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In this paper we simulate the aggregation of interacting particles using Brownian dynamics. The parameters
varied are volume fraction and interaction potential well depth. At volume fractions above 0.07 percolated
structures are observed; these are formed differently from cluster-cluster aggregation. Fractal analysis of the
structures shows nonuniversal fractal scaling for all systems, with lower boundr 0 and fractal dimensionality
df . Both of these properties depend on the simulation parameters and on time. Compactification in time leads
to an increasingr 0 and a decreasingdf , that is, structures with thick strands. This effect is most pronounced
at large well depths. Due to compactification in time, percolated states can be transient.

PACS number~s!: 62.43.Hv, 61.20.Ja, 82.70.Gg, 61.20.Lc

I. INTRODUCTION

Lyophobic colloids can be stabilized by charging the sur-
face of the dispersed particles. Alternatively, a layer of poly-
mer with high affinity for the solvent can be applied to the
particle surface, resulting in steric stabilization. If the stabi-
lization is taken away, the colloidal particles will aggregate:
particles that collide through Brownian motion will form a
cluster. At first, clusters are held together by relatively weak
attractive forces~e.g., Van der Waals forces! between the
particle surfaces. On a larger time scale, aging and inserting
lead to more rigid clusters.

A laboratory example of aggregation is the destablization
of carboxyl-stabilized latex particles dispersed in water. Un-
der alkaline conditions, the particles in this system carry
charged groups. Addition of the acid glucono-d-lactone re-
moves the charges, resulting in aggregation. Steric destabili-
zation can be found in cheese making, where rennet is added
to a dispersion of casein micelles in an aqueous medium
~‘‘skim milk’’ !. Here the enzyme removes the stabilizing
layer ofk casein.

For a lyophobic colloid consisting of homodisperse solid
spherical particles, the structure that minimizes the free en-
ergy is a close-packed cluster. On the other hand, in most
systems particles are actually brought together by Brownian
diffusion, resulting in ramified clusters. Therefore, the devel-
opment of the structure in time is determined by a competi-
tion between Brownian diffusion and reorganization of clus-
ters to a more close-packed structure. Both processes can
have different time scales depending on the system used.

In the aggregating systems mentioned above, the resulting
structures are often far from close packed. Figure 1 gives a
micrograph of an aggregated system of Teflon latex particles,
showing a cloudy network of cross-linked ramified clusters.
Here, at a relatively low volume fraction (w50.025), a per-
colated structure is formed that cannot reorganize easily to a
close-packed aggregate. If bonds between particles become
rigid due to aging and sintering, reorganization becomes im-

possible, and no close-packed clusters will be formed.
An important question for many colloidal systems is

which structures will be formed upon destabilization, and
what dynamics lead to them. Destabilization of colloids has
been modeled as phase separation@1–3#. Using density-
functional theory, the development in time of an initially
uniform density pattern can be written in the form of a dif-
fusion equation. This diffusion equation is of no use when
inhomogeneities on many length scales are to be modeled
over longer time scales; a mean-field theory is inadequate for
describing structures such as those in Fig. 1.

Aggregation of hard-core particles to irregular structures
has been studied extensively in computer simulations@4,5#
~more recently@5,7#! and experiments@8–13# using fractal
models to describe aggregated structures. In many simula-
tions, clusters are regarded as rigid entities, which are treated
as particles with scaled diffusion and interaction behavior.
Following this scheme, aggregation by diffusion has been
studied, although cluster reorganization has been taken into
account by allowing reversible aggregation@14#, desorption
of particles form clusters@15#, or by deformations of aggre-

FIG. 1. Aggregated 100-nm Teflon latex particles~white!. The
micrograph represents 132389 mm.
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gates@7#. The behavior of these systems under shear has
received much attention in theory@16#, simulation@17#, and
experiment@18#.

In this article we present the results of a Brownian-
dynamics simulation of aggregating Lennard-Jones particles,
in which both cluster growth and cluster reorganization oc-
cur simultaneously, and all particles are considered explic-
itly. The resulting structures will be interpreted using fractal
models.

II. BROWNIAN DYNAMICS

A. The model

In the simulation, we keep track of the coordinates ofN
particles in three dimensions. The Brownian-dynamics
method@19,20# is based on the Langevin equation:

Fres5m
d2

dt2
r i5(

j
I i j ~r i j !1Ri1H i . ~1!

Equation~1! gives the resulting force on particlei with mass
m, where I is the force modeling interaction between par-
ticles,R the force modeling diffusion, andH the force mod-
eling hydrodynamic interactions. Equation~1! is a coupled
system of differential equations that can only be solved nu-
merically. The solution gives the particle trajectories.

We approximate hydrodynamic interactions by simple
Stokesian friction~i.e., hydrodynamic interactions between
particles are neglected!,

H i53phs
dr i
dt

, ~2!

with h the viscosity of the continuous phase ands the di-
ameter of the particles. Diffusion is modeled by a stochastic
force that mimics collisions between particles and solvent
molecules.

Equation~1! is solved numerically using a constant time
stepDt. We choose this time step to be much larger than the
relaxation time for one stochastic pulse, and neglect the in-
ertia term, the second-order term in~1!. This reduces~1! to a
first-order differential equation:

d
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We solve~3! using the Euler forward method@21#:

Dr i~ t1Dt !5
Dt
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j
I i j ~ t !1Ri~ t !G . ~4!

To avoid inaccuracy,Dt must be chosen small enough to
ensure that the interaction forces do not change significantly
during one integration step. Values forDt will be given in
the next section.

The stochastic displacement, which is the effect ofR, is
tuned to obey Einstein’s law for an isolated particle:

Dxi
R~ t1Dt !5GqA2kTDt/3phs. ~5!

Gq is a Gaussian distributed random number with unity vari-
ance. The indexq indicates that different random numbers

are drawn: three random numbers to calculate the stochastic
displacement vector for one particle; 3N random numbers
for the whole system in one time step. This ensures that in
the absence of interactions, the displacement vectors over
different particles and times are uncorrelated. In the absence
of interactions, the system will asymptotically obey Ein-
stein’s law.

As the average resultant force on a particle is always zero
~neglect or inertia!, the energy of the particles must remain
constant. This means that the energy required for the sto-
chastic displacements is completely dissipated by friction.
As both the stochastic term and the friction term in the
Langevin equation describe interactions with solvent mol-
ecules, we can conclude that in the absence of interactions,
the solvent temperatureT also remains constant.

In the presence of interactions, the system has not only
thermal but also potential energy, with total amountV sys:

Vsys5(
iÞ j

Ui j ~r i j !, ~6!

whereUi j is the potential energy for a particle pair as a
function of their separationr i j . In one intervalDt, the sys-
tem will decreaseVsys when possible by particle displace-
ment. Again, the decrease inVsys is converted solely to fric-
tion energy, which would normally result in a rise in solvent
temperature. In this simulation, however, we keepT con-
stant, which amounts to thermostatting the sample. This is
very well imaginable, as the decrease inVsys is typically a
slow process.

In this model interactions are described using the
Lennard-Jones potential,

Ui j ~r i j !54«F S s

r i j
D 122S s

r i j
D 6G , ~7!

in which « is the attraction energy at the minimum ofUi j
ands is the distance at whichUi j changes from attractive to
repulsive. The minimum inUi j lies atr i j521/6s. The inter-
action force follows from the gradient of the interaction po-
tential. Lennard-Jones particles are ‘‘soft,’’ i.e., it is possible
to find a pair of particles at a separation smaller thans. We
use s as the hydrodynamic diameter in the free-draining
limit of ~2!. To increase computational speed,Ui j is taken to
be zero at distances higher than 2.5s.

In this work we investigate the effects of attractive inter-
particle interactions in the simplest form by using a potential
with few parameters. The Lennard-Jones potential meets this
criterion well, but is unrealistic in describing interactions be-
tween real colloidal particles. For the moment, however, we
postpone a study using complicated but more realistic poten-
tials, and restrict ourselves first to the effects of a simple
potential. A great advantage of the Lennard-Jones potential
is the fact that its equilibrium phase diagram is known. This
means that although equilibrium may not be reached during
the simulation, values for« can be placed in a thermody-
namical perspective.
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B. Parameters in Brownian dynamics

In the simulation, all distances are normalized tos and all
energies tokT. Equation~5! can be written in dimensionless
form,

D x̃i
R~ t1Dt !5GqAS̃, ~8!

where the tilde signifies a dimensionless quantity andS̃ is
given by

S˜[
2kTDt

3phs3 . ~9!

@S̃#1/2 is the dimensionless rms particle displacement in the
absence of interactions. The value of@S̃#1/2 has been 0.003 in
all simulation runs; this ensures that most displacements will
be small relative to the particle size and that interactions
forces will not change too much during one integration step.

The consequences of this choice for varying particle di-
ameters are shown in Table I, for a system of polystyrene
particles~density 1000 kg/m3) dispersed in water~viscosity
1023 Pas! at 298 K:

The third column contains the ratio ofDt and the relation
time for one stochastic pulse:

t r5
m

3phs
. ~10!

Table I shows that for these systems inertia effects can in-
deed be neglected.

The only parameters left for varying areN, the number of
particles in the system,«̃, the well depth in~7! normalized to
kT, and the volume fractionw. As we are interested in irre-
versible aggregation, we shall choose these parameters in the
unstable region of the Lennard-Jones phase diagram.

A starting configuration of a given volume fraction is gen-
erated by placingN particles at random in the simulation box
at very low volume fraction (w of order 1025), and then
performing a simulation where the particle positions are res-
caled by a factor@S̃#1/2 after every ten random displace-

ments. This is continued until the desired volume fraction is
reached. The resulting configuration is equilibrated under re-
pulsive Lennard-Jones interactions, i.e.,Ui j is set to 0 for
r i j>21/6s to remove any ordering induced by the ‘‘grow-
ing’’ particles.

III. FRACTAL PROPERTIES

Fractal structures in colloids can arise by cluster-cluster
aggregation~CCA!, where particles aggregate to clusters,
which then aggregate similarly on a larger length scale. A
system undergoing CCA consists of clusters that are fractals,
and can be characterized by a fractal dimensionalitydf and a
proportionality constantñ:

n~r !5ñS rs D df , ~11!

wheren(r ) is the number of particles in one cluster of radius
r . The fractal dimensionality characterizes the factor by
which n(r ) increases upon an increase in cluster size. The
smaller df is, the more ramified clusters become as they
grow. For a system of fractal aggregates,n(r ) can also be
interpreted as the average number of particles within a test
sphere of radiusr . When r is in the fractal scaling region,
Eq. ~11! holds. CCA has been studied extensively by com-
puter simulation@4,5#; the resulting clusters show universal
fractal behavior with adf of 1.75 at large aggregation prob-
ability ~diffusion-limited aggregation! or 2.0 at small aggre-
gation probability~reaction-limited aggregation!.

To measure the fractal properties of our results, we study
the integrated pair correlation function:

nc~r !54pr0E
0

r

l 2g~ l !dl. ~12!

nc(r ) is the average number of particles within ranger of
another particle. We measuredf by identifying a linear re-
gion in a double logarithmic plot ofnc(r ), and applying a
least-squares fit to this region. This is equivalent to studying
the scaling of the pair correlation function@4#, but tends to
smooth out oscillations ing(r ). At large length scales
nc(r ) is only determined by the overall volume fraction:
g(r ) then equals 1 anddf becomes 3. We will call this the
homogeneous scaling region.

For colloidal aggregates, the fractal scaling region will
also have a lower boundr 0 , typically of the order of the
particle size. We can include this lower bound in the descrip-

FIG. 2. Deterministic fractals.

TABLE I. Absolute time scales in the simulation.

s ~nm! Dt (msec! Dt/t r

10 0.003 44 618.79
102 3.44 6187.9
103 3440 61879
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tion of n(r ) by assuming that on length scales equal to and
larger thanr 0 , the aggregate structure is fractal, while below
r 0 the aggregate structure is closely packed. This simplifica-
tion will serve as a first approximation in determining values
for r 0 . The first assumption can be written as

n~r !

n0
5S rr 0D

df

, ~13!

where a cluster of radiusr 0 containsn0 particles. The second
assumption can be written as

n058wcpS r 0s D 3 ~14!

in whichwcp is the volume fraction of close packing. Substi-
tution of ~11! and ~14! in ~13! gives an expression forñ,

n˜58wcpS r 0s D 32dt

, ~15!

from which we see thatñ is determined by bothr 0 anddf .
To clarify this, we give an example of values forñ andr 0 for
three deterministic fractals in two dimensions. All fractals
havedf , ln5/ln3; only the backbone is different:

In Fig. 2 only a small part of the fractals is shown; the rest
of the fractal repeats this part self-similarly. Note that Fig.
2~a! constitutes a fractal object, even if it does not form a
connected cluster. By writingn(r ) as a series,ñ can be
easily obtained numerically.r 0 is calculated fromñ using
~15!, assumingwcp to be 1. The results are given in Table II.

Here we see that our choice forwcp gives for case~b! the
value for r 0 that we would expect intuitively: the particle
radius. Bothñ andr 0 quantitatively reflect the differences in
backbone, regardless of the size of the fractal.

As far as the authors know, the notion of the backbone
parametersñ and r 0 is a new concept in experimental and
simulational studies concerning the fractal structure of aggre-

gating systems. Until now, all attention has been focused on
measuring and interpreting the fractal dimensionality.

IV. RESULTS AND DISCUSSION

A. Fractal results

An example of annc(r ) plot for w50.13 and«52 is
given in Fig. 3. The particle volume fractionw is calculated
using 21/6s as the hard sphere diameter.

In Fig. 3 we see that the fractal scaling region is very
small. For this system the homogeneous scaling region al-
ready sets in at four to five particle diameters, which makes
a least-squares fit to some extent arbitrary and the scaling
results no more than semiquantitative. The oscillations in
nc(r ) at smallr are caused by excluded volume effects. The
fractal scaling region grows in time.

From Fig. 3 it follows that the proportionality constant
ñ increases with time. Equation~15! shows that we can in-
terpret an increasingñ as an increase in size of the close-
packed building blocks of fractal clusters, i.e., compactifica-
tion.

In evaluatingñ for our simulation, we have to correct for
using the Lennard-Jones diameters instead of the distance
of lowestUi j , 2

1/6s. Hence we use forw0 in ~15! the vol-
ume fraction of fcc close-packed particles, 0.76, divided by
A2.

In Figs. 4 and 5 we show the results fordf and r 0 for
three volume fractions. From Figs. 4 and 5 it is clear that
there is no universal fractal behavior in the aggregated sys-

FIG. 4. Fractal parameters for«54.

TABLE II. Backbone parameters for fractals of Fig. 2.

Figure n˜ r 0/s

2~a! 2.208 0.329
2~b! 2.76152dt 0.500
2~c! 3.313 0.703

FIG. 3. nc(r ) plot of an aggregating system. Dots, after 100 000
iterations; triangles, after 350 000 iterations.
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tems studied here. Generally,df decreases with time, indi-
cating more stringlike clusters. Also,r 0 increases with time,
indicating compactification.

In many studies, compactification is automatically associ-
ated with an increasingdf . These data, however, show that
the measured dimensionality need not be relevant to the
length scales on which compactification occurs. In this ar-
ticle, df always describes length scales larger thanr 0 . A
compactification on short length scales in a connected net-
work must result in a more open structure on intermediate
length scales, hence the decreasingdf .

The values ofdf and r 0 depend on both volume fraction
and well depth. Compared to Fig. 4,df in Fig. 5 starts at a
higher value and decreases more slowly;r 0 in Fig. 4 starts at
a higher value than in Fig. 5 and increases faster.

B. Discussion: Higher volume fractions

We have studied cluster statistics of the system with
Ui j,2kT as a connectivity criterion. The simulated systems
with w higher than 0.09 form percolated clusters. An ex-
ample of such a cluster is given in Fig. 6~a!, where only the
particles belonging to the cluster are shown. Compactifica-
tion in time causes percolating clusters to be transient. This
is illustrated in Fig. 6~b!, where compactification has caused
a branch in the largest cluster to break. The largest cluster
still percolates; after more iterations we find that percolating

clusters break up into loose clusters. The reorganization we
see in Fig. 6 is in accordance with a decreasingdf and an
increasingr 0 .

To understand the mechanism by which percolation oc-
curs, we studied a larger system (N510 000) using the same
parameters. After 25 000 iterations, 80% of all the particles
were already in one cluster. This cluster is drawn in Fig. 7~a!.
It appears that the system is separated into connected regions
with high particle concentration~the cluster! and low particle
concentration~voids!. Figure 7~a! somewhat resembles that
initial structure of phase-separating liquids@1#, in which both
phases form percolated networks.

In the simulation, the number of particles contained in this
cluster decreases with time. After 200 000 iterations, the
largest cluster contains only 10% of all the particles. The
resulting cluster, drawn in Fig. 7~b!, has become more com-
pact at small length scale, but has retained its percolative
properties. From Fig. 7~a! to Fig. 7~b! the cluster has com-
pactified significantly, leaving thin branched strands between
larger voids.

We find that a greater well depth merely seems to speed
up the processes described above. At high,« a percolated
cluster is formed faster, but reorganization is also faster
~though not necessarily in the same proportion!. At lower
«, the clusters look less closely packed. At« of orderkT, we
observed no percolation in these systems.

For the percolated systems we have calculated the pres-
sure in the system@21#. We found (PV/NkT)21 typically to

FIG. 5. Fractal parameters for«52.

FIG. 6. Largest cluster for N51000;
w50.093;«54. In these three-dimensional con-
figuration snapshots shading is used as depth cu-
ing.
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be of order21027, implying a very small underpressure
caused by the network pulling on itself. To investigate direc-
tional effects, we calculated the stress tensor: the stress con-
tribution of the nondiagonal terms was about 2% of the con-
tribution of the diagonal terms, and positive. None of these
results indicate that percolation is an artifact of the simula-
tion.

C. Lower volume fractions

For volume fraction 0.074 we both started and ended up
with loose, nonpercolating clusters. At well depth«52 one
cluster was found with a linear shape, as given in Fig. 8.
Closer inspection of the simulation data showed that this
cluster was formed by aggregation of several smaller clus-
ters. The formation of this strandlike cluster differs from that
described in the preceding section. Here the number of par-
ticles contained in the largest cluster increases with time. As
in the preceding section, a larger« leads to more closely
packed clusters. At«54, we only find small compact clus-
ters with a variety of elongated shapes, which are probably
the effect of rotational diffusion. When a dimer rotates, the
connection probability for a third approaching particle is
larger at the two ‘‘tips’’ of the dimer than near the center of
gravity. This simulation includes rotational diffusion for

clusters, as the sum of all the particle displacements in a
cluster causes both translation and rotation of the cluster as a
whole.

V. CONCLUSIONS

For aggregating Lennard-Jones systems we find percolat-
ing networks at volume fractions abovew50.07. These net-
works appear to be formed by reorganization of large aggre-
gates, during which branched strands are formed with voids
in between. During this reorganization, the number of par-
ticles in the largest cluster decreases. Fractal analysis gives
nonuniversal results, which is not surprising, since the
mechanism of aggregation differs from CCA: both diffusion
and reorganization determine the aggregated structure. Still,
significant scaling regions are found. The effect of reorgani-
zation on the fractal parameters is a decreasingdf and an
increasingr 0 .

At lower volume fractions, aggregation of clusters has
been observed, but no percolating networks have been found.
Apparently, the region in which percolating structures are
formed as described in bounded by a lower volume fraction;
below this bound there is competition between cluster
growth and cluster reorganization, which the latter wins in
most of the simulations. However, it is very likely that there
is a region in which cluster growth prevails. If we denote
such a region by CCA, the region of loose clusters byL, and
the percolated region byP, we can sketch a diagram in pa-
rameter space, which is done in Fig. 9. This diagram is

FIG. 8. Largest cluster forN51000;«50.074;«52. FIG. 9. Regions in parameter space, all units arbitrary.

FIG. 7. Largest cluster forN510 000; w
50.093;«54.
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higher speculative, but rather generally based on the mecha-
nisms found in this paper.

The diagram drawn is not a phase diagram, as all struc-
tures are transient due to reorganization. This is indicated by
arrows showing how the ‘‘coexistence lines’’ will advance in
time. In theP region, the attractive interaction forces cause
in time both formation and fracture of percolating clusters.

The Lennard-Jones potential strongly favors reorganiza-
tion, as it has a very broad interaction range. More realistic
~i.e., short-range! interaction potentials will drastically alter
the diagram. Also, in real systems, roughness of particle and
sintering can freeze in structures. However, the notion of
different mechanisms to obtain percolated structures~CCA

and P) helps one to understand the structures that can be
expected at different volume fractions and interaction poten-
tials. A computer simulation where particles are considered
explicitly is necessary to sample other regions in the ‘‘phase
diagram’’ than the CCA region. Our next aim is to use
Brownian dynamics to simulate systems with short-range po-
tentials and to include effects of sintering.
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