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Generation of transverse fluid currents and forces by an electric field:
Electro-osmosis on charge-modulated and undulated surfaces

Armand Ajdarf
Lyman Laboratory, Physics Department, Harvard University, Cambridge, Massachusetts 02138
(Received 5 September 1995

As in the usual paradigm for electro-osmosis, an electrolyte fluid confined between two parallel plates is
considered, and an electric fietk,; is applied parallel to the plates. Analyzing here the combined effect of
charge and shape modulation on the surfaBgg,is shown to generate flows in the slab and forces on the
plates even if the platgand thus the fluidare on average neutral. Furthermore, the corresponding fluid current
and plate drag are generically nonparallel to the field, and can be strictly perpendicular to it in well-chosen
geometries.

PACS numbes): 82.65.Fr, 82.45+z, 47.65+a

[. INTRODUCTION such geometries and effects in artificial devices at the micron
scale[9]. More generally, with the increasing possibilities
An external electric field induces motion of an electrolyte offered by lithographic techniques, electrohydrodynamical
fluid in the vicinity of a charged surface. The resulting rela-éffects on striped patterns should be a developing field.
tive velocity between the surface and fluid away from the As a first step, the simple geometry of an electrolyte con-
surface leads to the well-known phenomena of electrophoréined between two essentially planar insulating walls is con-
sis and electro-osmosjié—3]. Electrophoresis describes how Sidered. We investigate the effects of applying an electric
a particle is set into motion when submitted to an electridie!d (@ctually an ionic currentparallel to the fluid channel.
field in a fluid at rest, and how its corresponding electro-N Sec. Il we introduce the notations and formalism used to

phoretic mobility depends on its surface characteristics: sw‘—jesc_”be the <_:oupl|ng between_ electro_statlcs and hydrody-
face potential(“zeta” potential) or charge densityf1—3]. namics, allowing us to recall in passing the well-known

Electro-osmosis describes the way immobile charged Wallglheacrtrg;jos;?]oatllc (Iaigzcgklafcttrr]ii :‘\ilé? dwae”nse?arl(taefslaatl a?ud L:‘Irgf/f/)ri?\]%e
induce flow of the fluid they bound. Both are of great impor- ged, PP 9 piug

. . . . s slab. In Sec. lll charge modulations on flat surfaces are
tance in separation technologies using electric fields, e.g.,

. ; . 'Bhown to lead to convective patterns, but to be unable to
the developing domain of capillary electrophorddik More  gonerate net currents in the slab or forces on the walls. How-
recently, electro-osmosis has also been proposed as a s

[ _ ) . ver, the combination of charge and shape modulation on the

propulsion mechanism for cells without motile apparatus;yqjis creates such currents and forces, even when the aver-

these are able to generate electric potential gradients, and, g§e charge on the wall®r in the electrolytg is zero, and

their membrane is charged, motion is expedt@d]. with components perpendicular to the applied field. Two ge-

In this paper we investigate some features of the electroometries are explicitly considered: a neutral undulated plate

osmotic flows generated on surfaces with nonuniform suron top of a flat charge-modulated offec. IV), and a flat

face potentialgor charge densitigsAs such, this parallels neutral plate on top an undulated charge-modulated 8ee.

the recent studies of Anderson and co-workig8$], who V). A discussion(Sec. V) concludes the paper. A prelimi-

investigated the influence of such inhomogeneities on th@ary report of some of the results was given in Ra&0].

electrophoretic mobility of small particles. The present

analysis also displays features similar to those arising when IIl. ELECTROHYDRODYNAMIC COUPLING:

an electric field induces charges at a fluid interface, which EQUATIONS AND MODEL

under the influence of the former in turn induce motion of

the fluid[7]. The geometries we consider are also inspired by Consider two almost flat parallel surfaces confining an

biophysical models for the flagellar rotatory motor of bacte-electrolyte solution. The upper and lower surfaces are de-

ria. In this system an ion flux across the membrane induceined byz"(x,y) andz™(x,y) in a (x,y,z) system of Carte-

the rotation of a rotofattached to the flagelaelative to a  sian coordinates, with averag@s™)=h and(z")=—h. The

stator(attached to the cell bodlyThe rotation axis is perpen- €lectrolyte is of dielectric constamtand viscosityy, and its

dicular to the membrane and thus parallel to the ionic curionic content such that the Debye-Huckel lengtixis. The

rent. Recent biophysical models picture the rotor as a cylinfluid is assumed to be incompressible, and a low Reynolds

der coated by helical stripes of charges of opposite dighs nhumber description is valid.

It is then tempting to investigate the possibility of mimicking ~ The two bounding walls acquire a charge in contact with
the electrolyte so that they bear a surface charge density
o (x,y) and o~ (x,y). Correspondingly, electroneutrality is

*On leave from Laboratoire de Physico-Chimie “Btique,  Violated in the fluid in their vicinity(Debye layey [1]. The
ESPCI, 10 rue Vauquelin, 75231 Paris cedex 05, France, wher@€t charge densitpcdis related to the potential® by the
correspondence should be addressed. Poisson equatiorA % pg?=0. The potential on the sur-

1063-651X/96/58)/499610)/$10.00 53 4996 © 1996 The American Physical Society



53 GENERATION OF TRANSVERSE FLUID CURRENTS AN. .. 4997

faces, often referred to as the “zeta” potential,ZiS(x,y) account the fact thdor flat parallel walls p.— pg? is negli-
=4*Ix,y,z"(x,y)]. The relation between zeta potentials gible. The above formulatiofi3) is more general and ad-
and surface charge densities can be obtained from the Gougquate for nonplanar boundaries.
Chapman theory or from the Debye-Huckel linearized ver-
sion if the potentials are small compared to thermal energies: B. Thin Debye layers
ellkgT<1 [1-3]. )

If an uniform external electric fieldE,,; (or an electric
curren) is applied parallel to the slab, the nonzero charg

If the Debye layers are very thiffDL’s) compared to
both the typical radii of curvature of the surfaces, the dis-
: ! 7 N . &ance between surfaces, and the typical distance of variation
den_S|ty will drag the flu_|d n thec™~thick De_bye layer, in- ¢ he charge densitiegnore precisely, smaller than these
ducing a nonzero velocity field everywhere in the slab. The lengths by at least a factor explel/2ksT) [3]], then in a

coupling is described by a force density term in the Stokegnea response theory, it is possible to approximate the elec-

equation: trohydrodynamic problenil) by the simple Stokes equation
—Vp+ pAd+pE=0, . ._g
p nAav Iie . (1) _Vp+ ﬂév—o, (4)
V U= 0, V . 62 0

where p and E=—Vy are the total local charge densities ypon replacement of theip to now impliciy no-slip bound-
and electric field(i.e., whenE,, is applied, andp is the  ary conditions on the surfaces by slip boundary conditions
hydrodynamic pressure. This is in general a formidable probf3],

lem as the bulk force term is nonlinear and in that the hy- .

drodynamics furthermore influence the solution of the elec- U(X,Y,25)=u" (X,Y)E5(X,Y,2), 5)
trostatics problem through convective terms in the

expression of ionic curren{®,3]. It is thus classically trac- With, from local analysis,

table only in the framework of linear response to the applied .

field E., and through further approximations. We will here m(X.y) == eL=(xy)l . ®)

use two common examples presented in the next subsectio
low electrostatic potential§LEP’s) and thin Debye layers length in usual conditions(1-1 salt in water at
(TDL'’s). 10 1-103M 1% is =1-10 nm, allows the calculation of

This provides us with the set of equatiqns used througho”électrophoretic mobilities for various particle shapes, and to
the paper. Note that they allow the addition of any purely.

. i X X take into account variations of the surface poteni&b].
hydrodynamic solution respecting the no-slip boundary CONNote that the TDL regime is not a subcase of the LEP ap-

ditions. We therefore focus without loss of generality on they o0 a5 it allows us to describe high electric potentials, in

case where no global pressure gradient exists across the Syggich the relation between the surface charge and zeta po-

tem. Itis also clear that we have chosen to study only steadyg i) is incorrectly described by the Debye-Huckel approxi-

state situations. mation. The two approaches of course coincide in the case of

low potentialsandthin Debye layers. As a quick example we
A. Low electrostatic surface potentials recall in Sec. Il C the usual theory of electro-osmosis be-

For low electrostatic potentiald EP's) ef/kgT<1 (typi-  tween uniformly charged flat plates, before turning to inho-

cally <25 mV), the equilibrium electrostatics are conve- mogeneous surface charge distributions in Sec. Ill.

niently described by the Debye-Huckel equation

PPhis great simplification, which is often valid as the Debye

A g— 20 C. Electro-osmosis on homogeneous surfaces
—K ’ . 4+ . .
P wea(ztlil: _ Uf/ E 2 Consider two flat surfaces™ = +h with uniform charge
n ' distributiono" =0~ =0y. In the LEP regime the equilibrium

where 4, describes the derivative along the normal to the®léctric potential inside the solution s, from(2),

wall pointing inwards toward the electrolyte. For low applied ¥ (2) =4 cost(xz)/ costixh),_ where fo=0q coth(xh)/ex.
fields the hydrodynamics problem can then be shggirto ~ For flat plates one has simpB,= E., everywhere, so that

be well approximated by (3) leads tov=(e/p)[¥°(2) — {g]Eex- FoOr xkh>1, apart
from the Debye layers close to the walls, the velocity is thus
—Vp'+ 7AG+p2EL=0, almost uniforms = uoE ey With o= — e/ 7 (electro-osmotic
V.5=0, ©) plug flow). The minus sign is easily understood{jfis posi-
tive, negative charges are in excess close to the surfaces, and
where p’ =p— ex2(§°Y 22+ (pe—pH ¢, and EX (7)= the fluid there is driven in a direction opposite to that of

- v*vgxt is the electric field corresponding to an average fieIdEeX"

. ) ) ~ The LEP result is clearly consistent with the TDL ap-
E.y imposed between insulating walls of the same shape i =

. . . . If.')roach, which leads simply ©= uoE., everywhere, omit-
the vacuun(L.e., obtained by simple solution of the Laplace ting the description of the flow in the Debye layers. An

equationAVe,=0 with lzzundary condit-ions?nv’e‘xt.:O ON  electro-osmotic plug flow is created in the slab, which has to
the surfaces Note thatEg, was confusingly designed by be taken into account, e.g., when analyzing capillary electro-
Eox in Egs.(2) and (3) of Ref.[10], where was taken into phoresis daté4].
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- -~ - A=[« sinh(Qh)]~*[hg—sinh(gh)cosigh)]™*, (11)

a,=q sinh(Qh)coshgh)—Q cosiQh)sinh(gh),
(12

12)
Eex
—> ‘ ] \ l a,=Q coshQh) coshgh)—q sinh(Qh)sinh(gh)
‘ —h~! sin(Qh)coskgh), (13
az= sinh(gh)coshigh)—hq 14

FIG. 1. Close to a charge-modulated surface, the fluid is pulled
periodically in opposite directions. As a result, recirculation rolls gnd
develop on a scale proportional to the modulation wavelength.
g,=B[b,z sinl(qz) + b,h cosi{qz)+b; cosiQz)],
Ill. FLAT PLATES WITH MODULATED SURFACE (15
CHARGES

- _ -1 ; -1
Now consider inhomogeneously charged flat surfaces. B [« cosQM]"Tha-+sinf(ghjcostigh)] ’(16)

Due to the linearity of the equations, solving the generic

problem with arbitrary surface charge densities on Fhe two b,=q cosiQh)sinh(qh)— Q sinh Qh)costgh),
surfaces reduces for each wave vector to the analysis of two (17)
geometries, which we choose, for formal simplicity, to pro-

vide even and odd solutions m In the first one the surfaces b,=Q sinh(Qh) sinh(gh)—q cosiQh)costgh)

are charged in a symmetric wayo; (X)=07 (X)

=0, cos@X). In the second one, the sign of the charge on —h™* cosQh)sinh(gh), (18
the lower plate is reversefor its phase shifted bym):

o5 (X)=0, cosgX) on the upper plate ando, (x)= b= sinh(gh)costigh)+hq. (19
— o cos@X) on the lower plate. In most of this section we ) _ .
adopt the formalism corresponding to the LEP limit, and on Due to the linearity of the problem, these solutions deter-

our way will mention the correspondirignd simpleyresults ~ Mine the influence of each plate. That is, if only the upper
for the TDL case. plate is charged withr, = oy cos@x), the resulting stream

Using the Debye-Huckel equatiof®), the equilibrium  fUNCtion is¢., = (¢ +,)/2. Similarly, if only the lower plate

electrostatic potentials in these two geometries are easily off12S the previous modulatiorh_=(¢,— ¢,)/2. Then, for any
tained. They readomitting the “eq” to simplify notationy charge modulation of the surfaces, t_h_e linearity of the prol_)-
lem allows us, by Fourier decomposition, to sum the contri-

cosiQ2) bution of each wavelength on each plate.
U1(X,2)=(0o/Qe)cogqx) ————, (7) Let us recall at this point that the isp-lines are the
sinh(Qh) stream lines of the flow. Thus a contour plotgfs an easy
way to visualize the convection pattern inducedgly, [10].
sinh(Qz) The velocity field is more quantitatively described b
$a(%2)=(00/Qe)c0dax) ormts, (®) d q d d

vx= moEy codax)g’(2),
with Q?=q2+«2 For flat plates one has uniformig, vz= HoEy SIN(AX)q9(2),
=Eqy, Which simplifies solving3).

(20

whereg is the linear combination aj, andg, appropriate to
. _ fit the given electrostatic boundary conditions. In the next
A. E¢y parallel to the modulation wave vector two subsections we analyze the morphology of the convec-

If an external field is applied along this ax& —E,x,  UVe pattems in a few geometries.

the fluid close to the surfaces is driven in a direction that _ o

alternates along the axis. Incompressibility imposes recir- B. Single plate(the hg>1 limit)

culation in the slab, and convective rolls appéég. 1). The Take the bottom plate charges =g, cogqgx), and the

pressibility condition in(3) to introduce a stream function han the Debye lengtk—%). Focusing on the vicinity of the

¢(x,2) such thav,¢=vy andd,$=—v,. In the two above- |ower platez. =z+h<h, the influence of the upper plate is

mentioned geometries some algebra allows us to obtain  negjigible. Thus from direct calculation or using the results

of Sec. Il A, the stream function for a parallel field is

¢i(x,2) = poE, cOYAX)gi(2) ©) P

. &= moE; cogax)g(z-), (21)
with py=—oy/ 7k,
where
g.=A[a,z coshgqz) +a,h sinh(qz)+a; sinh(Qz)],
(10 9(z-)=x Hl(Q-q)z-—1]e" " +e %=} (22
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Recirculation of the flow induced in the Debye layers oc- D. E.y perpendicular to the modulation wave vector
curs on a scale given by the point at whigh(z.) (and thus
v,) changes sigriFig. 1). This occurs at a distancé from

the wall such that

If an external field%}(t is applieg perpendicularly to the
potential modulationE,,,=E y=EZX, the equations are
much easier to solve as only(x,z) is nonzero. Actually3)
requires thab ,— €E, /7 be a harmonic function. Imposing
v,=0 on the plates then leads in the two previous electrical

_ _ + —A0_Qe Q=0
[(Q-a)(1-aé)+qle °~Qe =0 geometries to

(23

=1
For k>q this leads toqé=1. At distances larger thafithe Uy=— @ coth Qh)cog qx) costiqz) — costQz) '
flow alongx is in the direction opposite to what it is close to 7Q cosligh) coshQh)
the surface, and decays exponentially on the same gcale (25
R ooEL, sinh(qz) sinh(Qz)
C. Narrowing the gap Vo=~ nQeX tani(Qh)cog gx) sinf(gh)~ sinh(Qh) |°
Starting from the previous one-plate description, let us (26)

progressively narrow the gap in the face-to-face geometry 1

described by Eq(7) when a parallel field is applied. When Close to each plate, the electric field drives the fluid along
the two surfaces are far apart, they develop almost noninted with a sign that alternates along This surface effect
acting patterns, the exponential tails in the stream functiofiends to disappedand the velocity to reach its average value
melting in a cosh shape. A plot of(z) thus displays five zerd over a distance=q~* in the z direction. So ifgh>1

local extrema: the electro-osmotic flows peak close to théhe two plates develop almost independent periodic shear
walls, and the recirculating flows peak at a distance of ordeflows, whereas they interact ifh<1.

6 and decrease until the middle of the slab0 which is a
local minima. If the plates are brought closer, the two pat-
terns tend to “compress” each other, and thsize of the
rolls becomesh. In this geometry, the recirculating flows of
the two surfaces merge in the middle of the slab sodhét)
only has three extrema, recirculation peakingzat0. The
transition occurs for?ﬁgl(O):O. Although the correspond-

E. Thin Debye layer limit: «>q,h

If the Debye length is much thinner than both the slab gap
h and the wavelength of the charge modulatieric® Eqg.(9)
for a parallel field is valid fo10 and 1% simplified along

_ h coshlgh)sinh(gz) —z sinh(gh)cosh{qz)

ing equation is cumbersome, namelyq?;+hqga,+ 01(2) . ,
Q%a;=0, it reduces in the limit of a thin lDebye 2Iayer hq—sinh(ghjcostigh) 5
(k>q,h~ 1) to the much simpler tarigh)=qh/3, or gh @7
=2.98=3. Note that in the Iimitx>h‘1>q, the flow is eas- ) )
ily shown to be locally(at a givenx) the sum of a simple 0,(2)= z costigh)sinh(qz) —h sinh(gh)coshqz)
pluglike electro-osmotic flow corresponding to the local 2 hq+ sinh(gh)coshgh)
valueo(x) and of a Poiseuille recirculation flow due to local (28)
gradients of the pressufeecall that no large scale pressure
gradient is allowej] so that there is no net current: For a perpendicular field21) and(22) give
3 (h*°-2?)
vx=HoE) coggx)| 1—ex* M —e @ 5( 2 51~ o cos(qx)lgéﬂ{ —zgsgqﬁ)) , (29
(24 ?
L -, [ sinh(q2)
An even clearer transition is obtained when the potential vaT o cos{qx)Eex{ sinh(gh) |’ (30

modulations of the two surfaces are identical but for a phase

shift of 7 (geometry 2. Then again, wheh>q ™!, the two Formulas(27)—(30) are in fact obtained from scratch in
surfaces develop almost independent convective patternthe TDL approach for surface potentidls = ¢, cos@x) and
But upon narrowing of the gap, the system chooses to realgzi: + [, cos@x) using the slip boundary conditioris) and
range them so as to reduce dissipation due to shear: recirc{s) and u,=—ely/n. From (7) and (8) the two expressions

lation now brings the fluid directly from one surface to the for 4 indeed coincide in the combined LEP and TDL limits.
other along a given streamline. The transition is clear on a

plot of v,(z) which displays four local extrema farth>1
and only two forgh<1. The critical value is given by
329,(0)=0 or 2gb;+hg’b,+Q?b;=0. For a thin Debye In the geometries considered above, modulations of the
layer, this leads to cotfh)=qgh/2, orqh=2.07=2. charge densities at any finite wavelength produce a periodic
Patterns corresponding to phase shifts of the modulatioflow pattern. As such they are unable to induceefluid
intermediate between 0 and, or modulations of different current in the slab. Neither do they generate a net force on
amplitudes or wavelengths on the two plates, are easily conthe plates. Therefore, only ttee=0 component of the sur-
puted from Eq.(20). face charge density is important regarding these(ae¢r-

F. Symmetry argument: Absence of net flow or force



5000 ARMAND AJDARI 53

age effects. This is clearly due to the symmetry between £
and — charges that react in an exactly opposite way in an{
applied field.

To generate net effects in modulated geometries it is thus
necessary to break this symmetry. A simple way to do so is l ‘ I l

to make the gap narrower at the location of charges of a EeXE
given sign. Consider, e.g., a charge-modulated bottom wall
o =ocoqgx). Then an applied parallel fieIHﬂ3Xt tends to
push the fluid upwards fagyx= — #/2 modulo 27, and pull it

downwards forgx= /2 modulo 2r. By adding an upper

undulqted neutral surface” = h[,lJ: a cos@X)], ,W'th ‘?‘>O FIG. 2. An undulated surface on top of a flat charge-modulated
(see Fig. 2, the upward stream is “bentto the right(direc- e parallel applied field. The recirculation pattern due to the
tion of E,,), whereas the downward stream pumps liquidcharge modulation is bent by the undulation to produce a net flow
from the left. It is thus natural to expect @verage current toward the right. This effect is enhanced by the fact that the electric
to the right. We quantify this statement in Sec. IV. To de-field is more intense in narrower regions, thus inducing a stronger
scribe in the clearest way the generation of these net effectslectro-osmotic slip velocitylonger arrows
the formally simpler TDL limit is adopted in the rest of this
paper. The zeroth order velocity field© for a flat upper plate is
given by Eq.(20), using the approximate formul&23) and
IV. UNDULATED PLATE ON TOP (24), or
OF A CHARGE-MODULATED SURFACE

hqz. sinh(qz.)—sinh(gh)cosigh)z.. sinh(gqz.)

Consider more generally a neutral undulated plateg(z): 2[sinf?(qh)cost(qh) — h2g?] '
z"=h[1+ a coggx+ ®)] on top of a flat ong™ = —h. The (34)
potential on the bottom one is modulatéd= ¢, cos@x). In
the TBL limit, we useuy=— €y 7 and thus have to solve a wherez_=z—h andz.=z+h.
Stokes problem with boundary conditions(x,—h) The zero velocity boundary condition on the upper plate
= wo COSEXEX(x,—h) on the lower plate, and(z")=0 6(z+)=5 leads at first order i to
on the upper one. To allow analytical treatment, we further-

more consider small values efand thus take a perturbative 7M(h)=—h coggx+®)d,5?(h). (35)
h:
pprose Noting, furthermore, that {*)(h)=0 impliesg’(h)=0, one
is led to
5:5(0)_{_“6(1)4_...' (31)
v (h)=— uoEhg"(h)cog gx)cog gx+ P), 36
Ef=Ea + aELY +- -+ (32) vP(h)=0.

The boundary condition on the lower plate #Y(—h)

The inhomogeneity of the ﬁelé’gxt is a feature that actually = 1o cos(qx)li* (tl)(_h) Thus, as cagx)cosgx+®)
eXi " 1

appears in the case of a parallel applied field, which we_ cog D)2+ cog2 (1)

: ; = gx+®)/2, one can decompos#l) =
address in Sec. IV A. We seek the generation (.)f net ﬂu'd+ W, whereu derives from a stream function proportional to
current and force on the upper plate at first ordes,jms the

; : ; cog2gx+ ®) and can be calculated using formulas similar to
+— symmetry is readily broken at this order. (2§ ;Ind (24)) andw is a simple shear flgw

A. éext parallel to charge modulation and undulation . Moélxt cogd) z+h gh z—h
. W=——2X""_"|hg'(h) —— ,
We first compute the fieldE,, corresponding to an ap- 2 2h  sinh(2qh) 2h
plied (averagg parallel field EL,=EX. The zeroth order (37

Ei=Eey (solution for flat platesis used to solve the which clearly appears as the sum of the shear flows imposed
Laplace equation with field tangent to the surfaces at firsby the constant terms in the boundary conditions on the top
order. This leads to the quantity of interest and bottom plates. Althougiiis periodic inx and carries no

net flow, the shear floww does. Thus a net average current

codgqx+®)E! (33  J is generated in the slab:

ext-

E(x,—h)=—

_an
sinh(2gh)

i_[7 poh =,
=1 _ vydz=— o Eexx cog®)f(gh), (39
V4

Note that this adds a new element to the qualitative discus-
sion given in Sec. Il F: the electric field is stronger in the
regions where the gap is narrower. The charges at these I@ith, from (37) and (34),

cations will therefore be more efficient in dragging the fluid.

This additional effect is clearly seen from Fig. 2 to be in the cosh2u)[2u—tanh(2u)] u

S . . . f = . + — )
same direction as the one previously mentioned in Sec. Il F. i(w=u 2[sint(u)costt(u)—u?] = sinh(2u)

(39
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Changing the sign of is (fortunately seen to be identical to

shifting ® by 7. The rescaled susceptibilify(u) is positive

for all values ofu=qh. Thus if {,>0, ®=0, ande>0, we

obtainJ, in the same direction a8, (recall thaty, is then

negative. This is in agreement with the qualitative picture

sketched in Sec. Il F. Note that actually the first term on the

right-hand side of39) corresponds to that picture, while the

second one is due to the increase of field intensity in the

narrower region$33). Both operate in the same direction.
We have thus shown that in this geometvizere the av-

erage charge in the solution is zer,is indeed possible to FIG. 3. An_undulated_ surf_ace on top of a_flat charge-modu_la_ted

generate a fluid current by applying an external field. Toone. Perpendicular applied field. Narrow regions are more efflcn_ant

reverse the direction of the current one can simply reverst? induce stress on the upper plate but less efficient in contributing

the field or move the upper plate by/q. Formula(3g), [© the average current.

although obtained for smadi, clearly shows that the effect is R hq

stronger for small values afh, as expected: the two plates 5(1)(h):MoE§xt-— [cosb +cog2qx+®)].

influence each other more efficiently. Actually, 2 sinh(2qh)

f,(qh)=8(qh)2 exp(—2qh) for largegh andf,(gqh)=2 for (44)

smallgh. To this order, in addition to a periodic flow, we obtain a net
The flow in this situation alsq generates a net averag@near flow and an average current

stress on the upper plate. Its horizontal parts given by

- N > Moh >
- X=(= pii-[Vi+ (VO)]-X+Pfi-R) =+, (40 Ji ===~ B cog®)f (qh), (45
wheren is the upwards normal to the top surface: at zeroth i,
orderi(®=7 and at first orderi®®=qh sin(gx+®)x. Gath-
ering the many terms that appear(#9), the net stress on the
upper surface to first order ia is f (u=- —Simﬁ(zU) <0. (46)
=] . .
. NioEex A net stress on the upper plate is also generated, which from
=""4n ¢ cod @)k (ah), @D 4 formula similar to(40) is
where =
7 == T2 o cog @)k, (ah), (47)
« B cosh2u)[2u—tanh2u)] N u 42
i(w=-u 2[sinf(u)costf(u)—u?] '~ sinh2u) (42 where
is a negative function for all values af=gh. From=—1 for _ ~gh
small u it decays exponentially when the gap is increased ki(ah)= fL(qh)_sink(th) = 0. “48)

beyond the wavelength. Note that, contrary to the current, ]
there is no direct argument giving the signlgfas the pres- Formulas (45) and (47) respect the symmetries of the
sure terms and the viscous drag terms are of opposite sign@foblem, and one can check the signs through the simple
Note eventually that we have chosen a sign conventiok,for following physical argument, valid for smaih. Take,>0,
different than in Ref[10] for the sake of similarity between @>0, and®=0. Then the slab is narrower in the regions
(38) and (41). where the charge dgnsny in the solution is posiiiFe. 3.

If the upper plate is allowed to move alomgits equilio- ~ 1he local current is the average velocitynes the local
rium position will correspond to no current situatiofis= thickness of the slab. The average velocity is roughly half

+7/2, one of them(modulo 2r) being stable while the other that of the slip boundary condition, and is thus in modulus
one is not. similar for negative and positive charge regions. The local

current is thus stronger in the regions of negative charge

densities, which leads to an overall current in the direction

. . ) . opposite teE,,;. On the other hand, the viscous stress on the
If an electric fieldEg,~E, Y is applied perpendicular to ypper plate is the slip velocity times the viscosiiyidedby

the modulation, the electrostatics problem is simpleEgs  the slab thickness. Thus the narrower regions determine the

-

=E,, uniformly. The hydrodynamic problem is easily sign of the drag, ann@éext in the present case. Ag,<0,

B. Perpendicular field Eg,,

solved asi =v(x,2)y. The zeroth-order velocity is this is in agreement witk45).
_ Clearly for large values ofjh, f, and k, both decay
5O = 4 oEL cogqx) sinffq(z—h)] 43 exponentially as the charge and shape modulations do not
Hotext sinh(2gh) °’ interact, which they do for small gh, when

" . f(gh)=—k (qgh)=—2.
therefore the boundary conditions for the first-order term are” The pumping effect and drag force are thus of similar

17(1)(—h)=5, and, from(35), amplitude, although of opposite direction, if the electric field
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is applied perpendicular or parallel to the modulations. This
allows generation of fluid currents or forces purely transverse

to the applied fieldéext, as will be discussed in subsection

IV D. Before that, a partial but simple check for the cumber-
some calculations of the past two subsections is presenteﬁ1

More precisely, | focus on thgh<<1 limit using the lubri-
cation approximation.

C. Lubrication approximation gh<1

Consider a narrow channel of arbitrary local thickness

d(x) above a flat surface a.=0. The bottom flat surface
bears a modulated potenti&lx). Variations alongx of all

ARMAND AJDARI

D. Generic field éext= E,X+E,y and discussion

Now consider a generic applied field applied at an argle
with the directionx: Egy=EX+E, y=Eg,y where

codd X+ sindy. Then the net fluid current and force on
e upper plate are, to first order in

guantities occur on scales larger than the typical channethere

thickness.

Let us first apply an electric curredf, along x in this
channel(parallel geometry This imposes a local electric
field E(x) (neglecting in this limit variations alonzy. ) given
by the conservation of the electric curredigzcE(x)d(x),
wherec is the conductivity of the electrolyte. This field act-

N hE N
3= — B cog @) f(gh,6), (53
7= %hex‘a cogd)k(gh, 6), (54)

f(gh,0)=f,(qh)cosd X+f, (qh)sind y, (55

k(gh,8)=k,(gh)cosd X+k, (gh)sind y.  (56)

Thus the differences between parallel and perpendicular

ing on the lower boundary imposes a shear Currenﬁusceptibilities(f,S andk,s) Imply that the net current and

L()EMX)d(x)/2, with w(x)=—e{(x)/5. Taking into ac-

force are generically not parallel to the applied field. More-

count the Poiseuille flow generated by local pressure gradover, as the susceptibilities are of opposite sign, the net cur-

ents alongx the conservation of the total fluid curredf
reads

1
3= 3 () E(X)d(x) - 12, IxP(X)d3(X). (49

rent (or the net forcgis strictly perpendicular td,,, if the
latter is applied at a specific angl, (or 4,) with thex axis.
From (55) and(56) these angles are given by

tarf(6,)=—f(ah)/f (qh),

tar?(6,) = —k,(gh)/k, (gh). (57)

This allows us to calculate pressure differences as a func-

tion of the constants!, andJ;, and of the shapé(x). In-

This clearly provides a way to produce pumps sending

sisting that we have no buildup of pressure across the systeftpw in directions nonparallel to the applied field. Recall that
(a,p)=0 gives the fluid current as a function of the electrical ® may also be used as a tuning parameter, as it allows us to

current,

Jar (p(x)/d3(x))

T 2¢ () 0

where( ) indicates the average in thedirection. Applying

reverse the direction of current at fixéd,,.

A force is also generated on the upper plate at an angle
with the applied field. However, this effect cannot be used to
translate the upper plater to induce the steady rotation of a
rotor), as the motion of the plate will modifyp and the
electric geometry, and the effect averages out to zero as the

this general formula to our previous charge and shape modur — symmetry is recovered. It is thus logical to inspect ge-

lations {(X) = ¢y codgx) andd(x)=2h[1+ a codgx+ D)/
2], with JL=2hcE;, to first order ina, one recoverg38)
with f,= 2, which is the limit we found forgh<1. Similar

ometries that maintain symmetry breaking while allowing for
the translation of the upper plate.

calculations, taking carefully into account both viscous sheax/. NEUTRAL FLAT PLATE ON TOP OF AN UNDULATED

and pressure effects, allow us to recover the corresponding

values for7.
For the case of a perpendicular fidlak electric current

CHARGE-MODULATED ONE

The simplest solution is of course to impose the charge

due to translational invariance, the absence of macroscopfdulation and the shape undulation on the same glate

pressure gradients impose that of local pressure gradients,
that the current is only due to the shear term

E,
3, =5 (0 d(x)). (51
Similarly one simply has
7= B (n(x)/d(x)). (52)

gyample the bottom oneThe upper plate can be taken flat
and uncharged, so that its motion does not affect the overall
charge/shape geometry.

Furthermore, this solution is interesting on a “manufac-
turing” standpoint: the geometry of Sec. IV implies the abil-
ity to produce without defects periodic patterns on two plates
of the same wavelength and to align them. The present ge-
ometry allows for defects as long as the chosen procedure
grants that, e.g., positivenegative charges are found in the
valleys (hills) of the bottom plate. This could be achieved,

When applied to the geometry considered in Sec. IV Bfor example, by depositing on a flat plate stripes of finite

these two formulas agree with45 and (47) and
f, =—k, =—3, and quantify the qualitative argument given
there.

thickness of a material that tends to dissociate in contact with
water(or adsorb specific charged groupEventually, in this
geometry, the charge and shape effects will necessarily in-
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FIG. 4. A neutral flat plate on top of an undulated charge- FIG. 5. A neutral flat plate on top of an undulated charge-
modulated one. Parallel applied field. The recirculation pattern duenodulated one. Perpendicular applied field. Although the force on
to the charge modulation is bent by the undulation to produce a nahe upper plate is always in the same direction as the ffeldthis
flow toward the right. This effect is enhanced by the fact that thechoice of parameteysthe direction of the average current depends
electric field is more intense in narrower regions, thus inducing eon the separation between the plates. A homogeneous electro-
stronger electro-osmotic slip velociyonger arrows A homoge-  osmotic flow along the field results at infinity if the upper plate is
neous electro-osmotic flow results at infinity if the upper plate isabsent.
absent.

From an analysis 0f62), K, and F, are both positive,
teract even if the top plate is quite far away, as they takewith limiting behaviors F“(uﬂo):g, K“(uﬂo):g, and
place in the sameg™*-thick layer of fluid above the bottom Fi(u—=)=K,(u—o)=3u.
plate.

We follow the same steps as in Sec. IV to derive the fluid
current and force on the upper plate generated by an applied o ) .
electric field. To set notations, we consider an undulated and !f the electric field is applied perpendicular to the modu-
charge-modulated plate”=—h[1+ « codgqx+®)] and lation E.x=E.Y (Fig. 5, an analysis similar to Sec. IVB
" ={,cos(x) below a flat neutral one”=h. We solve at leads to
first order in a the hydrodynamic problem defined by the

B. Perpendicular field EZ,,

" N - = _ - h -
boundelry conditionsv(X,z7) = uo COSEXEx,(X,z2”) and J=- '“% El.a cog®)F, (qh), (63)
v(h)=0.
A. Ey parallel to charge modulation and undulation > nMOEé’“
-Eext P g =« cog®)K, (gh), (64
We have to reevaluate the fiekf,, corresponding to an
applied parallel fiel .= E X (Fig. 4. Clearly, one still has where
EX@=g!  pbutE:(") now derives from the potential
ext — Sext ext P F, (u)=u coth2u)— 1=K, (u)—1, (65)
coslig(z—h)]
V*D(x,2)=hE| ————~— (58 K, (u)=u coth(2u). (66)

sinh(2gh)

Now K, is always positive with limitsK, (u—0)=3 and
K, (u—»)=u, wheread~, changes sign, as shown by the
Jimiting behaviorsF, (u—0)=—3 andF, (uU—x=)=u.

Then as in Sec. IV A, the first-order analysis leads to a pe
riodic stream functior{period 7r/q) plus a shear flow. Going
through painful but straightforward algebra, the current an

force on the top plate appear in the now familiar form
C. Lubrication approximation gh<<1

J=- Hoh EL . cog®)F,(qh), (59 To check the preceding results in the lubrication approxi-
2 mation, it is useful to use the top plate as the origin ofzhe
i axis, so that the charged bottom plate is giverzby—d(x).
. NMMoEext Then a quick analysis shows that the form(88)—(52) still
(T cog®)K,(qh), (60) hold. Applied to the geometries of Secs. V A and V B, they
give back thegh—0 limits of formulas(59)—(66).
where
Fy(u)=K,(u)—1, (61) D. Generic applied field and discussion
The analysis of subsection IV D can be repeated to obtain
Ko(U) — u—sinh(u)cosku)cosh2u) ) the effect of a fieldE,,, applied at some anglé with the
(u)=—u sinf?(u)costt(u)—u? coth(2u) . charge-modulation and undulation direction A general

(62)  point is still valid: even forlon averageneutral plates, a net
current and a net force on the upper plate are generated, with
Note thats(*) enters in a subtle manner into the calcula- components transverse to the applied field. However, the
tion of 5” as the integration of, must be done from™ (and  susceptibilities calculated in the present section lead to sig-
not —h) to z" =h. nificant qualitative differences.
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(i) As to the generation of a net current flow, frdi&i) on the plates, provided one brakes the- symmetry, e.g.,
the latter can be purely perpendicular to the applied fieldby modulating the shape of the plates. This could be of use in
only if F, is negative(and thus of opposite sign th&).  microfabricated geometry to design pumps or motors.

This requires a gap thin enough so tigdt/ coth2qh)<1. If Note that we have neglected what might be a simpler
SUC.h is not the case, the.generated.curr.ent will still be geCjesign’ namely uniform charge densities and only shape
nerically at some angle with the applied field. modulation. Consider, e.g., a slab geometry with the bottom

(i) As to the force generated on the top plateKasand  plate undulated and uniformly charged. It is easy to show
K. are of the same sign, it is not possible to generate a forcg,,¢ the electro-osmotic flow generated parallel and perpen-
purely perpendicular to the applied field. However, as for thejic iar to the undulation are of different amplitudes, so that

current, a component _perpendicular to th.e applied field is‘transverse components can also be generated. However, this
generated. If the plate is held in the direction parallel to theeffect is only of order 2 in the amplitude of the undulatien
field, it will thus slide perpendicularly to it. Similarly, a rotor

would be set in helical motion, so that if its translation is(on symmetry grounds it has to be_ an even powehereas
prevented, it would simply rotate perpendicular to its axis.the cqmponent parallel to_the _applled field is of zero_th order.
Note that a way to impede motion in the direction of the fieIdThe d|ffer§nce from the S|tuqt|on of Secs. IV and V'is clear..
is to add a slighuniform charge densityor ordera com- H_ere the.fleld pushes _th_e qu_ld rther ho_mogenepusl_y, and is
pared to the modulation amplitudeo create a simple simply slightly less efficient in doing so in one direction. In

electro-osmotic flow opposing the parallel component in the>€cS: IV and V the field creates an almost periodic and sym-
equivalent of(54). metric pattern of pushing and pulling which is exploited by

(i) Let me emphasize a structural difference from thethe undulation, allowing an efficient transfer in the transverse
geometry of Sec. IV. It can be seen from E(59)—(66) that  direction. However, in situations where large amplitude un-
even if the top plate is infinitely far from the bottom charge- dulations are possible, uniformly charged undulated walls
modulated and undulated one, uniform flow is created in th&an be efficient generators of transverse effects. Eventually,
region h>z.>q !, due to the interaction of shape and as mentioned in Sec. V D, uniform and modulated charge
charge in the region of thicknessq ™! above the bottom densities can be combined to induce specific geometric fea-
plate. This is clearly allowed as long as the- symmetry is  tures.
broken by the bottom plate alone. So if an external field Another important remark is that we have focused on pe-

Eex=E X+ E, y=E., is applied, the velocity field above riodic geometries with uniform appligq cu'rrents, and thus
a single charge-modulated and undulated plate reaches a catempletely neglected boundary and finite-size effects. These

stant value may break thet+ — symmetry even for flat walls. In finite-
size systems where only a few stripes are present, it is thus
h . legitimate to consider additional geometries, e.g., undulation
U= — Hodh Ee cog D) (3 cowxX+singy). (67) g g 9

and charge modulations along different axes, whereas these
are ruled out on symmetry grounds for infinite systems. This

This indicates that such a single plate immersed in a solutio#$ also clearly of importance to discuss the design of finite-
would tend to translate at some angle with an applied electrigize mobile parts: e.g., for a rotor the radius and the length of
field, although the plate is on average neutral. This is veryhe cylinder (compared to the stripe sigeas well as the
similar to the findings of Andersofi3] that the electro- Phase of the modulation, have to be taken into accplfit -
phoretic mobility of an object depends on tblearge distri- Finally, the present analysis seemingly does not take into
bution on the object, and not solely on itstal charge An  account the polarization charges that will appear generically
object of total positive charge can thus move as if it wason the wall surfaces. Let me here show that, at first order in
uniformly negatively charged. Similarly, corrugated walls of E¢x, and for the thin Debye layerdDL’s) considered in
average positive chargean induce an electro-osmotic flow Secs. IV and V, this should not modify the results obtained
in the direction of the fieldas if they wereuniformlynega-  for the fluid current in the slaB and the average force den-
tively charged. Physically, charges that are in dips are hy-sity on the upper platé.
drodynamically and electrostatically “screened” and thus Polarization charges.The walls have up to now been
less efficient to induce fluid motion. In our present geometrytaken to be almost perfectly insulating compared to the elec-
this screening is different for parallel and perpendicular apirolyte of high conductivity. As a result electric field lines
plied fields(in the latter case there is actually no electrostatichave been assumed parallel to the interfaces. The continuity
screening thus the angle between the fldihe forcé and  of the tangential component of the electric field will then
the applied field. The second plate is not necessary here, amtipose inside the walls a nonvanishing normal component of
a single object with the proper symmetry will be set intothe electric displacement. The corresponding discontinuity
helical motion. leads to polarization charges of density, proportional to
the dielectric constant of the wad],,,. Note first that these
charges do not exist in a purely flat geometry, and are thus
proportional toa at first order. More importantly, they are
To summarize, we have investigated the consequence @iroportional to the applied fiell,;.
charge nonuniformity on the generation of electro-osmotic Corrections inducedThe corresponding modification of
flow and drag in a slab geometry. A modulation of thethe ionic densityp, in the fluid is thus also linear iftgy;.
charge density on the wall induces convective patterns thakherefore it can produce a flow at the same order through the
can be taken advantage of to generate fluid currents and drdast term on the right-hand side of E@.) only by coupling

VI. CONCLUSION
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to theequilibrium electric field. The latter being almost per-  In conclusion, the combination of charge and shape ef-
pendicular to the interface in the TDL approximation, thisfects seems a promising way to generate a wide variety of
results only in a pressure term that can be absorbed in thelectromechanical effects, where three-dimensional flows
definition of p [a similar result has already been made ex-arise with the symmetries and characteristics imposed by
plicit for low electrostatic surface potentials in E§)]. Ap-  surface-drawn patterns.

proximations(4)—(6) thus remain valid, and the flow induced
at first order inE,,; is independent of the polarization of the
walls. Consequently, this also holds for the hydrodynamic
forces on the upper plate. At this order, there are furthermore This study emerged from discussions with Jacques Prost.
no electrical forces on the upper plate, as the equilibriumNigel Cooper and Howard A. Stone contributed through
field is zero in their vicinity so that polarization charges Canmany useful comments. | benefited from the partial support
induce only a term proportional 7. Thus our results for of NSF Grants Nos. DMR91-06237, DMR94-17047, and
J and 7 correctly describe the linear response to the applied®MR94-16910 to realize this work, and from the kind hos-
field Eqy, at least as long as the finite-size effects mentionegbitality and nice atmosphere of the Center for Studies in
in the previous paragraph are negligible. Physics and BiologyRockefeller University, to finish it.
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