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Flow-alignment instability and slow director oscillations in nematic liquid crystals
under oscillatory flow

A.P. Krekhov and L. Kramer
Physikalisches Institut, Universit@8ayreuth, D-95440 Bayreuth, Germany
(Received 23 October 1995

The nonlinear response of a nematic slab subjected to a rectilinear low-frequency oscillatory Couette and
Poiseuille flow is investigated theoretically. We find that under Poiseuille flow and with appropriate alignment
conditions by surface anchoring and/or magnetic field a state with slow, spontaneous director rotation appears.
This may provide a model for the slow director rotations observed in high-frequency Couette flow.

PACS numbes): 61.30.Cz, 61.30.Gd, 64.70.Md, 47.2k

[. INTRODUCTION (or by applying the two rectilinear components to the two

plateg, and this situation has been studied intensively in the

In nematic liquid crystals the coupling between the pre-past[5,14—17. The threshold calculated there diverges when

ferred molecular orientatioridirector A) and the velocity the elliptic excitation degenerates into a rectilinear one
field leads to interesting flow phenomena. In a steady veloctYo=0 0r xo=0).

ity field u(z) along thex axis (rectilinear plane shear flow,  In Couette flow with ultrasonic frequencies, where one
typically of the Couette or Poiseuille typthe director will, ~N@s strong deviations from the linear velocity profile, a tran-
in the absence of other orienting effects, tend to align in theition from the homeotropically aligned state to a state with a
x-z plane (shear plane at the Leslie angle slowly rotating plaﬂar compon,ent of the director and various
0= +tan Y(as/a,) Y2 with the x axis for positive/negative “ove phenomend'autowaves”) have been found experi-
shear rateiu/dz if as/ay>0. Here as,a, are Leslie vis- mentally[18,19, which are still not understood. We are not

. . ) ) . aware of experiments on flow-alignment instabilities in os-
cosities[1]. In typical low-molecular weight materials with b 9

: ~ cillatory Poiseuille flow.
rodlike molecules one hass/a,~0.01. In the usual layer — are we will consider theoretically low-frequency Cou-

geometry the director is anchored at the boundaries and theghe and Poiseuille flow and confine ourselves to states that
one may have interesting instabilities and transitions thage spatially uniform in the plane of the layer. Thus roll
have been studied in the past; see, ¢13=5]. Also the non-  transitions are excludetthey will be discussed elsewhgre
aligning casexz/a,<0, which is found in some materials, |n previous work we have analyzed the time-averagmer
in particular, near a nematic-smectic transition, has beefhe oscillation periofitorques acting on the director in spa-
studied. Then one finds a transition to tumbling motiontially homogeneous situations, i.e., with neglect of boundary
which has also attracted much attent{@s-8]. conditions[20,21]. For low-frequency Couette flow there are
Here we are concerned with oscillatory flow whereng torques whereas for Poiseuille flow there are torques di-
u(z,t) oscillates symmetrically around zero, which has prop-rected away from the flow-alignment angles and, for
erties quite different from the steady case. We will considerg> ¢,,, away from the shear plane. Besides the weakly
only situations where the director lies initially in the shearstaple planar staté=X (for flow-aligning materials there
plane. Most typically one deals with a plar(ar the plane of  exists a stationary attractor out of the shear plane. It was
the layer, also called homogenepos homeotropidperpen-  confirmed by numerical simulations that with homeotropic
dicular to the layer planeorientation. For low-frequency poundary conditions above a critical flow amplitude an out-
Couette flow(viscous penetration depttin/pw larger than of-plane transition indeed occurs leading to the new station-
the cell thicknessl) with its linear velocity profile(uniform  ary statg/21].
shear ratethe director oscillates initially between two posi-  Our present work confirms that homogeneous transitions
tions, which in the flow-aligning case are bounded by theoccur only under Poiseuille flowand more general flows
alignment angles: tan™ *(a3/a,) Y as the oscillation ampli-  with nonuniform shear rajeand, for the standard material
tude becomes larg®]. With increasing flow amplitude one  MBBA  (4-methoxybenzylidene/4n-butylaniline, only
then tends to find experimentally transitions to roll stateswith nonplanar alignmenthomeotropic or oblique After
[10-12, which are not understood very w¢ll2,13 (in the  formulating the problem in Sec. Il in terms of the standard
theory the elastic coupling has been neglected, which is &rickson-Leslie equations we start out in Sec. Ill with the
questionable approximation at low frequengiesctually a  simplest possible situation, namely, oblique alignment at one
simpler mechanism arises when the shear is made ellipticalf the flow-alignment angle@inder oscillatory flow the two
(or circular as a special caseby applying oscillations angles correspond to equivalent statd@is orientation cor-
X(t) =Xgsinwt, y(t) =yocoswt to one of the confining plates responds to the only in-plane solution with time-independent
director. One can shownalytically that this state remains
stable for(low-frequency Couette flow but suffers an in-
“Permanent address: Physics Department, Bashkirian Researpltane instability under Poiseuille flow at a critical flow am-
Center, Russian Academy of Sciences, 450025 Ufa, Russia. plitude A, .
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From numerical simulations, whose presentation we defer )N
to Sec. V, we find that the bifurcation corresponding to thet (—K(6#)u ,— mcosﬂ tangv ,
instability is subcritical(the attractor collides with a saddle
and the time-averagetbver the flow periodl director can =e[ay(0,¢) 0 ,,+a,(0,0)0%+as(0,0)d 4,
move towards a(nearly) homeotropic orientation, which, ’ )
however, is unstable with respect to out-of-plane fluctuations ~ +a4(0,¢) ¢5+as(0,¢) 0 ,¢ ,+ag(0,¢,MN?],  (3)
[21]. In fact, the system relaxes to a stationary out-of-plane
state, which exists already for amplitudes below the criticaldU 1= — Pox+ 3 — (1—\)K(6)coS ¢ 6 ,
one. In this subcritical regime, for decreasing amplitude, the ,
out-of-plane state loses stability through a Hopf bifurcation ~(A=MKI(OM($) ¢, +2C5(0, ) coIM

giving rise to a slow limit-cycle solution with rotating direc- X(¢)vyz+[cl(0,¢)+cz(0,¢)co§0 CO§¢]U,Z}, (4)

tor. The limit cycle disappears via a homoclinic bifurcation

from the in-plane saddle-point solution that exists for ~ coS¢p—\ St

A<A,. ¢ —K' (OM(P)u,~sind—————v,,
Unfortunately this interesting scenario can only be traced

numerically. However, a much simpler but analogous situa- =e¢[b(6,¢)6 ,,+ b2(0,¢)0?z+ b3(6,0)d ,,

tion arises when the prealignment is induced by a magnetic R
field instead of surface anchoring. Disregarding boundaries ~ +ba(8.$) %+ bs(60,¢) 60 ,¢ ,+be( 6,6, M)N?],  (5)
the previously introduced time-averaging approach can then
be used20,21] and is presented in Sec. IV. The resulting v = d{ — 2\ COIM () 0—sinb(coS'p—\ sir’ep) ¢ ,
ordinary differential equations allow a phase space analysis
and also exhibit the scenario with the slow director rotation. 2056, )cOIM(S)u .1 C1(0, )

As discussed in Sec. VI, our results provide a mechanism +C2(0,¢)Sin2qb]vl}, (6)
to understand the slow director rotation found in high-
frequency experimentfl8,19. Moreover, one can devise where the tildes have been omitted and
experimentally more accessible situations for low-frequency

Poiseuille flow where the combined action of planar surfacq« 0)= \ cosg—sir’d _ %3
anchoring and an obliqgue magnetic field also lead to the slow 1-\ ' ay’
oscillations.
M(d)= =sing cosp, d” SR
= — , = y 6: _’ =
II. BASIC EQUATIONS 2 ” Tqw p

w ’
We consider the nematic layer of thicknesd¢o be con- y,d? o H H [ Ky
=az3— ay, =T = .
s He d V uoxa
)

fined between two infinite parallel plates. If one of the plates’rdZK—,

is fixed and the other plate oscillates periodically in a parallel !

direction one obtains oscillatory Couette flow. Oscillatory

Poisedille flow is realized when an alternating pressure graHere the Parodi relatiof23]
dient is applied in a direction parallel to the layer. We look

for solutions of the nematodynamic equations where the di- ag—as=azta; (8)
rectorn and the velocity are functions only of the distance

z from the boundaries and tinteand then one can write ~ has been used. The notatiép=4t/di, f'(g)=4f/dg has
been used throughout and the coefficieras(6,q),

b;(0, ), c;(0, ) are given in Appendix AH¢ is the splay—
Freedericksz-transition field, the viscous penetration depth,
and 74 the (splay director relaxation time.

vx=u(z,t), vy=v(zt), v,=0. (1) Boundary conditions for the velocities and v for the
oscillatory Couette flow are

ny=cosd cosp, ny=singd, n,=sind cosp,

Clearly the incompressibility condition and normalization U(z=+1/2)=a cog, u(z=-1/2)=0
n’=1 are satisfiedd(z,t) is the angle with respect to the ’ ’
x axis within the flow plane X-z plang and ¢(z,t) is the v(z=*1/2)=0, 9)

out-of-plane angle.
We use a length scat and a time scale & with w/2m  wherea=A/d with A the displacement amplitude. Tligi-
the frequency of oscillatory flow, so that the dimensionlessmensionlesspressure gradienio, in Eq. (4) is zero. In the

variables are case of Poiseuille flow one has a dimensionless pressure gra-
dient pgy=d/(— apw)(AP/AX)cod (AP/Ax is the applied
Z7=7zld, t=ot, U=udw, ©»=v/do. (2) Pressure gradient in physical unitsnd
u(z==1/2=0, v(z==1/2=0. (10

The equations governing the alignment and the flow taking
into account a magnetic fieldd=H(m,,m,,m,) with  This is to be supplemented by the boundary conditions for
m?=1 can be written agl,22] the director.
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[ll. STABILITY OF THE FLOW-ALIGNMENT SOLUTION perturbations. Since Eql6) and(17) are of the same form

Let us first consider the case of zero magnetic field"'® consider the general problem

(h=0). Analytic progress is possible for the special case
0=0;, $=0 atz==*1/2, whereby, is the flow-alignment

angle (tafé;=\). Then one has the simple flow-alignment yjth constant® andC (>0). From Floquet theory the so-

Y (—BUg,zt)Y=CY,,, Y(z=*1/2=0 (20

solution 6= 65, u=uy(zt), ¢=0, v=0 of Egs.(3)—(6),
whereug(z,t) (our basic stafesatisfies the equation

OUor =~ Poxt Q(6s)Uozz, (11)
with
2(— ap)Q(0) = as+ (as— ay)sirtd
+(ag+ ag+2a;Sirt0)cosd. (12

In order to analyze the stability of the basic state E§s-

lution of (20) can be written in the forn¥ =exp(t)y(zt)
whereo is the Floguet exponent, which plays the role of the
growth rate for the perturbation, and/(zt) is a
2ar-periodic function int.

The solution for the case of oscillatory Couette fl(iM),
whereuy, is independent of, has the form

Y=exp— C7%t)exp(Ba sint)cog 7z). (21)

Since the constan€>0 one has negative growth rate for
both perturbations at all amplitudes of the flow. Therefore the

(6) are linearized with respect to the in-plane and out-of-solution =6y, ¢=0 (basic statgis linearly stable.

plane perturbations:

0= 6f|+01(zat)v u:uo(zvt)_l—ul(zat)y

b= d1(Z,1),

U:U]_(Z,t). (13)

Let us now consider the more general case when
Up,=af(z)cod. In particular,f(z) =8z for Poiseuille flow.
The marginal stability conditioror=0 corresponds to the
situation where the equation

yi—aBf(z)coty=Cy .,

y(z=+1/2=0 (22

In the low-frequency range to be considered here one has

5<1 (p=~10° kg/m3, —a,~10' N s/m? and d
~10 % m gives 6<1 for frequenciesf<1 kHz and
it seems reasonable to neglect the inertial terms in Eys.

(6), and(11). Then from Eqg.11) one has for the basic state

in Couette flow

Up=a(z+1/2)cod, ug,=a cod, (14
and in Poiseuille flow
up=a(4z’—1)cod, Uy,=a8z cod. (15

In both cases is the maximal flow amplitude. Eliminating

the velocity component; one is left with (;, u; do not
couple to¢,, vq)

01— K'(01)Ug,01=€P1(6y) 01,7, (16)
3 K'(05)R(65)(1—X) —N(6y)sinby,
¢l't_ R(0f|)(1—)\)—sin20f| uO’Z 1
R(6:)(1—\
= Py )N (17)

R( 0”)(1_)\)_3"120“ ¢l,ZZ!
where
P.(0)=cog0+Kkssintl, P,(60)=k,co&0+ksSirt,

2( - az) R( 0) = a4+(a5— az)Sinza,

2(— ay)N(0)=(as+ ag+2a;sirfh)cosd (18
and the boundary conditions are
0.(z=x1/2=0, ¢1(z=x1/2)=0. (19

Equations(16) and (17) are uncoupled, so they give two

independent criteria for stability with respect g and ¢,

has a 2r-time periodic solution. The coefficieft is propor-
tional to e=1/74w [see Egs(16) and (17)] and is therefore
very small for frequencies large compared to the inverse di-
rector relaxation timery (74~10° s for y;~10 1 N s/m?,
d~10"% m, andK;~10 ' N). Thus we will search for a
solution of (22) in the formy=y,+Cy;+--- , C<1 with
27r-time periodicy; satisfying the boundary conditions for
y. At lowest orderC® one has

Yo= Yo(2)e** 1@<, (23
where the functiorY y(z) remains undetermined at this order.
From the boundary conditions followéy(z= *+1/2)=0. At
orderC! one has

y1;—aBf(z)cogy,1=Yq,,, (24)
which gives
y,=e3BTsYry L(aBf')2Y,]t—2aBf Y cod
—aBf"Yocod—3(aBf')2Y,sin2t}. (25)

From the periodicity condition foy, follows that the func-
tion Yy(z) must satisfy the equation

1
Yo+ 5(aBf)?Yo=0, Yo(z=%1/2=0.  (26)

It is well known that there exists a smalldseal and posi-
tive) eigenvaluea for the nontrivial solution of the problem
with given functionf’(z)#0. Therefore for any flow with
Ug,-.#0 one expects instability of the basic state at some
critical value ofa.

For Poiseuille flow one hat' =8 and from Eq.(26) fol-
lows Y,=cokz where k=8aB/\/§. From the boundary
conditions one hak= 7 and therefore
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/2 (The equation fory, is omitted) The solution of Eq(30) is
a=7gg (27)  p,=cossz and the corresponding amplituda,= 2/
8K’ (0y) is exactly the same as E(7) with B=K'(#6y) for
the 6, perturbation.
Above the critical amplitude, the solution of Eq(20) will The result obtained here is not unexpected in view of our
grow in time and therefore the flow alignment solution previous results showing that Poiseuille-type oscillatory flow
(6= 6y,¢=0) becomes unstable. With standard MBBA ma- glways exerts a destabilizing torque on tfrearly flow-
terial parameters (see Appendix B one finds galigned director. The present analysis complements the pre-
B=K'(64)=0.20 andB=0.06 for thed; and ¢, perturba-  vious one by giving the threshold in a situation with stabi-
tions, respectively, so that the lowest critical amplitudelizing boundary conditions. What will the full nonlinear
a.=2.78 corresponds to the, (in-plang perturbation. evolution of the director be at amplitudesof order of the
From the above linear stability analysis follows that thecritical one? Within the flow plane it has mainly a tendency
flow alignment ¢= 64, ¢=0) induced by boundary condi- towards the homeotropittime-averagedposition [20], but
tions is stable for low-frequency oscillatory Couette flow. Onthen there is the possibility of an out-of-plane transition,

the other hand, for oscillatory Poiseuille flow this solution which could occur a|ready at Substantia”y lower amp”tudes
becomes unstable at some critical amplitude as well as for gp1].

general flow withug ,,# 0.

The critical amplitudea, for thg inst_ability of the solution IV. NONLINEAR BULK OSCILLATIONS
(6=065, $=0) can be also obtained in the framework of our WITH MAGNETIC FIELD
recently developed time-averaging meth@0,21]. By intro-
ducing a “slow” time T= et that modulates the periodic be- In order to gain some understanding of the nonlinear di-
havior on the “fast” time scalet, so that 8=46(zt,T), rector evolution we first replace boundary conditions by a
¢=¢(z,t,T), one can formulate a systematic perturbationmagnetic field of strength applied in the appropriate direc-
expansion tion characterized byn. For oscillatory Poiseuille flow one

can then resort to a much simpler spatially homogeneous
situation. Taking the prescribed velocity figltls) (valid for

low frequencies and following our time-averaging proce-
dure(see Ref[21]) one obtains from Eq$3) and(5) for the
where all functionsd;, ¢; are periodic int. At order €°, slow anglesn, x, which are now spatially uniform, the evo-
corresponding to neglect of the elastic coupling, one has thkition equations

0:00+661+ PP ¢:¢O+E¢l+ ey (28)

solutions X
7,1=By(7,x,h,m), (31a
A2 1 [\ Y2+tan .
o= —tanl()\llztanl{mg(z,t)+ Eln )\—ﬂﬁ }, X,T:B2( 7,x,h,m), (31b
(294 whereT = et and the functions
K(6,)] 12 B;=a32{[a;(7,x) +as(7,x) M(x) 1K' (7)K(7)
—tan-1
$o=tan [‘a“X K(w} ] (299 +ag(n)MONLK (MK (7)+ K 2()M” (x)]

t +ay( 7, )KA(n) +ay( 7. x)[K (7)M(x) 1%
Where g(z,t):fou,zdt and 00200(7719)! ¢0:¢0(X,7719)

are periodic functions in. Thus, from Eqgs(29), one has a +h?ag(7,x.M), (329
continuous two-parameter family of periodic oscillations of ) )

# and ¢ parametrized by their values; and y at B,=a"32{[by(7,x) +bs(7,X)M(x)JK" (7)K(7)
t.=27-rn/f), which are"now allowed to depgnd arand. slow +bs( 7 )MOOIK"()K(7) +K ()M (x)]
time T (“slow angles”) and are undetermined at this order.

Note thatd, oscillates aroundy and ¢, aroundy, but, in +by( 7, x)K?( 17)+b4(17,X)[K’(7;)M(X)]2}

general{ 6y) # n and(¢q) # x, i.e., the director oscillation is
in general not symmetric around its positiontat2mn/w

where the flow displacement reverses. However, for smal!i
oscillation amplitude the difference becomes inessentia
From the solvability conditions for the inhomogeneous lineal

equations at first order ie one obtains evolution equations sponse to oscillatory flow. The functioas, b; are defined in

Ecz)rl]t]hg”sllorv angle?; andf)ih[see IIeq.S(ﬂ) andt_(18) In Refa th Appendix A. We remind the reader thatoscillate around
- nelinearization of the evolution equations aroun en and ¢ aroundy (if there is out-of-plane motion, i.e., if

flow-alignment anglen= 6+ 7.(2), x=x1(2) gives with _ _ ;
o ] o x#0) and =17, ¢=x whenever the flow displacement
;Jlo_vyo from Eq. (15 for the case of oscillatory Poiseuille goes through zero. The coupled ordinary differential equa-
tions (31) exhibit an interesting bifurcation scenario with a
regime of slow limit-cycle oscillations when the magnetic
N1zt 32a%K'2(0y) =0, m(z==*1/2=0. (30) field is applied in the flow plane at the flow-alignment angle

+h?bg( 77, x,1M) (32b)

re obtained from the general expressions in the approxima-
ion of lowest-order time-Fourier expansion for the “fast”
"director oscillations up to the second harmonic of the re-
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FIG. 2. Bifurcation diagram for the solutionsy( x) of the
system(31). Magnetic fieldh at the flow-alignment anglé;, .

alignment solution =06y, ¢=0) whereas all the other
fixed points are unstable. In particular, there is a saddle point
(7= 0sp, x=0) and an unstable spiral poiAtin an out-of-
plane positior{note that by the symmetry— — # and, sepa-
rately, y— — x, one has twofold and fourfold degeneracy
With increasinga/h the flow-alignment solution becomes
unstable and a large stable limit cycle appears through a
homoclinic bifurcation from the saddle point ath=1.9
[Fig. 1(b)]. This limit cycle corresponds to a slow-time peri-
odic out-of-plane motion of the time-averagaer the os-

0

sp

NEY

cillatory flow period director orientation. Further increase of
a/h leads to a reduction of the limit cycle and increase of its
frequency. It disappears a/h=2.27 through a forward

Hopf bifurcation from the spiral poind (we have followed
the bifurcation in the reverse sefisBeyond that poinA is
stable[Fig. 1(c)] and one has a constant time-averaged out-
of-plane director orientation which is characterizagproxi-
mately by 7, xa. In addition, 65, and ¢y cross through
X each other at/h=2.52 (for MBBA parametery thereby
exchanging their stability properties.
The bifurcation diagram for the stable solutions, ¢) of
the system(31) is plotted in Fig. 2. In the region of the
slow-time oscillations the minima and maxima gfand x
are given. The phenomenon of slow-time director oscilla-
0 tions exist in a narrow region of the parameté¢h and is
very sensitive to the elastic constant anisotropy. Thus, in the
n one-constant approximationK(;=K,,=K33) one has no
out-of-plane attractors.

FIG. 1. Plot of trajectories in+#,x) phase space for the solu-
tions of the evolution equation®1) for a’h=1 (a), a’/h=2 (b),
anda/h=3 (c). Magnetic fieldh at the flow-alignment angléj .
Note that the director performs rapid oscillations with the external ~ Direct simulations for oscillatory Couette and Poiseuille
frequencyw/27 around the positionq, x); see Eqs(29). flow were performed using central finite differences for the

spatial derivatives and the predictor-corrector scheme for the
0y . The trajectories of the syste(81) in (7, x) phase space time discretization. All calculations were made for MBBA
are plotted schematically for this case in Fig. 1 for differentmaterial parametersee Appendix Band flow frequencies 5
values ofa/h [from Egs.(32) one sees that this is the rel- Hz<=f=<100 Hz.
evant control parameter when time is rescaled appropriately For flow-alignment boundary condition®(z= *1/2)
For values ofa/h<1.9 (for MBBA parameters[Fig. 1(a)], =0y, ¢(z=*x1/2)=0 the calculations for the Couette case
corresponding to a strong effect of the magnetic field comconfirm that there are no homogeneous in-plane and out-of-
pared to the influence of the oscillatory flow, one has onlyplane instabilities of the solutioA= 65, ¢=0 up to large
one attractor =6z, x=0), corresponding to the flow- flow amplitudes &=10). Also for homeotropic and planar

V. NUMERICAL SIMULATIONS
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FIG. 3. Bifurcation diagram foK 6, (¢m). Flow alignment FIG. 4. Slow-time out-of-plane director oscillations. Frequency
boundary conditions; frequency of Poisedille fléw 10 Hz. of Poiseuille flowf =10 Hz; amplitudea= 2.325.

boundary conditions no instabilities were found, in agree-slow-time oscillations as a function of amplitudefor dif-
ment with the predictions of our recent analyl29,21]. ferent frequencies of the oscillatory Poiseuille flow. The
The stability properties of in-plane oscillations with re- range of existence of the slow-time oscillatory solutions in-
spect to out-of-plane motion under oscillatory Poiseuille flowcreases slightly with increasing flow frequency.
have already been studied for homeotropically oriented nem- From the experimental point of view a more realistic situ-
atics[21]. In the frequency range considered we did not findation is that of planar boundary conditions for the director
an essential difference in the critical amplitude between thé (2= £1/2)=0, ¢(z==1/2)=0]. A similar bifurcation
results obtained using the prescribed velocity figdd] and ~ Scenario has been observed when a magnetic fiel@.5
full numerical simulations with the self-consistent velocity Was added in the flow plane at an anglg= /4 with re-
field. Note that for steady Poiseuille flow there is also anSPECt 10 thex axis. Then, at low amplitudes of oscillatory
out-of-plane transition in the homeotropic configuratjgh I oiSeullle flow, one has in-plane director oscillations which
The velocity threshold there was found to be lower than ford© NOt exceed the dy limit. With increasing flow amplitude
the oscillatory flow. a limit cycle_ correspon_dlng to the slow director osc!llz_itlons
For planar boundary conditions tkemal) in-plane direc- 2g§§r?r?:3fﬂ']2rt?§cfergg§g? tc;]aészfng}irt%;%g;jgc;z)ngcrlgnéﬁglfur-
. .
E)Osrcﬁlz (;Icl)lr?/tl(;’rcl)siéziti\{lv:(?lr;;ve\?v)itr?r(raefsc;)uer::? ttg gﬁt?;?-gllzr?g%?sr- tion e_ind disappearar)cg of the _Iimit c_yple. The critical flow
tortions up to large values of the flow amplitude. amplitudea for t_he_llmlt cycle ms_tablllty depen_d_s on the
We find that the flow-alignment solutiofi= 6y, ¢=0 val_ue of magnetic f|elq1 and remains very sensitive to the
becomes unstable in the case of oscillatory Poiseuille flow arfmlsotropy of the elastic constants.
some critical amplitude _c_orrespongiing to a critic_al pressure VI. CONCLUSION
gradientAP/Ax. The critical amplitude for the instability
decreases slightly with increasing frequency £2££=2.3
for 5 Hz=f<100 H2 which is near the valua.=2.78 ob-
tained from the linear stability analysis.
The in-plane and out-of-plane director distortions can be 9.0
described by the averagédver the oscillatory flow period

For the first timg(to our knowledgga slow time-periodic
director motion has been found theoretically. The oscillations

— =5Hz
angles{ 4.,y and{ ¢,,), respectively, taken at the midplaneof | { : + | 1=10 Hz
the nematic layer4=0). Starting with different initial direc- —-—- 1=50 Hz
tor distributions the stable long-time solutions of the system 75|

(3)-(6) have been computed. The bifurcation diagram as a
function of the oscillatory Poiseuille flow amplitude is 2
shown in Fig. 3. In a narrow region of the flow amplitudes |-
slightly below the out-of-plane instability threshold the solu-
tions with the slow-time oscillations of the director distor- 8o
tions exist(the minima and maxima of6,,,) and (¢, are
plotted. Clearly the situation is analogous to that discussed
in the preceding section, where the boundary conditions are
replaced by a magnetic field, but the range of existence of the 45 : : :

: . ; ! 2.15 2.25 2.35 2.45
slow-time oscillations here is smaller. The typical temporal a
evolution of(6,,), { $m) is shown in Fig. 4. The period of the
oscillations is of the order of the director relaxation timg
(in physical unity. In Fig. 5 we plot the periodl' of the

‘.

|

' —— 1=100Hz
\
‘\

FIG. 5. Dependence of the period of slow-time oscillatidnzn
the amplitude of Poiseuille flow for different frequencies.
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appear with increasing amplitude of low-frequency Poi- as(0,¢)=—2[cos o+ Kk,sinfo

seuille flow through a homoclinic bifurcation and disappear

through a Hopf bifurcation. The effect depends strongly on +2(k3—kj)sir?g cos'¢]tang,

the anisotropy of elastic constants and in fact disappears in . ] ]

the one-constant approximation. ag( 6, ¢,M)=m?(cosh cospm, +singm, +sing cospm,)

For low-frequency oscillatory Couette flow with its uni-
form shear rate no homogeneous instabilities are found. In-
creasing the flow frequency leads to deviations from unifor-
mity and, therefore, the appearance of a time-averaged

torque acting on the directg20,21]. This may lead to the b,(6, ) =[SirP0+k,coL 0+ 2(ks— ky)sirPo cofe]
experimentally observed slow director oscillations in a way

X (— sindm,+ cos¥m,)seap,

b.1(6,¢)=(k,—1)singd cosd sing cosp,

similar to the one found above. Although the resulting rota- X sing cosp,

tion of the in-plane director component is confined to at most

a half plane(there are two or four symmetry-equivalent bs( 8, ¢)=sir?6+k,co 0+ (kz— 1)sir’d cos ¢,
state$ it can give the impression of full 2 rotations, as

reported in[18,19, because the optical detection system in- ba(8,4)=—(ky—1)sir?6 sing cosp,
volving birefrengence is insensitive to rotations by multiples

of /2. Work on high-frequency shear flow is in progress. bs(6,¢)=—2 sind cosh(k,—kscos'p—sirf¢),

To test our predictions directly experiments involving R
plane oscillatory Poiseuille flow are desirable. We suggestos( 8, ¢,M)=m(cosf cospm,+singm, +sind cospm,)
doing this with planar director alignment and a magnetic
field applied in the shear plane at an angle of about 45° with
respect to thex axis.

X (—cos singm, + cospm, —sind singm,),
2(— ay)Cq(6,d) = as+ (as— ay)sirtd cog ¢,
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Viscosity coefficients are in units of 16 N s/m? :

APPENDIX B: MATERIAL PARAMETERS

APPENDIX A: COEFFICIENTS IN NEMATODYNAMIC
EQUATIONS a'1=—18.1, a2=—1104, a3=—l.l, 04282.6,

a,(0,¢)=cog0+Kk,sir 0+ (ks—ky)sirf g co ¢, as=77.9, ag=—33.6.
(A1)
Elasticity coefficients are in units of 16° N :
ay(0,¢)=[k,— 1+ (kz—k,)coS¢]siné coss,
K].l: 666, K22=4.2, K33=8.61,
as(0,¢)=(k,—1)sing cosd tane,
and mass density=10° kg/m3. We used the layer thickness

a,(0,¢)=(2k,—kz—1))sing cosd, d=20 um.
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