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Discontinuous interface depinning from a rough wall
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Depinning of an interface from a random self-affine substrate with roughness exp@nenstudied in
systems with short-range interactions. In two dimensions transfer matrix results show thig&fb2 depin-
ning falls in the universality class of the flat case. Whgrexceeds the roughnesgy& 1/2) of the interface
in the bulk, geometrical disorder becomes relevant and, moreover, depinning betiscoesinuousThe same
unexpected scenario, and a precise location of the associated tricritical point, are obtained for a simplified
hierarchical model. It is inferred that, in three dimensions, Wik 0, depinning turns first order already for
{s>0. Thus critical wetting may be impossible to observe on rough substrates.

PACS numbds): 68.45.Gd, 64.60.Ak, 36.20.Ey, 75.60.Ch

Wetting and depinning phenomena occur when the intermalization group(RG) calculations on a hierarchical model,
face between two coexisting phases unbinds from an attragvhich further suggestgs=1/2 as the tricritical threshold in
tive substratg1]. In two dimensions, where an Ising inter- 2D. Extrapolation of our results to the experimentally most
face can be well represented by a directed paihcritical ~ relevant case of three dimensio(8D), where{,=0 in or-
wetting occurs as a rule, and first-order wetting is predictediered bulk, suggests that a minute disorder in substrate ge-
only for special setupEL]. In three dimensions, on the other ometry could suppress critical wetting in favor of a first-
hand, numerical simulations have shown critical, first-orderorder transition.
and tricritical wetting for the Ising model. The same phe- Letx andy be integer coordinates of points on a square
nomena in random media have attracted a lot of attentiofdttice. A “wall” is given by a self-avoiding path directed
recently. Many works[3-5] considered the effects of according to the positive axis (Fig. 1). To each wall step
quenched disorder due ulk impurities on interface depin- parallel to thex axis, a heigh8, , equal to the ordinate of its
ning. Other studies addressed disorder restricted to a geteft end, x, is associated. For simplicity we consider only
metrically smoothsurface (chemical surface disordef6].  wall configurations obeying the restrictios,=S,— S,
Both bulk and chemical surface disorder may modify the=*1. In order to generate wall geometries with a preas-
universality class of the unbinding transition, but generallysigned roughness exponefy, we used a randomized ver-
not its continuous, second-order character in two dimensionsion of an algorithm due to Mandelbrpt0O]. Given a wall
[1]. profile, the interface can assume configurations obeying

In the present paper we address the rolggebmetrical hy—hy,;=0,=1 andh,=S,, if h, is the height of the hori-
disorder due to wall roughness in determining the nature ofontal step ak (Fig. 1). The interface is like dpartially)
the wetting transition. Disordered geometry is most amedirected walk or polymer, and its Hamiltonian is
nable to theoretical treatment when characterized by simple
scaling laws, like in the case of self-affine or fractal sub- = [e(1+]|zy—Zys1+5d) —US, ol (1
strates. So far, the effects of such roughness were seldom X X
discussed, mostly in connection with complete wetting
[7-9]. In spite of this, real substrates with self-affine geom-

etry are met in many situations and have been the object . -
recent experiment$8]. For these substrates the average o each(horizontal or vertical step of the walk, and to each

transverse width of the wall scales with the longitudinal horizontal step on the wall, respectively. With a wall profile
length X asX¢s (0<{¢s<1) covering a distancX the partition function is
S .

where z,=h,—S,, and e,u>0. According to(1), at tem-
eratureT, fugacitieso=e"*'T andk=e"'" are associated

We show that in the two-dimension&D) Ising model
the nature of the depinning transition changes drastically
upon increasing the self-affine roughness exporgntFor
{s=1/2 depinning remains continuous as in the flat case, and
disorder is irrelevant. Fofs=1/2 an unusuatliscontinuous
depinning occurs. Since the intrinsic roughness of a 2D in-
terface is{y=1/2, it is natural to expecis=1/2 as precise
threshold. The emerging scenario is that of geometrical dis-
order determining a tricritical phenomenon for depinning. FIG. 1. Example of rough substrate boundécgntinuoug and
We are able to locate the tricritical point by accurate renor-interface(dotted configuration.
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TABLE I. Values of ¢ andk. at w=1/2 from fits of@.

Zy= D oK )
all walks gs y kc
where the sum is restricted, e.g., to walks from the origing 1 4/32
(0,0) to any point X,y), with y=Sy. L andl indicate total 1/3 1.01+ 0.01 1.772+ 0.001
length and number of horizontal steps on the wall, respecys 1.01+ 0.02 1.828+ 0.001
tively. £y is a functional of the wall profile. In order to 4/ 1.03+ 0.04 1.908+ 0.003

calculate it we use transfer matrices:

3Exact results for a flat substrafi].
(Tsx)m,n: w[ 5n,m—sx+ (5n,m—sx—l+ 5n,m—sx+ 1)w]k§”»0,
(3) Further strong evidence of a change of the nature of the
transition at{s=1/2 comes from the behavior &% (Fig. 2.
vyherem andn range on.the allowed, andz,. , respec- \while for {s<1/2, Py~ (k—k.)”, for k—k! , with p=1, as
tively. The partition function thus becomes with flat substrate[1], for {g=1/2 a discontinuity inP_o
shows up(Fig. 2), becoming sharper and sharper as finite-
size effects are reduced. The amplitude of the discontinuous
$o(P), 4
l.p

Lx= E

lp

X-1
IT T,
x=0

jump in Py also increases witlfs.

Thus, for {s=1/2 substrate roughness is relevant and,
where, with the left end of the interface grafted at the originmoreover, drives the depinning transition first-order.
$o(p)=bp0. A wall profile corresponds to a sequence of {s=1/2 is the natural candidate as border value between con-
factorsT,, T_, in the product of Eq(4). Zy is thus given tinuous and discontinuous regimes. Indeed, fgr1/2 the
asymptotically in terms of the largest Lyapunov eigenvaluewall roughness exceeds the roughnéss 1/2 [5] of the in-

[11] terface.
Of course, we verified by numerical tests that different
|[(TTX2 3T )(ZO“]”X [”‘EXH]UX microscopic details of the wall construction, like alternative
Amax= M| —————| =lim|—— choices of step sizes, do not affect appreciably the estimates
X—o | ol x—el || bol| of exponents in the continuous regime, or the location of the

(5)  thresholdzg=1/2.
- ] ) In 2D, first-order depinning is quite unexpected in the
We verified that different long™ sequences, i.e., wall pro- context of interfacial phenomena. Only two special ways of
files, lead to the same eigenvalue within good accuracypptaining it have been conceived so far, by introducing either
Thus, the quenched free energy is MpJfwkdld  an attractive defect line in the bulk2], or longitudinally
=limy_...InZx/X, where the bar indicates quenched averag{ully correlated disordef13]. Here first order is caused by
ing over wall profiles. In the random context depinning is sufficiently strong geometrical surface disorder, which also
most efficiently detected by studying the behavior of quantireveals the opposite in its effects to its chemical counterpart.
ties which can be directly related to the components ofindeed, while higher roughness induces first-order, in the de-
éy. Examples are the average probabilifjy(w.k,¢s)  fect line case chemical surface disorder drives the transition
_ |imxﬂx1/><2>>f;lo¢>2<(0)/||<Z>x||2- that the horizontal step back continuou$14]. Th'is latter effect is_ certainly vyhat one
lies on the wall, and the average distance of the in'[erfaCt‘é"OUIOI expect at first S.'gh? on the ba_5|s of experience with
—— = > = phase transitiongl5]. Like in the special examples of Refs.

from the substrate(z)=limy_..1/X3.Z2,z¢,(2)/|| x| [12,13, our first order depinning needs not be accompanied
[1]. For our determinations we used up to 50 mdependquy off-coexistence prewetting phenomena.
profiles with x<22 for which the components o, were
computed up to a distance from the wa,uaxzzgo“.

Rather than considering variations 8 or (z) along

0.8 [t 1

curves parametrized by temperature, we choose to follow T &1

w=const lines. In the cas&=<1/2, e.g., upon approaching 06 F '_'_"_'_' CSiig ,a"':::
k=k. from above with <w<1, (z) is well fitted by [ 25;3/5 Lo
(z)=A(k—k) "¥+B, with ¢ always compatible with the — [ . C5=2/3 -
exactly known flat wall value of 11]. k. of course depends Py oa e sz R ot

on w and{s. Somey andk, determinations are reported in

Table | for w=1/2. For{s=<1/2 disorder in the wall geom-

etry does not appear to lead to a new universality class for 0.2
depinning. By treating a different model with continuum
many-body techniques, Li and Kardér] found second-

order depinning withyy=1 for all {s<1. At variance with 0
this conclusion we find here that the situation drastically | k

changes forls=1/2. In this ranggz) has a much steeper,

abrupt rise atk., so that the previous fit becomes clearly  FIG. 2. The probabilityP, as a function ok at w=1/2 and for
inappropriate. different {5 values.
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FIG. 3. Construction rule of the DHiI(level n=0 to level
n=1) and schematic picture of the lattice at lemelwith the four

0

n—1 level units. A wall configurationheavy crossing the left I
units, and two polymer configuratioridotted are reported. With
such wall configuration Eq6) applies.

. T . FIG. 4. P, on the DHL atw= 1/2 and for various\ values. The
Extrapolatio o X e
p n to 3D of our findings is natural and hasd%shed lines mark the discontinuities for1/2.

remarkable and unexpected consequences. Systems with
dominance of short-range interactions are, e.g., metallic sub- ) o )
strate adsorbates or, even more, type-l supercondydls @ Polymer, with partitionZ,, joining the ends of the lattice
Since typically interfaces in pure systems are only logarith-2nd laying, e.g., to the right of the wall. As in E®), » and
mically rough in 3D ¢,=0), a minimum of substrate rough- k are step and-wall contact fugacities, respectively. For
ness should be sufficient to give first-order wetting. This of-2 =0 we deal with a polymer attractekt 1) by the left
fers a further possible explanation for the fact that criticalPHL border, which plays the role of a “flat,” deterministic
wetting is so elusive from the experimental point of view Substrate. When rises, the “roughness” of the now random
[17]. A recent work predicts critical wetting for superconduc- wall increases. Transverse hl!|S and valleys are felt more and
tor interfaceg16]. For such interfaces, is not known, un- more by the polymer. For a given wall, one can compute the
fortunately, but could be rather small, if not zero. This meanspc’lymzer partition function iteratively, using<Zy 1
that special care in using smooth substrates should be exE2<p,, and
erted, in order to observe the predicted phenomenon.

By reinterpretingw and k as monomer fugacity and Zne1=Zn1Zn2t Zhn (6)
Boltzmann factor for contacts, respectively, our model de-
scribes polymer adsorptidii8]. Apart from a change in the Or
ensemble £=324Zy), the transfer matrices are the same.
Criticality (Z dominated by infinite length polymer configu- Lnt1=Lnin2- (7
rationg implies\ .= 1. We find that\ ,,,(1/2,k,{s) =1 for
all k<k,(1/2,¢s), wherek, was defined above. Fdc>k,  Equation(6) or (7) is chosen, according to whether, at level
criticality occurs atw<1/2, indicating that the polymer is Nn+1, thenth level diamonds, 1 and 2, crossed by the wall,
adsorbed18]. Indeedw = 1/2 marks criticality for the poly- are the left or the right ones, respectively, , is clearly the
mer in the bulk. The dependence kf on (g shows that “bulk” partition function on DHL at thenth level, in absence
adsorption becomes more difficult with increasing rough-of wall. Initial conditions areZy,=kw and Z; o= . Con-
ness. One can also show that the fraction of monomers agidering firstA=0, Eq. (6) induces a two-parameter RG
sorbed on the wall should have the same singular behavior @8apping by puttingZ, =’ and Z;=w’k’. Clearly the
P,, when moving atw= 1/2. Thus, like interface depinning, transformation ofZ, , implies that the bulk criticality con-
polymer adsorption undergoes a change from second to firélition is w=1/2 as in the Euclidean case. The valuel is
order upon increasings. marginally unstable fork=1 and separates adsorbed

To gain more insight into this change, we stick to polymer(k>1) from desorbed K<1) regimes. Thus, foA=0 a
language and consider a simplified model of adsorption dePositive attraction is always sufficient to adsorb the polymer.
fined on diamond hierarchical lattid®HL) (Fig. 3). Self- Equation(6) applies for alln and the problem has a non-
avoiding paths on DHL have often been used to mimic di-trivial fixed point with Z§=1/2 and Z*=1/2.
rected polymers in 2[019]. A wall joining the two ends is Po(w=1/2k,A=0) can be extrapolated by iteration. Due to
obtained as follows: at levei=0 of DHL construction the marginality, P, starts rising with zero slope, but continu-
wall always coincides with the unique existing bond. Forously, fork=1 (Fig. 4). ForA>0 theZ,'s become random
N=n;.c0, the wall is determined by backward iteration. variables and we must iterate their probability distribution,
Starting fromn,,,,,, at each leveln, we choose whether the 74,. This cannot be done exactly. However, starting from
wall passes through the left or right DHL units of level #y=8(Z—kw), we follow the distribution at leveh by
n—1, with probabilites --A and A, respectively, and so iteratively sampling it. From a large numbes=(0°) of 2
on. If, e.g., we putA =0, the process is deterministic and we values distributed according t&,,_,, we generate a sample
create a single wall coinciding with the left border of the distributed according to#, by choosing many pairs ofZ
lattice. ForA=1/2 we generate with equal probability all values and obtaining from each pair a new valueZofac-
possible walls through the lattice. Given a wall, we considercording to Eq.(6) or (7), with probabilities A and A,
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respectively. The resultingZ’s constitute a sample o#,,. lows an essentially exact determination of its location and

This procedure could be iterated fors40 with extremely — properties. Moreover, the threshold we find &t1/2 is

high accuracy. strongly suggestive of the precise location of the tricritical
P, at w=1/2 is plotted as a function df in Fig. 4 for ~ point in the Euclidean case.

different A’s. For 0<A<1/2, P_o rises continuously from Summarizing, in 2D, interface depinning or directed poly-

zero asc(k—k.). Thus,p=1 for 0<A<1/2. The slopec ~ Mer adsorption on rough substrate with<1/2 are continu-
and k. are both increasing withA. Apart from c=0 at OUS and in the same universality as in the flat case. .For
A=0, due to the accidental marginality, such behavior reproés™> 1/2 roughness is relevant and, moreover, the transitions
duces what is observed in 2D wheg<1/2. ForA<1/2 the ~acquire an unusual, discontinuous nature_. This result, not an-
polymer is more “rough” than the wall. Only whet =1/2 ticipated so faf7], warns that some continuum approaches

does the latter have the same freedom to develop through tfja& not be able to catch the correct physics of depinning
DHL as a polymer has within the “bulk.” On the other hand, from rough substrates. We expect similar properties, and the

A>1/2 corresponds qualitatively tgs>1/2, because the Same thresholds=1/2, for directed polymer adsorption on
polymer feels more and more the wall limiting its optionsa self-affine surface in 3D. Indeed, directed polymers have

when developing through the DHL. Fax=1/2 we have "O UPper critical dimension, and for_them=_1/2 _in all d. _
evidence that=c, with a still continuous transition. This Although the single polymer adsorption regime is not easily

infinite slope indeed anticipates a sharp discontinuitPi accessible experimentally, we believe that our results should

; . o " ___be relevant for stretched polymér20].
for A>1/2. So, the hierarchical model contains ingredients In 3D the interface of a pure system typically has=0

reproduging, at least qualitgtively, the sce.nar?o ngrging fOLS] We thus conjecture that depinning occurs discontinu-
the Euclidean model, and gives a suggestive indication of the - ; . ;
ously as soon ags>0, in cases when the interactions are

way in which continuous transitions switch to first order at ; o :

- predominantly short range, like in metallic systems. Our re-
the expected thresholgs=1/2. Its also b he ob bility of th | dicted
The dependence df, on A mimics that onls in 2D, and su 'Fs also bear on the observabillity of the recently predicte

further motivates the correspondence betw‘geandgl in critical wetting in the case of type-l superconductpts],

the two cases. We stress thgt since all paths haveSthe sal which is perhaps the most strict physical example of short-
- P paths 5 ge interface-substrate interactions.

length, and there is no natural recipe for defining a transver-

sal distance on DHL, the notion of roughness must always be Numerical calculations have been partly supported by

mediated in some way: here we can link roughness.t@ur  CNR within the CRAY project of Statistical Mechanics. We

hierarchical model provides a remarkable example of the trithank Joseph Indekeu for valuable criticism and suggestions

critical transition we are dealing with in this paper, and al-and Mehran Kardar for stimulating discussions.
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