found by the numerical so-
e above conclusions appear to be in good agreement Wiyj s of the eigenvalue problefaee]30]). However, so far

experimental observations. So far most experim_ents for dene has not been found in the numerical simulations of the
drite growth from a pure melt are three dimensional. These .-\ aiue problem by Ihle and Mier-Krumhbaar and oth-

experimental results show little correlation between the S€ars. One of the possible reasons for this may be that they did
lected values =e, and the anisotropyrefer to[35]). These not use a proper initial condition. The steady lvantsov solu-

results, in agreement with our theory, suggest that the anisofjo, 1hat they used as the initial condition is apparently too

ropy fpr these materlals IS In the range of8,<q. and the far away from the GTW neutral mode solution. As indicated
realistic dendrite growth is attracted to the neutral GTWhpefore. the existence of the GTW neutral mode is only a

mode, as—e. necessary condition, but not the sufficient condition attract-
Recently, several groups of researchers have performediﬁg the solutions for the initial value problem with any kind

series of numerical simulations for the initial value problem ¢~ i) conditions, ag—. In general, a dynamic system

of two-dimensional dendrite growtt{36,37). Our results a4 hag an isolated, limit circle solution may not be attracted

are ?Iso Ir:} goo?j al\%rlzement t")‘ﬂth thﬁ'r numegcal S|mulgt|?n[0 this limit circle, under some initial conditions. Not only
results. Ihle an r-Krumbhaar have made numerical .+ ‘s |imit circle might never be observed, if some non-

simulations with various values of the anisotropy. They Sho"‘{inear instability mechanism exists
that asa,=0.15, the numerical solutions are attracted to the 1o 10fore we have the foIIowingi open questions. In order

neutral mode of the null-mechanism. At the later stage of ¢ yhe solutions for the initial value problem to approach the
evolution, the dendrite has a smooth interface with no side; v neutral mode solutions dssc. what kind of initial

branching. Then, ag,=0.1, a strong time-oscillatory insta-

. ; . 4 ~_conditions are required? In order for the numerical solutions
bility occurs; the tip radius has up to 10% fluctuation with d

. S . for the initial value problem to approach the GTW neutral
time; asa,=0.05, the initially steady needle solution under- P P

: i : -~ mode solutions as—oe, what kind of algorithms are adopt-
goes “strongly irregular sidebranching and large fluctuationp e+ 16 resolve these challenging problems, much more ex-
In tip radius anq veIomty. Al the enld of the computation for tensive analytical and numerical work is needed.
this case, the tip velocity is still noticeably changing and the
numerical result on the tip radiuRg, and Vy, shows the
inconsistency with the scaling la¥6.24). These numerical
simulation results apparently verify the existence of the
GTW instability mechanism and suggest that the system is
indeed dominated by this GTW mechanism,agds smaller This research was supported by Operating Grants of Natu-
than a critical number, which, from these numerical resultsral Science and Engineering Research Council of Canada
can be considered to be in the range &05<0.1. The nu- (NSERQ.
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