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During the past several years, the study of interfacial instability and pattern formation phenomena has
preoccupied many researchers in the broad area of nonlinear science. These phenomena occur in a variety of
dynamical systems, far from equilibrium, especially in some practically very important physical systems,
always displaying some fascinating patterns at the interface between solid and liquid or liquid and another
liquid. A prototype of these phenomena is dendrite growth in solidification. It is now well recognized that
this phenomenon is induced by some global interfacial instabilities involved in the systems. In the present
article, we shall consider the generalized needle crystal solution and its stability properties. In terms of the
unified asymptotic approach developed in the previous papers, two different types of global instability mecha-
nisms have been identified:~1! the global trapped wave instability, and~2! the instability caused by pertur-
bations with zero frequency that we call the null-f instability. It connects the so-called microscopic solvability
condition theory. On the basis of these results, a solution to the selection problem for pattern formation is
clarified. @S1063-651X~96!01605-4#

PACS number~s!: 68.70.1w, 81.10.Fq, 81.10.Mx

I. INTRODUCTION

Dendritic growth is a common interfacial phenomenon in
phase transition and crystal growth. In the past several de-
cades, this important subject has preoccupied a large number
of investigators in the broad areas of condensed matter phys-
ics, materials science, applied mathematics, fluid dynamics,
etc. ~e.g.,@1–34#!.

The first important result in dendrite growth was Ivants-
ov’s zero surface tension, steady needle crystal solution pub-
lished in 1947~@1#!. But the Ivantsov solution did not solve
the problem of dendrite growth. Specifically, being a simi-
larity solution, the Ivantsov solution cannot predict the
growth rate of the needle tip. The second important contri-
bution to this subject was made by Schaefer, Glicksman, and
Ayers, who identified the selection problem. Schaefer,
Glicksman, and Ayers performed a series of careful experi-
ments on dendrite growth, and measured the tip velocities
under various conditions, by using transparent organic mate-
rial succinonitrile~SCN!, and correctly concluded that at the
later stage of dendrite growth, the dendrite’s tip velocity is a
uniquely determined function of the growth condition and
the material properties~see @4,5#!. From then on, a great
effort has been made to resolve this selection problem. The
basic problems have been~i! what is the mechanism which
determines tip growth velocity and~ii ! what is the origin and
essence of dendritic structure formation? These problems are
of great significance in industrial application as well as theo-
retical research. To solve these problems, understanding of
the role played by the surface tension for the instability
mechanisms involved in the system is crucial. For steady
dendrite growth with the inclusion of nonzero surface ten-
sion, Nash and Glicksman gave a well-known mathematical
formulation with two parameters: the undercooling param-
eter T` and the isotropic surface tension parameter« ~see
@3#!. Nash and Glicksman assumed that as the boundary con-
ditions the dendrite had a smooth tip and infinitely long root
approaching the Ivantsov solution in the far field. The Nash-

Glicksman problem has been extensively studied by a large
number of investigators, and the far field condition imposed
by Nash and Glicksman has been adopted by most authors
without objection. It was discovered during the 1980s by a
number of researchers that the Nash-Glicksman problem has
no solution~see@11–13#!. Only with the inclusion of another
parameter, the anisotropy of surface tensiona4, may the
classic needle solutions for the Nash-Glicksman problem ex-
ist. These results led to the so-called microscopic solvability
condition theory, which has influenced the scientific commu-
nity on a large scale for about a decade~@9,10#!.

Despite the fact that the classic needle solution does not
exist for the Nash-Glicksman problem without anisotropy of
surface tension, the system may allow a nonclassic, nearly
steady, or ‘‘slightly’’ time evolving, needle solution with a
smooth stem, which is very long, say, ofO~1/«!, but finite.
Evidently, such nonclassic needle solutions are physically
acceptable. Thus the essential issue is the stability of these
nonclassic needle solutions and its connection with pattern
formation and selection of dendrite growth.

It is well understood now that the isotropic surface ten-
sion may induce oscillatory instability, the so-called global
trapped wave~GTW! mechanism. However, the questions
about the role of the anisotropy of surface tension for den-
drite growth, whether the anisotropy may invoke a new in-
stability mechanism or not, and if it does, what the implica-
tion of this new instability for the pattern formation and
selection is, are still not fully answered.

In the present paper we intend, by using the two-
dimensional dendrite growth problem as a framework, to at-
tack these problems.

In terms of the unified asymptotic method developed in
our previous work, we found that a dendrite growth system
with anisotropic surface tension is subject to two different
types of instability mechanisms.

~1! ‘‘The global trapped wave instability’’ mechanism,
which is induced by perturbations with high frequency. This
mechanism was discovered by Xu in 1991 analytically~see
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@25#! for a dendrite with sole isotropic surface tension. It is
only slightly affected by anisotropy.

~2! The so-called ‘‘zero-frequency instability’’~null-f !
mechanism, which is induced by perturbations with zero fre-
quency. This is a new mechanism generated only by the
anisotropy and has a close connection with the microscopic
solvability condition~MSC! theory of steady needle crystal
growth.

Based on these findings, we are able to draw the following
scenario. When the anisotropy parameter is larger than a
critical number, the system is dominated by the null-f insta-
bility mechanism. Hence the selected dendrite growth solu-
tion may be the steady needle crystal solution that was first
predicted by MSC theory. However, when the anisotropy
parameter is smaller than this critical number, the system
will be dominated by the GTW instability mechanism. Hence
the selected dendrite growth solution in this range can never
be the steady needle solution. Instead, it will be the GTW
neutral mode. When the anisotropy of surface tension tends
to zero, the null-f instability mechanism disappears, while
the GTW instability mechanism remains. These conclusions
are in good agreement with experimental observations and
numerical simulations.

The present paper is arranged as follows. In Sec. II we
briefly describe the mathematical formulation for the prob-
lem of two-dimensional dendrite growth from a pure melt. In
Sec. III we give a linear perturbed system for perturbations
around the generalized needle solution. In Sec. IV we give
the outer solution. In Sec. V we give the inner solution in the
vicinity of a singular point. In Sec. VI we derive the GTW
mechanism and null-f mechanism. In Sec. VII we give the
selection conditions and discussions.

II. MATHEMATICAL FORMULATION OF TWO-
DIMENSIONAL DENDRITE GROWTH

FROM A PURE MELT

We study the problem of two-dimensional free dendrite
growth from a pure substance. The reasons for doing so have
two aspects. First, this model is practical. Two-dimensional
dendrite growth can be obtained in a Hele-Shaw cell. Sec-
ondly, the mathematical treatment for the two-dimensional
model is relatively simpler than that for a three-dimensional
model, and the instability mechanisms for both cases are
similar.

A typical two-dimensional dendrite growth is shown in
Fig. 1. We assume that a free dendrite is growing with a tip
velocityU(t) into an undercooled pure melt with the under-
cooling temperatureT`,TM0, where TM0 is the melting

temperature of a flat interface. The thermal lengthl T5kT/Ū
is used as the length scale, where the characteristic velocity
Ū may be a typical value or the average value of the tip
velocity U(t). The quantityDH/cp is used as the tempera-
ture scale. Here,kT is the thermal diffusivity, whileDH is
the latent heat release per volume of solid phase. We adopt
the parabolic cylindrical coordinate system~j,h! moving
with the characteristic velocityŪ defined as follows:

x/h0
25 1

2 ~j22h2!, y/h0
25jh, ~2.1!

whereh0
2 is a constant to be determined by locating the tip of

the steadily growing dendrite on the parabolah51. It will be
seen later that this constant is the Peclet number for the case
of zero surface tension. The unknown functions for the
present problem are the temperature fields in the liquid and
solid phases,T(j,h,t), TS(j,h,t), and the interface shape
hs(j,t). The nondimensional governing equation for the
problem is simply the heat conduction equation. The bound-
ary conditions include the upstream far field condition, the
Gibbs-Thomson condition, and the heat balance condition on
the interface. The coefficient of surface tension,g, may have
anisotropy. The commonly acceptable form ofg is

g5ĝAs~u!,
~2.2!

As~u!512am cos~mu!,

whereĝ is the isotropic surface tension coefficient,am is the
anisotropy coefficient, andu is the orientation angle. Typi-
cally, for the fourfold anisotropy, one can set the integer
m54. As a result,

As~u!5 f ~j!/~11j2!2,
~2.3!

f ~j!5~12a4!~11j2!218a4j
2.

Thus the system involves three nondimensional parameters:
the undercooling temperatureT`,0, the isotropic surface
tension parameter«5Al c / l T/h0

25Al cŪ/k/h0
2 , and anisot-

ropy parametera4. Here,l c is the capillary length defined as

l c5
ĝcpTM0

~DH !2
. ~2.4!

III. BASIC STATE SOLUTION
AND UNSTEADY PERTURBED SYSTEM

It is well known that for zero surface tension~«50! and
arbitrary undercooling, the system allows the following simi-
larity solution ~see@1#!:

T5T* ~h!5T`1h0
2eh0

2/2E
h

`

e2h0
2h1

2/2dh1 ,

TS5TS*5T* ~1!50,

h*51, ~3.1!

FIG. 1. Typical dendrite growth from a supersaturated solution.
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T`52h0
2eh0

2/2E
1

`

e2h0
2h1

2/2dh1 ,

~0<j,`!,

where the constanth0
2 is uniquely determined as a function

of the undercoolingT` . The radius of curvature of the para-
bolic interfaceh

*
51 at the tipj50 is l b5h 0

2l T andh0
2 is

actually the Peclet number, namely, Pe5h0
2.

During the past decade, there has been a long argument
for the existence of a steady state solution for the case of
«Þ0. The key is how to formulate the steady problem. We
point out that although the system indeed does not allow a
classic steady needle solution for the case of isotropic sur-
face tension, it always has some slightly time dependent so-
lutions describing the later stage of pattern evolution.

These solutions may depend on a slow time variable, de-
fined ast̄5«(t2t0), wheret0@1. We assume that the total
lengths of dendrite in these solutions are very long, but finite,
which may be increasing with time, such asL(«)5( t̄1C)/«
@C5O~1!#; furthermore, at the root the solutions are close to
the Ivantsov parabola, namely,

$T,Ts ,hs%5$T* ,TS* ,h* %1O~«! @as j5L~«!#.
~3.2!

It can be proved that for any fixedt̄.0, as«→0 these solu-
tions,qB5:$T,Ts ,hs%, all have the same steady regular per-
turbation expansion:

qB~j,h, t̄,«!;q*1«2q11«4q21••• , ~3.3!

with the Ivantsov solutionq
*

5:$T*
,TS*

,h
* % as the lead-

ing term. These solutions may contain some time-dependent
terms, but these terms are all exponentially small in the re-
gion away from the root. Thus these solutions may be physi-
cally considered as the steady solutions. We call the above
broad class of slightly time-dependent solutions the nearly
steady state solution, or the generalized steady needle solu-
tions.

In this paper we shall not look into the exact form of such
generalized steady needle solutions, which will be studied
elsewhere. Instead, we shall use these generalized steady
needle solutions as the basic states, and attempt to study their
stability property. We point out that the exact form of these
basic states is not important. For our purpose, the only infor-
mation that we need is that these solutions exist and in the
region away from the root, they can be well approximated by
the steady Ivantsov solution, i.e.,

TB~j,h,«!5T* ~h!1O~«2!,

TSB~j,h,«!5O~«2!, ~3.4!

hB~j,«!511O~«2!.

We consider perturbations around these basic states and
separate the general unsteady solutions into two parts:

T5TB1T̃~j,h,t,«!,

TS5TSB1T̃S~j,h,t,«!, ~3.5!

hs5hB1h̃~j,t,«!/h0
2,

in which the perturbations,q̃5:$T̃;T̃S ;h̃%, are assumed to be
generated by initial infinitesimal disturbances with a charac-
teristic amplituded̃!1. Hence a linearization ind̃ is appli-
cable. The linearized perturbed system is a homogeneous
system shown below:

S ]2

]j2
1

]2

]h2D T̃2h0
4~j21h2!

]T̃

]t
1h0

2S j
]T̃

]j
2h

]T̃

]h D 50,

@0<j<L~«!#, ~3.6!

with the following boundary conditions.

~1!As h→`, T̃→0; ~3.7!

~2!As h→0, T̃S5O~1!. ~3.8!

~3! The interface conditions: making the Taylor expansions
around the interface of the generalized needle crystal, it fol-
lows that ath5hB~j,«!

T̃2T̃S5H ]TB
]h

2
]TSB
]h J h̃/h0

2, ~3.9!

T̃S5
«2As~j!

Ŝ~j!
H ]2h̃

]j2
1

j

Ŝ2~j!

]h̃

]j
2

1

Ŝ2~j!
h̃J , ~3.10!

]

]h
~ T̃2T̃S!1h0

2Ŝ2~j!
]h̃

]t
1j

]h̃

]j
1h̃

1H ]2

]h2 @TB2TSB#J h̃

h0
2 H ]2

]j2
@TB2TSB#J h̃8

h0
2 50,

~3.11!

where

Ŝ~j!5Aj21hB
2. ~3.12!

~4! The root condition: atj5L~«!,

$T̃,T̃s ,h̃%~L !50. ~3.13!

~5! The tip smoothness condition: atj50,

]

]j
$T̃;T̃S ;h̃%50

for the symmetrical modes~S modes!, ~3.14!

$T̃;T̃S ;h̃%50

for the antisymmetrical modes~A modes!. ~3.15!

System~3.6!–~3.15! leads to a linear eigenvalue problem,
when one considers the type of solutions,q̃5q̂est. The ei-
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genvalues will be a function of the parameters«, a4, and
h0
2. We shall solve this eigenvalue problem by using

matched asymptotic methods.

IV. MULTIPLE VARIABLE EXPANSION SOLUTIONS
IN THE OUTER REGION

We first look for the asymptotic expansion for solu-
tions q̃(j,h,t,«) of the linear system~3.6!–~3.15! in the
limit «→0, in terms of the multiple variable expansion
~MVE! method. In doing so, we introduce a set of fast vari-
ables$j1 ,h1 ,t1%:

j15
j

«
, h15

h21

«
, t15

t

«
, ~4.1!

and define the stretched variables~j11 ,h11 ,t11! as

j115E k~j,«!dj1 , h115g~j,«!h1 , t115t1 /h0
2.

~4.2!

In terms of these variables, we make the following multiple
variable expansion for the perturbed state:

T̃5$T̃0~j,h,j11 ,h11!1«T̃1~j,h,j11 ,h11!

1•••%est11,

h̃5$h̃0~j,j11!1«h̃1~j,j11!1•••%est11,

k5k01«k11«2k21••• , ~4.3!

g5k01«g11«2g21••• ,

s5s01«s11«2s21••• ,

wheres5sR2 iv; ~v>0! is the eigenvalue and the fast vari-
ables and slow variables~j,h,j11 ,h11 ,t11! in the eigen-
function solution are treated formally as independent vari-
ables. One can convert the above linear perturbed system
into a system with the multiple variables~j,h,j11 ,h11 ,t11!
as shown in@22#, and successively derive each order ap-
proximation in the outer region@0<j ,L~«!#. For the zeroth-
order approximation, we derive

S ]2

]j11
2 1

]2

]h11
2 D T̃050, S ]2

]j11
2 1

]2

]h11
2 D T̃S050,

~4.4!

and the following boundary conditions.

~1! As h11→`, T̃0→0, ~4.5!

~2! As h11→2`, T̃S0→0, ~4.6!

~3! on the interface, ath1150, h51

T̃05T̃S01h̃0 , ~4.7!

T̃S05
As~j!k0

2

S~j!

]2h̃0
]j11

2 , ~4.8!

k0
]

]h11
~ T̃02T̃S0!1s0S

2~j!h̃01k0j
]h̃0

]j11
50,

~4.9!

whereS(j)5A11j2.

~4! The root condition: asj→`, one should have

$T̃0 ;T̃S0 ;h̃0%50. ~4.10!

~5! The tip smoothness condition: atj50,

~ i!
]

]j
$T̃0 ;T̃S0 ;h̃0%50 for the S modes, ~4.11!

~ ii ! $T̃0 ;T̃S0 ;h̃0%50 for the A modes. ~4.12!

The system~4.4!–~4.12! has the following normal mode
solutions:

T̃05A0~j,h!exp$ i j112h11%,

T̃S05B0~j,h!exp$ i j111h11%, ~4.13!

h̃05D̂0 exp$ i j11%.

The coefficientD̂0 in the zeroth-order approximation is set as
a constant.

From ~4.7!–~4.9!, we derive that the wave number func-
tion k0~j! must be subject to the local dispersion formula

s05S~j,k0!5
k0
S2 F12

2As~j!k0
2

S G2 i
jk0
S2

. ~4.14!

For any fixed eigenvalues0, one can solve three wave num-
bers as the functions of j, namely,
$k 0

(1)(j),k 0
(2)(j),k 0

(3)(j)%, with ~Re$k0
~1!%.Re$k0

~3!%.0
.Re$k0

~2!%!. Thus, for a fixeds0, the system allows three
fundamental wave solutions$H1 ,H2 ,H3%, corresponding to
the wave number functionsk 0

(1) ,k 0
(2) ,k 0

(3), respectively. The
solutionH1 is called the short wave branch, while the solu-
tion H3 is called the long wave branch. The solutionH2,
having a negative wave number~Re$k0

~2!%,0!, is ruled out.
Its corresponding perturbed temperature fieldT̃ will grow
exponentially ash→`, violating the boundary condition
~4.5!. Thus the general solution of the zeroth-order approxi-
mation is

h̃05D1H1~j!1D3H3~j!

5D1 expH i« E
0

j

k0
~1!dj1J 1D3 expH i« E

0

j

k0
~3!dj1J .

~4.15!

Here, the coefficients$D1 ,D3% are arbitrary constants to be
determined.

It has been noted that the MVE solution~4.3! has a sin-
gular pointjc in the complexj plane, which is the root of the
equation

]S~k0 ,j!

]k0
56Ask0

22~12 i j!S50, ~4.16a!
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or

s05e2 i3p/4S 227D
1/2 ~j1 i !7/4~j2 i !1/4

Af ~j!
. ~4.16b!

Due to the existence of this singularity, the MVE solution
~4.3! is not uniformly valid in the whole complexj plane. In
particular, the coefficients$D1 ,D3% may be different con-
stants in different sectors. These sectors are divided by the
Stokes lines emanating from the singular pointjc . This is the
so-called Stokes phenomenon. The so-called Stokes line is
defined as

ImH E
jc

j

~k0
~1!2k0

~3!!dj8J 50. ~4.17!

The sketch of these Stokes curves (L1),(L2),(L3) for a typi-
cal case is shown in Fig. 2. The Stokes curve~L2! divides the
whole complexj plane into the sectors~S1! and ~S2!. We
denote the coefficients of the solution~4.15! by $D1 ,D3% in
~S1!, and by$D18 ,D38% in ~S2!. In order to determine the con-
nection formula of these constants in different sectors, in
order to obtain the uniformly valid asymptotic solution, one
must divide the whole complexj plane into two regions: the
inner region near the turning pointjc , and the outer region
away fromjc . The solution~4.15! is only the outer solution
valid in the outer region. One also needs to find the inner
solution in the inner region, and match the inner solution
with the outer solution.

Note that asj→`, the solutionH1 increases exponen-
tially, whereasH3 decreases exponentially. Thus it follows
that to satisfy the root condition~4.10!, one must set the
coefficientD1850. Hence the root condition can be replaced
by the following radiation condition that we imposed in pre-
vious work:

h̃0;D38H3 ~as j→`!. ~4.18!

Hereby, the constantD38 is proportional to the character-
istic amplitude of the initial perturbationd̃. It is a free pa-
rameter in the linear theory. The remaining problem now is
how to determine the coefficientsD1 ,D3 in the MVE solu-
tion ~4.15! in sector~S1!. In the next section, we shall study

the inner solution near the singular pointjc . Then, the con-
nection condition between the coefficients$D1 ,D3% in sector
~S2! and $D1850;D385D8% in sector~S1! will be derived.

V. THE INNER SOLUTIONS
NEAR THE SINGULAR POINT jc

As indicated before, atjc in the complexj plane, the
MVE solution has a singularity. However, the true solution,
after analytical continuation, should be regular at this point.
Therefore the solution must have a different asymptotic form
in the vicinity of jc . In the inner region,uj2jcu!1; uh
21u!1, we introduce the inner variables

j*5
j2jc

«a , h*5
h21

«a , ~5.1!

wherea is to be determined. Besides, we denote the interface
shape function as

hs~j,t !511
h̃

h0
2 511«ah* s , h* s5

ĥ~j* ,t !

h0
2 ,

~5.2!

so we have

h̃~j,t !5«aĥ~j* ,t !. ~5.3!

Denote also

T̃~j,h,t !5«aT̂~j* ,h* ,t !,
~5.4!

T̃~j,h,t !S5«aT̂S~j* ,h* ,t !.

We look for the mode solutions and make the inner expan-
sions

T̂~j* ,h* ,t !5$n0~«!T̃0~j* ,h* !

1n1~«!T̂1~j* ,h* !1•••%est/«h0
2
,

T̂S~j* ,h* ,t !5$n0~«!T̃S0~j* ,h* !

1n1~«!T̂S1~j* ,h* !1•••%est/«h0
2
,

~5.5!

ĥ5$n0~«!ĥ01n1~«!ĥ11•••%est/«h0
2
.

In terms of the inner variables, perturbed system~3.6!–
~3.11! can be expressed in the form

S ]2

]j
*
2 1

]2

]h
*
2 D T̂5H «2a21sh0

2~j21h2!

2«ah0
2S j

]

]j*
2h

]

]h*
D

2«aS 1j ]

]j*
1
1

h

a

]h*
D J T̂, ~5.6!

with the following boundary conditions.

FIG. 2. The sketch of Stokes line~L1!, ~L2! emanating from the
turning pointjc , in the case of complex spectrumusu5O~1!.
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~1! As h*→`, T̂→0. ~5.7!

~2! As h*→2`, T̂S→0. ~5.8!

~3! At the interface,h
*

50,

T̂5T̂S1ĥ1~higher-order terms!, ~5.9!

T̂S5
«222aAs~j!

S~j!

]2ĥ

]ĵ1
2 1~higher-order terms!, ~5.10!

«12a
]

]h*
~ T̂2T̂S!1sS2~j!ĥ1«12aj

]ĥ

]j*
5~higher-order terms!. ~5.11!

Letting «→0, under the condition

«2a21s0!1, ~5.12!

the above inner system can be further simplified into the
following third-order ordinary differential equation for the
interface perturbationĥ:

i
2«323aAs~j!

S

]3ĥ

]j
*
3 1«12a~j1 i !

]ĥ

]j*
1s0S

2ĥ

5O~higher-order terms!. ~5.13!

For further discussion, we transform the outer solutionh̃
into a new unknown functionW~j!, by using the transforma-
tion introduced in@22#:

h̃5W~j!expH i« E
jc

j

kc~j1!dj1J ~5.14!

and accordingly, in the inner region, we set

ĥ5Ŵ~j* !expH i« E
jc

j

kc~j1!dj1J . ~5.15!

Letting

S ]S2S

]k0
D
k05kc

5
6Askc

2

S
1~12 i j!50 ~5.16!

or

kc~j!5S S

6As
~12 i j! D 1/25e2 ip/4~j1 i !7/4~j2 i !5/4/A6 f ~j!

~Re$kc%.0!, ~5.17!

Eq. ~5.13! can be transformed to

«323aV3

d3Ŵ

dj
*
3 1 i«222aV2

d2Ŵ

dj
*
2 1 iS2@s02Sc~j!#Ŵ

5O~higher-order terms!, ~5.18!

where

V352
2As~j!

S
,

V252
6kcAs~j!

S
52e2 ip/4

61/2f 1/2

S2 S j1 i

j2 i D , ~5.19!

S~kc ,j!5Sc~j!5e2 i3p/4S 227D
1/2 ~j1 i !7/4~j2 i !1/4

Af ~j!
.

Clearly, at the singular pointjc ,

s02Sc~jc!50. ~5.20!

Hence the singular pointjc is actually a turning point of the
inner equation~5.18!. The variablej in the coefficient func-
tions of Eq. ~5.18! also needs to be changed to the inner
variablej

*
by j5jc1«aj

*
. Next, we need to make Taylor

expansions aroundjc for the coefficient functions and bal-
ance the leading terms on the left hand side of Eq.~5.18!, in
the limit «→0, to determine the value ofa. Note that

f ~j!5~12a4!~j21a1
2!~j21a2

2!, ~5.21!

where

a1'12A2a4, a2'11A2a4 ~as a4!1!.
~5.22!

The function f ~j! has four imaginary zeros (6 ia1 ,6 ia2).
Hence, in addition tojc , the inner equation has two more
turning points: j56i , and four other singular points:
j5(6 ia1 ;6 ia2). The relative positions of these singular
points tojc are related to the values of the parameterss0, a4.
We choose the turning pointjc with Re$jc%.0; Im$jc%,0.
So, the singular pointsj5( i ; ia1 ; ia2) are always away from
jc . Their influence on the inner solution is negligible. How-
ever, as s0→0, jc→2 i , while as a4→0,
(2 ia1 ;2 ia2)→2 i . So, the singular pointsj52i , 2ia1 ,
and2ia2 may enter into the inner region ofjc and conse-
quently influence the behavior of the inner solution under
some circumstances. Two cases are found to be significant.
~I! s05O~1!: all the singular pointsj56i and j56iai ~i
51,2! are away fromjc ; ~II ! us0u!1 and the singular points
j52i andj52iai ~i51,2! are inside the inner region. For
these two cases, the inner equation in the far field of the
inner region, asj

*
@1, can be reduced into the common form

d2Ŵ0

dĵ
*
2

1 ĵ
*
p0Ŵ050, ~5.23!

where

ĵ*5
B

«a ~j2jc!, ~5.24!

and the constantsB, p0, and the scale numbera are different
for different cases. Moreover, for both cases, the Stokes line
~L2! that is tangential to the direction arg~z!5p at the turning
point jc always intersects the real axis ofr at a pointjc8
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.0, and divides the real axis into two parts, respectively, in
the sectors~S1! and~S2! ~see Fig. 2!. The general solution of
Eq. ~5.23! is

Ŵ05D1ĵ*
1/2Hn

~1!~z !1D2ĵ*
1/2Hn

~2!~z ! ~z52nĵ
*
1/2n!,

~5.25!

wheren51/~p012! andH n
~1!~z! andH n

~2!~z! are the first and
second kinds of Hankel functions of ordern, respectively.
The above described results are summarized: For case~I!:
s05O~1!; a52

3, p051, andn51
3; for case~II !: us0u5O~«3/7!,

a45O~«8/7!; a54
7, p05

7
4, andn5 4

15.
We now turn to matching the inner solution~5.25! with

the outer solution~4.15! in the intermediate regions in each
sector. From the Hankel function theory, we have the con-
nection formula: asp,arg~z1!,2p,

Hn
~2!~z1!5Hn

~2!~zeip!52 cos~np!Hn
~2!~z !1einpH1/3

~1!~z !

@0<arg~z!<p# ~5.26!

and the following asymptotic forms: asuzu→`,

Hn
~1!~z !;S 2

pz D 1/2ei z2 i ~n/211/4!p

@2p,arg~z!<2p#,
~5.27!

Hn
~2!~z !;S 2

pz D 1/2e2 i z1 i ~n/211/4!p

@22p,arg~z!<p#.

By using these formulas, we first match the inner solution
~5.25! with the outer solution~4.15! as ĵ

*
→` in the sector

~S2!. Note that in this sector, the outer solution, satisfying the
radiation condition~4.18!, hasD1850. Thus, to match with
the outer solution, one must setD150 and D25D5D38
3constÞ0 in ~5.25!.

Furthermore, in terms of~5.26!–~5.27!, we derive that in
order to match the inner solution with the outer solution in
the sector~S1!, the parameters0 must be such a function of
« that, as«→0,

SD1

D3
D expH i« E

0

jc
@k0

~1!2k0
~3!#djJ 5 i2 cos~np!.

~5.28!

So far, we have not applied the tip condition. Once the tip
condition ~4.11! or ~4.12! is applied, the eigenvalues0, as
the function« anda4, can be determined by the condition
~5.28!. We find that the system allows two different types of
spectra of eigenvalues:~1! The complex eigenvalues,
s05(sR2 iv); v.0, with us0u5O~1!; and~2! the real eigen-
values withus0u!1. As a consequence, the system is subject
to two different types of instability mechanisms: the global
trapped wave instability, induced by perturbations with a
high frequency,uvu5O~1! and the low-frequency~null-f !
instability mechanism, induced by perturbations with low
frequency,v50. In the next section, we shall derive these
results.

VI. THE SPECTRA OF EIGENVALUES
AND INSTABILITY MECHANISMS

A. The global trapped wave instability

Considers05sR2 iv andv.0. With the complex eigen-
values0, the physical solution in the outer region is

Re$~ h̃0~j,t !%5Re$D1H11D3H3!e
s0t/«h0

2
%. ~6.1!

To satisfy the tip smooth conditions, the coefficientsD1 ,D3
must be subject to the following conditions:~i! for the
symmetricalSmodes,

D3 /D152k0
~1!~0!/k0

~3!~0!, ~6.2!

~ii ! for the antisymmetricalA modes,

D152D3 . ~6.3!

Combining ~5.28! with ~6.2!, or ~6.3!, one obtains the fol-
lowing quantization conditions:

x5
1

« E
0

jc
~k0

~1!2k0
~3!!dj

5~2n111 1
21u0!p2 i $ ln a01 ln@2 cos~np!#%,

a0e
iu0p5k0

~1!~0!/k0
~3!~0! for theS modes,

~6.4!
a051, u050 for the A modes,

n5~0,61,62,63,...!.

It can be proved that the system only allows the complex
eigenvalues withus0u5O~1!, corresponding to the case~I!
discussed in the last section. Consequently, one hasn51

3.
This complex spectrum contains two discrete sets of com-
plex eigenvalues forS modes andA modes, respectively,
given by the quantization conditions~6.4! as

s0
~n! , ~n50,61,62,...!;~«,a4!.

It is found that these GTW mode solutions are slightly
varying functions of the anisotropy parametera4, and theA-
modes are more stable than the corresponding neutralS-
modes.

In Fig. 3 we show, in the complexs plane, the eigenval-
ues for theA-modes with various« for given n50,1,2,
a450. It is very interesting to see that these eigenvalues for
n50,1,2,... appear to be located on the same curve in the
complexs plane, and direct to the points5~s!max50.2712
as«→0.

The system allows a unique neutrally stablen mode
~sR50!, as«5«

* n
, where«

*0
5«

*
.«

*1
.«

*2
.••• . In Fig.

4~a! we show the variation of«
*
with a4, while Fig. 4~b!

showsv
*
versusa4.

B. The low-frequency „null- f … instability

We now turn to deriving the spectrum of real eigenvalues
s0. In this case, the physical solution in the outer region
becomes
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Re$h̃0~j,t !%5R~j!es0t/«h0
2
,

~6.5!

R~j!5Re$D1H11D3H3%.

Note that asj!1, k 0
( i )(j)5k 0

( i )(0)1 i2aij1O(j2) ~i51,3!,
wherek 0

( i ) andai are real. Hence we can write

R~j!5@D1R cos~x1!2D1I sin~x1!#e
2a1j2/«

1@D3R cos~x3!2D3I sin~x3!#e
2a3j2/«1O~j3!,

~6.6!

R8~j!52@D1R sin~x1!1D1I cos~x1!#
k0

~1!~0!

«
e2a1j2/«

2@D3R sin~x3!1D3I cos~x3!#
k0

~3!~0!

«
e2a3j2/«

1O~j!, ~6.7!

FIG. 3. The variations ofs5sR2 iv of GTW, A modes~n
50,1,2! in the complexs plane with« for the casea450 andâ51,
where the parameterâ5kTS/kT is the ratio of the thermal diffu-
sivities in solid and liquid phases.

FIG. 4. ~a! The variations of critical numbers«* corresponding
to the neutrally stable GTWA mode andS modes versusa4. ~b!
The variations of frequency of oscillationsv* of neutrally stable
GTW A mode andSmodes versusa4. ~The solid lines are for the
symmetric model,â51, while the dashed lines are for one-sided
model â50.!

FIG. 5. The real eigenvaluess ~n50,1,2! of null-f mechanism
versus« for the caseâ51, a450.01.
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where

x i5
j

«
k0

~ i !~0! ~ i51,3!. ~6.8!

Without losing generality, we can assumeD1 is a positive
real number and denote

D1.0, D35uD3ueix0p. ~6.9!

Therefore the tip condition for the symmetric modes,
R8~0!50, leads to the conditionD3I50, or

D1

D3
5UD1

D3
Ue2 ix0p ~x050,1!. ~6.10!

Furthermore, for the antisymmetric modes the tip condition,
R~0!50, leads to

UD1

D3
U52cos~x0p!<1. ~6.11!

Combining~5.28! with the tip conditions~6.10! or ~6.11!, we
obtain that

Re$x%5~2n1 1
21x0!p ~n50,61,62,...!, ~6.12!

UD1

D3
U52 cos~np!eIm$x%, ~6.13!

where

x05H 0 or 1 for S modes

11
cos21uD1 /D3u

p
for A modes.

~6.14!

The quantization condition~6.12! determines the eigenvalues
s 0
(n), while the formula~6.13! determines the corresponding

eigenfunction. We did not find the real eigenvalues with
us0u5O~1! from ~6.12!. But the system does allow a real
spectrum withus0u!1. To derive it, we can first simplify the
quantization condition~6.12! with the assumptionus0u!1. In
fact, from the local dispersion formula~4.14! one can derive
that

@k0
~1!2k0

~3!#5
1

&

~12 i j!7/4~11 i j!5/4

f 1/2~j!
2
3

2
~11 i j!s0

1O~s0
2!. ~6.15!

We compute that

x5
1

« E
0

jc
~k0

~1!2k0
~3!!dj

5S E
0

2 ia1D 1S E
2 ia1

2 i D 1S E
2 i

jcD
5
1

« H i

&
R2

1

&
g01 i

9

4
s013~)21!s0~jc1 i !

1O~higher-order terms!J , ~6.16!

where

g05C0a4
7/8, C0'1.802 05, R'0.615 622.

~6.17!

Thus we obtain

Re$x%5
1

« H 2
g0

&
1C1s0

11/7a4
2/7J , ~6.18!

Im$x%5
1

« H R
&

1
9

4
s01C2s0

11/7a4
2/7J , ~6.19!

where

C153~)21!23/736/7 cos~5p/14!'3.2886,
~6.20!

C253~)21!23/736/7 sin~5p/14!'6.2883.

Having substituted these results in~6.12!, it is shown that
one must havea4

7/85O~«! ands0
11/7a4

2/75O~«!. This relation-
ship of the orders of magnitude betweena4, s0, and« is just
consistent with the case~II ! discussed in the preceding sec-
tion. Hence we haven5 4

15. Moreover, it is also shown that
the system does not allow any growingA mode for the null-f
mechanism; only growingS modes are permissible. The
quantization condition for theseS modes is obtained as fol-
lows:

C1s0
11/7a4

2/75
C0

&
a4
7/82«~n1 1

2 !p, ~6.21!

UD1

D3
U52 cos~4p/15!eIm$x%, ~6.22!

where

sgnH D1

D3
J 5 H1, n5even integer

21, n5odd integer. ~6.23!

For any fixed« and a4, from the quantization condition
~6.21!, one can solve a discrete set of the eigenvalue$sn%
~n50,1,2,3,...! as shown in Fig. 5. It is seen that there is a
discrete set of neutral stable modes~sn50!, corresponding to
«08.«18.«28.•••.«n8.••• . These neutral modes coincide
with the steady needle crystal growth solutions predicted by
MSC theory. For the neutral moden50, we obtain

«5«a5«085Ka4
7/8, ~6.24!

whereK50.811 20. This coefficient, suggested by the MSC
theory for the steady needle solutions with the largest tip
velocity ~n50!, has a different value,K51.09.

A remark should be made here that, as one can see from
~4.3!, the exact eigenvalues has the asymptotic expansion

s5s01«s11«2s21••• ~as «→0!. ~6.25!

So far, we only calculated its leading-order approximation,
s0. For the neutral modes of the null-f mechanism, when we
set s050, the effect ofs1 becomes important. Hence the
critical numbers«n8 for the neutral modes obtained above
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will be inaccurate. For more accurate values of these critical
numbers, one needs to include higher-order terms. For in-
stance, one should solve«n8 from the equations01«s150.

There are~m11! purely growing modes and infinitely
many decaying modes, as«m11,«,«m . As «→0, the first
n eigenvaluessk (k50,1,2,...,n) all tend to the upper limit
smax8 , which can be calculated as

smax8 5a4
3/8F C0

&C1
G 7/11'0.5470a4

3/8. ~6.26!

As «.«a5«08 , all modes are purely decaying. Asa4→0,
the null-f instability disappears, as the upper limitsmax8 →0.

The above null-f instability was discovered by Kessler
and Levine numerically~see@14#!. It was later confirmed by
Bensimonet al. in an analytical way~see@16#!. Note that the
quantization condition obtained by Bensimonet al. is in er-
ror. Nevertheless, through their quantization condition, these
authors were able to draw the same conclusion as ours that
the steady needle solution predicted by MSC theory was neu-
trally stable.

VII. THE SELECTION CONDITIONS
OF DENDRITE GROWTH

In the above, we have studied the stability property of the
nonclassic, steady or slightly time-dependent, needle solu-
tions. The asymptotic results for the spectrum of complex
eigenvalues have been verified by the numerical solutions in
@30#.

In the asymptotic analysis, we sett̄ fixed, and let«→0. It
is found that the system of dendrite growth is controlled by
the entirely new instability mechanisms, compared with the
well-known Müllins-Sekerka instability. These new instabil-
ity mechanisms are the GTW and null-f instability. Based on
the understanding of these instability mechanisms, the selec-
tion criteria of dendrite growth at the later stage of evolution
can be naturally derived. Let us consider the evolution of our
basic solutions under a fixed operation condition, ast̄→`.
For this purpose, we define a new parameter as

«̃5Al cU/k/h0
2, ~7.1!

whereU is the velocity of the dendrite’s tip. Evidently, as
U5Ū, «̃5«. For a given operation condition,a4 is fixed; the
parameter«̃ associated with the growing dendrite under the
investigation may vary. Hence the state point of our dynami-
cal system, specified by~a4,«̃!, moves with time in the pa-
rameter plane~a4,«̃!. We plot the neutral curve$g0% for theA
mode~n50! of the GTW mechanism, and the neutral curve
$C 0% for theS mode~n50! of the null-f mechanism in the
parameter plane~a4,«̃!, as shown in Fig. 6. These two neu-
tral curves intersect each other at a critical number
ac50.1840. This critical number will be reduced to
ac50.1334, provided one usesK51.09 in ~6.24!, as sug-
gested by MSC theory. As explained before, for more accu-
rate critical numberac , one needs to include the higher-
order approximations of the GTW and null-f mode solutions.
In fact, we have computed the neutral curve$g0% of GTW

modes with the first-order approximation,s5s01«s1. The
resultant critical numberac is then reduced toac50.1153.

The shaded region below these two curves is the unstable
region, while the remaining region is a stable region. In gen-
eral, givena4 when t̃→`, the basic solution is expected to
show one of the following three types of behavior:~1! It
may approach a steady solution describing a smooth growing
needle;~2! it may approach a time periodic solution, describ-
ing an oscillatory growing dendrite; or~3! it may have no
limit solution. The solution evolves with many short time
and length scales and exhibits a chaotic pattern. On the other
hand, on the basis of general linear stability theory, it can be
proved that if the state point has a steady limit, this fixed
point limit, in our case, must be on the the neutral curve
$C 0%; furthermore, if the state point approaches a time peri-
odic orbit, this orbit must be around a point on the neutral
curve $g0%. Therefore we draw the following conclusions.

~1! If the dendrite growth system exhibits a steady pattern
as t→`, as stated in the above case~1!, the limiting steady
solution must be on the neutral curve$C 0%, and it occurs only
whena4>ac . In other words, for the small anisotropic sur-
face tension case, whena4,ac , the steady needle solution
cannot be observable, due to the existence of a number of
growing oscillatory GTW modes. The selection criteria
given by the MSC theory are apparently not applicable in
this range.

~2! If the dendrite exhibits a time periodic oscillatory pat-
tern ast→`, as stated in the above case~2!, the limit solu-
tion must be a neutral mode on the neutral curve$g0% and it
occurs only when 0<a4<ac . The unsteady oscillatory pat-
tern determined by the GTW neutral mode is self-sustained.
It can be stimulated by an imposed initial perturbation and
does not need a continuously acting noise for its persistence.
We emphasize that this statement has two implications. First,
it implies that for the large anisotropic surface tension case,
whena4.ac , no self-sustained, oscillatory dendrite is pos-
sible. In this range, one may still see a time-dependent, os-
cillatory structure on a steady, smooth dendrite interface in-
duced by the decaying GTW modes. But this pattern can be
sustained only by some external continuously acting forces,
such as noises. Once these external forces cease, such oscil-
latory structure would disappear with time. Second, the cri-
terion ~a4,ac! is the necessary condition for the occurrence

FIG. 6. The neutral curves$g0% and $C 0%, and the stability dia-
gram of dendrite growth in the parameter plane~a4,«!.
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of a time-dependent, oscillatory dendrite growth. It has not
been proved as the sufficient condition for such a linear neu-
trally stable mode to be attainable with any kind of initial
conditions.

~3! If the dendrite growth system exhibits a chaotic pat-
tern ast→`, as stated in the above case~3!, the state point of
the system must remain in the unstable region.

The above conclusions appear to be in good agreement with
experimental observations. So far most experiments for den-
drite growth from a pure melt are three dimensional. These
experimental results show little correlation between the se-
lected values«̃5«

*
and the anisotropy~refer to@35#!. These

results, in agreement with our theory, suggest that the anisot-
ropy for these materials is in the range of 0<a4<ac and the
realistic dendrite growth is attracted to the neutral GTW
mode, ast→`.

Recently, several groups of researchers have performed a
series of numerical simulations for the initial value problem
of two-dimensional dendrite growth~@36,37#!. Our results
are also in good agreement with their numerical simulation
results. Ihle and Mu¨ller-Krumbhaar have made numerical
simulations with various values of the anisotropy. They show
that asa450.15, the numerical solutions are attracted to the
neutral mode of the null-f mechanism. At the later stage of
evolution, the dendrite has a smooth interface with no side-
branching. Then, asa450.1, a strong time-oscillatory insta-
bility occurs; the tip radius has up to 10% fluctuation with
time; asa450.05, the initially steady needle solution under-
goes ‘‘strongly irregular sidebranching and large fluctuation
in tip radius and velocity.’’ At the end of the computation for
this case, the tip velocity is still noticeably changing and the
numerical result on the tip radiusRtip and Vtip shows the
inconsistency with the scaling law~6.24!. These numerical
simulation results apparently verify the existence of the
GTW instability mechanism and suggest that the system is
indeed dominated by this GTW mechanism, asa4 is smaller
than a critical number, which, from these numerical results,
can be considered to be in the range 0.05,ac<0.1. The nu-

merical simulations conducted by Brener, Mu¨ller-
Krumbhaar, Saito, and Shiraishi in terms of quasistatic ap-
proximation show the same scenario. Their results suggest
0.068,ac<0.125.

As these numerical simulations confirm the existence of
the unstable GTW modes, from here, one can logically de-
duce that the system must have the GTW neutral mode. This
GTW neutral mode was indeed found by the numerical so-
lutions of the eigenvalue problem~see@30#!. However, so far
it has not been found in the numerical simulations of the
initial value problem by Ihle and Mu¨ller-Krumhbaar and oth-
ers. One of the possible reasons for this may be that they did
not use a proper initial condition. The steady Ivantsov solu-
tion that they used as the initial condition is apparently too
far away from the GTW neutral mode solution. As indicated
before, the existence of the GTW neutral mode is only a
necessary condition, but not the sufficient condition attract-
ing the solutions for the initial value problem with any kind
of initial conditions, ast→`. In general, a dynamic system
that has an isolated, limit circle solution may not be attracted
to this limit circle, under some initial conditions. Not only
that, this limit circle might never be observed, if some non-
linear instability mechanism exists.

Therefore we have the following open questions. In order
for the solutions for the initial value problem to approach the
GTW neutral mode solutions ast→`, what kind of initial
conditions are required? In order for the numerical solutions
for the initial value problem to approach the GTW neutral
mode solutions ast→`, what kind of algorithms are adopt-
able? To resolve these challenging problems, much more ex-
tensive analytical and numerical work is needed.
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