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In a simple fluid or Ising magnet in a thin film geometry confined between walls a distaapart that exert
opposing surface fields, an interface parallel to the walls is stabilized below the bulk critical temperature
Te. While this interface is “delocalized” (i.e., freely fluctuating in the center of the fijmfor
Tp>T>T.(D), below the “interface localization transition” temperatufg(D) the interface is bound to one
of the walls. Using the mean field description of Parry and Ey&mysica A181, 250(1992], we develop a
Ginzburg criterion to show that the Ginzburg number scales exponentially with thicknessxgi- «D/2),

« ! being the appropriate transverse length scale associated with the interface. Therefore, mean field theory is
self-consistent for largB®, thus explaining why recent Monte Carlo simulations observed Ising criticality only

in a very close neighborhood df,(D). A crossover scaling description is used to work out the thickness
dependence of the critical amplitudes in the Ising critical regime. Extending these concepts to consider finite
size effects associated with the lateral linear dimensiprnve reanalyze the Monte Carlo results of Binder,
Landau, and Ferrenbef&hys. Rev. B51, 2823(1995]. The data are in reasonable agreement with the theory,
provided one accepts the suggestion of Patrgl. [Physica A218 77 (1995; 218 109(1995] that the length
scalex 1= ¢£,(1+ w/2), whereé, is the true correlation range in the bulk, ands the universal amplitude
associated with the interfacial stiffness.

PACS numbe(s): 68.45.Gd, 64.60.Fr, 68.35.Rh

[. INTRODUCTION magnetized regions in the ferromagnetic Ising film appears.
As long as this interface occurs with the highest probability
In thin films of simple fluids or fluid mixtures it is rather in the center of the film, no spontaneous order parameter can
natural to have two different walls confining the syst@ny.,  be identified for the film, although there would already be a
one solid substrate on the bottom and air on top, two inspontaneous magnetization in the bulk. However, in order to
equivalent solid surfaces forming a slit, ¢t®ecently it has  decrease the configurational entropy of the interface at low
been found that the competition between surface effects aﬂ@mperatures, a transition takes placeTatD) where the
finite size effects leads to interesting phase behavior withhierface becomes localized near one of the walls. For
interesting types of phase transitiond—9]. Figure 1 Ho|=|H,|, both situations shown in Fig. 1 foF<T.(D)
sketches the situation for t.he generic model, the Ising Iattic%re equally likely: there is a symmetry breaking of two-
model (remember the equivalence between ISing ferfoMagzmengional(20) Ising character a(D). But asD—,
gas models of flujdsith opposite surface T.(D)—T,(H4), which is the wetting transition tempera-

magnetic fieldsHp = - Hl [10]. For_gny finite value oD, . ture[1,5], and the situation becomes equivalent to the prob-
irrespective how larg® is, the transition that would occur in . ) e
lem of an interface bound to one wall in a semi-infinite ge-

the bulk atT., is rounded in the thin film geometry with . . .
competing fields. The local order near the walls, already inometry [11-13. Thus the limitD—c for a film with

duced by the surface fields at temperatuFefar above the ~COMPeting walls is fairly special. While for any finit there
bulk critical temperatureT,, spreads out over the whole IS @singletransition atT¢(D),presumably belonging to the

film as the correlation length grows. But this ordering is atWo-dimensional Ising universality clags6], in the limit of
smooth process, and no transition temperature can be idenf2— two distinct transitions appear in a discontinuous

fied where the interface between positively and negativelyashion: the wetting transition &t,(H,) and the bulk tran-
sition at Ty, (now belonging to the three-dimensional Ising

model universality clagsAlthoughT.(D) is a singularity of
“Present and permanent address. the total free energy of the thin film for any finik, its limit
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rules the crossover from mean field to two-dimensional Ising

behavior, scales as expD/2). From a crossove[27]

scaling type description analogous [{#8—31], predictions

disordered for the critical amplitudes of various quantities in the Ising

ter- ¢ or iter- A regime also are obtained. The consequences of this crossover
'f’;'f: scaling description in the context of finite size effects asso-
e ciated with the finite extension of the linear dimension

o . e ’ parallel to the walls are also spelled out.

T>Te Section Il then presents additional analyses of the Monte
Carlo data of Binder, Landau, and Ferrenbgggin order to
estimate critical amplitudes and study their dependence on
film thicknessD. Unfortunately, for the available range of
D the crossover scaling variable expkD/2) is not really
small enough to allow for a stringent test of the theory. How-
ever, we do find that the numerical results are compatible
with the theoretical predictions, provided we use the predic-

T tion of Parry and co-workergl9-22,

Hyt*) Ho(-)\ 2
T<T. (D) TeD) <T <Tep

Mim (D}

order
parameters

T(;D) T;Ib

. - . o K =Ep(1+ wl2), 1)

FIG. 1. Schematic description of the interface localization-
delocalization transition of an Ising model confined between two

alls a distanceD apart, where at one walleft side a positive as the transverse length scale’.
Wi | Wi Wi | 1TV A . . . f .

’ Her is the tr rrelation range in a latti irection
field H, acts, while on the other walfight side a negative field erey is the true correlation range in a lattice directio

Hp acts. ForT<T.(D) the interface is bound either to the left or I[gztg% b:rlllé’ Wizlttzﬂelinl?\r/lgl\'/\slgl f(':’grr:]st:ndtegnetg?iim tre]:tltr;:(gfs
the right wall, and then the average magnetizatibp,,(D) of the o @ 9 y

film is nonzero. ForT,(D)<T<T,, however, the interface fluc- of critical wetting[34-39,
tuates delocalized in the center of the film, and tMig,,(D) =0,
although there is still a nonzero bulk magnetizatio,, in an

infinite system, as well as locally in the film away from the inter- ) ) ) ] ] )
face. ForT>T,,, however, the film is disordere@part from the ¢ being the interfacial stiffness constant. The direct numeri-

response to the surface fields near the wallse description of the ~ Cal estimates for~* [8] are available only at temperatures
interface in terms of a coordinate=1(p), with p being thex,y distinctly higher thanT (D), but when extrapolated to the

coordinates in the plane formed by the left wall, is also indicated. temperatures of interest they are roughly compatible with Eg.
(1) (see also Ref[22]). Thus, our analysis has at least an

indirect bearing on problems with critical wetting, since un-

like other simulation studieg10—-42 the present analysis is
eCompatible with recent estimates @f[39]. Finally, Sec. IV
briefly summarizes some conclusions.

w=kgT/(4mE0), (2

Tw(H;) for D—« is not a singularity of the bulk free energy
of the system, but only of the surface free endrgiy—15.

It is clear that the subtleties of the associated critical b
havior cannot be fully accounted for by mean field theory
[1,5], and since three distinct types of criticality compéeab

Ising, 3D lIsing, and critical wetting17,18]), analytical ap- Il. CRITICAL BEHAVIOR OF INTERFACE
proaches to the understanding of the critical behavior seem LOCALIZATION TRANSITIONS:
difficult. Hence three of u$7-9] have tried to verify the A PHENOMENOLOGICAL THEORY

above picture by Monte Carlo simulations. While the general
features of the scenario sketched above are certainly in
agreement with the numerical findings of this wrk-9], it Treating the interface between coexisting phases in the
came as a surprise that the presumed two-dimensional Isirgharp kink approximatiof5,11-14, we write the effective
character could only be verified for extremely thin films Hamiltonian in terms of a collective coordindt(qj), namely
(such adD =6 and 8, measuring lengths in units of the latticethe local distance of the interface from the left wall at posi-

spacing. Even for films as thin aB =12, very strong devia-  {jop, p in the xy plane (which coincides with this wall for
tions from two-dimensional Ising criticality were found. An- ,_ 5 \while the right wall is at positiom=D: cf. Fig. 1). In

1 . .
other problem was that the length scale”, associated with - armg of the interfacial stiffness constantlready alluded to
the interface in the transverse direction, was not identifiable, Eq. (2), this effective Hamiltonian then is
with the bulk correlation length¢,, as suggested by the

A. Mean field theory

mean field theory5], but was distinctly largef8]. This dis- .o ) -

crepancy has also stimulated extensive theoretical activity, ]/eﬂﬂ}:j dp| 5 (V1) +> {l(p)}], 3
which in turn improved on the theoretical description of

complete wetting phenomera9—22. where the potentiak (1) in the presence of a bulk field is

In the present paper, we address these problems first t(léee[s])
formulating a Ginzburg criteriofi23—2€, by which the self-
consistency of the mean field description of Parry and Evans S(1)=—Seagle < +e *P-N]4py e 2+ g 2x(D-1)]
[1,5] for this interface delocalization transition is investi-
gated(Sec. ). We find that the Ginzburg number Gi, which —h(1-D/2), 4
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where h=2m,H. Here ag,by>0 are constants, M, =2m,A/D~ =+2myexp «kD/4)/(xD)t¥%\2by/ay,

oe=(T,,—T)IT,, is the normalized distance from the wet-

ting transition temperaturgin the corresponding semi- t—0, (9

infinite geometry, and ! is the transverse length scale R

alluded to in Eq.(1). As the binding potential Eq4) is  and defining a mean field critical amplituég of the order

constructed from a mean field theory of wetting films, it parameter from the equatidvl yz=Byet?MF, with Bye= 3,

follows that «~* is simply kyf=&,, the bulk correlation we find thatBy, scales with film thickness as

length. Note that Eq(4) explicity assumes short range .

forces due to the walls at=0 andz=D. This is appropriate Byrxexp(«D/4)/D. (10

for the lattice gas simulations of Reff7—9,40-42, but ] o

would not be suitable for real fluids where long range vanNext we turn to the response functiéusceptibility at tem-

der Waals forces agt.3,14. We also note that Eq¢3) and ~ Peratures abové.(D), using

(4) describe the problem in terms ofsingle collective co- 23

ordinatel, although recently it has been suggested that addi- —>| =2 exg — kD/2]«?[ —ayde + 4bgexp — kD/2)],

tional collective coordinate&escribing the order parameter | eq

profile close to the walls at=0 andz=D) should be in- (1)

cluded[19-21. However, at this point we aim only at a . . .

description of the most simple mean field theory of the in-Where on the anht ?and su_qu:Dlz was already inserted.

terface delocalization transition. As expectedg”2/dl |'eq vanishes abe = de¢(D) [Eq. (8)],
In this spirit, the fluctuations of the interface position, @s it should for a second order transition frd=0 for

included in Eq.(3) via the (V1)? term, are neglected alto- T>T¢(D) to Myg#0 for T<T(D).

gether, and hencE(l) is treated as an effective free energy ~ Defining the response function for nonzéras

function which simply needs to be minimized in order to find = (ol /oh

the average position of the interfatg, in thermal equilib- X =(leg )10, (12

rium. For zero flelmfo andT>T,, it is clear_ that_ a]l terms Egs.(4), (5), and(11) yield

in Eq. (4) are positive, and assume their minimum for

leg=D/2, i.e., we are in the delocalized phase of the film. For Il eq %3, _ [P\
T<T,, however,de>0 in Eq. (4), so that the terms with h =iz) TLx=ElgE) o (13
the square bracket in E¢4) compete against each other, and T.D leq leg
a solutionlo#D/2 (i.e., a nonzero order parametés ex- and hence
pected.
For h=0 the equilibrium condition hence yields _ exd«D/2)(—t) L
- 2K2a0 (14)
0——82(” =desagk[e ' —e «(O~D]
o, ok The susceptibility yyr=JdMye/dH then becomesyyr
° =4mZxID, and, defining a critical amplitud€,;- in the
—2bok[e 2 —e2<(P=D] (5)  mean field critical regime from
and settind o= D/2+ A, with A—0, we obtain an equation XmE=Cue(— 1) TF, yye=1, (15
for the order parameteX,
we conclude that
0= — Seaysinh(kA)+2bgexp(— kD/2)sinh(2kA). (6) . ng
C;;,F=ﬁexr[xD/2]/D (16)
0

Expanding the sinh in terms ok=kA for X<1 yields

(sinfx~x-+x°/3) [the plus sign in Eq¥15) and(16) refers toT>T,(D), and
the minus sign tar <T.(D)].
+exp( xD/4) (172 7 It is also interesting to note the magnitude of the suscep-
T 2bolag (7) tibility at the wetting temperaturd,, of the semi-infinite
070 system, wherede=0, and hence[Eq. (11)] aZE/alzheq

wheret=[T.(D)—T]/T, is the reduced distance from the *&XP(~«D), is
transition temperature in the thin film,

Xwe(T=Ty)xexp«D).

The response function far<T.(D) can also be worked out
(8) L X N

easily; as always, in Landau-type theories it is of the same

form as EQ.(15), xme=Cyet 1, with C\,</Cye=2 being
Equation (8) shows thatT.(D) differs from T,, only by the universal critical amplitude ratio in the mean field critical
terms exponentially small irD/2 [5]. From Eq.(7) we now  regime.
obtain the order parameter of the film &s mean field Finally we are interested in the correlation length near the
theory) transition. For that purpose we define the deviation of the

4by
de=t+ ——exp(— kD/2)=t+ de¢(D).
0



5026 BINDER, EVANS, LANDAU, AND FERRENBERG 53

with short range forces. This conclusion, which was surpris-
ing and unexpected, is one of the central results of the
present paper.

interface position from its mean vald(p) =1(p) —loq. We
wish to consider a correlation function of fluctuations in the
direction parallel to the walls,

Gy(p—ph)=(8l(p)dl(phH). (17) C. Crossover scaling

From a quadratio expansion of E@ aroundieq s clear 3 8 T8I0 C0 O IR RS CACn B L
that the problem is analogous to the treatment of correlation%zin’ critical regime asywell Lsin a?phenomenolo ical
in standard Ginzburg-Landau theory; hence one concludes™Y 9 ' 9 P g

R ] . . crossover scaling descriptid27]. Note that the crossover
Gy(p—p7) is of Ornstein-Zernike form, and the correlation | 4/isple is(for large D, in leading order
length is related to the response function in the standard way,
1 =t exg(kD/2); (24
—-2_ 2 2 — (v ~\"1
d _;(& 244l )'eq_(XU) ' (18 i.e., one simply uses the ratio between the temperature dis-
tance and the Ginzburg number; for largeone has mean
From Eqgs.(14) and(18) we conclude that the critical ampli- field critical behavior, for smali” one hagtwo-dimensional
tude &y defined fromé," = &y(—t) ~"™F, with vye=3, SO Ising criticality. Following similar routes as in related cross-

that over problemg28-31], we find
1/2
~y 4] O 1 /27
EvE= K 2ag exd kD/4] (19 M = = exp( kD/A)AM (7). (25)
and EQF/EA_AFZ V2, as usual. For large.7 the crossover scaling function tends to a con-

stant, recovering Eq9), while for small.7 we must have

B. Ginzburg criterion _ b-1i2

G, P~ :l
As is well known [23-26, mean field theory is self- M(7<l)=7 B (28
consistent if the order parameter fluctuations in a correlatiorﬂq order to have the correct critical behavior of the order

volume are small in comparison to the square of the meag, ameter, in agreement with the Ising model. From Egs.
order parameter. For our geometry, with (p,z), we obtain  (25) and(26) we obtain

fDdzf d4 " Lp[(M(rYM(ri+1))—M2] M (t—0)=B(D)t#,
0 p<¥|

d—1p2 - 1 1
<D¢& "Mye. (20 B(D)ocBequDBIZ)=Bexq;cD/16). (27)

Near the transition§, is very much larger tha, and the . ) , i
For an explicit calculation of crossover scaling functions

. - e - < - =
mhonlogenelty O_WI (r) in the pure pha_se[sfor Z_ (p) or such asM(.7), renormalization group methods need to be
z>1(p), respectively can be ignored; it contributes only used[25].

prefactors of order unity. One concludes that E2Q) is

: ; e Next we consider the susceptibility far>T. (D),
equivalent to the standard form of the Ginzburg criterion, P y (D)

expressed by the condition that the Ginzburg number Gi is 1
small, with[25,26,3( X= Bexp(KD/z)( —t)" (), (29
A A - 2bokgTx? ~
Gi=C,:By2ksT/(£YF)?D =exp(— kD/2) ot : where again we conclude thg(.”— —) tends to a con-
80 21 stant, and Eq(28) becomes equivalent to Eq4.5) and(16),
(21) while for —.7<1 we have
Gi<lt] @2 N (7=l (= 7)Y, y=1 (29

In EqQ. (21), we have specialized =3 in Eq.(20); i.e., we
consider a two-dimensional criticality in the thin film. Using
Egs. (10), (16), and (19), we conclude that the mean field

This yields the critical behavior of the susceptibility in the
Ising regime as follows:

theory of the interface localization-delocalization transition =3t (-t
(as derived by Parry and Evafs,5]) is self-consistent if X=X '
; _ ” . 1 1
Gicexp( —«D/2)<[t]. (23 i S exdkD(2- 7)/2]= S exp(xDIB).  (30)

We see thathe Ginzburg number decreases exponentially

fast with film thickness, and hence for lard@ mean field Finally we consider the correlation lengéh, Eq. (18),
theory should be an excellent description even though we

deal with a two-dimensional Ising-type criticality in a system &=exp( KD/4)(—t)_1/ZE(.,7), (32
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where Eq.(19) is reproduced if(.7— — =) tends to a con- U =1—(M%/3(M?)2 (37
stant, while for small .2) we have
_ becomes
£ (—T7<Vx(—M27v  p=1, (32 ; 3
U, =U{t exp(xkD/2),LY"t}=U(exp(«kD/2)/L,Lt)
Hence the asymptotic critical behavior of the correlation -
length is — U{exp(kD/2)/L}. (38
t—0
— et —v +“ _ o
G (=077, Freexil«D(1-v)i2]e const. (33 Equation (38) shows rather explicitly that, in the present
There is no anomalous thickness dependence in the criticgroblem, due to the mean field to Ising crossover, there is no
amplitude of the correlation length. unique cumulant intersection point at criticality=(0). This
Finally we consider the Ginzburg combination is compatible with the simulation§—9], and clearly made
D¢ p2x 1 this quantity is independent of bothandD in  the precise estimation &f(D) difficult [8]. Of course, the
the Ising critical region, as it should be: in the Ising critical problem is qualitatively similar to other crossover scaling
region this quantity reduces to the universal amplitude comproblems[28-31].
bination £*2B2(x") ~!D, which using Eqs(27), (30), and
(33) is independent obD. lIl. REANALYSIS OF THE MONTE CARLO DATA

D. Finite si i A. Model and “raw data”
. Finite size scaling o ) ]
In Sec. I, a wealth of predictions was obtained which was

We now wish to extend the above considerations to thg,ot ayailable when corresponding Monte Carlo simulations
case where .the finiteness of the parallel .I|near dimenkion \yere published7—-9]. Thus it is very interesting to return to
competes with the growth of the correlation lendth For  hese simulations, where no critical amplitudes had yet been
this purpose we simply have to add an additional argumentyracted, and look more closely at the critical behavior.
LYt in the scaling functions, remembering thgt does not The model considered is a nearest neighbor Ising Hamil-

have any significanti.e., exponential dependence on the tonian on the simple cubic lattice, with exchange constant
thickness of the film. Thus the order parameter becomes g

function of two scaling variables exp(kD/2),L"t:

1 - H=-32, SS—-HX S—H,
M= —exp( KD/4)'[1/2|V| (texp( KD/2),L1/VI) — @i,j) i i elayer n=1
D small t,large L
1 : 1 ~Hp 2> S, S==1. (39)
— 5exp(KD/m)tl’Sl\A (LYt) — 5exp(KD/16)|:1’8. I<layer n=D
t=0

Typically we use zero bulk fieltH, while the surface fields
(34 H, andHp acting on the two freé X L surfaces are chosen
asH,/J=+0.55 andHp/J=—0.55. The wetting transition
in the semi-infinite geometry would then be estimated to
occur at[41] kgT,,/J~4.00 which is sufficiently below the
bulk  critical  temperature T, (kgTe/J=4.51142
1 _ +0.000 05[45]) that the correlation lengthf, nearT,, is
M = Sexpl xkD/16)tY8M (exp(kD/2)/L,Lt) only of the order of about one lattice spacing. This tempera-
ture range is far away from the roughening transition tem-
1 _ peratureTg (kgTr/J~2.445[46]), so we are safely in the
— —exp(kD/16)L " Y8M (exp(kD/2)/L). regime of wetting transitions, avoiding any problems due to
t~o D crossover toward layering transitiog7]. We choose a
(35  LXLxD geometry withD=6, 8, and 12, and parallel linear
dimensiond. in the range fronL =16 to 256, with periodic
boundary conditions in botk andy directions. More details
1 about the simulation technique can be found in R&f.
X= Eexp(KDIZ)(—t)‘l)((—t exp(«D/2),LY"t) The quantities that are reanalyzeq here are.the average
absolute valug|M|) of the magnetization of the film,

An alternative consideration concerns the crossoveérdr,
where we rewrite the first line of Eq34) as follows, using
v=1:

A similar result follows for the susceptibility:

1 .
— 5eKD/S(—t)—7’4);(exp(KD/2)/L,Lt)

M=(L?D) 'Y S, (40)
1 |
— e L X (exp(«kDI2)IL), (36) . o
t—0 the corresponding susceptibiligy* [48],
where y, x, and’y, are the scaling functions in obvious xt=L2D((MZ)—(|M|)?)/kgT, (41)

limits.
Finally, the fourth order cumulari3,44 and the fourth order cumulaht, [Eqg. (37)].
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(a) JIkgT
symbol [ quantity {
0255F ¢ | Coax %
o Ussing
a cross /‘:|
[
@
= 1
T 00 —_
L=128 L=64 L=4L8 L=32
0.245 t t .t A
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0.250 0.252 0.254 0.256 0.258 0.260 0.262
(b) JIkgT
FIG. 3. Extrapolation of the cumulant crossings,.ss[defined
FIG. 2. Order parametén) and cumulantb) plotted vs inverse  from U= U (T)=U_/(T), with L andL’ being two neighbor-
temperature, foD =8. Four linear dimensionk are included, as ing linear dimensionsvs 1L (upper pafnt and extrapolation of
indicated. The arrow in parta) shows the final estimate for inverse temperatureBkg Tos{L), Where this crossing occu(si-
JIkgT¢(D), while arrows in part(b) show the distinct cumulant angle vs 1L (lower par). The inverse temperatures
intersections betweeld, andU,, . Note that lengths are measured J/KgTa{(L) Of the specific hea€,,, (full dots) and susceptibility

in units of the lattice spacing throughout. From R&f. X' (Xmas OPEN CircleSare also included. The inverse temperatures
JikgTE™Y(L) are obtained from the conditionU (TE")

Figure 2 shows typical dat@]. The temperature depen- =U*=0.615 (squares The arrow with the error bar shows the
dence of the order parameter has little similarity with corre-final estimate fold/kgT, (D=12).
sponding data for the two-dimensional Ising modé9],
since(|M|) atJ/kgT.(D) is rather small, and increases only J/kgT.(D=12)=0.2505-0.0005 as our final estimate for
slowly with decreasing temperature. Unlike either two- orthe present analysis.
three-dimensional simple Ising models which have a well-
defined unique poinU* at which the cumulants), (T) in-
tersect afT. [43,44], the cumulant intersections are spread
out over a significant temperature range, making the precise Given the hypothesis that the asymptotic critical behavior
estimation ofT(D) difficult [7-9]. is that of the two-dimensional Ising model, one should have
In previous work the estimates[8] J/kgT.(D data collapsing such as in Fig. 2 according to the finite size
=6)=0.2655-0.0002, J/kgT.(D=8)=0.2578-0.0002, scaling hypothesi§43,44,48,49
and J/kgT.(D=12),=0.24970.0003 were quoted. How- 18 = ~
ever, noting that the values of the cumulants at the crossing (IMPLTB=M(LY), U (T)=U(LY), (42
points for D=12 are far from their asymptotic two-
dimensional valu¢s0] U* ~0.615+0.003[see Fig. Jupper  if we use only the largest values bfsuch that the crossover
parp], we now feel that the estimate farkgT,(D=12) was scaling variable7=expD/2)L in Egs. (34)—(38) is small
slightly too low. Figure 3(lower parj shows that a fit of enough, so that we are in the Ising critical regime. Note that,
straight lines to the data on characteristic temperatures versusing the above estimates fafkgT. (D), there are no ad-
L~! is compatible with values slightly larger than 0.250, if justable parameters in such a finite size scaling plot, and thus
data forL=32 are not included. In fact, the slight but sys- the successor failure, respectivelyof data collapsing is a
tematic curvature of the plot indicates that even a value asignificant test of whether the asymptotic Ising critical region
large as 0.251 cannot be excluded. Therefore, we usis reached. Figures 4—-6 present such datedfer6, 8, and

B. Finite size scaling
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symbols, data forT>T.(D) by full symbols. The straight lines
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timates of critical amplitudes, unlike the casel»&6 and 8

(Figs. 4 and 5 We note that the scaling functiovl () for
large.7 must behave as

—~ N 1
M(7—=)=B7*, B=g, (43)
thus reproducing the power la{yM |} = Bt? from Eq.(42)in
the thermodynamic limit. Reading off the const&finter-
cept of the straight line with slopgatLt=1) from the plot
we find
B(D=6)=0.83, B(D=8)=0.72, (44)
while the amplitude of |M|)2LY* (which is proportional to
the amplitude of the susceptibilijtppecomes
I' (D=6)=0.060, ' (D=8)=0.049. (45
While we have predicted that the critical amplitutﬁ(sD)
[Eqg. (27)] andx 7 (D) [Eq. (30)] increase exponentially with
D for largeD, we actually find a decrease of the amplitudes
from D=6 to D=8. As will be shown in Sec. Ill C, this
finding is not in contradiction with Eqs(27) and (30), but
actually due to the preexponential correctio Which is
more important for D=6 and 8 than the factor
exp(kD/16) or expD/8) in Egs.(27) and(30).
Noting that the finite size scaling of the cumuldht is a
simple dependence on the ratiéé,

UL(T)=U(L/&) ~ U*+c*(LIE)(—t) 1+ - -,
t—0

(46)

wherec* is another universal constant, we spould be able to
extract the variation of the critical amplitude™ from the

through the data were fitted using the correct exponents for ordeslope of the cumulant d/* in the scaling plo{Figs. 4b)

parameter §=3) and susceptibility ¢=12). [Recall that for
T>T,(D) we have[43,48 (|M|) (M) JkgT x/L2 in d=2 di-
mensions, and hende"®|M|)e(—tL)~ 78] (b) CumulantU (T)
plotted vsLt for D=6, including three choices of. Broken

straight line shows estimation of the slope of the scaling function a

T=T.D) (i.e., atLt=0).

12, always including only the largest valueslotthat were

studied. We see that the scaling works reasonably well for
D=6 and 8, while forD =12 there is no good data collapse

at all for the previous choicf8] J/kgT.=0.2497. Even for
the largest present estimgté/kgT.(D=12)=0.251 is our
present upper bound, cf. Fig.] 3here are still systematic

deviations from finite size scaling. However, in view of the

crossover scaling descriptipBec. 1l D] such a difficulty was

clearly expected: with the finite size crossover scaling vari-

able being exp¢D/2)L, it is clear that with increasin@
much larger parallel linear dimensiohsare needed than for

and §b)]. Unfortunately, the functiond near.7=Lt=0
seems to have distinct curvature; and given the considerable
scatter of our datg™ cannot yet be estimated with sufficient
accuracy. As always, estimation of critical amplitudes from
hoisy simulation data is notoriously difficult.

C. Crossover scaling

An alternative test of the theory of Sec. Il is possible by
studying the size dependence of the magnetizatibt ). at

the critical pointT,(D) [Eq. (35)] or the cumulanfEg. (38)]

or susceptibility [Eq. (36)]. Equivalently, the maximum
vaIueXrlnaX of the susceptibilityy* defined in Eq(41) can be
studied, and should also scale like Eg6); the latter quan-
tity has the advantage that the uncertainty aliqgD) does
not enter.

For this analysis, of course, estimates for the parameter
k (the inverse of the transverse interfacial length scate

of crucial importance. This problem is addressed in Fig. 7.

down becomes much more severe for larBersmaller val-
ues ofL were actually used for the simulations fbr=12
(Fig. 6) than forD=6 (Fig. 4). Thus the breakdown of finite
size scaling seen in Fig. 6 fdb=12 is certainly a conse-
quence of our use of linear dimensiohswhich were too

critical fluctuations, we should simply have[5]
k= rkye=1/¢&,, and the temperature dependencepin the
regime of interest is shown in Fig. 7, using Ref32,33.
However, the values ot extracted from plotting the Monte
Carlo resultg 8] for the maxima of the layer susceptibility

small. This difficulty prevents us from obtaining reliable es- y,, at T>Ty>T.(D) are substantially smaller thagy *. It
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. (b). Straight lines indicate the slopes that the two branches of the
FIG. 5. Same as Fig. 4 but f@ = 8. Note that the scatter of the scaling function should develop.

data points leads to a considerable uncertainty in the slope of the

cumulant att=0, as indicated by two possible estimates.
umd nd y TWO possibie est exp(x.D/2)~78.9D=12), 33.8D=8),

has been suggestd8,19-2] that capillary wave fluctua-
tions act to renormalize the length scale in that temperature
range. The direct Monte Carlo estimates fo@ [that were . :
extracted from the maximum value of the layer susceptibilityThese nur_n_bers already show that our choicels db satisfy
xmX, using [8] «/2=In(x2)/D for large D] also are in- the condition L>explcD/2) necessary to have two-
cluded in Fig. 7, but do not extend in the temperature regim le(énschasl LS'?% cr|t|tc?l Dbfqzv'oa forﬂt1hel thlnnter 1;|Ims
of interest for our present analysis. Since their dependenc f_L aﬁg o ’ %/20:; cgm_arat\)/;le e_rri Seazrgﬁze;/aeléesno
on inverse temperature is quite smooth, a tentative estimatiol?m ‘ivoe ;(E(:é . )e scalin Zho Id ' orlg ’ ved,

of k. atT,(D) for D=12, 8, and 6 could simply use a linear S|r\1/?/hyp ni ;(Z hl g shou WD/lé D which d
extrapolation, as shown by the broken line. Of course, thisis . en we work out the ratio exg( )D, w ich de-
not necessarily quantitatively reliable, but should give atsgnbes}heD depepdence of the order parameter critical am-
least an order of magnitude estimation. Using this simpl®litude B(D), we find, from Eq.(47),

recipe, would yield . is the value ofk at T;(D)]

and 23.5D=6). (48)

exp(k;D/16)/D~0.2471D=6), 0.194D=8),
k/2~0.364D=12), 0.44D=8), and 0.526D=6). and 0.144D = 12). (49)

(47)

Indeed, these amplitude factors decrease with incredsing
as observed. The same fact holds for the susceptibility am-

These values ok, incorporate, albeit empirically, some cap-
¢ b P y ’ plitudes

illary wave renormalization. We now assume that the cross
over scaling variable” is still given by Eq.(24), but with

k taking into account this renormalization. The correspond- exp(«.D/8)/D~0.364D=6), 0.301D=8),

ing exponential factors expfD/2) entering the crossover

scaling variable become and 0.248D=12). (50)
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FIG. 7. Plot of the inverse length scaté2 vs J/kgT. Here full
dots represent estimates ofgd !, &, being the true correlation ) . . )
range in a lattice direction, obtained from the leading term of the "o 05 10 15 20 25
Padeapproximant to the low temperature series analysis of Liu and(b) expM D/21/L
Fisher(LF) [32]. Open squares are corresponding Monte Carlo es-
timates of Hasenbusch and PidHP) [33]. Open circles are the

direct estlm_ates of«/2 from interfacial response functions, ex- (36)] (a) and of the cumularfEq. (38)] (b) vs the crossover scaling
tr_acted _by Binder, Landau, and Ferrenbé@gF) from Monte Car_lo variable expk.D/2)/L, using the estimates E¢8) and all values
simulations[8]. The dash-dotted curve shows the suggestion Ofo¢ | that are available. Curves are guides to the eye only. Arrow on
Parry and co-workerd19-23 that «/2=[&,(2+w)] %, using ordinate in(b) showsU* =0.615.

w~0.86[39] in the temperature region of interest. Arrovigith
error bar$ at the abscissa show locationf(D) for D=12, 8, and
6, respectively.

FIG. 8. Plot of the scaled susceptibility maximunf{mX [Eq.

length scale. Figure 7 shows that the resulting numbers are
numerically close to the linear extrapolation of the direct
Monte Carlo estimatetsee also the figure if22]), although

The ratios between the numbers =6 and 8 are actually the increase withl/kgT is somewhat less steep. While the
compatible with the ratios of the corresponding observedesulting numbers fok./2 would differ relatively little from
amplitudes, within their numerical errotaowever, we esti- Eq. (47),

mate that our amplitude estimates quoted above are at best

accurate to 10% KC/2%0381D:12), O444D:8), and OSOYDZG),

It is also interesting to test the prediction E@) sug- (51
gested in Refs[19-22. Boulter and Parry19,21] showed
that a renormalization group treatment of tfs¢andard ef-
fective Hamiltonian Eq(3) in the complete wetting regime
T>T, leads to the susceptibility varying as exp«,D/2)~104D=12), 34.9D=8), and 21D=6).
exp(D/[2&,(1+ w/2)]) rather than the mean field result (52)
exg D/2¢,]. They pointed out that this renormalization, Eq.

(1), is insufficient to account for the Monte Carlo resyBg, ~ Figures 8 and 9 now use the predictions E¢8) and(52) in

and introduced a two-field Hamiltonian. Renormalization ofthe crossover scaling description suggested in E8S)—

this yields a susceptibility with the same exponential form(38). While both choices of exptD/2) yield comparably
but with the factor 3 w/2 replaced by ¥ wer/2, where good data collapse for the cumulant, we find that the data for
wer=w+Aw. Including the additional contributiome  Xmax definitely fail to scale with the choice E¢48), but do
(>0), which arises from fluctuations at the wall coupling to scale rather well with the choice E(?2), resulting from Eq.
those of the unbinding interfaces, improves the agreemenfl). Given the fact that in Fig. 9 we simply use results from
with the Monte Carlo result§19,21]. Subsequently, Parry, the literature forw [39] and ¢, [33], as well as the data for
Boulter, and Swaifi22] argued that at lower temperatures, asU_ (T.) and Xt published in[8], we feel the agreement
T—T,, Aw—0 so that forT,~T=T,(D) Eg. (1) should between simulation and theory is rather satisfactory, as there
describe the capillary wave renormalization of the transversé no adjustment of parameters whatsoever.

the resulting differences in the crossover scaling variable
exp(D/2) seem to be significatf. Eq. (48)],
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os} ambol | 0 mean field critical amplitudes. It is shown that they vary
5 o |8 exponentially with the thickness of the film, containing fac-
‘:-‘l osf M tors such as exp(D/4) [cf. Eq. (10) for the order parameter
2 amplitude in mean field From these mean field critical am-
o plitudes, the Ginzburg number Gi is then constructgd.
o3} (21)], which rules the self-consistency of the mean field de-
‘_32 - scription as well as the crossover to the Ising universality
. 02p AT e ‘ class. We show[Eq. (23)] that Gi contains a factor

ol *e=Byllewl2l exp(— «D/2); i.e., Gi becomes very small &3—o, and

' hence mean field theory should become accurate. From a

0 - . " . : crossover scaling theory th2 dependence of critical ampli-

0 05 10 15 20 25 30 . . . . .

(@ exple,D/2)1L tudes in the Ising regime is also obtainfitiere are also

exponential factors such as ex§/16), cf. Eq.(27)], and

consequences for finite size scalifiteeded for the analysis
%= lEp( 0w/ of the Monte Carlo dadaare worked out.
T=T.(D} The Monte Carlo data allow an estimation of critical am-
plitudes in the Ising regime only for two neighboring small
thicknessesD =6 and 8, and thus these results are not very
conclusive about the validity of the above theory, although at
least there is also no contradiction. A more stringent test
turns out to be possible through examination of finite size
dependencies af;(D), where one considers the crossover
from Ising behavioffor L>exp(.D/2)] to mean field be-
havior [for L<exp(k.D/2)]. Here all three thicknesses,
D=6, 8, and 12, and a wide range of linear dimensibns
05 10 5 20 2% 10 parallel to the surfaces are included, and reasonable agree-

(b) expincD/2}/L ment with the crossover scaling description is obtained, pro-
vided one uses the prediction of Parry and co-work#&fs-

FIG. 9. Same as Fig. 8, but witk, estimated from Eq(1) [as 22] to calculate the appropriate_ transverse Ieljgth scale

quoted in Eq(52)]. 2/k.= &p(2+ o) [EQ. (1_)]. Comparison betwggn Figs(B _
and 9a) shows that this test is rather sensitive, and using
IV. DISCUSSION other plausible_ estimates for the temperature dependence of
k. works considerably less well.

Ising thin films with competing surface fields of equal It is important to recognize that the crossover described
strength but opposite sign exhibit an unusual phase transitiolnere is considerably more complex than that treated in earlier
[1-9]: the bulk phase transition dty, only shows up as a work [28—31. We are dealing with interfacialcapillary
very smooth formation of two ordered domains induced bywave as well as two-dimensional bulklike critical fluctua-
the fields at the walls, separated by an interface betweetions. The scheme we have presented, which accounts for the
them. While forT>T.(D) this interface fluctuates freely and Monte Carlo data, assumes that capillary wave fluctuations
its average position is in the center of the film, for simply act to renormalize the transverse length sealé.
T<T.(D) this interface is localized at one of the walls, and This length is then employed in the crossover scaling vari-
a spontaneous magnetization of the film as a whole developable .7 which describes the crossover to two-dimensional
As the film thicknesD —, T.(D) does not converge to- Ising criticality. Although the scheme is plausiliend does
ward T, but rather toward the wetting transition tempera-appear to work!we are not aware of any formal justification
ture T,, of a semi-infinite system. for it. Trying to treat both types of fluctuations simulta-

While general considerations about phase transitions puteously would be very difficult.
this interface delocalization-localization transition into the This treatment fully explains the difficulties observed in
Ising universality class fod=2 dimensions, Monte Carlo Refs.[7-9], since it shows that fob =12 one is just in the
results have showy—9] that the critical regime is extremely middle of a crossover regime, and no simple critical behavior
narrow and shrinks with increasing film thickné3s In fact,  is to be expected. However, for films as thinxs 20 layers
the Monte Carlo datd8] led to the speculation that for we would predict from Eq(51) [ x. for D=20 and 12 can be
D —o the Ising regime completely disappears, but to crosstaken as approximately equhat the crossover length scale
over to some other universality class. exp(x.D/2)~2300. This implies that for all practical possible

While this transition can be described as a wetting transichoices ofL we would haveL <exp(.D/2), and hence a
tion, when one considers surface excess properties of th@mple mean field description applies.
system approachin@.(D) from below, this description does Of course, this finding does have interesting consequences
not answer questions about the nature of the bulk criticafor the interpretation of the experiment. We expect that this
behavior of the thin film as a whole as one approachesransition should be observable in thin films of fluid binary
T.(D) (from either sidg This problem is studied in the mixtures which undergo liquid-liquid phase separation in the
present paper in detail. The first step elaborates the mealk, if one chooses a geometry where one surface is a solid
field theory of Parry and Evan®], extracting the various substrate while the other surface is just the interface against

07}

0.4
0
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gas. Choosing the substrate such that it energetically prefeege all taken in the regime.(D)<T<T,,, since in partially
the species other than that preferred by the gas-fluid intetompatible polymer blends,, may be far fromT 4, [52]. In
face, one qualitatively realizes a situation as-modeled in thgny case, typ|ca| experimenta| systems will most ||ke|y sat-
present paper. Of course, one never expects that real systeqgfy the conditionk,D>1, and then mean field behavior at
have exactly the antisymmetry property of the wallsT (D) should hold.

(H,=—Hp) assumed here, but arguments have been pro-
vided [8] that this interface localization-delocalization tran-
sition also persists in less symmetric situations. While the
formation of an interface in a thin film of a binary polymer
mixture running parallel to the substrate surface has indeed This research was supported by NSF Grant No. DMR-
already been observdthese studies were then used to esti-9405018, DFG Grant No. SFB 262/D1, the Alexander von
mate the compositions of the two bulk phases coexistingiumboldt foundation, and NATO Grant No. CRG 921202.
with each other, from the local compositions near the twoWe are grateful to A. O. Parry for sending a prepfif)], for
walls[51]), we are not aware of an experimental observatiorseveral illuminating discussions, and for valuable comments
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