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A mesoscopic thermodynamic theory of fast phenomena is proposed. In principle, such a description

should include an infinite number of moments of the velocity distribution; in a frequency —wave-number

space the corresponding transport coeKcients would be expressed in terms of a continued fraction ex-

pansion. Our objective is to eliminate from the description a maximum number of fast variables. This is

achieved by deriving an asymptotic expression of the continued fraction. This procedure allows for a

considerable reduction of the number of relevant variables, which are generally identified as the classical

variables, such as energy and velocity, complemented by their corresponding dissipative cruxes, namely,

the heat and the momentum fluxes. Two applications are investigated: ultrasound propagation in dilute

gases and heat transport in dielectric crystals at very low temperature, where the phenomena of second

sound is observed. It is shown that for ultrasound propagation, the inhuence of the fast variables can be

described by introducing so-called effective relaxation times. This results in better agreement with ex-

periments than earlier theoretical models and casts a light on the foundation of mesoscopic formalisms,

such as extended irreversible thermodynamics. Concerning heat conduction in dielectric crystals, it is

seen that the present description includes the three different modes of transport observed experimentally,

namely, ballistic phonons, second sound waves, and diffusion. Our approach is a generalization of the

models proposed by Cattaneo [Atti Sem. Univ. Modena 3, 33 (1948)] and by Guyer and Krumhansl

[Phys. Rev. 148, 766 (1966); 148, 778 (1966)].

PACS number(s): 44.10.+i, 05.70.Ln, 66.70.+f

I. INTRODUCTION

The classical theory of irreversible processes [1],based
on the local-equilibrium hypothesis, is valid at low fre-
quencies and long wavelengths. In more specific terms,
this formalism is applicable when the frequencies of the
phenomena are much lower than the collision frequency
between particles and when the wavelengths are much
longer than the mean free path; it is tantamount to saying
that the characteristic lengths describing the variation of
the macroscopic parameters (such as, for instance, tem-
perature, velocity, and density) must be much larger than
the mean free path. It is of course highly desirable to ex-
tend the domain of validity of the classical theory of ir-
reversible processes to high-frequency and short-
wavelength phenomena. This has fostered the interest to-
wards the formulation of theories with emphasis on non-
locality, both in time and space, and nonlinearity. There
is of course a limit that cannot be crossed and is charac-
terized by frequencies larger than the co11ision frequency
and wavelengths much shorter than the mean free path;
under these conditions, the particles no longer behave
collectively but individually.

There exists an interesting intermediate region when
the frequency is of the order of 10 ' times the collision
frequency, which should be open to a thermodynamic
description. Of course, the task is not a trivial one as the
validity of classical thermodynamics is guaranteed only
when the frequency is much lower than the collision fre-
quency (of the order of 10 or 10 times the collision

frequency or lower).
There are, however, two arguments to push the formal-

ism beyond the classical limits. First, the experimental
data on light scattering in gases and neutron scattering in
liquids have received a decisive interpretation in molecu-
lar hydrodynamics [2]. This is a formalism that borrows
its general structure from classical hydrodynamics, but
with transport coefficients depending on the frequency
and the wavelength. A priori it may be surprising that
macroscopic concepts such as viscosity or thermal con-
ductivity remain significant at the microscopic scale of
atoms and molecules, because originally they were
defined at different time and length scales. Since a mac-
roscopic theory such as hydrodynamics turns out to be
applicable at the molecular scale, it seems logical to ask
whether thermodynamics, another macroscopic theory
having a similar epistemological structure as hydro-
dynarnics, could not be assessed the same status.

The second argument is inspired by the recent and in-
tensive developments of the theory of chaos [3]. Because
of the sensitivity of phase trajectories with respect to ini-
tial conditions, the microscopic information will be lost
at an exponential rate. This means that after a short de-
lay (say a few times the collision time), one should cross
the frontier between reversibility and irreversibility and
the system would be characterized by a thermodynamic
behavior. Therefore, the attempt to generalize the
domain of validity of thermodynamics to a range of fre-
quencies comparable to the collision frequency falls in
line with the mainstream of contemporary physics.
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However, such an extension of classical thermodynam-
ics faces serious problems. The first concerns the selec-
tion of the relevant variables. Thermodynamics, as well
as hydrodynamics, uses a small number of well-defined
macroscopic variables (density, momentum, internal en-

ergy, etc.), which obey well-known conservation laws. At
a time scale much shorter than the collision time, the
particles behave independently of each other and a de-
tailed description should take into account 6N variables
for N particles. Now the question is, how far can a ther-
modynarnic description, using an intermediate number of
variables much less than 6N but more than the five con-
served hydrodynamic variables, provide sufiicient infor-
mation at the molecular scale?

To deal with this problem, consider a monatomic gas.
It is known that at frequencies comparable to the col-
lision frequency and wavelengths of the order of the
mean free path, the gas may be described by the
8oltzmann equation. The basic quantity in the
Boltzmann equation is the velocity distribution function,
from which one may determine any collective quantity.
Unfortunately, there exists no analytical solution of the
Boltzmann equation in nonequilibrium situations; only
approximate solutions are available. The best known is
the Chapman-Enskog approximation [4]:the system is as-
sumed to be described by the five hydrodynamic variables
and one performs an expansion in terms of the gradients
of these quantities. Though very useful for computing
the usual transport coefficients, this formalism is not very
satisfactory at short wavelengths or high frequencies be-
cause it misses essential information that is not contained
in the five hydrodynamic variables. Another approach
was proposed by Grad [5], who expands the nonequilibri-
um distribution function in terms of higher-order mo-
ments, which behave as independent variables. Grad
truncated his expansion after fourteen moments: the first
five are related to the five conserved variables and the
remaining nine components are identified as the heat flux
and the viscous pressure tensor components (in reality,
the viscous pressure tensor of an ideal gas contains only
five, rather than six, independent variables and therefore
Grad s original expansion was limited to thirteen mo-
ments, the fourteenth moment corresponding to the bulk
viscous pressure, which is identically zero in ideal gases).
The main difficulty raised by Grad's expansion is that it
lacks a smallness parameter and therefore it is not clear
at all whether this truncation after 13 or 14 moments is
legitimate.

The aim of the present work is to examine under which
conditions a thermodynamic description based on an in-
termediate number of variables is possible. As mentioned
earlier, the problem is of fundamental importance in the
development of modern thermodynamics; as an illustra-
tion of the procedure, wave propagation in dilute gases
and heat transport in rigid solids at very low temperature
are investigated.

II. HIERARCHY OF HIGHER-ORDER FLUXES

We propose a way to extend the domain of application
of classical nonequilibrium thermodynamics [1]. There-

+q= A, V—T,Bq
Bt

(2)

where ~& is a relaxation time whose magnitude is of the
order of the collision time. After eliminating q between
Cattaneo's relation and the energy balance equation

Bu
p = —V.q,

wherein u stands for internal energy per unit mass and p
for the mass density, assuming that du =c,d T with c, the
specific heat at constant volume, one obtains for the tem-
perature T the equation

T BT
1~2 ~rX (4a)

where the quantity y=A, /pc, stands for the thermal
diffusivity. In contrast to the usual parabolic equation

dT
Bt

=yV' T, (4b)

derived by setting r, =0, Eq. (4a) is hyperbolic. It
possesses the following remarkable features: (a) it is rever-
sible at frequencies much higher than w& and is irrever-
sible at frequencies lower than r&, (b) it predicts that
thermal pulses propagate with a finite speed

1/2

U=
7]

(5)

Many physical applications of Eq. (4a) have been studied,
e.g., [7—14]. It is also important to realize that Eq. (2) or
(4a) is not compatible with the local equilibrium hy-
pothesis, because the corresponding local equilibrium en-
tropy of isolated systems would decrease during the ap-
proach to equilibrium [15]. In contrast, expression (4a) is
compatible with a generalized entropy given by

7
s(u, q)=s, (u) — q.q,2pzT'

(6)

wherein s, (u) denotes the local equilibrium entropy.
Both (2) and (6) reduce to the classical results when r,
tends to zero. Furthermore, Eqs. (2) and (6) have been
justified microscopically [7,8] from Grad's procedure for
monatomic gases.

To summarize, it can be stated that at frequencies com-
parable to ~, ', a description based on the classical
Fourier law is no longer valid and the heat Aux q be-
comes a new degree of freedom with its own evolution
governed by Eq. (2). As a direct consequence, the space
of variables must be enlarged: instead of considering only
u as the single relevant variable, one must include q

fore, we consider a very simple situation, namely, heat
conduction in rigid bodies at rest. The Fourier law for
heat transport states that the heat Aux q is related to the
temperature gradient V'T by

q= —A,V T,
with A, the thermal conductivity, but a more general
description is given by the Cattaneo equation [6]



DEDEURWAERDERE, CASAS-VAZQUEZ, JOU, AND LEBON 53

among the space of variables and this results in a meso-
scopic thermodynamic description.

Although the above scheme is useful to extend the
range of applicability of 1ocal equilibrium theory and to
fix its limits of validity, it suffers from some drawbacks.
(a) In general, a term having the form of the divergence
of an extra flux Q' ' should appear in Cattaneo's equation
(2):

(7)

Indeed, a macroscopic balance equation should contain a
term describing the exchange across the boundary sur-
face besides a production term: in that respect, Eq. (2) is
certainly not the most general way to extend Fourier's
law because of the absence of a divergence term [16]. (b)
From a microscopic point of view, the heat Aux is related
to the third moment of the distribution function; howev-
er, for completeness, one should include an infinite num-
ber of moments because all the higher-order moments (or
higher-order cruxes, according to the macroscopic point
of view) may also become independent variables besides
the heat fiux vector q [7,8, 17]. Of course, for some sys-
tems, for instance, superconductors, the relaxation time
of q is much longer than the relaxation time of the
higher-order fIuxes and a description based only on u and

q may be sufficient. Nevertheless, in some systems, such
as monatomic gases, the relaxation times of the higher-
order Auxes are of the order of the collision time and
therefore it is not satisfactory to describe the system in
terms of u and q only. It can thus be concluded that,
generally speaking, there exists no exact mesoscopic
description that is intermediate between the macroscopic
theory (five variables) and the microscopic theory (6X
variables).

Fortunately, there are many situations in which most
of the variables are irrelevant and an adequate model
based on a limited number of variables may capture the
essential physical features. For instance, the van der
Waals equation for nonideal gases, the Weiss equation for
ferromagnets, or the Debye-Huckel model of plasmas and
electrolytes are not exact theories, but they grasp the
essentials of the underlying physics. Similarly, in real
gases or in liquids, it is sufficient to use only the distribu-
tion functions for one and two particles while a complete
description should include the three-, four-, and N-
particle distribution functions. Even if an exact meso-
scopic thermodynamic should be conceivable, it would be
intractable from a practical point of view and therefore it
is justified to look towards a simplified but physically
sound mesoscopic approach.

The main difference between Eqs. (1) and (2) is that the
first one predicts that thermal pulses propagate with an
infinite speed at high frequencies and does not allow for a
second sound. These problems are circumvented by us-
ing Eq. (2), which was derived on thermodynamic bases
by introducing the heat Aux q as extra variable in the for-
malism [7,8]. However, it is also known that Cattaneo's
relation (2) is not sufficient to grasp some experimental
data, for instance, the value of the phase velocity derived
from Eq. (2) is not in agreement with measured values at

~(n)Q p Q(n +1) +(n) ( 1 2 ) (8)

where a'") denotes the production term of Q("' and Q"'
is identified as the heat Aux q. In Sec. III, particular ex-
amples of the hierarchy expressed by (8) are considered.

To remain on general bases but having in mind a sim-
ple physical phenomenon such as heat conduction, it is
assumed [18] that for a rigid heat conductor, there exists
a nonequilibrium entropy that is a function of the inter-
nal energy u and a set of Auxes of tensorial order n rang-
ing from 1 to infinity, i.e., s =s(u, Q"), . . . , Q'"', . . . ).
In differential form, one has

S =? )dg g ~ )& Q(n)dQ(n)
n =1

(9)

wherein the coefficients a„may be temperature depen-
dent and will be identified later on, the symbol denotes
the n-fold product between tensors of order n, and the
factor p is introduced for convenience. In addition, a
generalized entropy fIux is defined as

Js T —lq+ y P Q( n+1)Q(n)
n=1

(10)

wherein P„may be temperature dependent and J' is the
most general vector involving the product of two Auxes,
which has been justified by Grad's 13-moment formalism
in the case of n = 1 [5—7].

The entropy production o', a positive definite quantity,
can be derived from the equation of evolution for s,
namely,

p +V J'=o'.Bs
Bt

In view of Eqs. (3), (9), and (10), the expression for o'
turns out to be

high frequencies [8]. Similarly, the van der Waals, Weiss,
and Debye-Huckel equations are very useful for inter-
preting several phenomena, but at the same time they are
unable to reproduce some results such as the ratio be-
tween the critical temperature and the inversion tempera-
ture, the compressibility ratio, or the critical exponents.

Our aim is to fill the gap between a microscopic
description, which requires an infinite number of vari-
ables (here X is to be considered very high, practically
infinite), and a macroscopic approach using a limited
number of variables. This will be achieved in two steps:
in the first one, we shall consider an infinite number of
Auxes and check how far this attitude is tractable and ap-
plicable; in the second step, we shall perform an asymp-
totic expansion, allowing for a drastic reduction of the
number of variables.

Besides the Aux q, we take as variables the Aux of the
flux, namely, the second-order tensor Q' ' and the succes-
sive higher-order fiuxes Q'"'. Here Q'"' is a tensor of or-
der n, which is identified as the fiux of Q'" ", according
to the equation



53 FOUNDATIONS AND APPLICATIONS OF A MESOSCOPIC. . . 501

a'=q —a q+p V g' )+p'Z''at
QO g~(~)

Q(n)g a M +P P g(n+))
Bt

+p pg(n —)) (12)

wherein one has omitted third- and higher-order terms
involving the products of the Auxes, their space and time
derivatives, and the gradient of temperature. Equation
(12) is a bilinear form in which each fiux is multiplied by
a conjugate generalized thermodynamic force containing
the time derivative of the corresponding Aux. The sim-
plest form of the evolution equations satisfying the posi-
tiveness of the entropy production is obtained by assum-
ing that each thermodynamic force is proportional to the
corresponding Aux. This results in

q+p v.g")+vz (13a)

gn(&)Q +p p Q(n+1)+p pg(n —{) g(n)

P1 =2, 3, . . . (13b)

s 1 n (n)s q.q+ y " Q(n)g(n)
AT' .=2 V.

(14)

which is clearly a quadratic expression in the fiuxes. In
virtue of the second law of thermodynamics, expression
(14) of (r' is positive definite and as a consequence the
quantities A, and a„/r„must be positive. On the other
hand, it has been shown [7,8] that thermodynamic stabili-
ty requires that a„ is positive, so that ~„ is also positive.
%'e remark that since k is proportional to ~1, the entropy
production, for constant values of the cruxes, will tend to
zero when the relaxation times ~1,~2, . . . , ~„are all diverg-

ing; such a result is not surprising because in that case
there are no collisions among the particles and one has a
purely mechanical motion of free independent particles,
which is reversible.

Before considering the behavior of this hierarchy of
higher-order fluxes, let us indicate how to obtain in a par-
ticular case an explicit expression for the coefficients a„.
Since the fiuxes Q'"' are absolutely general, one may, for
example, take for Q'"' the traceless symmetric parts

Q&; . . . ; &
of the tensors Q'"'. For a tensor of order 2,

1 n

one has

Without loss of generality, we can identify the unknown
coefficients p1 and p„, which generally depend on 1, as

~n
){i,, = =(A, T ) ', ){i,„=

71 +n

wherein ~„has the dimension of time and will be called a
relaxation time. Since Q'"+" is the fiux of Q'"' for n & 1,
it follows also that a„=—p„ for n &1. After substitu-
tion of Eqs. (13a) and (13b) in (12), one obtains the ex-
pression for the entropy production

Q(l, l, ) —,[Q(i{i,)+Q(l, l{)] 3gikik I, l,

wherein the summation rule on repeated indices k is used,
angular brackets denote traceless symmetric tensors, and
parentheses denote the usual tensor components.

Let us particularize the hierarchy of evolution equa-
tions (8) in the case of an n-order fiux Q"=Q&,
when the source term obeys Callaway's approximation
[19],namely,

1(r"= — Q; . . . ,
+n

Equation (8) can then be written as

gt Q&i, i„&+ g Q&i, i„&k , ) . (15)

Moreover, it was shown by Dreyer and Struchtrup [19]
that the (n +1)th- or der fiux Q&; . . . ; &k is related to

1 n

cruxes of lower order by the recurrence formula

2

"2n+1 g"' i„,&~i„&k+Q&i, i„k&

(16)
wherein c0 is the speed of wave propagation through the
medium; for a gas of particles, it is the sound velocity, for
a phonon gas, it is Debye's speed. 5, )k means that the

n

corresponding component is zero except for i„=k.
For further purposes, let us consider one-dimensional

heat propagation in the x, direction. After substitution
of formula (16) in (15), it is checked that [19]

Q&i, i„& Q(i, i„+)
BX1 4n

ag&, . . . ,

1
Q(; . . . ; ) (i{,. . . , i„+)=1) . (17)

Comparing Eqs. (17) and (13), wherein use is made of the
result p„,= —a„„it is found that the ratio a„,/a„
is given by

2

C0 (18)
4n —1

This expression will be used to determine the numerical
values of some physical quantities in Sec. III.

In parallel with the above derivation, a hierarchy of
equations for the moments of the distribution function
has been established by Velasco and Garcia-Colin [17]
and Hess [20] in the case of ideal monatomic gases. Us-
ing the projection operator technique, Mori [21] pro-
posed another hierarchy of equations to generalize the
Langevin equations. Such results are important, as they
assess that the hierarchy derived in this work rests on sta-
tistical bases.

In the present analysis, it is assumed that the set of
evolution equations is linear. Of course, a more general
study should contain nonlinear terms, but in this case,
the corresponding entropy production would not allow
for general conclusions about the sign of the coefficients
of the higher-order terms. Therefore, we have refrained
from including nonlinear terms; moreover, they are not
essential for solving the problems treated in the following
sections.
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III. ASYMPTOTIC BEHAVIOR
AND COMPARISON

%'ITH EXPERIMENTAL RESULTS

In this section we establish the asymptotic expression
of the hierarchy of evolution equations involving higher
and higher-order thermodynamic fluxes and apply it in
two particular cases: ultrasound propagation in mon. a-
tomic gases and phonons propagation in dielectric crys-
tals at low temperature. It is also shown that the formal-
ism is considerably simplified by introducing so-called
effective relaxation times.

A. High-frequency wave speed in monatomic gases

According to classical hydrodynamics, monatomic
gases are univocally described by the velocity and tem-
perature (or internal energy) fields. Working in the frame
of extended irreversible thermodynamics, these quantities
are completed by extra variables taking the form of a
heat Aux vector q and a traceless symmetric viscous pres-
sure tensor P, which are assumed to satisfy the evolution
equations

rium variables of the system, i.e., temperature T and pres-
sure p, (V, q)' stands for the symmetric traceless part of
tensor Vq. According to Grad's 13 moment approxima-
tion [5], the relaxation times rI'"' and rI' as well as the
coefficient P are expressed by

Up
lim = 1.64,

Cp
(25)

where co=(5k&T/3m )' is the adiabatic sound velocity
in monatomic gases. However, experimental observa-
tions predict that [8,22,23]

(th) m (v)
1 Grad, 2 & 1 Grad & I~Grad5k' T p 5pT

where k~ is the Boltzmann constant and m the mass of
the molecules.

Equations (19) and (20), from one side, and (22) and
(23), from the other side, have been used to study ul-
trasound propagation in monatomic gases. From the re-
sults (24), it is found that within the high-frequency limit,
u1trasounds propagate with a velocity U given by

~"h) q +q= —XVT
Bt

(19) lim
Q)~ oo Qp expt

=2.1, (26)

P +P = —2qVat
(20)

(21)

where v is the kinematic viscosity. Equations (19) and
(20) are usually referred to as Maxwell-Cattaneo equa-
tions. However, as mentioned earlier, they do not
present the general structure of evolution equations as
divergence terms expressing the exchange with the exter-
nal environment are missing. For this reason, Eqs. (19)
and (20) will be replaced by the following more general
equations derived in the simplest version of extended
thermodynamics [7] and confirmed by Grad's kinetic ap-
proach [5]:

r"h) q +q= XV T+PXT'V P—,
a
at

(22)

pV +P = 2qV +2Pg T( Vq)'—, (23)

where P is a coefficient that depends only on the equilib-

The quantity V introduced in Eq. (20) represents the
traceless symmetric velocity gradient tensor; in Cartesian
coordinates, its components are

1 2U] BU~ 1 BUkV"=— +- —— 6"
2 Bx,. Bx, 3 Bxk

g stands for the dynamic viscosity, and ~""' and ~'"' are
the relaxation times of the heat ffux and the viscous pres-
sure tensor, respectively, related to the speed of propaga-
tion of thermal and viscous waves, respectively, through

indicating clearly that the above theoretical result (25) is
approximative.

Carrassi and Morro [22a] analyzed ultrasound propa-
gation in monatomic gases by using (22) and (23) with
r'&'"'=r', "'=r) and they adjusted r, in order to fit (26).
This leads to r(1'")=7'1 '=(3/5m. )r';G)rad or, equivalently,

:040Tj G
(th) {th)

~", =0.29&(, )„,,

@=0.01513G„d .

(28)

It follows from these results that the experimental
values of the relaxation times are smaller than those de-
rived from Grad's 13-moment formalism.

Our objective is to show that better agreement with ex-
periment is achieved by introducing higher-order cruxes
into the theoretical description. Since the values of the
relaxation times are obtained respectively from the speed
of propagation of thermal waves and shear waves, we will
consider separately both kinds of waves in the next devel-
opments. The problem for the heat fIux will be treated
exhaustively whereas the analysis for the viscous pres-
sure, which is completely parallel to the previous one,
will be sketched only brieAy.

In the Fourier-Laplace space (co, k ) with co the frequen-
cy and k the complex wave number, the hierarchy of Eqs.
(13) takes the form of a generalized transport law with a

&(th) (th) (v)= 2 = 3
1 ~ 1 Grad~ r1 r 1 Grad~5' 5m

Anile and Pluchino [22b] allowed both quantities
and ~'&' to vary independently and found good agreement
with experimental data by using for the relaxation times
and )(3 the values
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(co, k )-dependent heat conductivity. Denoting by Q(co, k )

and T(ro, k) the Fourier-Laplace transforms of Q(x, t)
and T(x, t), respectively, one has

pressions for the speed of viscous signals:

U'2 V
(v) l (v)2 —1

(35)

Q ( to, k ) = i—k A(o,t, k ) T( ro, k ) .

At the nth order, the thermal conductivity is written as

A,„(co,k)=
1+l co71+

A,o(0,0),

l,k

l2k2
1+im~2+ 1+i a)&3+

(29)

where A,t)(0, 0) is the zeroth-order classical Fourier ap-
proximation and

2= ~nl„=~„v.„+1
~n+1

(30)

The asymptotic expression of Eq. (29) obtained by assum-

g +1 +2 ='T„and l1 l2 =. . . =l. s g v»
Xo

(a), k ) = ~ [
—( I+itor )2l„k

+[(I+itor„) +41„k ]' ], (31)

where ~„and l are the limits of v.„and l„ for n = ~.
To establish (31), we have used the general results estab-
lished in Ref. [24].

The thermal conductivity corresponding to Cattaneo's
equation (2) is obtained from Eq. (29) by simply keeping
the first relaxation time ~, , i.e., by setting

=~„=l1 = . l„=O; the corresponding speed of
propagation of heat waves is given by relation (5). From
this expression, it is clear that the relaxation time ~, for q
is directly calculated from the measurements of the
thermal difFusivity g and the speed U""' of the thermal
signal.

A more refined result is provided by combining the
general expression (31) with the energy balance (3), writ-
ten as

Defining as before an eft'ective relaxation time through

V

v)
eff

U2
v

one obtains

(36)

&( ) —&( ) l( )2 —1jef (37)

It is known from the kinetic theory that
co =+3ks T/m, from which it follows that

l(th)2 ~ (th)2 l(v)2 ~ (v)23k, T 3k~ T
oo 4 oo & oo 4 oo

By introducing these expressions in Eqs. (34) and (37) and
taking into account that for monatomic ideal gases, one
has g = ( 5k+ T /3m )r""' and v = ( ks T /m )r'„', it is found
that

/th) —11 /(th) /(v) —1 ~(v)' eff 2p 1 Grad& eff 4 1 Grad (39)

An effective coefficient P cannot be introduced in a simi-
lar way, but one possibility is to use the expression for p
derived from the fluctuation theory [2,23], namely,

(40)

with ( ) standing for the equilibrium average and C2 the
x2 component of the molecular peculiar velocity. Ex-
pression (40) suggests that the correction yielding the
effective p would be the product of the corrections for
~""' and ~' ', thus leading to

To determine ~",ffh) and ~',ff, one needs the expression
(30) of I„ for n = pp. Using the particular values (18) of
a„/a„+) derived in Sec. II, it is directly checked that
within the limit of high-n values

(38)

pc iro= —k A, „(to,k) . —11
pefr ap porad (41)

In the high-frequency limit (d'or)&1), the speed of heat
pulses defined as U,h

= lim (to/Rek) takes the form

Q2 — X
(th) 1 (th)2 —1
oo oo X

(32)

wherein y stands for A,t)/pc, . A comparison of expres-
sion (32) with Eq. (5) allows us to introduce an effective
relaxation time ~",ffh) given by

U2 —X
th /th)

eff
(33)

wherein r",tr' is defined as

/th) (th) itth)2 —i
eff +oo oo

A similar development can be achieved for the viscous
pressure tensor P and would result in the following ex-

It is important to realize that the approach proposed here
is an alternative to Grad's 13-moment approximation: in
the latter, one cuts the continued fraction expansion (29)
at the second level, by assuming F2%0 but l„=O (n )2)
and r„=O (n )3). Here, in contrast, we consider the
whole set of relaxation times and all the correlation
lengths, but we assume that they all are equal. Of course,
this is not exactly true, but since the essential features are
described by the lowest-order cruxes, it is reasonable to
assume that by taking all the higher-order ~„and l„ to be
identical, one modifies only slightly the correct value of
the propagation speed.

In summary, we have shown that by starting from a
general formalism including an infinite number of cruxes,
it is possible to construct a simple model involving only a
reduced number of variables provided the relaxation
times are defined in a suitable way. The description pro-
posed here bears some analogies with the theory of criti-
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cal points. Near critical points, the fluctuations are very
important and become practically independent quantities.
However, the fluctuations have the same importance
whatever the wavelength and therefore one should, in
principle, include the whole range of fluctuations corre-
sponding to all the wavelengths. Since this would be im-
practicable, one uses a renormalization procedure that al-
lows for a suitable redefinition of the parameters in terms
of an effective Hamiltonian; this provides a way to obtain
the values of the critical exponents, with no need to take
into account the whole set of variables . In the present
problem, the numerous extra variables are the higher-
order cruxes, but they are incorporated into the descrip-
tion by introducing a kind of renormalization of the re-
laxation times.

B. Second sound and ballistic heat transport
in dielectric crystals

Another interesting problem is provided by the
response of dielectric crystals to a heat pulse. The experi-
ments describing the behaviour of thermal pulses across
crystals at very low temperature, of the order of 10 K, ex-
hibit the presence of a wave propagating with a speed
ranging from co (the Debye speed) to co/&3, depending
on the temperature of the sample. As is well known,
transport of heat in dielectric crystals is well described by
means of the phonon model.

One distinguishes generally three mechanisms of trans-
port of phonons. At very low temperature, phonons trav-
el freely through the crystal without being scattered: they
received the name of ballistic phonons. When tempera-
ture is increased, collisions occur and one observes a
wavelike energy transport similar to sound waves in
gases. During such a process, energy as well as momen-
tum is conserved; this process is referred to as a second
sound and is characterized by a collision relaxation time
~&, wherein index X means "normal" collisions. When
the temperature is still raised, one promotes collisions
that do not conserve momentum. The wave nature prop-
erty of energy transport is quickly damped and heat will
propagate by diffusion; the corresponding time scale asso-
ciated with diffusion will be denoted ~R, where R stands
for "resistive" processes. In passing, it should be recalled
that ~R is the single relaxation time appearing in
Cattaneo's description.

The classical Fourier equation is only able to describe
the diffusive regime; the Cattaneo equation predicts the
presence of a second sound propagating at constant speed
co/&3. However, Cattaneo's relation is silent about the
ballistic behavior and is unable to determine the depen-
dence of the second sound velocity with respect to tem-
perature.

The simplest way to describe these effects is to intro-
duce the extra variable Q' ', the fiux of the heat flux be-
sides the usual variables u and q. By doing so, one finds
for the speed of ballistic phonons the value &3/Sco in-
stead of co [19]. Here we will show how the renormaliza-
tion procedure developed in Sec. II is able to yield satis-
factory values for both the second sound and the ballistic
signal.

For the sake of simplicity, we limit our analysis to
one-dimensional heat propagation. The hierarchy of evo-
lution equations for the fiuxes Q(; . . . ; ) was established

1 n

earlier and is given by the set (17). Moreover, since pho-
nons interact via R and N processes, it is natural to intro-
duce both relaxation times ~R and wz into the descrip-
tion. Referring to Callaway's kinetic theory of phonons,
we shall make the identification [19]

for n =1,
'=~R '+~g'=~ ' for n ) 1 .

(42)

(43)

Since n =1 corresponds to Cattaneo's formalism, it is
natural to take r, equal to r~. The hypothesis (43) ex-
pressing that all the relaxation times are identical for
n ) 1 rejects the property that within a good approxima-
tion, the relaxation times of the higher-order moments
are of the same order of magnitude [17,19].

It is easily checked that the hierarchy (17) leads to the
following dispersion relation, when use is made of (42)
and (43):

—cpk4 2 2

icpk +ico+- +
3CO +R

LCO+ +
—„cpk9 2 2

1
LCO+ +

=0

(44)

LCpk +lCO+ =01

3 CO R
(45)

which is the result that should have been directly ob-
tained from Cattaneo's equation. With two cruxes in
mind, expression (44) reduces to

4 2 2—„cpk ~
lC pk + l CO+ + =0,

3CO 1+L COW~

which can be given the form

1 2 2 . 1 3
lcpk + leo+ + i~cpk + leo

R

oo
'T~ CO

—0

This equation contains in particular the G-uyer-
Krumhansl dispersion relation [16]

1 . 2 2 . 1 3
3CO

'
~R 5

ikc +ico+ +—~ c k =0.

and after that solutions taking the form of plane waves

Q; expi(-cot+kxi)

are introduced in the set (17). To compare with previous
works, let us formulate expression (44) in the particular
cases corresponding to one single fiux (Q"'=q) and two
fiuxes (q and Q' '), respectively. In the first case the
dispersion relation is simply
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1+icur + [—( 1+icow )
18
35

+Q(1+ivor ) +cok r„]

+ ck~ =0.4
p oo

It is of particular interest to examine the two following
limiting cases, corresponding, respectively, to an un-
damped (Imk =0) second-sound signal (rs '~0,
r& '~ ao ) and to the ballistic behavior (rz '~0, rz '~0).
The first case describes situations where the frequency of
resistive processes tends to zero while the second case
corresponds to zero-frequency collisions.

J. U~dam~ed second go~ad. - ~„—'~0 ~~'~ ~, Imk =0

In this limit, the frequency of resistive collisions is van-
ishing while the frequency of momentum preserving pro-
cesses is very high. For undamped waves (Imk =0), the
dispersion relation (48) reduces to

1 22= ~

Ec k =leo3'
and the second sound velocity U, is given by

(49)

CO

Rek
Cp

v'3 (50)

In fact, a second sound with velocity co/&3 has never, as
far as we know, been observed in experiments in dielec-
tric solids. In the temperature range where a second
sound occurs, i.e., ~z '~0, which means the absence of
difFusion, the requirement w& —+ ~ is never met. Instead
of the requirements ~z ~ ~ and ~&~0, one should use
the less restrictive inequalities co~~ )&1 and co~& ((1, or
1/rz & e & 1/rz, which is Guyer-Krumhansl window
condition. When this condition is introduced in the
dispersion relation (48). one finds a second sound velocity
larger than co/&3 and given by u, =(co/
&3)[1+—', (rz/rs ]. By decreasing the temperature of the

sample, the frequency of normal collisions decreases and
the phonons no longer behave collectively but individual-
ly: we are then in the ballistic regime.

2. Ballistic regime: ~~ ~0, ~~ ~0
Ballistic phonons are observed when the frequencies of

both resistive and normal processes are vanishing. The
dispersion relation (48) is now written as

T

3 2k2 17 2+ 18
cok ik co+iso +k co —co =0 .

3co

As in Sec. iLIA, we now establish the asymptotic ex-
pression of Eq. (44), which is given by [24]

T

1 . 2 2 . 1
Ecok + 1co+

36)

Setting a=k co/co, Eq. (51) can be expressed in the
more attractive form

a3 ——'o;2+ —'a ——"=0 .4 6 36 (52)

while the damping is zero, as it should be. The above re-
sult is in good agreement with the experimental Debye
velocity cp for the propagation of ballistic pulses. The er-
ror of 2.6%%uo may arise from the fact that the continued
fraction expression (44) is approximated by its asymptotic
expansion and because all the relaxation times 5„(n ) 1)
are supposed to be identical.

The above results indicate that extended thermo-
dynamics is able to cope with a wide variety of phenome-
na running from irreversible and collective processes to
reversible and individual motions. A comparison with re-
sults obtained by Dreyer and Struchtrup [19], who used
u, q, and Q' ' as variables, reveals another interesting re-
sult. It was found [19]that heat propagates with a veloci-
ty running from co/v'3 (=0.58co), which is the lowest
limit for an undamped second sound, to V3/5co
( =0.77co) in the ballistic regime; this latter value being
different from cp indicates a shortcoming of the theory.
Now, by increasing the numbers of variables up to 30 in a
one-dimensional theory, Dreyer and Struchtrup [19]were
able to recover the correct ballistic velocity, namely,
Ub =co. By working with more and more fIuxes, one cov-
ers situations furth'er and further away from local equilib-
rium, but the theory becomes quickly inapplicable, in
practice.

It is worth stressing that the formalism presented in
the present paper is of a difFerent nature as it is based on
an asymptotic development of the continued fraction ex-
pansion and does not appeal to a high number of vari-
ables. Indeed, it is sufFicient to introduce besides the re-
laxation time ~~ for q another extra relaxation time ~
and to perform an asymptotic development to obtain sa-
tisfactory agreement with experiments.

I&. CONCLUSION

The present paper was essentially concerned with a
mesoscopic formulation of nonequilibrium fast processes
such as ultrasound propagation in gases and phonon hy-
drodynamics. It is true that an exact description should
require an infinite number of variables; furthermore, in
most problems, the relaxation times associated with the
extra nonconserved variables are of the order of magni-
tude of the mean collision time. Qn the other hand, a
theory involving an excessively high number of variables
is practically intractable. The question is then how to
find the best description using the smallest number of
variables and subsidiary, how to describe high-frequency

The two complex solutions of relation (52) are character-
ized by a very large damping coeKcient and therefore the
corresponding waves cannot be observed experimentally
and only the real solution of (52) is relevant. The corre-
sponding phase speed is found to be

Q)
co =1.026co,

Rek (z
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phenomena that fa11 outside the scope of the classical
theory of irreversible processes. To achieve this goal, a
procedure has been proposed that consists of eliminating
most of the redundant fast variables by introducing so-
called effective or renormalized relaxation times for the
few remaining fast variables.

Another motivation of the present paper was to pro-
vide a microscopic basis for extended irreversible thermo-
dynamics (EIT). In the past, it had generally been admit-
ted that the foundations of EIT are deeply rooted in
Grad's 13-moment method [7—10]. Here we have shown
that EIT covers a much wider range than that spanned
by Grad's formalism, as it extends from the description of
highly irreversible phenomena, such as pure heat
diffusion to reversible processes such as propagation of
ballistic phonons. This is achieved by using a limited
number of slow variables; the effects of the remaining fast
variables are taken into account by introducing a
redefinition of some relevant quantities, such as the relax-
ation times.

Two examples have served as illustrations: wave propa-

gation in dilute gases and heat waves in dielectric crystals
at very low temperature. Only small amplitude waves are
considered so that the analysis is purely linear. It follows
that the entropy production can be proved to be semipos-
itive definite because it is a quadratic expression in the
cruxes. Nonlinear developments would raise interesting
and fundamental problems because the nonlinear terms
may give positive as well as negative contributions to the
entropy production and destroy its semipositive property
[25]. Nonlinear developments are planned to be investi-
gated in a future work.
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