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Depinning of an interface from a random self-affine substrate with roughness exponentzS is studied in
systems with short-range interactions. In two dimensions transfer matrix results show that forzS,1/2 depin-
ning falls in the universality class of the flat case. WhenzS exceeds the roughness (z051/2) of the interface
in the bulk, geometrical disorder becomes relevant and, moreover, depinning becomesdiscontinuous. The same
unexpected scenario, and a precise location of the associated tricritical point, are obtained for a simplified
hierarchical model. It is inferred that, in three dimensions, withz050, depinning turns first order already for
zS.0. Thus critical wetting may be impossible to observe on rough substrates.

PACS number~s!: 68.45.Gd, 64.60.Ak, 36.20.Ey, 75.60.Ch

Wetting and depinning phenomena occur when the inter-
face between two coexisting phases unbinds from an attrac-
tive substrate@1#. In two dimensions, where an Ising inter-
face can be well represented by a directed path@2#, critical
wetting occurs as a rule, and first-order wetting is predicted
only for special setups@1#. In three dimensions, on the other
hand, numerical simulations have shown critical, first-order,
and tricritical wetting for the Ising model. The same phe-
nomena in random media have attracted a lot of attention
recently. Many works @3–5# considered the effects of
quenched disorder due tobulk impurities on interface depin-
ning. Other studies addressed disorder restricted to a geo-
metrically smoothsurface ~chemical surface disorder! @6#.
Both bulk and chemical surface disorder may modify the
universality class of the unbinding transition, but generally
not its continuous, second-order character in two dimensions
@1#.

In the present paper we address the role ofgeometrical
disorder due to wall roughness in determining the nature of
the wetting transition. Disordered geometry is most ame-
nable to theoretical treatment when characterized by simple
scaling laws, like in the case of self-affine or fractal sub-
strates. So far, the effects of such roughness were seldom
discussed, mostly in connection with complete wetting
@7–9#. In spite of this, real substrates with self-affine geom-
etry are met in many situations and have been the object of
recent experiments@8#. For these substrates the average
transverse width of the wall scales with the longitudinal
lengthX asXzS (0,zS,1).

We show that in the two-dimensional~2D! Ising model
the nature of the depinning transition changes drastically
upon increasing the self-affine roughness exponentzS . For
zS&1/2 depinning remains continuous as in the flat case, and
disorder is irrelevant. ForzS*1/2 an unusualdiscontinuous
depinning occurs. Since the intrinsic roughness of a 2D in-
terface isz051/2, it is natural to expectzS51/2 as precise
threshold. The emerging scenario is that of geometrical dis-
order determining a tricritical phenomenon for depinning.
We are able to locate the tricritical point by accurate renor-

malization group~RG! calculations on a hierarchical model,
which further suggestszS51/2 as the tricritical threshold in
2D. Extrapolation of our results to the experimentally most
relevant case of three dimensions~3D!, wherez050 in or-
dered bulk, suggests that a minute disorder in substrate ge-
ometry could suppress critical wetting in favor of a first-
order transition.

Let x andy be integer coordinates of points on a square
lattice. A ‘‘wall’’ is given by a self-avoiding path directed
according to the positivex axis ~Fig. 1!. To each wall step
parallel to thex axis, a heightSx , equal to the ordinate of its
left end, x, is associated. For simplicity we consider only
wall configurations obeying the restrictionsx5Sx2Sx11
561. In order to generate wall geometries with a preas-
signed roughness exponentzS , we used a randomized ver-
sion of an algorithm due to Mandelbrot@10#. Given a wall
profile, the interface can assume configurations obeying
hx2hx1150,61 andhx>Sx , if hx is the height of the hori-
zontal step atx ~Fig. 1!. The interface is like a~partially!
directed walk or polymer, and its Hamiltonian is

H5(
x

@«~11uzx2zx111sxu!2udzx,0#, ~1!

where zx[hx2Sx , and «,u.0. According to~1!, at tem-
peratureT, fugacitiesv[e2«/T and k[eu/T are associated
to each~horizontal or vertical! step of the walk, and to each
horizontal step on the wall, respectively. With a wall profile
covering a distanceX the partition function is

FIG. 1. Example of rough substrate boundary~continuous! and
interface~dotted! configuration.
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ZX5 (
all walks

vLkl ~2!

where the sum is restricted, e.g., to walks from the origin
(0,0) to any point (X,y), with y>SX . L and l indicate total
length and number of horizontal steps on the wall, respec-
tively. ZX is a functional of the wall profile. In order to
calculate it we use transfer matrices:

~Tsx
!m,n5v@dn,m2sx

1~dn,m2sx211dn,m2sx11!v#kdn,0,
~3!

wherem andn range on the allowedzx and zx11 , respec-
tively. The partition function thus becomes

ZX5(
l ,p

S )
x50

X21

TsxD
l ,p

f0~p!, ~4!

where, with the left end of the interface grafted at the origin,
f0(p)5dp,0 . A wall profile corresponds to a sequence of
factorsT1 , T21 in the product of Eq.~4!. ZX is thus given
asymptotically in terms of the largest Lyapunov eigenvalue
@11#

lmax5 lim
X→`

F uu~Px50
X21Tsx

!fW 0uu

uufW 0uu
G 1/X5 lim

X→`
F uufW Xuu

uufW 0uu
G 1/X.

~5!

We verified that different longT sequences, i.e., wall pro-
files, lead to the same eigenvalue within good accuracy.
Thus, the quenched free energy is lnlmax(v,k,zS)
5 limX→`lnZX/X, where the bar indicates quenched averag-
ing over wall profiles. In the random context depinning is
most efficiently detected by studying the behavior of quanti-
ties which can be directly related to the components of
fW X . Examples are the average probability,P0(v,k,zS)

5 limX→`1/X(x50
X-1 fx

2(0)/uufW xuu2, that the horizontal step
lies on the wall, and the average distance of the interface

from the substrate,̂z&5 limX→`1/X(x50
X-1 (zzfx

2(z)/uufW xuu2

@1#. For our determinations we used up to 50 independent
profiles with x<220 for which the components offW x were
computed up to a distance from the wallzmax.23104.

Rather than considering variations ofP0 or ^z& along
curves parametrized by temperature, we choose to follow
v5const lines. In the casezS&1/2, e.g., upon approaching
k5kc from above with 0,v,1, ^z& is well fitted by
^z&5A(k2kc)

2c1B, with c always compatible with the
exactly known flat wall value of 1@1#. kc of course depends
onv andzS . Somec andkc determinations are reported in
Table I forv51/2. ForzS&1/2 disorder in the wall geom-
etry does not appear to lead to a new universality class for
depinning. By treating a different model with continuum
many-body techniques, Li and Kardar@7# found second-
order depinning withc51 for all zS,1. At variance with
this conclusion we find here that the situation drastically
changes forzS*1/2. In this rangê z& has a much steeper,
abrupt rise atkc , so that the previous fit becomes clearly
inappropriate.

Further strong evidence of a change of the nature of the
transition atzS.1/2 comes from the behavior ofP0 ~Fig. 2!.
While for zS&1/2, P0;(k2kc)

r, for k→kc
1 , with r.1, as

with flat substrate@1#, for zS*1/2 a discontinuity inP0
shows up~Fig. 2!, becoming sharper and sharper as finite-
size effects are reduced. The amplitude of the discontinuous
jump in P0 also increases withzS .

Thus, for zS*1/2 substrate roughness is relevant and,
moreover, drives the depinning transition first-order.
zS51/2 is the natural candidate as border value between con-
tinuous and discontinuous regimes. Indeed, forzS.1/2 the
wall roughness exceeds the roughnessz051/2 @5# of the in-
terface.

Of course, we verified by numerical tests that different
microscopic details of the wall construction, like alternative
choices of step sizes, do not affect appreciably the estimates
of exponents in the continuous regime, or the location of the
thresholdzS.1/2.

In 2D, first-order depinning is quite unexpected in the
context of interfacial phenomena. Only two special ways of
obtaining it have been conceived so far, by introducing either
an attractive defect line in the bulk@12#, or longitudinally
fully correlated disorder@13#. Here first order is caused by
sufficiently strong geometrical surface disorder, which also
reveals the opposite in its effects to its chemical counterpart.
Indeed, while higher roughness induces first-order, in the de-
fect line case chemical surface disorder drives the transition
back continuous@14#. This latter effect is certainly what one
would expect at first sight on the basis of experience with
phase transitions@15#. Like in the special examples of Refs.
@12,13#, our first order depinning needs not be accompanied
by off-coexistence prewetting phenomena.

TABLE I. Values ofc andkc at v51/2 from fits of^z&.

zS c kc

0 1 4/3a

1/3 1.016 0.01 1.7726 0.001
2/5 1.016 0.02 1.8286 0.001
1/2 1.036 0.04 1.9086 0.003

aExact results for a flat substrate@1#.

FIG. 2. The probabilityP0 as a function ofk atv51/2 and for
different zS values.
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Extrapolation to 3D of our findings is natural and has
remarkable and unexpected consequences. Systems with a
dominance of short-range interactions are, e.g., metallic sub-
strate adsorbates or, even more, type-I superconductors@16#.
Since typically interfaces in pure systems are only logarith-
mically rough in 3D (z050), a minimum of substrate rough-
ness should be sufficient to give first-order wetting. This of-
fers a further possible explanation for the fact that critical
wetting is so elusive from the experimental point of view
@17#. A recent work predicts critical wetting for superconduc-
tor interfaces@16#. For such interfacesz0 is not known, un-
fortunately, but could be rather small, if not zero. This means
that special care in using smooth substrates should be ex-
erted, in order to observe the predicted phenomenon.

By reinterpretingv and k as monomer fugacity and
Boltzmann factor for contacts, respectively, our model de-
scribes polymer adsorption@18#. Apart from a change in the
ensemble (Z5(XZX), the transfer matrices are the same.
Criticality (Z dominated by infinite length polymer configu-
rations! implieslmax51. We find thatlmax(1/2,k,zs)51 for
all k,kc(1/2,zS), wherekc was defined above. Fork.kc
criticality occurs atv,1/2, indicating that the polymer is
adsorbed@18#. Indeedv51/2 marks criticality for the poly-
mer in the bulk. The dependence ofkc on zS shows that
adsorption becomes more difficult with increasing rough-
ness. One can also show that the fraction of monomers ad-
sorbed on the wall should have the same singular behavior as
P0 , when moving atv51/2. Thus, like interface depinning,
polymer adsorption undergoes a change from second to first
order upon increasingzS .

To gain more insight into this change, we stick to polymer
language and consider a simplified model of adsorption de-
fined on diamond hierarchical lattice~DHL! ~Fig. 3!. Self-
avoiding paths on DHL have often been used to mimic di-
rected polymers in 2D@19#. A wall joining the two ends is
obtained as follows: at leveln50 of DHL construction the
wall always coincides with the unique existing bond. For
n5nmax.0, the wall is determined by backward iteration.
Starting fromnmax, at each level,n, we choose whether the
wall passes through the left or right DHL units of level
n21, with probabilities 12D and D, respectively, and so
on. If, e.g., we putD50, the process is deterministic and we
create a single wall coinciding with the left border of the
lattice. ForD51/2 we generate with equal probability all
possible walls through the lattice. Given a wall, we consider

a polymer, with partitionZn , joining the ends of the lattice
and laying, e.g., to the right of the wall. As in Eq.~2!, v and
k are step and wall contact fugacities, respectively. For
D50 we deal with a polymer attracted (k.1) by the left
DHL border, which plays the role of a ‘‘flat,’’ deterministic
substrate. WhenD rises, the ‘‘roughness’’ of the now random
wall increases. Transverse hills and valleys are felt more and
more by the polymer. For a given wall, one can compute the
polymer partition function iteratively, usingZb,n11

52Zb,n
2 and

Zn115Zn,1Zn,21Zb,n
2 ~6!

or

Zn115Zn,1Zn,2 . ~7!

Equation~6! or ~7! is chosen, according to whether, at level
n11, thenth level diamonds, 1 and 2, crossed by the wall,
are the left or the right ones, respectively.Zb,n is clearly the
‘‘bulk’’ partition function on DHL at thenth level, in absence
of wall. Initial conditions areZ05kv andZb,05v. Con-
sidering firstD50, Eq. ~6! induces a two-parameter RG
mapping by puttingZb,15v8 andZ15v8k8. Clearly the
transformation ofZb,n implies that the bulk criticality con-
dition is v51/2 as in the Euclidean case. The valuek51 is
marginally unstable for k*1 and separates adsorbed
(k.1) from desorbed (k,1) regimes. Thus, forD50 a
positive attraction is always sufficient to adsorb the polymer.
Equation~6! applies for alln and the problem has a non-
trivial fixed point with Zb*51/2 and Z*51/2.
P0(v51/2,k,D50) can be extrapolated by iteration. Due to
marginality, P0 starts rising with zero slope, but continu-
ously, fork51 ~Fig. 4!. ForD.0 theZn’s become random
variables and we must iterate their probability distribution,
P n . This cannot be done exactly. However, starting from
P 05d(Z2kv), we follow the distribution at leveln by
iteratively sampling it. From a large number (.106) of Z
values distributed according toP n21 , we generate a sample
distributed according toP n by choosing many pairs ofZ
values and obtaining from each pair a new value ofZ ac-
cording to Eq.~6! or ~7!, with probabilities 12D and D,

FIG. 3. Construction rule of the DHL~level n50 to level
n51) and schematic picture of the lattice at leveln, with the four
n21 level units. A wall configuration~heavy! crossing the left
units, and two polymer configurations~dotted! are reported. With
such wall configuration Eq.~6! applies.

FIG. 4. P0 on the DHL atv51/2 and for variousD values. The
dashed lines mark the discontinuities forD.1/2.
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respectively. The resultingZ’s constitute a sample ofP n .
This procedure could be iterated forn<40 with extremely
high accuracy.

P0 at v51/2 is plotted as a function ofk in Fig. 4 for
different D ’s. For 0,D,1/2, P0 rises continuously from
zero asc(k2kc). Thus,r51 for 0,D,1/2. The slopec
and kc are both increasing withD. Apart from c50 at
D50, due to the accidental marginality, such behavior repro-
duces what is observed in 2D whenzS,1/2. ForD,1/2 the
polymer is more ‘‘rough’’ than the wall. Only whenD51/2
does the latter have the same freedom to develop through the
DHL as a polymer has within the ‘‘bulk.’’ On the other hand,
D.1/2 corresponds qualitatively tozS.1/2, because the
polymer feels more and more the wall limiting its options
when developing through the DHL. ForD51/2 we have
evidence thatc5`, with a still continuous transition. This
infinite slope indeed anticipates a sharp discontinuity inP0
for D.1/2. So, the hierarchical model contains ingredients
reproducing, at least qualitatively, the scenario emerging for
the Euclidean model, and gives a suggestive indication of the
way in which continuous transitions switch to first order at
the expected thresholdzS51/2.

The dependence ofkc onD mimics that onzS in 2D, and
further motivates the correspondence betweenD and zS in
the two cases. We stress that, since all paths have the same
length, and there is no natural recipe for defining a transver-
sal distance on DHL, the notion of roughness must always be
mediated in some way: here we can link roughness toD. Our
hierarchical model provides a remarkable example of the tri-
critical transition we are dealing with in this paper, and al-

lows an essentially exact determination of its location and
properties. Moreover, the threshold we find atD51/2 is
strongly suggestive of the precise location of the tricritical
point in the Euclidean case.

Summarizing, in 2D, interface depinning or directed poly-
mer adsorption on rough substrate withzS,1/2 are continu-
ous and in the same universality as in the flat case. For
zS.1/2 roughness is relevant and, moreover, the transitions
acquire an unusual, discontinuous nature. This result, not an-
ticipated so far@7#, warns that some continuum approaches
may not be able to catch the correct physics of depinning
from rough substrates. We expect similar properties, and the
same thresholdzS51/2, for directed polymer adsorption on
a self-affine surface in 3D. Indeed, directed polymers have
no upper critical dimension, and for themz051/2 in all d.
Although the single polymer adsorption regime is not easily
accessible experimentally, we believe that our results should
be relevant for stretched polymers@20#.

In 3D the interface of a pure system typically hasz050
@5#. We thus conjecture that depinning occurs discontinu-
ously as soon aszS.0, in cases when the interactions are
predominantly short range, like in metallic systems. Our re-
sults also bear on the observability of the recently predicted
critical wetting in the case of type-I superconductors@16#,
which is perhaps the most strict physical example of short-
range interface-substrate interactions.
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