
Interface localization transition in Ising films with competing walls: Ginzburg criterion
and crossover scaling

K. Binder
Institut für Physik, Johannes Gutenberg Universita¨t Mainz, Staudingerweg 7, D-55099 Mainz, Germany*

and Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602

R. Evans
H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom

D. P. Landau
Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602*

and Institut für Physik, Johannes Gutenberg-Universita¨t Mainz, D-55099 Mainz, Germany

A. M. Ferrenberg
Center for Simulational Physics and University Computing and Networking Services, The University of Georgia, Athens, Georgia 30602

~Received 3 November 1995!

In a simple fluid or Ising magnet in a thin film geometry confined between walls a distanceD apart that exert
opposing surface fields, an interface parallel to the walls is stabilized below the bulk critical temperature
Tcb. While this interface is ‘‘delocalized’’ ~i.e., freely fluctuating in the center of the film! for
Tcb.T.Tc(D), below the ‘‘interface localization transition’’ temperatureTc(D) the interface is bound to one
of the walls. Using the mean field description of Parry and Evans@Physica A181, 250 ~1992!#, we develop a
Ginzburg criterion to show that the Ginzburg number scales exponentially with thickness, Gi}exp(2kD/2),
k21 being the appropriate transverse length scale associated with the interface. Therefore, mean field theory is
self-consistent for largeD, thus explaining why recent Monte Carlo simulations observed Ising criticality only
in a very close neighborhood ofTc(D). A crossover scaling description is used to work out the thickness
dependence of the critical amplitudes in the Ising critical regime. Extending these concepts to consider finite
size effects associated with the lateral linear dimensionL, we reanalyze the Monte Carlo results of Binder,
Landau, and Ferrenberg@Phys. Rev. B51, 2823~1995!#. The data are in reasonable agreement with the theory,
provided one accepts the suggestion of Parryet al. @Physica A218, 77 ~1995!; 218, 109~1995!# that the length
scalek215jb(11v/2), wherejb is the true correlation range in the bulk, andv is the universal amplitude
associated with the interfacial stiffness.

PACS number~s!: 68.45.Gd, 64.60.Fr, 68.35.Rh

I. INTRODUCTION

In thin films of simple fluids or fluid mixtures it is rather
natural to have two different walls confining the system~e.g.,
one solid substrate on the bottom and air on top, two in-
equivalent solid surfaces forming a slit, etc.!. Recently it has
been found that the competition between surface effects and
finite size effects leads to interesting phase behavior with
interesting types of phase transitions@1–9#. Figure 1
sketches the situation for the generic model, the Ising lattice
model ~remember the equivalence between Ising ferromag-
nets and lattice gas models of fluids! with opposite surface
magnetic fieldsHD52H1 @10#. For any finite value ofD,
irrespective how largeD is, the transition that would occur in
the bulk atTcb is rounded in the thin film geometry with
competing fields. The local order near the walls, already in-
duced by the surface fields at temperaturesT far above the
bulk critical temperatureTcb, spreads out over the whole
film as the correlation length grows. But this ordering is a
smooth process, and no transition temperature can be identi-
fied where the interface between positively and negatively

magnetized regions in the ferromagnetic Ising film appears.
As long as this interface occurs with the highest probability
in the center of the film, no spontaneous order parameter can
be identified for the film, although there would already be a
spontaneous magnetization in the bulk. However, in order to
decrease the configurational entropy of the interface at low
temperatures, a transition takes place atTc(D) where the
interface becomes localized near one of the walls. For
uHDu5uH1u, both situations shown in Fig. 1 forT,Tc(D)
are equally likely; there is a symmetry breaking of two-
dimensional~2D! Ising character atTc(D). But asD→`,
Tc(D)→Tw(H1), which is the wetting transition tempera-
ture @1,5#, and the situation becomes equivalent to the prob-
lem of an interface bound to one wall in a semi-infinite ge-
ometry @11–15#. Thus the limit D→` for a film with
competing walls is fairly special. While for any finiteD there
is a single transition atTc(D),presumably belonging to the
two-dimensional Ising universality class@16#, in the limit of
D→` two distinct transitions appear in a discontinuous
fashion: the wetting transition atTw(H1) and the bulk tran-
sition atTcb ~now belonging to the three-dimensional Ising
model universality class!. AlthoughTc(D) is a singularity of
the total free energy of the thin film for any finiteD, its limit*Present and permanent address.
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Tw(H1) for D→` is not a singularity of the bulk free energy
of the system, but only of the surface free energy@11–15#.

It is clear that the subtleties of the associated critical be-
havior cannot be fully accounted for by mean field theory
@1,5#, and since three distinct types of criticality compete~2D
Ising, 3D Ising, and critical wetting@17,18#!, analytical ap-
proaches to the understanding of the critical behavior seem
difficult. Hence three of us@7–9# have tried to verify the
above picture by Monte Carlo simulations. While the general
features of the scenario sketched above are certainly in
agreement with the numerical findings of this work@7–9#, it
came as a surprise that the presumed two-dimensional Ising
character could only be verified for extremely thin films
~such asD56 and 8, measuring lengths in units of the lattice
spacing!. Even for films as thin asD512, very strong devia-
tions from two-dimensional Ising criticality were found. An-
other problem was that the length scalek21, associated with
the interface in the transverse direction, was not identifiable
with the bulk correlation lengthjb , as suggested by the
mean field theory@5#, but was distinctly larger@8#. This dis-
crepancy has also stimulated extensive theoretical activity,
which in turn improved on the theoretical description of
complete wetting phenomena@19–22#.

In the present paper, we address these problems first by
formulating a Ginzburg criterion@23–26#, by which the self-
consistency of the mean field description of Parry and Evans
@1,5# for this interface delocalization transition is investi-
gated~Sec. II!. We find that the Ginzburg number Gi, which

rules the crossover from mean field to two-dimensional Ising
behavior, scales as exp(2kD/2). From a crossover@27#
scaling type description analogous to@28–31#, predictions
for the critical amplitudes of various quantities in the Ising
regime also are obtained. The consequences of this crossover
scaling description in the context of finite size effects asso-
ciated with the finite extension of the linear dimensionL
parallel to the walls are also spelled out.

Section III then presents additional analyses of the Monte
Carlo data of Binder, Landau, and Ferrenberg@8# in order to
estimate critical amplitudes and study their dependence on
film thicknessD. Unfortunately, for the available range of
D the crossover scaling variable exp(2kD/2) is not really
small enough to allow for a stringent test of the theory. How-
ever, we do find that the numerical results are compatible
with the theoretical predictions, provided we use the predic-
tion of Parry and co-workers@19–22#,

k215jb~11v/2!, ~1!

as the transverse length scalek21.
Herejb is the true correlation range in a lattice direction

in the bulk, which is known from independent estimates
@32,33#, andv is the universal constant entering the theory
of critical wetting @34–39#,

v5kBT/~4pjb
2s!, ~2!

s being the interfacial stiffness constant. The direct numeri-
cal estimates fork21 @8# are available only at temperatures
distinctly higher thanTc(D), but when extrapolated to the
temperatures of interest they are roughly compatible with Eq.
~1! ~see also Ref.@22#!. Thus, our analysis has at least an
indirect bearing on problems with critical wetting, since un-
like other simulation studies@40–42# the present analysis is
compatible with recent estimates ofv @39#. Finally, Sec. IV
briefly summarizes some conclusions.

II. CRITICAL BEHAVIOR OF INTERFACE
LOCALIZATION TRANSITIONS:

A PHENOMENOLOGICAL THEORY

A. Mean field theory

Treating the interface between coexisting phases in the
sharp kink approximation@5,11–14#, we write the effective
Hamiltonian in terms of a collective coordinatel (rW ), namely
the local distance of the interface from the left wall at posi-
tion rW in the xy plane ~which coincides with this wall for
z50 while the right wall is at positionz5D; cf. Fig. 1!. In
terms of the interfacial stiffness constants already alluded to
in Eq. ~2!, this effective Hamiltonian then is

Heff$ l %5E drW Fs2 ~¹ l !21( $ l ~rW !%G , ~3!

where the potentialS( l ) in the presence of a bulk fieldH is
~see@5#!

S~ l !52d«a0@e
2k l1e2k~D2 l !#1b0@e

22k l1e22k~D2 l !#

2h~ l2D/2!, ~4!

FIG. 1. Schematic description of the interface localization-
delocalization transition of an Ising model confined between two
walls a distanceD apart, where at one wall~left side! a positive
field H1 acts, while on the other wall~right side! a negative field
HD acts. ForT,Tc(D) the interface is bound either to the left or
the right wall, and then the average magnetizationM film(D) of the
film is nonzero. ForTc(D),T,T cb, however, the interface fluc-
tuates delocalized in the center of the film, and thusM film(D)50,
although there is still a nonzero bulk magnetization6Mbulk in an
infinite system, as well as locally in the film away from the inter-
face. ForT.Tcb, however, the film is disordered~apart from the
response to the surface fields near the walls!. The description of the

interface in terms of a coordinatez51(rW ), with rW being thex,y
coordinates in the plane formed by the left wall, is also indicated.
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where h[2mbH. Here a0 ,b0.0 are constants,
d«[(Tw2T)/Tw is the normalized distance from the wet-
ting transition temperature~in the corresponding semi-
infinite geometry!, and k21 is the transverse length scale
alluded to in Eq.~1!. As the binding potential Eq.~4! is
constructed from a mean field theory of wetting films, it
follows that k21 is simply kMF

215jb , the bulk correlation
length. Note that Eq.~4! explicitly assumes short range
forces due to the walls atz50 andz5D. This is appropriate
for the lattice gas simulations of Refs.@7–9,40–42#, but
would not be suitable for real fluids where long range van
der Waals forces act@13,14#. We also note that Eqs.~3! and
~4! describe the problem in terms of asinglecollective co-
ordinatel , although recently it has been suggested that addi-
tional collective coordinates~describing the order parameter
profile close to the walls atz50 andz5D) should be in-
cluded @19–21#. However, at this point we aim only at a
description of the most simple mean field theory of the in-
terface delocalization transition.

In this spirit, the fluctuations of the interface position,
included in Eq.~3! via the (¹ l )2 term, are neglected alto-
gether, and henceS( l ) is treated as an effective free energy
function which simply needs to be minimized in order to find
the average position of the interfacel eq in thermal equilib-
rium. For zero fieldh50 andT.Tw it is clear that all terms
in Eq. ~4! are positive, and assume their minimum for
l eq5D/2, i.e., we are in the delocalized phase of the film. For
T,Tw , however,d«.0 in Eq. ~4!, so that the terms with
the square bracket in Eq.~4! compete against each other, and
a solutionl eqÞD/2 ~i.e., a nonzero order parameter! is ex-
pected.

For h50 the equilibrium condition hence yields

05
]S~ l !

] l U
l5 l eq

5d«a0k@e2k l2e2k~D2 l !#

22b0k@e22k l2e22k~D2 l !#, ~5!

and settingl eq5D/21D, with D→0, we obtain an equation
for the order parameterD,

052d«a0sinh~kD!12b0exp~2kD/2!sinh~2kD!. ~6!

Expanding the sinh in terms ofX5kD for X!1 yields
~sinhx'x1x3/3)

X56
exp~kD/4!

A2b0 /a0
t1/2, ~7!

where t[@Tc(D)2T#/Tw is the reduced distance from the
transition temperature in the thin film,

d«5t1
4b0
a0

exp~2kD/2![t1d«c~D !. ~8!

Equation ~8! shows thatTc(D) differs from Tw only by
terms exponentially small inkD/2 @5#. From Eq.~7! we now
obtain the order parameter of the film as~in mean field
theory!

MMF[2mbD/D'62mbexp~kD/4!/~kD !t1/2/A2b0 /a0,

t→0, ~9!

and defining a mean field critical amplitudeB̂MF of the order
parameter from the equationMMF5B̂MFt

bMF, with bMF5 1
2,

we find thatB̂MF scales with film thickness as

B̂MF}exp~kD/4!/D. ~10!

Next we turn to the response function~susceptibility! at tem-
peratures aboveTc(D), using

]2S

] l 2 U
eq

52 exp@2kD/2#k2@2a0d«14b0exp~2kD/2!#,

~11!

where on the right hand sidel eq5D/2 was already inserted.
As expected,]2S/] l 2u leq vanishes atd«5d«c(D) @Eq. ~8!#,

as it should for a second order transition fromMMF[0 for
T.Tc(D) to MMFÞ0 for T,Tc(D).

Defining the response function for nonzeroh as

x [̄~] l eq/]h!T,D , ~12!

Eqs.~4!, ~5!, and~11! yield

S ] l eq
]h D

T,D
S ]2S

] l 2 D
l eq

51, x̄5S]2S]l2 D
leq

21

, ~13!

and hence

x 5̄
exp@kD/2#~2t !21

2k2a0
. ~14!

The susceptibility xMF5]MMF /]H then becomesxMF

54mb
2x̄/D, and, defining a critical amplitudeĈMF

1 in the
mean field critical regime from

xMF5ĈMF
1 ~2t !2gMF, gMF51, ~15!

we conclude that

ĈMF
1 5

2mb
2

k2a0
exp@kD/2#/D ~16!

@the plus sign in Eqs.~15! and~16! refers toT.Tc(D), and
the minus sign toT,Tc(D)].

It is also interesting to note the magnitude of the suscep-
tibility at the wetting temperatureTw of the semi-infinite
system, whered«50, and hence@Eq. ~11!# ]2S/] l 2u leq
}exp(2kD), is

xMF~T5Tw!}exp~kD !.

The response function forT,Tc(D) can also be worked out
easily; as always, in Landau-type theories it is of the same
form as Eq.~15!, xMF5ĈMF

2 t21, with ĈMF
1 /ĈMF

2 52 being
the universal critical amplitude ratio in the mean field critical
regime.

Finally we are interested in the correlation length near the
transition. For that purpose we define the deviation of the
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interface position from its mean valued l (rW )[ l (rW )2 l eq. We
wish to consider a correlation function of fluctuations in the
direction parallel to the walls,

Gi~rW 2rW 1![^d l ~rW !d l ~rW 1!&. ~17!

From a quadratic expansion of Eq.~3! aroundl eq it is clear
that the problem is analogous to the treatment of correlations
in standard Ginzburg-Landau theory; hence one concludes
Gi(rW 2rW 1) is of Ornstein-Zernike form, and the correlation
length is related to the response function in the standard way,

j i
225

1

s
~]2S/] l 2! leq5~ x̄s!21. ~18!

From Eqs.~14! and~18! we conclude that the critical ampli-
tude ĵMF

1 defined fromj i
15 ĵMF

1 (2t)2nMF, with nMF5 1
2, so

that

ĵMF
1 5k21S s

2a0
D 1/2exp@kD/4# ~19!

and ĵMF
1 / ĵMF

2 5A2, as usual.

B. Ginzburg criterion

As is well known @23–26#, mean field theory is self-
consistent if the order parameter fluctuations in a correlation
volume are small in comparison to the square of the mean
order parameter. For our geometry, withrW5(rW ,z), we obtain

E
0

D

dzE
r,j i

dd21r@^M ~rW1!M ~rW11rW !&2MMF
2 #

!Dj i
d21MMF

2 . ~20!

Near the transition,j i is very much larger thanD, and the
inhomogeneity ofM (rW) in the pure phases@for z, l (rW ) or
z. l (rW ), respectively# can be ignored; it contributes only
prefactors of order unity. One concludes that Eq.~20! is
equivalent to the standard form of the Ginzburg criterion,
expressed by the condition that the Ginzburg number Gi is
small, with @25,26,30#

Gi[ĈMF
1 B̂MF

22kBT/~ ĵ1
MF!2D5exp~2kD/2!

2b0kBTk2

a0s
,

~21!

Gi!utu. ~22!

In Eq. ~21!, we have specialized tod53 in Eq.~20!; i.e., we
consider a two-dimensional criticality in the thin film. Using
Eqs. ~10!, ~16!, and ~19!, we conclude that the mean field
theory of the interface localization-delocalization transition
~as derived by Parry and Evans@1,5#! is self-consistent if

Gi}exp~2kD/2!!utu. ~23!

We see thatthe Ginzburg number decreases exponentially
fast with film thickness, and hence for largeD mean field
theory should be an excellent description even though we
deal with a two-dimensional Ising-type criticality in a system

with short range forces. This conclusion, which was surpris-
ing and unexpected, is one of the central results of the
present paper.

C. Crossover scaling

From the fact that the Ginzburg number is given by Eq.
~23!, we can immediately derive scaling predictions for the
Ising critical regime as well, using a phenomenological
crossover scaling description@27#. Note that the crossover
variable is~for largeD, in leading order!

I5t exp~kD/2!; ~24!

i.e., one simply uses the ratio between the temperature dis-
tance and the Ginzburg number; for largeI one has mean
field critical behavior, for smallI one has~two-dimensional!
Ising criticality. Following similar routes as in related cross-
over problems@28–31#, we find

M5
1

D
exp~kD/4!t1/2M̃ ~I !. ~25!

For largeI the crossover scaling function tends to a con-
stant, recovering Eq.~9!, while for smallI we must have

M̃ ~I!1!}I b21/2, b5 1
8 ~26!

in order to have the correct critical behavior of the order
parameter, in agreement with the Ising model. From Eqs.
~25! and ~26! we obtain

M ~ t→0!5B̂~D !tb,

B̂~D !}
1

D
exp~kDb/2!5

1

D
exp~kD/16!. ~27!

For an explicit calculation of crossover scaling functions
such asM̃ (I ), renormalization group methods need to be
used@25#.

Next we consider the susceptibility forT.Tc(D),

x5
1

D
exp~kD/2!~2t !21x̃~I !, ~28!

where again we conclude thatx̃(I→2`) tends to a con-
stant, and Eq.~28! becomes equivalent to Eqs.~15! and~16!,
while for 2I!1 we have

x˜~2I!1!}~2I !2~g21!, g5 7
4 . ~29!

This yields the critical behavior of the susceptibility in the
Ising regime as follows:

x5x̂1~2t !2g,

x̂1}
1

D
exp@kD~22g!/2#5

1

D
exp~kD/8!. ~30!

Finally we consider the correlation lengthj i , Eq. ~18!,

j i5exp~kD/4!~2t !21/2j̃~I !, ~31!
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where Eq.~19! is reproduced ifj̃(I→2`) tends to a con-
stant, while for small (2I ) we have

j˜~2I!1!}~2I !~1/2!2n, n51. ~32!

Hence the asymptotic critical behavior of the correlation
length is

j i5 ĵ1~2t !2n, ĵ1}exp@kD~12n!/2#} const. ~33!

There is no anomalous thickness dependence in the critical
amplitude of the correlation length.

Finally we consider the Ginzburg combination
Dj i

2f2x21: this quantity is independent of botht andD in
the Ising critical region, as it should be: in the Ising critical
region this quantity reduces to the universal amplitude com-
bination ĵ12B̂2(x̂1)21D, which using Eqs.~27!, ~30!, and
~33! is independent ofD.

D. Finite size scaling

We now wish to extend the above considerations to the
case where the finiteness of the parallel linear dimensionL
competes with the growth of the correlation lengthj i . For
this purpose we simply have to add an additional argument
L1/nt in the scaling functions, remembering thatĵ1 does not
have any significant~i.e., exponential! dependence on the
thickness of the film. Thus the order parameter becomes a
function of two scaling variablest exp(kD/2),L1/nt:

M5
1

D
exp~kD/4!t1/2M5 „texp~kD/2!,L1/nt… →

small t, large L

→
1

D
exp~kD/16!t1/8M% ~L1/nt !→

t50

1

D
exp~kD/16!L21/8.

~34!

An alternative consideration concerns the crossover att50,
where we rewrite the first line of Eq.~34! as follows, using
n51:

M5
1

D
exp~kD/16!t1/8M! „exp~kD/2!/L,Lt…

→
t→0

1

D
exp~kD/16!L21/8M̃ c„exp~kD/2!/L….

~35!

A similar result follows for the susceptibility:

x5
1

D
exp~kD/2!~2t !21x5 „2t exp~kD/2!,L1/nt…

→
1

D
ekD/8~2t !27/4x5 „exp~kD/2!/L,Lt…

→
t→0

1

D
ekD/8L7/4x̃c„exp~kD/2!/L…, ~36!

where x5 , x5 , and x̃c are the scaling functions in obvious
limits.

Finally, the fourth order cumulant@43,44#

UL512^M4&/3^M2&2 ~37!

becomes

UL5U5 $t exp~kD/2!,L1/nt%5U! ~exp~kD/2!/L,Lt !

→
t→0

Ũc$exp~kD/2!/L%. ~38!

Equation ~38! shows rather explicitly that, in the present
problem, due to the mean field to Ising crossover, there is no
unique cumulant intersection point at criticality (t50). This
is compatible with the simulations@7–9#, and clearly made
the precise estimation ofTc(D) difficult @8#. Of course, the
problem is qualitatively similar to other crossover scaling
problems@28–31#.

III. REANALYSIS OF THE MONTE CARLO DATA

A. Model and ‘‘raw data’’

In Sec. II, a wealth of predictions was obtained which was
not available when corresponding Monte Carlo simulations
were published@7–9#. Thus it is very interesting to return to
these simulations, where no critical amplitudes had yet been
extracted, and look more closely at the critical behavior.

The model considered is a nearest neighbor Ising Hamil-
tonian on the simple cubic lattice, with exchange constant
J,

H52J(
^ i , j &

SiSj2H(
i
Si2H1 (

iP layer n51
Si

2HD (
iP layer n5D

Si , Si561. ~39!

Typically we use zero bulk fieldH, while the surface fields
H1 andHD acting on the two freeL3L surfaces are chosen
asH1 /J510.55 andHD /J520.55. The wetting transition
in the semi-infinite geometry would then be estimated to
occur at@41# kBTw /J'4.00 which is sufficiently below the
bulk critical temperature Tcb (kBTcb/J>4.511 42
60.000 05@45#! that the correlation lengthjb nearTw is
only of the order of about one lattice spacing. This tempera-
ture range is far away from the roughening transition tem-
peratureTR (kBTR /J'2.445 @46#!, so we are safely in the
regime of wetting transitions, avoiding any problems due to
crossover toward layering transitions@47#. We choose a
L3L3D geometry withD56, 8, and 12, and parallel linear
dimensionsL in the range fromL516 to 256, with periodic
boundary conditions in bothx andy directions. More details
about the simulation technique can be found in Ref.@8#.

The quantities that are reanalyzed here are the average
absolute valuêuM u& of the magnetization of the film,

M5~L2D !21(
i
Si , ~40!

the corresponding susceptibilityx1 @48#,

x15L2D~^M2&2^uM u&2!/kBT, ~41!

and the fourth order cumulantUL @Eq. ~37!#.
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Figure 2 shows typical data@8#. The temperature depen-
dence of the order parameter has little similarity with corre-
sponding data for the two-dimensional Ising model@49#,
since^uM u& at J/kBTc(D) is rather small, and increases only
slowly with decreasing temperature. Unlike either two- or
three-dimensional simple Ising models which have a well-
defined unique pointU* at which the cumulantsUL(T) in-
tersect atTc @43,44#, the cumulant intersections are spread
out over a significant temperature range, making the precise
estimation ofTc(D) difficult @7–9#.

In previous work the estimates@8# J/kBTc(D
56)50.265560.0002, J/kBTc(D58)50.257860.0002,
and J/kBTc(D512),50.249760.0003 were quoted. How-
ever, noting that the values of the cumulants at the crossing
points for D512 are far from their asymptotic two-
dimensional value@50# U*'0.61560.003@see Fig. 3~upper
part!#, we now feel that the estimate forJ/kBTc(D512) was
slightly too low. Figure 3~lower part! shows that a fit of
straight lines to the data on characteristic temperatures versus
L21 is compatible with values slightly larger than 0.250, if
data forL532 are not included. In fact, the slight but sys-
tematic curvature of the plot indicates that even a value as
large as 0.251 cannot be excluded. Therefore, we use

J/kBTc(D512)50.250560.0005 as our final estimate for
the present analysis.

B. Finite size scaling

Given the hypothesis that the asymptotic critical behavior
is that of the two-dimensional Ising model, one should have
data collapsing such as in Fig. 2 according to the finite size
scaling hypothesis@43,44,48,49#

^uM u&L1/85M̃ ~Lt !, UL~T!5Ũ~Lt !, ~42!

if we use only the largest values ofL such that the crossover
scaling variableĨ5exp(kD/2)L in Eqs. ~34!–~38! is small
enough, so that we are in the Ising critical regime. Note that,
using the above estimates forJ/kBTc (D), there are no ad-
justable parameters in such a finite size scaling plot, and thus
the success~or failure, respectively! of data collapsing is a
significant test of whether the asymptotic Ising critical region
is reached. Figures 4–6 present such data forD56, 8, and

FIG. 2. Order parameter~a! and cumulant~b! plotted vs inverse
temperature, forD58. Four linear dimensionsL are included, as
indicated. The arrow in part~a! shows the final estimate for
J/kBTc(D), while arrows in part~b! show the distinct cumulant
intersections betweenUL andU2L . Note that lengths are measured
in units of the lattice spacing throughout. From Ref.@8#.

FIG. 3. Extrapolation of the cumulant crossingsU cross @defined
from Ucross5UL(T)5UL8(T), with L andL8 being two neighbor-
ing linear dimensions! vs 1/L ~upper part!, and extrapolation of
inverse temperaturesJ/kB Tcross(L), where this crossing occurs~tri-
angles! vs 1/L ~lower part!. The inverse temperatures
J/kBTmax(L) of the specific heatCmax ~full dots! and susceptibility
x8 (xmax, open circles! are also included. The inverse temperatures
J/kBTc

Ising(L) are obtained from the conditionUL(Tc
Ising)

5U*50.615 ~squares!. The arrow with the error bar shows the
final estimate forJ/kBTc (D512).
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12, always including only the largest values ofL that were
studied. We see that the scaling works reasonably well for
D56 and 8, while forD512 there is no good data collapse
at all for the previous choice@8# J/kBTc50.2497. Even for
the largest present estimate@J/kBTc(D512)50.251 is our
present upper bound, cf. Fig. 3# there are still systematic
deviations from finite size scaling. However, in view of the
crossover scaling description@Sec. II D# such a difficulty was
clearly expected: with the finite size crossover scaling vari-
able being exp(kD/2)L, it is clear that with increasingD
much larger parallel linear dimensionsL are needed than for
small D. However, since the problem of critical slowing
down becomes much more severe for largerD, smaller val-
ues ofL were actually used for the simulations forD512
~Fig. 6! than forD56 ~Fig. 4!. Thus the breakdown of finite
size scaling seen in Fig. 6 forD512 is certainly a conse-
quence of our use of linear dimensionsL which were too
small. This difficulty prevents us from obtaining reliable es-

timates of critical amplitudes, unlike the case ofD56 and 8
~Figs. 4 and 5!. We note that the scaling functionM̃ (I ) for
largeI must behave as

M̃ ~I→`!5B̂I b, b5
1

8
, ~43!

thus reproducing the power laŵuM u&5B̂tb from Eq.~42! in
the thermodynamic limit. Reading off the constantB̂ ~inter-
cept of the straight line with slope18 at Lt51) from the plot
we find

B̂~D56!>0.83, B̂~D58!50.72, ~44!

while the amplitude of̂ uM u&2L1/4 ~which is proportional to
the amplitude of the susceptibility! becomes

Ĝ1
i

~D56!>0.060, Ĝ1
i

~D58!>0.049. ~45!

While we have predicted that the critical amplitudesB̂(D)
@Eq. ~27!# andx̂1(D) @Eq. ~30!# increase exponentially with
D for largeD, we actually find a decrease of the amplitudes
from D56 to D58. As will be shown in Sec. III C, this
finding is not in contradiction with Eqs.~27! and ~30!, but
actually due to the preexponential correction 1/D which is
more important for D56 and 8 than the factor
exp(kD/16) or exp(kD/8) in Eqs.~27! and ~30!.

Noting that the finite size scaling of the cumulantUL is a
simple dependence on the ratioL/j,

UL~T!5Ũ~L/j! '
t→0

U*1c* ~L/ ĵ1!~2t !11•••, ~46!

wherec* is another universal constant, we should be able to
extract the variation of the critical amplitudeĵ1 from the
slope of the cumulant atU* in the scaling plot@Figs. 4~b!
and 5~b!#. Unfortunately, the functionŨ near I5Lt50
seems to have distinct curvature; and given the considerable
scatter of our dataĵ1 cannot yet be estimated with sufficient
accuracy. As always, estimation of critical amplitudes from
noisy simulation data is notoriously difficult.

C. Crossover scaling

An alternative test of the theory of Sec. II is possible by
studying the size dependence of the magnetization^uM u&c at
the critical pointTc(D) @Eq. ~35!# or the cumulant@Eq. ~38!#
or susceptibility @Eq. ~36!#. Equivalently, the maximum
valuexmax

1 of the susceptibilityx1 defined in Eq.~41! can be
studied, and should also scale like Eq.~36!; the latter quan-
tity has the advantage that the uncertainty aboutTc(D) does
not enter.

For this analysis, of course, estimates for the parameter
k ~the inverse of the transverse interfacial length scale! are
of crucial importance. This problem is addressed in Fig. 7.
According to mean field theory, which neglects all types of
critical fluctuations, we should simply have@5#
k5kMF51/jb , and the temperature dependence ofjb in the
regime of interest is shown in Fig. 7, using Refs.@32,33#.
However, the values ofk extracted from plotting the Monte
Carlo results@8# for the maxima of the layer susceptibility
xnn at T.TW.Tc(D) are substantially smaller thanjb

21 . It

FIG. 4. ~a! Log-log plot of ^uM u&L1/8 vs Lutu for D56. Three
choices ofL are included. Data forT,Tc(D) are shown by open
symbols, data forT.Tc(D) by full symbols. The straight lines
through the data were fitted using the correct exponents for order
parameter (b5

1
8) and susceptibility (g5

7
4). @Recall that for

T.Tc(D) we have@43,48# ^uM u&}A^M2&}AkBTx/L2 in d52 di-
mensions, and henceL1/8^uM u&}(2tL)27/8.# ~b! CumulantUL(T)
plotted vs Lt for D56, including three choices ofL. Broken
straight line shows estimation of the slope of the scaling function at
T5Tc(D) ~i.e., atLt50).
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has been suggested@8,19–21# that capillary wave fluctua-
tions act to renormalize the length scale in that temperature
range. The direct Monte Carlo estimates fork/2 @that were
extracted from the maximum value of the layer susceptibility
xnn
max, using @8# k/25 ln(xnn

max)/D for largeD# also are in-
cluded in Fig. 7, but do not extend in the temperature regime
of interest for our present analysis. Since their dependence
on inverse temperature is quite smooth, a tentative estimation
of kc atTc(D) for D512, 8, and 6 could simply use a linear
extrapolation, as shown by the broken line. Of course, this is
not necessarily quantitatively reliable, but should give at
least an order of magnitude estimation. Using this simple
recipe, would yield@kc is the value ofk at Tc(D)]

kc/2'0.364~D512!, 0.44~D58!, and 0.526~D56!.
~47!

These values ofkc incorporate, albeit empirically, some cap-
illary wave renormalization. We now assume that the cross-
over scaling variableI is still given by Eq.~24!, but with
k taking into account this renormalization. The correspond-
ing exponential factors exp(kcD/2) entering the crossover
scaling variable become

exp~kcD/2!'78.9~D512!, 33.8~D58!,

and 23.5~D56!. ~48!

These numbers already show that our choices ofL do satisfy
the condition L@exp(kcD/2) necessary to have two-
dimensional Ising critical behavior for the thinner films
D56 and 8, but do not forD512 where the largest values
of L and exp(kcD/2) are comparable. Thus, as observed, no
Ising-type finite size scaling should work.

When we work out the ratio exp(kcD/16)D, which de-
scribes theD dependence of the order parameter critical am-
plitude B̂(D), we find, from Eq.~47!,

exp~kcD/16!/D'0.247~D56!, 0.194~D58!,

and 0.144~D512!. ~49!

Indeed, these amplitude factors decrease with increasingD,
as observed. The same fact holds for the susceptibility am-
plitudes

exp~kcD/8!/D'0.367~D56!, 0.301~D58!,

and 0.248~D512!. ~50!

FIG. 5. Same as Fig. 4 but forD58. Note that the scatter of the
data points leads to a considerable uncertainty in the slope of the
cumulant att50, as indicated by two possible estimates.

FIG. 6. Log-log plot of^uM u&L1/8 vs Lutu for D512 and two
choices ofL, using eitherJ/kBTc50.2497~a! or J/kBTc50.2510
~b!. Straight lines indicate the slopes that the two branches of the
scaling function should develop.
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The ratios between the numbers forD56 and 8 are actually
compatible with the ratios of the corresponding observed
amplitudes, within their numerical errors~however, we esti-
mate that our amplitude estimates quoted above are at best
accurate to 10%!.

It is also interesting to test the prediction Eq.~1! sug-
gested in Refs.@19–22#. Boulter and Parry@19,21# showed
that a renormalization group treatment of the~standard! ef-
fective Hamiltonian Eq.~3! in the complete wetting regime
T.Tw leads to the susceptibility varying as
exp„D/@2jb(11v/2)#… rather than the mean field result
exp@D/2jb#. They pointed out that this renormalization, Eq.
~1!, is insufficient to account for the Monte Carlo results@8#,
and introduced a two-field Hamiltonian. Renormalization of
this yields a susceptibility with the same exponential form
but with the factor 11v/2 replaced by 11veff/2, where
veff5v1Dv. Including the additional contributionDv
(.0), which arises from fluctuations at the wall coupling to
those of the unbinding interfaces, improves the agreement
with the Monte Carlo results@19,21#. Subsequently, Parry,
Boulter, and Swain@22# argued that at lower temperatures, as
T→Tw, Dv→0 so that forTw;T>Tc(D) Eq. ~1! should
describe the capillary wave renormalization of the transverse

length scale. Figure 7 shows that the resulting numbers are
numerically close to the linear extrapolation of the direct
Monte Carlo estimates~see also the figure in@22#!, although
the increase withJ/kBT is somewhat less steep. While the
resulting numbers forkc/2 would differ relatively little from
Eq. ~47!,

kc/2'0.387~D512!, 0.444~D58!, and 0.507~D56!,
~51!

the resulting differences in the crossover scaling variable
exp(kD/2) seem to be significant@cf. Eq. ~48!#,

exp~kcD/2!'104~D512!, 34.9~D58!, and 21~D56!.
~52!

Figures 8 and 9 now use the predictions Eqs.~48! and~52! in
the crossover scaling description suggested in Eqs.~35!–
~38!. While both choices of exp(kcD/2) yield comparably
good data collapse for the cumulant, we find that the data for
xmax
1 definitely fail to scale with the choice Eq.~48!, but do

scale rather well with the choice Eq.~52!, resulting from Eq.
~1!. Given the fact that in Fig. 9 we simply use results from
the literature forv @39# andjb @33#, as well as the data for
UL (Tc) and xmax

1 published in@8#, we feel the agreement
between simulation and theory is rather satisfactory, as there
is no adjustment of parameters whatsoever.

FIG. 7. Plot of the inverse length scalek/2 vsJ/kBT. Here full
dots represent estimates of (2jb)

21, jb being the true correlation
range in a lattice direction, obtained from the leading term of the
Padéapproximant to the low temperature series analysis of Liu and
Fisher~LF! @32#. Open squares are corresponding Monte Carlo es-
timates of Hasenbusch and Pinn~HP! @33#. Open circles are the
direct estimates ofk/2 from interfacial response functions, ex-
tracted by Binder, Landau, and Ferrenberg~BLF! from Monte Carlo
simulations @8#. The dash-dotted curve shows the suggestion of
Parry and co-workers@19–22# that k/25@jb(21v)#21, using
v'0.86 @39# in the temperature region of interest. Arrows~with
error bars! at the abscissa show location ofTc(D) for D512, 8, and
6, respectively.

FIG. 8. Plot of the scaled susceptibility maximumxmax
1 @Eq.

~36!# ~a! and of the cumulant@Eq. ~38!# ~b! vs the crossover scaling
variable exp(kcD/2)/L, using the estimates Eq.~48! and all values
of L that are available. Curves are guides to the eye only. Arrow on
ordinate in~b! showsU*50.615.
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IV. DISCUSSION

Ising thin films with competing surface fields of equal
strength but opposite sign exhibit an unusual phase transition
@1–9#: the bulk phase transition atTcb only shows up as a
very smooth formation of two ordered domains induced by
the fields at the walls, separated by an interface between
them. While forT.Tc(D) this interface fluctuates freely and
its average position is in the center of the film, for
T,Tc(D) this interface is localized at one of the walls, and
a spontaneous magnetization of the film as a whole develops.
As the film thicknessD→`, Tc(D) does not converge to-
ward Tcb, but rather toward the wetting transition tempera-
tureTw of a semi-infinite system.

While general considerations about phase transitions put
this interface delocalization-localization transition into the
Ising universality class ford52 dimensions, Monte Carlo
results have shown@7–9# that the critical regime is extremely
narrow and shrinks with increasing film thicknessD. In fact,
the Monte Carlo data@8# led to the speculation that for
D→` the Ising regime completely disappears, but to cross-
over to some other universality class.

While this transition can be described as a wetting transi-
tion, when one considers surface excess properties of the
system approachingTc(D) from below, this description does
not answer questions about the nature of the bulk critical
behavior of the thin film as a whole as one approaches
Tc(D) ~from either side!. This problem is studied in the
present paper in detail. The first step elaborates the mean
field theory of Parry and Evans@5#, extracting the various

mean field critical amplitudes. It is shown that they vary
exponentially with the thickness of the film, containing fac-
tors such as exp(kD/4) @cf. Eq. ~10! for the order parameter
amplitude in mean field#. From these mean field critical am-
plitudes, the Ginzburg number Gi is then constructed@Eq.
~21!#, which rules the self-consistency of the mean field de-
scription as well as the crossover to the Ising universality
class. We show@Eq. ~23!# that Gi contains a factor
exp(2kD/2); i.e., Gi becomes very small asD→`, and
hence mean field theory should become accurate. From a
crossover scaling theory theD dependence of critical ampli-
tudes in the Ising regime is also obtained@there are also
exponential factors such as exp(kD/16), cf. Eq.~27!#, and
consequences for finite size scaling~needed for the analysis
of the Monte Carlo data! are worked out.

The Monte Carlo data allow an estimation of critical am-
plitudes in the Ising regime only for two neighboring small
thicknesses,D56 and 8, and thus these results are not very
conclusive about the validity of the above theory, although at
least there is also no contradiction. A more stringent test
turns out to be possible through examination of finite size
dependencies atTc(D), where one considers the crossover
from Ising behavior@for L@exp(kcD/2)] to mean field be-
havior @for L!exp(kcD/2)]. Here all three thicknesses,
D56, 8, and 12, and a wide range of linear dimensionsL
parallel to the surfaces are included, and reasonable agree-
ment with the crossover scaling description is obtained, pro-
vided one uses the prediction of Parry and co-workers@19–
22# to calculate the appropriate transverse length scale
2/kc5jb(21v) @Eq. ~1!#. Comparison between Figs. 8~a!
and 9~a! shows that this test is rather sensitive, and using
other plausible estimates for the temperature dependence of
kc works considerably less well.

It is important to recognize that the crossover described
here is considerably more complex than that treated in earlier
work @28–31#. We are dealing with interfacial~capillary
wave! as well as two-dimensional bulklike critical fluctua-
tions. The scheme we have presented, which accounts for the
Monte Carlo data, assumes that capillary wave fluctuations
simply act to renormalize the transverse length scalek21.
This length is then employed in the crossover scaling vari-
able I which describes the crossover to two-dimensional
Ising criticality. Although the scheme is plausible~and does
appear to work!! we are not aware of any formal justification
for it. Trying to treat both types of fluctuations simulta-
neously would be very difficult.

This treatment fully explains the difficulties observed in
Refs.@7–9#, since it shows that forD512 one is just in the
middle of a crossover regime, and no simple critical behavior
is to be expected. However, for films as thin asD520 layers
we would predict from Eq.~51! @kc for D520 and 12 can be
taken as approximately equal# that the crossover length scale
exp(kcD/2)'2300. This implies that for all practical possible
choices ofL we would haveL!exp(kcD/2), and hence a
simple mean field description applies.

Of course, this finding does have interesting consequences
for the interpretation of the experiment. We expect that this
transition should be observable in thin films of fluid binary
mixtures which undergo liquid-liquid phase separation in the
bulk, if one chooses a geometry where one surface is a solid
substrate while the other surface is just the interface against

FIG. 9. Same as Fig. 8, but withkc estimated from Eq.~1! @as
quoted in Eq.~52!#.
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gas. Choosing the substrate such that it energetically prefers
the species other than that preferred by the gas-fluid inter-
face, one qualitatively realizes a situation as-modeled in the
present paper. Of course, one never expects that real systems
have exactly the antisymmetry property of the walls
(H152HD) assumed here, but arguments have been pro-
vided @8# that this interface localization-delocalization tran-
sition also persists in less symmetric situations. While the
formation of an interface in a thin film of a binary polymer
mixture running parallel to the substrate surface has indeed
already been observed~these studies were then used to esti-
mate the compositions of the two bulk phases coexisting
with each other, from the local compositions near the two
walls @51#!, we are not aware of an experimental observation
of the transition atTc(D). Presumably the data of Ref.@51#

are all taken in the regimeTc(D),T,Tcb, since in partially
compatible polymer blendsTw may be far fromTcb @52#. In
any case, typical experimental systems will most likely sat-
isfy the conditionkcD@1, and then mean field behavior at
Tc(D) should hold.
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