
Generation of transverse fluid currents and forces by an electric field:
Electro-osmosis on charge-modulated and undulated surfaces

Armand Ajdari*
Lyman Laboratory, Physics Department, Harvard University, Cambridge, Massachusetts 02138

~Received 5 September 1995!

As in the usual paradigm for electro-osmosis, an electrolyte fluid confined between two parallel plates is
considered, and an electric fieldEW ext is applied parallel to the plates. Analyzing here the combined effect of
charge and shape modulation on the surfaces,EW ext is shown to generate flows in the slab and forces on the
plates even if the plates~and thus the fluid! are on average neutral. Furthermore, the corresponding fluid current
and plate drag are generically nonparallel to the field, and can be strictly perpendicular to it in well-chosen
geometries.

PACS number~s!: 82.65.Fr, 82.45.1z, 47.65.1a

I. INTRODUCTION

An external electric field induces motion of an electrolyte
fluid in the vicinity of a charged surface. The resulting rela-
tive velocity between the surface and fluid away from the
surface leads to the well-known phenomena of electrophore-
sis and electro-osmosis@1–3#. Electrophoresis describes how
a particle is set into motion when submitted to an electric
field in a fluid at rest, and how its corresponding electro-
phoretic mobility depends on its surface characteristics: sur-
face potential~‘‘zeta’’ potential! or charge density@1–3#.
Electro-osmosis describes the way immobile charged walls
induce flow of the fluid they bound. Both are of great impor-
tance in separation technologies using electric fields, e.g., in
the developing domain of capillary electrophoresis@4#. More
recently, electro-osmosis has also been proposed as a self-
propulsion mechanism for cells without motile apparatus:
these are able to generate electric potential gradients, and, as
their membrane is charged, motion is expected@3,5#.

In this paper we investigate some features of the electro-
osmotic flows generated on surfaces with nonuniform sur-
face potentials~or charge densities!. As such, this parallels
the recent studies of Anderson and co-workers@3,6#, who
investigated the influence of such inhomogeneities on the
electrophoretic mobility of small particles. The present
analysis also displays features similar to those arising when
an electric field induces charges at a fluid interface, which
under the influence of the former in turn induce motion of
the fluid@7#. The geometries we consider are also inspired by
biophysical models for the flagellar rotatory motor of bacte-
ria. In this system an ion flux across the membrane induces
the rotation of a rotor~attached to the flagella! relative to a
stator~attached to the cell body!. The rotation axis is perpen-
dicular to the membrane and thus parallel to the ionic cur-
rent. Recent biophysical models picture the rotor as a cylin-
der coated by helical stripes of charges of opposite signs@8#.
It is then tempting to investigate the possibility of mimicking

such geometries and effects in artificial devices at the micron
scale @9#. More generally, with the increasing possibilities
offered by lithographic techniques, electrohydrodynamical
effects on striped patterns should be a developing field.

As a first step, the simple geometry of an electrolyte con-
fined between two essentially planar insulating walls is con-
sidered. We investigate the effects of applying an electric
field ~actually an ionic current! parallel to the fluid channel.
In Sec. II we introduce the notations and formalism used to
describe the coupling between electrostatics and hydrody-
namics, allowing us to recall in passing the well-known
electro-osmotic effect: if the two walls are flat and uniformly
charged, an applied electric field generates a plug flow in the
slab. In Sec. III charge modulations on flat surfaces are
shown to lead to convective patterns, but to be unable to
generate net currents in the slab or forces on the walls. How-
ever, the combination of charge and shape modulation on the
walls creates such currents and forces, even when the aver-
age charge on the walls~or in the electrolyte! is zero, and
with components perpendicular to the applied field. Two ge-
ometries are explicitly considered: a neutral undulated plate
on top of a flat charge-modulated one~Sec. IV!, and a flat
neutral plate on top an undulated charge-modulated one~Sec.
V!. A discussion~Sec. VI! concludes the paper. A prelimi-
nary report of some of the results was given in Ref.@10#.

II. ELECTROHYDRODYNAMIC COUPLING:
EQUATIONS AND MODEL

Consider two almost flat parallel surfaces confining an
electrolyte solution. The upper and lower surfaces are de-
fined byz1(x,y) andz2(x,y) in a (x,y,z) system of Carte-
sian coordinates, with averages^z1&5h and^z2&52h. The
electrolyte is of dielectric constante and viscosityh, and its
ionic content such that the Debye-Huckel length isk21. The
fluid is assumed to be incompressible, and a low Reynolds
number description is valid.

The two bounding walls acquire a charge in contact with
the electrolyte so that they bear a surface charge density
s1~x,y! and s2(x,y). Correspondingly, electroneutrality is
violated in the fluid in their vicinity~Debye layer! @1#. The
net charge densityre

eq is related to the potentialceq by the
Poisson equationeDceq1re

eq50. The potential on the sur-
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faces, often referred to as the ‘‘zeta’’ potential, isz6(x,y)
5ceq@x,y,z6(x,y)#. The relation between zeta potentials
and surface charge densities can be obtained from the Gouy-
Chapman theory or from the Debye-Huckel linearized ver-
sion if the potentials are small compared to thermal energies:
ez/kBT!1 @1–3#.

If an uniform external electric fieldEW ext ~or an electric
current! is applied parallel to the slab, the nonzero charge
density will drag the fluid in thek21-thick Debye layer, in-
ducing a nonzero velocity fieldvW everywhere in the slab. The
coupling is described by a force density term in the Stokes
equation:

2¹W p1hDvW 1reEW 50W ,

¹W •vW 50,
~1!

wherere andEW 52¹W c are the total local charge densities
and electric field~i.e., whenEW ext is applied!, and p is the
hydrodynamic pressure. This is in general a formidable prob-
lem as the bulk force term is nonlinear and in that the hy-
drodynamics furthermore influence the solution of the elec-
trostatics problem through convective terms in the
expression of ionic currents@2,3#. It is thus classically trac-
table only in the framework of linear response to the applied
field EW ext and through further approximations. We will here
use two common examples presented in the next subsections:
low electrostatic potentials~LEP’s! and thin Debye layers
~TDL’s!.

This provides us with the set of equations used throughout
the paper. Note that they allow the addition of any purely
hydrodynamic solution respecting the no-slip boundary con-
ditions. We therefore focus without loss of generality on the
case where no global pressure gradient exists across the sys-
tem. It is also clear that we have chosen to study only steady-
state situations.

A. Low electrostatic surface potentials

For low electrostatic potentials~LEP’s! ez/kBT!1 ~typi-
cally z!25 mV!, the equilibrium electrostatics are conve-
niently described by the Debye-Huckel equation

Dceq5k2ceq,
]nc

eq~z6!52s6/e, ~2!

where ]n describes the derivative along the normal to the
wall pointing inwards toward the electrolyte. For low applied
fields the hydrodynamics problem can then be shown@2# to
be well approximated by

2¹W p81hDvW 1re
eqEW ext* 50W ,

¹W •vW 50,
~3!

where p85p2ek2(ceq)2/21(re2re
eq)ceq, and EW ext* (rW)5

2¹W Vext* is the electric field corresponding to an average field
EW ext imposed between insulating walls of the same shape in
the vacuum~i.e., obtained by simple solution of the Laplace
equationDVext* 50 with boundary conditions]nVext* 50 on

the surfaces!. Note thatEW ext* was confusingly designed by
EW ext in Eqs. ~2! and ~3! of Ref. @10#, where was taken into

account the fact thatfor flat parallel wallsre2re
eq is negli-

gible. The above formulation~3! is more general and ad-
equate for nonplanar boundaries.

B. Thin Debye layers

If the Debye layers are very thin~TDL’s! compared to
both the typical radii of curvature of the surfaces, the dis-
tance between surfaces, and the typical distance of variation
of the charge densities@more precisely, smaller than these
lengths by at least a factor; exp~ez/2kBT! @3##, then in a
linear response theory, it is possible to approximate the elec-
trohydrodynamic problem~1! by the simple Stokes equation

2¹W p1hDvW 50W ,

¹W •vW 50
~4!

upon replacement of the~up to now implicit! no-slip bound-
ary conditions on the surfaces by slip boundary conditions
@3#,

vW ~x,y,z6!5m6~x,y!EW ext* ~x,y,z6!, ~5!

with, from local analysis,

m~x,y!52ez6~x,y!/h. ~6!

This great simplification, which is often valid as the Debye
length in usual conditions ~1-1 salt in water at
1021–1023M l21! is .1–10 nm, allows the calculation of
electrophoretic mobilities for various particle shapes, and to
take into account variations of the surface potential@3,6#.
Note that the TDL regime is not a subcase of the LEP ap-
proach, as it allows us to describe high electric potentials, in
which the relation between the surface charge and zeta po-
tential is incorrectly described by the Debye-Huckel approxi-
mation. The two approaches of course coincide in the case of
low potentialsand thin Debye layers. As a quick example we
recall in Sec. III C the usual theory of electro-osmosis be-
tween uniformly charged flat plates, before turning to inho-
mogeneous surface charge distributions in Sec. III.

C. Electro-osmosis on homogeneous surfaces

Consider two flat surfacesz656h with uniform charge
distributions15s25s0. In the LEP regime the equilibrium
electric potential inside the solution is, from~2!,
ceq(z)5z0 cosh~kz)/ cosh~kh!, where z05s0 coth~kh!/ek.
For flat plates one has simplyEW ext* 5EW ext everywhere, so that
~3! leads tovW 5(e/h)@ceq(z)2z0#EW ext. For kh@1, apart
from the Debye layers close to the walls, the velocity is thus
almost uniformvW .m0EW ext with m052ez0/h ~electro-osmotic
plug flow!. The minus sign is easily understood: ifz0 is posi-
tive, negative charges are in excess close to the surfaces, and
the fluid there is driven in a direction opposite to that of
EW ext.

The LEP result is clearly consistent with the TDL ap-
proach, which leads simply tovW 5m0EW ext everywhere, omit-
ting the description of the flow in the Debye layers. An
electro-osmotic plug flow is created in the slab, which has to
be taken into account, e.g., when analyzing capillary electro-
phoresis data@4#.
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III. FLAT PLATES WITH MODULATED SURFACE
CHARGES

Now consider inhomogeneously charged flat surfaces.
Due to the linearity of the equations, solving the generic
problem with arbitrary surface charge densities on the two
surfaces reduces for each wave vector to the analysis of two
geometries, which we choose, for formal simplicity, to pro-
vide even and odd solutions inz. In the first one the surfaces
are charged in a symmetric way:s1

1(x)5s1
2(x)

5s0 cos(qx). In the second one, the sign of the charge on
the lower plate is reversed~or its phase shifted byp!:
s2

1(x)5s0 cos(qx) on the upper plate ands2
2(x)5

2s0 cos(qx) on the lower plate. In most of this section we
adopt the formalism corresponding to the LEP limit, and on
our way will mention the corresponding~and simpler! results
for the TDL case.

Using the Debye-Huckel equation~2!, the equilibrium
electrostatic potentials in these two geometries are easily ob-
tained. They read~omitting the ‘‘eq’’ to simplify notations!

c1~x,z!5~s0 /Qe!cos~qx!
cosh~Qz!

sinh~Qh!
, ~7!

c2~x,z!5~s0 /Qe!cos~qx!
sinh~Qz!

cosh~Qh!
, ~8!

with Q25q21k2. For flat plates one has uniformlyEW ext*
5EW ext, which simplifies solving~3!.

A. E¢ ext parallel to the modulation wave vector

If an external field is applied along this axisEW ext
i

5EixW ,
the fluid close to the surfaces is driven in a direction that
alternates along thex axis. Incompressibility imposes recir-
culation in the slab, and convective rolls appear~Fig. 1!. The
velocity field is most easily derived by exploiting the incom-
pressibility condition in~3! to introduce a stream function
f(x,z) such that]zf5vx and]xf52vz . In the two above-
mentioned geometries some algebra allows us to obtain

f i~x,z!5m0Ei cos~qx!gi~z! ~9!

with m052s0/hk,

g15A@a1z cosh~qz!1a2h sinh~qz!1a3 sinh~Qz!#,
~10!

A5@k sinh~Qh!#21@hq2sinh~qh!cosh~qh!#21, ~11!

a15q sinh~Qh!cosh~qh!2Q cosh~Qh!sinh~qh!,
~12!

a25Q cosh~Qh! cosh~qh!2q sinh~Qh!sinh~qh!

2h21 sinh~Qh!cosh~qh!, ~13!

a35 sinh~qh!cosh~qh!2hq ~14!

and

g25B@b1z sinh~qz!1b2h cosh~qz!1b3 cosh~Qz!#,
~15!

B52@k cosh~Qh!#21@hq1sinh~qh!cosh~qh!#21,
~16!

b15q cosh~Qh!sinh~qh!2Q sinh~Qh!cosh~qh!,
~17!

b25Q sinh~Qh! sinh~qh!2q cosh~Qh!cosh~qh!

2h21 cosh~Qh!sinh~qh!, ~18!

b35 sinh~qh!cosh~qh!1hq. ~19!

Due to the linearity of the problem, these solutions deter-
mine the influence of each plate. That is, if only the upper
plate is charged withs15s0 cos(qx), the resulting stream
function isf15~f11f2!/2. Similarly, if only the lower plate
has the previous modulation,f25~f12f2!/2. Then, for any
charge modulation of the surfaces, the linearity of the prob-
lem allows us, by Fourier decomposition, to sum the contri-
bution of each wavelength on each plate.

Let us recall at this point that the iso-f lines are the
stream lines of the flow. Thus a contour plot off is an easy
way to visualize the convection pattern induced byEW ext

i @10#.
The velocity field is more quantitatively described by

vx5m0Ei cos~qx!g8~z!,
vz5m0Ei sin~qx!qg~z!, ~20!

whereg is the linear combination ofg1 andg2 appropriate to
fit the given electrostatic boundary conditions. In the next
two subsections we analyze the morphology of the convec-
tive patterns in a few geometries.

B. Single plate„the hq@1 limit …

Take the bottom plate chargeds25s0 cos~qx!, and the
gap much larger than the modulation wavelength 2p/q ~and
than the Debye lengthk21!. Focusing on the vicinity of the
lower platez.5z1h!h, the influence of the upper plate is
negligible. Thus from direct calculation or using the results
of Sec. III A, the stream function for a parallel field is

f.m0Ei cos~qx!g~z.!, ~21!

where

g~z.!5k21$@~Q2q!z.21#e2qz.1e2Qz.%. ~22!

FIG. 1. Close to a charge-modulated surface, the fluid is pulled
periodically in opposite directions. As a result, recirculation rolls
develop on a scale proportional to the modulation wavelength.
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Recirculation of the flow induced in the Debye layers oc-
curs on a scale given by the point at whichg8(z.! ~and thus
vx! changes sign~Fig. 1!. This occurs at a distanced from
the wall such that

@~Q2q!~12qd!1q#e2qd2Qe2Qd50. ~23!

For k@q this leads toqd.1. At distances larger thand the
flow alongx is in the direction opposite to what it is close to
the surface, and decays exponentially on the same scaled.

C. Narrowing the gap

Starting from the previous one-plate description, let us
progressively narrow the gap in the face-to-face geometry 1
described by Eq.~7! when a parallel field is applied. When
the two surfaces are far apart, they develop almost noninter-
acting patterns, the exponential tails in the stream function
melting in a cosh shape. A plot ofvx(z) thus displays five
local extrema: the electro-osmotic flows peak close to the
walls, and the recirculating flows peak at a distance of order
d and decrease until the middle of the slabz50 which is a
local minima. If the plates are brought closer, the two pat-
terns tend to ‘‘compress’’ each other, and thez size of the
rolls becomesh. In this geometry, the recirculating flows of
the two surfaces merge in the middle of the slab so thatvx(z)
only has three extrema, recirculation peaking atz50. The
transition occurs for] z

3g1(0)50. Although the correspond-
ing equation is cumbersome, namely 3q2a11hq3a21
Q3a350, it reduces in the limit of a thin Debye layer
~k@q,h21! to the much simpler tanh~qh)5qh/3, or qh
52.98.3. Note that in the limitk@h21@q, the flow is eas-
ily shown to be locally~at a givenx! the sum of a simple
pluglike electro-osmotic flow corresponding to the local
values(x) and of a Poiseuille recirculation flow due to local
gradients of the pressure~recall that no large scale pressure
gradient is allowed!, so that there is no net current:

vx.m0Ei cos~qx!F12ek~z2h!2e2k~z1h!2
3

2

~h22z2!

h2 G .
~24!

An even clearer transition is obtained when the potential
modulations of the two surfaces are identical but for a phase
shift of p ~geometry 2!. Then again, whenh@q21, the two
surfaces develop almost independent convective patterns.
But upon narrowing of the gap, the system chooses to rear-
range them so as to reduce dissipation due to shear: recircu-
lation now brings the fluid directly from one surface to the
other along a given streamline. The transition is clear on a
plot of vx(z) which displays four local extrema forqh@1
and only two for qh!1. The critical value is given by
] z
2g2~0!50 or 2qb11hq2b21Q2b350. For a thin Debye

layer, this leads to coth~qh)5qh/2, or qh52.07.2.
Patterns corresponding to phase shifts of the modulation

intermediate between 0 andp, or modulations of different
amplitudes or wavelengths on the two plates, are easily com-
puted from Eq.~20!.

D. E¢ ext perpendicular to the modulation wave vector

If an external fieldEW ext
' is applied perpendicularly to the

potential modulationEW ext
' 5E'yW5EW ext* the equations are

much easier to solve as onlyvy(x,z) is nonzero. Actually~3!
requires thatvy2eE'c/h be a harmonic function. Imposing
vy50 on the plates then leads in the two previous electrical
geometries to

vW 152
s0EW ext

'

hQ
coth~Qh!cos~qx!F cosh~qz!

cosh~qh!
2
cosh~Qz!

cosh~Qh! G ,
~25!

vW 252
s0EW ext

'

hQ
tanh~Qh!cos~qx!F sinh~qz!

sinh~qh!
2
sinh~Qz!

sinh~Qh! G .
~26!

Close to each plate, the electric field drives the fluid along
y with a sign that alternates alongx. This surface effect
tends to disappear~and the velocity to reach its average value
zero! over a distance.q21 in the z direction. So ifqh@1
the two plates develop almost independent periodic shear
flows, whereas they interact ifqh!1.

E. Thin Debye layer limit: k@q,h

If the Debye length is much thinner than both the slab gap
h and the wavelength of the charge modulation 2p/q, Eq.~9!
for a parallel field is valid for~10 and 15! simplified along

g1~z!.
h cosh~qh!sinh~qz!2z sinh~qh!cosh~qz!

hq2sinh~qh!cosh~qh!
,

~27!

g2~z!.
z cosh~qh!sinh~qz!2h sinh~qh!cosh~qz!

hq1sinh~qh!cosh~qh!
.

~28!

For a perpendicular field,~21! and ~22! give

vW 1.m0 cos~qx!EW ext
' F cosh~qz!

cosh~qh! G , ~29!

vW 2.m0 cos~qx!EW ext
' F sinh~qz!

sinh~qh! G . ~30!

Formulas~27!–~30! are in fact obtained from scratch in
the TDL approach for surface potentialsz1

65z0 cos(qx) and
z2

656z0 cos(qx) using the slip boundary conditions~5! and
~6! andm052ez0/h. From ~7! and ~8! the two expressions
for m0 indeed coincide in the combined LEP and TDL limits.

F. Symmetry argument: Absence of net flow or force

In the geometries considered above, modulations of the
charge densities at any finite wavelength produce a periodic
flow pattern. As such they are unable to induce anet fluid
current in the slab. Neither do they generate a net force on
the plates. Therefore, only theq50 component of the sur-
face charge density is important regarding these net~aver-
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age! effects. This is clearly due to the symmetry between1
and2 charges that react in an exactly opposite way in an
applied field.

To generate net effects in modulated geometries it is thus
necessary to break this symmetry. A simple way to do so is
to make the gap narrower at the location of charges of a
given sign. Consider, e.g., a charge-modulated bottom wall
s25s0cos~qx). Then an applied parallel fieldEW ext

i tends to
push the fluid upwards forqx52p/2 modulo 2p, and pull it
downwards forqx5p/2 modulo 2p. By adding an upper
undulated neutral surfacez15h@11a cos(qx)#, with a.0
~see Fig. 2!, the upward stream is ‘‘bent’’to the right~direc-
tion of EW ext

i ), whereas the downward stream pumps liquid
from the left. It is thus natural to expect anaverage current
to the right. We quantify this statement in Sec. IV. To de-
scribe in the clearest way the generation of these net effects,
the formally simpler TDL limit is adopted in the rest of this
paper.

IV. UNDULATED PLATE ON TOP
OF A CHARGE-MODULATED SURFACE

Consider more generally a neutral undulated plate
z15h[11a cos~qx1F)] on top of a flat onez252h. The
potential on the bottom one is modulatedz25z0 cos(qx). In
the TBL limit, we usem052ez0/h and thus have to solve a
Stokes problem with boundary conditionsvW (x,2h)
5m0 cos(qx)EWext* (x,2h) on the lower plate, andvW (z1)50W
on the upper one. To allow analytical treatment, we further-
more consider small values ofa and thus take a perturbative
approach:

vW 5vW ~0!1avW ~1!1•••, ~31!

EW ext* 5EW ext*
~0!1aEW ext*

~1!1•••. ~32!

The inhomogeneity of the fieldEW ext* is a feature that actually
appears in the case of a parallel applied field, which we
address in Sec. IV A. We seek the generation of net fluid
current and force on the upper plate at first order ina, as the
12 symmetry is readily broken at this order.

A. E¢ ext parallel to charge modulation and undulation

We first compute the fieldEW ext* corresponding to an ap-
plied ~average! parallel field EW ext

i
5EixW . The zeroth order

EW ext*
(0)5EW ext

i ~solution for flat plates! is used to solve the
Laplace equation with field tangent to the surfaces at first
order. This leads to the quantity of interest

EW ext*
~1!~x,2h!52

qh

sinh~2qh!
cos~qx1F!EW ext

i . ~33!

Note that this adds a new element to the qualitative discus-
sion given in Sec. III F: the electric field is stronger in the
regions where the gap is narrower. The charges at these lo-
cations will therefore be more efficient in dragging the fluid.
This additional effect is clearly seen from Fig. 2 to be in the
same direction as the one previously mentioned in Sec. III F.

The zeroth order velocity fieldvW (0) for a flat upper plate is
given by Eq.~20!, using the approximate formulas~23! and
~24!, or

g~z!5
hqz, sinh~qz.!2sinh~qh!cosh~qh!z. sinh~qz,!

2@sinh2~qh!cosh2~qh!2h2q2#
,

~34!

wherez,5z2h andz.5z1h.
The zero velocity boundary condition on the upper plate

vW (z1)50W leads at first order ina to

vW ~1!~h!52h cos~qx1F!]zvW
~0!~h!. ~35!

Noting, furthermore, thatv x
(0)(h)50 impliesg8(h)50, one

is led to

vx
~1!~h!52m0Eihg9~h!cos~qx!cos~qx1F!,

vz
~1!~h!50.

~36!

The boundary condition on the lower plate isvW (1)(2h)
5m0 cos(qx)EWext*

(1)(2h). Thus, as cos~qx)cos~qx1F)
5 cos~F!/21 cos~2qx1F)/2, one can decomposevW (1)5uW
1wW , whereuW derives from a stream function proportional to
cos~2qx1F) and can be calculated using formulas similar to
~23! and ~24!, andwW is a simple shear flow,

wW 52
m0EW ext

i cos~F!

2 Fhg9~h!
z1h

2h
2

qh

sinh~2qh!

z2h

2h G ,
~37!

which clearly appears as the sum of the shear flows imposed
by the constant terms in the boundary conditions on the top
and bottom plates. AlthoughuW is periodic inx and carries no
net flow, the shear flowwW does. Thus a net average current
JW i is generated in the slab:

JW i5E
z2

z1

vxdz52
m0h

2
EW ext

i a cos~F! f i~qh!, ~38!

with, from ~37! and ~34!,

f i~u!5u
cosh~2u!@2u2tanh~2u!#

2@sinh2~u!cosh2~u!2u2#
1

u

sinh~2u!
. ~39!

FIG. 2. An undulated surface on top of a flat charge-modulated
one. Parallel applied field. The recirculation pattern due to the
charge modulation is bent by the undulation to produce a net flow
toward the right. This effect is enhanced by the fact that the electric
field is more intense in narrower regions, thus inducing a stronger
electro-osmotic slip velocity~longer arrows!.
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Changing the sign ofa is ~fortunately! seen to be identical to
shiftingF by p. The rescaled susceptibilityf i(u) is positive
for all values ofu5qh. Thus if z0.0, F50, anda.0, we
obtainJW i in the same direction asEW ext

i ~recall thatm0 is then
negative!. This is in agreement with the qualitative picture
sketched in Sec. III F. Note that actually the first term on the
right-hand side of~39! corresponds to that picture, while the
second one is due to the increase of field intensity in the
narrower regions~33!. Both operate in the same direction.

We have thus shown that in this geometrywhere the av-
erage charge in the solution is zero,it is indeed possible to
generate a fluid current by applying an external field. To
reverse the direction of the current one can simply reverse
the field or move the upper plate byp/q. Formula ~38!,
although obtained for smalla, clearly shows that the effect is
stronger for small values ofqh, as expected: the two plates
influence each other more efficiently. Actually,
f i(qh).8(qh)2 exp~22qh) for largeqh and f i(qh). 3

2 for
smallqh.

The flow in this situation also generates a net average
stress on the upper plate. Its horizontal parttW i is given by

tW i•xW5^2hnW •@¹W vW 1 t~¹W vW !#•xW1pnW •xW &z5z1, ~40!

wherenW is the upwards normal to the top surface: at zeroth
ordernW (0)5zW and at first ordernW (1)5qh sin(qx1F)xW. Gath-
ering the many terms that appear in~40!, the net stress on the
upper surface to first order ina is

tW i52
hm0EW ext

i

4h
a cos~F!ki~qh!, ~41!

where

ki~u!52u
cosh~2u!@2u2tanh~2u!#

2@sinh2~u!cosh2~u!2u2#
1

u

sinh~2u!
~42!

is a negative function for all values ofu5qh. From.2 1
2 for

small u it decays exponentially when the gap is increased
beyond the wavelength. Note that, contrary to the current,
there is no direct argument giving the sign ofki as the pres-
sure terms and the viscous drag terms are of opposite signs.
Note eventually that we have chosen a sign convention forki

different than in Ref.@10# for the sake of similarity between
~38! and ~41!.

If the upper plate is allowed to move alongx, its equilib-
rium position will correspond to no current situationsF5
6p/2, one of them~modulo 2p! being stable while the other
one is not.

B. Perpendicular field E¢ ext
'

If an electric fieldEW ext
' 5E'yW is applied perpendicular to

the modulation, the electrostatics problem is simpler asEW ext*
5EW ext

' uniformly. The hydrodynamic problem is easily
solved asvW 5vy(x,z)yW . The zeroth-order velocity is

vW ~0!52m0EW ext
' cos~qx!

sinh@q~z2h!#

sinh~2qh!
; ~43!

therefore the boundary conditions for the first-order term are

vW (1)(2h)50W , and, from~35!,

vW ~1!~h!5m0EW ext
'

hq

2 sinh~2qh!
@cosF1cos~2qx1F!#.

~44!

To this order, in addition to a periodic flow, we obtain a net
shear flow and an average current

JW'52
m0h

2
EW ext

i a cos~F! f'~qh!, ~45!

with

f'~u!52
u

sinh~2u!
, 0. ~46!

A net stress on the upper plate is also generated, which from
a formula similar to~40! is

tW'52
hm0EW ext

'

4h
a cos~F!k'~qh!, ~47!

where

k'~qh!52 f'~qh!5
qh

sinh~2qh!
. 0. ~48!

Formulas ~45! and ~47! respect the symmetries of the
problem, and one can check the signs through the simple
following physical argument, valid for smallqh. Takez0.0,
a.0, andF50. Then the slab is narrower in the regions
where the charge density in the solution is positive~Fig. 3!.
The local current is the average velocitytimes the local
thickness of the slab. The average velocity is roughly half
that of the slip boundary condition, and is thus in modulus
similar for negative and positive charge regions. The local
current is thus stronger in the regions of negative charge
densities, which leads to an overall current in the direction
opposite toEW ext. On the other hand, the viscous stress on the
upper plate is the slip velocity times the viscositydividedby
the slab thickness. Thus the narrower regions determine the
sign of the drag, alongEW ext in the present case. Asm0,0,
this is in agreement with~45!.

Clearly for large values ofqh, f' and k' both decay
exponentially as the charge and shape modulations do not
interact, which they do for small qh, when
f'(qh)52k'(qh).2 1

2.
The pumping effect and drag force are thus of similar

amplitude, although of opposite direction, if the electric field

FIG. 3. An undulated surface on top of a flat charge-modulated
one. Perpendicular applied field. Narrow regions are more efficient
to induce stress on the upper plate but less efficient in contributing
to the average current.
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is applied perpendicular or parallel to the modulations. This
allows generation of fluid currents or forces purely transverse
to the applied fieldEW ext, as will be discussed in subsection
IV D. Before that, a partial but simple check for the cumber-
some calculations of the past two subsections is presented.
More precisely, I focus on theqh!1 limit using the lubri-
cation approximation.

C. Lubrication approximation qh!1

Consider a narrow channel of arbitrary local thickness
d(x) above a flat surface atz.50. The bottom flat surface
bears a modulated potentialz~x). Variations alongx of all
quantities occur on scales larger than the typical channel
thickness.

Let us first apply an electric currentJel
i along x in this

channel~parallel geometry!. This imposes a local electric
field E(x) ~neglecting in this limit variations alongz.! given
by the conservation of the electric current:Jel

i
5cE(x)d(x),

wherec is the conductivity of the electrolyte. This field act-
ing on the lower boundary imposes a shear current
m(x)E(x)d(x)/2, with m(x)52ez(x)/h. Taking into ac-
count the Poiseuille flow generated by local pressure gradi-
ents alongx the conservation of the total fluid currentJi

reads

Ji5
1
2m~x!E~x!d~x!2

1

12h
]xp~x!d3~x!. ~49!

This allows us to calculate pressure differences as a func-
tion of the constantsJel

i andJi , and of the shaped(x). In-
sisting that we have no buildup of pressure across the system
^]xp&50 gives the fluid current as a function of the electrical
current,

Ji5
Jel

i

2c

^m~x!/d3~x!&

^1/d3~x!&
, ~50!

where^ & indicates the average in thex direction. Applying
this general formula to our previous charge and shape modu-
lations z(x)5z0 cos~qx) and d(x)52h[11a cos~qx1F)/
2], with Jel

i
52hcEi to first order ina, one recovers~38!

with f i5
3
2, which is the limit we found forqh!1. Similar

calculations, taking carefully into account both viscous shear
and pressure effects, allow us to recover the corresponding
values fortW .

For the case of a perpendicular field~or electric current!,
due to translational invariance, the absence of macroscopic
pressure gradients impose that of local pressure gradients, so
that the current is only due to the shear term

J'5
E'

2
^m~x!d~x!&. ~51!

Similarly one simply has

t'5hE'^m~x!/d~x!&. ~52!

When applied to the geometry considered in Sec. IV B,
these two formulas agree with~45! and ~47! and
f'52k'521

2, and quantify the qualitative argument given
there.

D. Generic fieldE¢ ext5E ix¢ 1E'y¢ and discussion

Now consider a generic applied field applied at an angleu
with the direction x: EW ext5EixW1E'yW5EextuW u, where uW u
5 cosu xW1 sinu yW. Then the net fluid current and force on
the upper plate are, to first order ina,

JW i52
m0hEext

2
a cos~F! fW~qh,u!, ~53!

tW i52
hm0Eext

4h
a cos~F!kW~qh,u!, ~54!

where

fW~qh,u!5 f i~qh!cosu xW1 f'~qh!sinu yW , ~55!

kW~qh,u!5ki~qh!cosu xW1k'~qh!sinu yW . ~56!

Thus the differences between parallel and perpendicular
susceptibilities~f ’s and k’s! imply that the net current and
force are generically not parallel to the applied field. More-
over, as the susceptibilities are of opposite sign, the net cur-
rent ~or the net force! is strictly perpendicular toEW ext if the
latter is applied at a specific angleuJ ~or ut! with thex axis.
From ~55! and ~56! these angles are given by

tan2~uJ!52 f i~qh!/ f'~qh!,
tan2~ut!52ki~qh!/k'~qh!. ~57!

This clearly provides a way to produce pumps sending
flow in directions nonparallel to the applied field. Recall that
F may also be used as a tuning parameter, as it allows us to
reverse the direction of current at fixedEW ext.

A force is also generated on the upper plate at an angle
with the applied field. However, this effect cannot be used to
translate the upper plate~or to induce the steady rotation of a
rotor!, as the motion of the plate will modifyF and the
electric geometry, and the effect averages out to zero as the
12 symmetry is recovered. It is thus logical to inspect ge-
ometries that maintain symmetry breaking while allowing for
the translation of the upper plate.

V. NEUTRAL FLAT PLATE ON TOP OF AN UNDULATED
CHARGE-MODULATED ONE

The simplest solution is of course to impose the charge
modulation and the shape undulation on the same plate~for
example the bottom one!. The upper plate can be taken flat
and uncharged, so that its motion does not affect the overall
charge/shape geometry.

Furthermore, this solution is interesting on a ‘‘manufac-
turing’’ standpoint: the geometry of Sec. IV implies the abil-
ity to produce without defects periodic patterns on two plates
of the same wavelength and to align them. The present ge-
ometry allows for defects as long as the chosen procedure
grants that, e.g., positive~negative! charges are found in the
valleys ~hills! of the bottom plate. This could be achieved,
for example, by depositing on a flat plate stripes of finite
thickness of a material that tends to dissociate in contact with
water~or adsorb specific charged groups!. Eventually, in this
geometry, the charge and shape effects will necessarily in-
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teract even if the top plate is quite far away, as they take
place in the sameq21-thick layer of fluid above the bottom
plate.

We follow the same steps as in Sec. IV to derive the fluid
current and force on the upper plate generated by an applied
electric field. To set notations, we consider an undulated and
charge-modulated platez252h[11a cos~qx1F)] and
z25z0 cos(qx) below a flat neutral onez15h. We solve at
first order ina the hydrodynamic problem defined by the
boundary conditionsvW (x,z2)5m0 cos(qx)EWext* (x,z

2) and

vW (h)50W .

A. E¢ ext parallel to charge modulation and undulation

We have to reevaluate the fieldEW ext* corresponding to an
applied parallel fieldEW ext

i
5EixW ~Fig. 4!. Clearly, one still has

EW ext*
(0)5EW ext

i , butEW ext*
(1) now derives from the potential

V* ~1!~x,z!5hEi

cosh@q~z2h!#

sinh~2qh!
. ~58!

Then as in Sec. IV A, the first-order analysis leads to a pe-
riodic stream function~periodp/q! plus a shear flow. Going
through painful but straightforward algebra, the current and
force on the top plate appear in the now familiar form

JW i52
m0h

2
EW ext

i a cos~F!F i~qh!, ~59!

tW i52
hm0EW ext

i

4h
a cos~F!K i~qh!, ~60!

where

F i~u!5K i~u!21, ~61!

K i~u!52uF u2sinh~u!cosh~u!cosh~2u!

sinh2~u!cosh2~u!2u2
2 coth~2u!G .

~62!

Note thatvW (0) enters in a subtle manner into the calcula-

tion of JW i as the integration ofvx must be done fromz
2 ~and

not 2h! to z15h.

From an analysis of~62!, K i and F i are both positive,
with limiting behaviors F i(u→0). 3

2, K i(u→0). 5
2, and

F i(u→`)5K i(u→`).3u.

B. Perpendicular field E¢ ext
'

If the electric field is applied perpendicular to the modu-
lation EW ext

' 5E'yW ~Fig. 5!, an analysis similar to Sec. IV B
leads to

JW'52
m0h

2
EW ext

' a cos~F!F'~qh!, ~63!

tW'52
hm0EW ext

'

4h
a cos~F!K'~qh!, ~64!

where

F'~u!5u coth~2u!215K'~u!21, ~65!

K'~u!5u coth~2u!. ~66!

Now K' is always positive with limitsK'(u→0). 1
2 and

K'(u→`).u, whereasF' changes sign, as shown by the
limiting behaviorsF'(u→0).2 1

2 andF'(u→`).u.

C. Lubrication approximation qh!1

To check the preceding results in the lubrication approxi-
mation, it is useful to use the top plate as the origin of thez
axis, so that the charged bottom plate is given byz52d(x).
Then a quick analysis shows that the formula~50!–~52! still
hold. Applied to the geometries of Secs. V A and V B, they
give back theqh→0 limits of formulas~59!–~66!.

D. Generic applied field and discussion

The analysis of subsection IV D can be repeated to obtain
the effect of a fieldEW ext applied at some angleu with the
charge-modulation and undulation directionx. A general
point is still valid: even for~on average! neutral plates, a net
current and a net force on the upper plate are generated, with
components transverse to the applied field. However, the
susceptibilities calculated in the present section lead to sig-
nificant qualitative differences.

FIG. 4. A neutral flat plate on top of an undulated charge-
modulated one. Parallel applied field. The recirculation pattern due
to the charge modulation is bent by the undulation to produce a net
flow toward the right. This effect is enhanced by the fact that the
electric field is more intense in narrower regions, thus inducing a
stronger electro-osmotic slip velocity~longer arrows!. A homoge-
neous electro-osmotic flow results at infinity if the upper plate is
absent.

FIG. 5. A neutral flat plate on top of an undulated charge-
modulated one. Perpendicular applied field. Although the force on
the upper plate is always in the same direction as the field~for this
choice of parameters!, the direction of the average current depends
on the separation between the plates. A homogeneous electro-
osmotic flow along the field results at infinity if the upper plate is
absent.
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~i! As to the generation of a net current flow, from~57!
the latter can be purely perpendicular to the applied field
only if F' is negative~and thus of opposite sign thatF i!.
This requires a gap thin enough so thatqh/coth~2qh!,1. If
such is not the case, the generated current will still be ge-
nerically at some angle with the applied field.

~ii ! As to the force generated on the top plate, asK i and
K' are of the same sign, it is not possible to generate a force
purely perpendicular to the applied field. However, as for the
current, a component perpendicular to the applied field is
generated. If the plate is held in the direction parallel to the
field, it will thus slide perpendicularly to it. Similarly, a rotor
would be set in helical motion, so that if its translation is
prevented, it would simply rotate perpendicular to its axis.
Note that a way to impede motion in the direction of the field
is to add a slightuniform charge density~or ordera com-
pared to the modulation amplitude! to create a simple
electro-osmotic flow opposing the parallel component in the
equivalent of~54!.

~iii ! Let me emphasize a structural difference from the
geometry of Sec. IV. It can be seen from Eqs.~59!–~66! that
even if the top plate is infinitely far from the bottom charge-
modulated and undulated one, uniform flow is created in the
region h@z.@q21, due to the interaction of shape and
charge in the region of thickness.q21 above the bottom
plate. This is clearly allowed as long as the12 symmetry is
broken by the bottom plate alone. So if an external field

EW ext5EixW1E'yW5EextuW u is applied, the velocity field above
a single charge-modulated and undulated plate reaches a con-
stant value

vW `52
m0qh

4
Eexta cos~F!~3 cosuxW1sinuyW !. ~67!

This indicates that such a single plate immersed in a solution
would tend to translate at some angle with an applied electric
field, although the plate is on average neutral. This is very
similar to the findings of Anderson@3# that the electro-
phoretic mobility of an object depends on thecharge distri-
bution on the object, and not solely on itstotal charge. An
object of total positive charge can thus move as if it was
uniformly negatively charged. Similarly, corrugated walls of
average positive chargecan induce an electro-osmotic flow
in the direction of the field~as if they wereuniformlynega-
tively charged!. Physically, charges that are in dips are hy-
drodynamically and electrostatically ‘‘screened’’ and thus
less efficient to induce fluid motion. In our present geometry
this screening is different for parallel and perpendicular ap-
plied fields~in the latter case there is actually no electrostatic
screening!, thus the angle between the flow~the force! and
the applied field. The second plate is not necessary here, and
a single object with the proper symmetry will be set into
helical motion.

VI. CONCLUSION

To summarize, we have investigated the consequence of
charge nonuniformity on the generation of electro-osmotic
flow and drag in a slab geometry. A modulation of the
charge density on the wall induces convective patterns that
can be taken advantage of to generate fluid currents and drag

on the plates, provided one brakes the12 symmetry, e.g.,
by modulating the shape of the plates. This could be of use in
microfabricated geometry to design pumps or motors.

Note that we have neglected what might be a simpler
design, namely uniform charge densities and only shape
modulation. Consider, e.g., a slab geometry with the bottom
plate undulated and uniformly charged. It is easy to show
that the electro-osmotic flow generated parallel and perpen-
dicular to the undulation are of different amplitudes, so that
transverse components can also be generated. However, this
effect is only of order 2 in the amplitude of the undulationa
~on symmetry grounds it has to be an even power!, whereas
the component parallel to the applied field is of zeroth order.
The difference from the situation of Secs. IV and V is clear.
Here the field pushes the fluid rather homogeneously, and is
simply slightly less efficient in doing so in one direction. In
Secs. IV and V the field creates an almost periodic and sym-
metric pattern of pushing and pulling which is exploited by
the undulation, allowing an efficient transfer in the transverse
direction. However, in situations where large amplitude un-
dulations are possible, uniformly charged undulated walls
can be efficient generators of transverse effects. Eventually,
as mentioned in Sec. V D, uniform and modulated charge
densities can be combined to induce specific geometric fea-
tures.

Another important remark is that we have focused on pe-
riodic geometries with uniform applied currents, and thus
completely neglected boundary and finite-size effects. These
may break the12 symmetry even for flat walls. In finite-
size systems where only a few stripes are present, it is thus
legitimate to consider additional geometries, e.g., undulation
and charge modulations along different axes, whereas these
are ruled out on symmetry grounds for infinite systems. This
is also clearly of importance to discuss the design of finite-
size mobile parts: e.g., for a rotor the radius and the length of
the cylinder ~compared to the stripe size!, as well as the
phase of the modulation, have to be taken into account@11#.

Finally, the present analysis seemingly does not take into
account the polarization charges that will appear generically
on the wall surfaces. Let me here show that, at first order in
EW ext, and for the thin Debye layers~TDL’s! considered in
Secs. IV and V, this should not modify the results obtained
for the fluid current in the slabJW and the average force den-
sity on the upper platetW .

Polarization charges.The walls have up to now been
taken to be almost perfectly insulating compared to the elec-
trolyte of high conductivity. As a result electric field lines
have been assumed parallel to the interfaces. The continuity
of the tangential component of the electric field will then
impose inside the walls a nonvanishing normal component of
the electric displacement. The corresponding discontinuity
leads to polarization charges of densityspol proportional to
the dielectric constant of the wallewall . Note first that these
charges do not exist in a purely flat geometry, and are thus
proportional toa at first order. More importantly, they are
proportional to the applied fieldEext.

Corrections induced.The corresponding modification of
the ionic densityre in the fluid is thus also linear inEext.
Therefore it can produce a flow at the same order through the
last term on the right-hand side of Eq.~1! only by coupling
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to theequilibriumelectric field. The latter being almost per-
pendicular to the interface in the TDL approximation, this
results only in a pressure term that can be absorbed in the
definition of p @a similar result has already been made ex-
plicit for low electrostatic surface potentials in Eq.~3!#. Ap-
proximations~4!–~6! thus remain valid, and the flow induced
at first order inEext is independent of the polarization of the
walls. Consequently, this also holds for the hydrodynamic
forces on the upper plate. At this order, there are furthermore
no electrical forces on the upper plate, as the equilibrium
field is zero in their vicinity so that polarization charges can
induce only a term proportional toEext

2 . Thus our results for
JW andtW correctly describe the linear response to the applied
field EW ext, at least as long as the finite-size effects mentioned
in the previous paragraph are negligible.

In conclusion, the combination of charge and shape ef-
fects seems a promising way to generate a wide variety of
electromechanical effects, where three-dimensional flows
arise with the symmetries and characteristics imposed by
surface-drawn patterns.
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