PHYSICAL REVIEW E VOLUME 53, NUMBER 5 MAY 1996

Dynamics of Turing pattern monolayers close to onset
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We perform simulations of Turing patterns confined to a monolayer by a gradient of parameters in a
three-dimensional system. The results provide a more comprehensive basis for the interpretation of the actual
experimental results than the usual, but disputable, interpretation in terms of ideal two-dimensional systems.
Systematic comparison of the bifurcation behavior in genuine two-dimensional systems and in such monolay-
ers is achieved with a theoretical model. We show that in the monolayers, hexagonal phases are restabilized as
a result of the longitudinal instability S1063-651X96)09905-9

PACS numbeps): 47.54+r, 05.70.Ln, 82.20.Mj, 82.20.Wt

I. INTRODUCTION a “monolayer.” Transverse dimensions of reactors are large
enough(more than 100 wavelength$or the boundary ef-
Turing structures are self-organized stationary concentrafects to be negligible and these patterns are generally coher-
tion patterns which result from the sole competition betweerent and quite periodic over large size domains separated by
reaction and diffusion in a class of chemical systems kept fatopological defects. In these conditions, the most common
from equilibrium by a permanent feed of fresh reactantsregular planforms observed through the gel are stripes or
These chemical systems must exhibit the following featureshexagons. In regard of their quasi-two-dimensional character
First, the reaction kinetics is controlled by two antagonisticand the analogies in planforms, pattern selection theories de-
feedback loops, namely, an activation process—such as areloped for genuine two-dimension@D) system are com-
autocatalytic reaction—and an inhibitory process. This set ofmonly applied to the experimental monolayers.
properties is common to various types of “active media” Unfortunately, there is no definite evidence that the selec-
that exhibit exotic temporal or spatial behavior, like multi- tion stability properties are identical in these genuine 2D
stability, periodic or chaotic oscillations, excitability, or patterns and in those restricted to a single layer bounded by
wave propagatiofl—5]. For Turing patterns to form, a spe- a strong gradient of control parameters. There has been a
cies controlling the inhibitory process must diffuse muchnumber of analytical and numerical studies of patterns in a
faster than any species controlling the activation processamp of control parametefd1,17—27. None of them really
First predicted in 19596], they have been thoroughly inves- meet the requirements above. Analytical methods generally
tigated from a theoretical point of viewfor reviews see rely on slow parameter ramps in contradiction with such
Refs.[1, 4, 7]). Nevertheless, almost 40 years passed beforstrong localization problems. Two-dimensional systems with
they were experimentally evidenced with the so-calledparameter ramps may exhibit patterns made of a single row
chlorite-iodine-malonic acidCIMA) reaction[8], first in a  of dots, the 1D analog of the 2D monolayétd4,21], but this
gel strip reactof9-11], then in a gel disk reactd2,13.  problem turns out to be of a different kind due to the nonex-
The latter setup has become the most commonly used. It istence of rotational invariance in one dimension.
made of a thin flat piece of gel with two opposite faces kept In order to clarify the relations between the genuine ho-
in contact with permanently refreshed reservoirs of differenimogeneous 2D systems and the monolayers, we have studied
input solutions. The input species diffuse from the reservoirghe selection of patterns close to onset for the same model in
into the gel where they meet and react. A gradient of théboth geometries. In Sec. Il, we introduce a simple appropri-
input reactants concentrations spontaneously develops in tlee reaction-diffusion model that exhibits Turing patterns.
direction orthogonal to the faces, establishing a continuouShen we study the selection of patterns close to onset and
change of control parameters. A pattern, breaking the planatheck the numerical results with those predicted from a
symmetry, will form in regions where the values of theseweakly nonlinear analysis. In Sec. Ill, we mimic a disk re-
local parameters meet the conditions for a Turing instability actor by introducing a parameter ramp that induces the for-
i.e., in a thick stratum parallel to the facésig. 1) [14]. In mation of monolayers in agreement with the experimental
the actual experiments, the width of this stratum commonlyobservations. On the basis of 3D numerical simulations we
reaches three or four wavelengtfk5]. Thus—contrary to  show that a transverse instability leading to the formation of
the well-known Rayleigh-Bmard convective structures— a monolayer precedes a longitudinal instability. We show
they present a three-dimensional character. The patterns afeat, very close to onset, the monolayers behave like genuine
normally looked at in a direction parallel to the gradient, so2D systems but that, in relation with the longitudinal insta-
that the light absorption is averaged over the film thicknesility, hexagonal phases are restabilized when the distance to
and there is some uncertainty on the true geometry of théhreshold increases. This property is interpreted as a result of
structures. Nevertheless, when a control parameter ighe coupling of the cubic terms with a homogeneous mode,
changed continuously, the width of the unstable regiorin agreement with the recent theory of Pr{@s].
grows progressively. The structures are thus found to form In the following, we call “2D systems” without further
one layer after the other, so that just beyond the pattern onsptecision genuine two-dimensional systems with uniform
there is a single laydrl6]. We shall call this type of pattern control parameters. We always consider the relative stability
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n=+1 andsubstrate-depleted »=-—1. The number of co-
efficients can be reduced to three for each type of model by
rescaling the concentrations, the time, and the space coordi-

SOLUTION 1 SOLUTION 2 nates. Without lack of generality, we can restrict ourself to
the activator-inhibitor type. Introducing the ratie=D,/D,,,
D a convenient form of the rescaled system is
Ju

—=u—av+VZ2,
ot av

w_ +dV? 2
&t_u BU v, ()

FIG. 1. Scheme of a disk reactor. Input reactants are providesvith >0 andB>0. Variableu is the activator, whereasis
by solutions 1 and 2. Structures form in the gray region. The arrovthe inhibitor.
indicates the direction of observation. One can define a reaction-diffusion system that give rise
to Turing patterns by adding a minimum of nonlinear terms
of regular periodic patterns—stripes or hexagons patterns—to this set of equations:
without topological defects and assume periodic boundary Ju

conditions in the pattern plane. All 2D and 3D computations —=u—av+yuv—u3+Va,

were performed with an implicit hopscotch meth@9] tai- at

lored to handle the nonlinear terrf30]. o0 (3
E=U—Bv+dvzv.

II. TWO-DIMENSIONAL SYSTEMS

. 3 . . .
In order to make clear the comparison with the monolay-1he cubic term—u* limits the exponential growth of the
ers, we shall report rather extensively the analytical and nuPerturbation and allows for the saturation of the instability.

merical properties of the two-dimensional systems that willl he quadratic termyuv avoids the invariance in the trans-
be used as a reference in Sec. Il formation ,v)—(—u,—wv), which is nongeneric in chemi-

cal systems. This particular symmetry can be restored by

settingy=0. Although this model has not been derived from

a chemical scheme, it exhibits the same properties and has
The linearization around the stationary state of any twobeen preferred in regard of its simplest analytical properties.

variable reaction-diffusion system able to exhibit Turing pat- This model has a uniform stationary state(v =0) in-

A. Reaction-diffusion model

terns can always be written in the form dependent of the control parametetsg, v, d. The linear
au stability analysis of this stationary state—hereafter referred
E:alu_ nayv +D,V?u, as the “zero” state—follows from the linearization of sys-
tem (3) which actually reduces to Eg&). In the absence of
v ) diffusion, the homogeneous system exhibits a Hopf bifurca-
gt nasu—az+D, Ve, (D tion at B=1 (when e>1) and an exchange of stability or a

pitchfork bifurcation along the linex=8. The stationary
wherea;>0, =+1, andD, andD, are the diffusion coef- state is stable to any small homogeneous perturbation for

ficients[4,31,33. The model is calledctivator-inhibitorif ~ 1<B<a (Fig. 2). When the diffusion terms are present, the
stationary state can become unstable, in this parameter do-

main, to a nonuniform perturbatian=ug explik-r) of wave

= LA % vector k0, whereuz(;‘i). This Turing bifurcation occurs
o [ ] when the real part of an eigenvalue of the linear operator
15 |- 2 - 1-k? —a
i ] L= 4
L ] ( 1 —,B—dkz) @
10 [ ]
C ] becomes positive, that is, when the determinarénd the
[ A ] first derivativedA/dk are simultaneously zero. The Turing
5¢ 1 ] bifurcation is located along the lin&B (Fig. 2) defined by
i 1 the equation
0 L 1 I 111 ¢t I 1.1 I | I I_ (B+ d)2
0 5 10 15 20 a=ac="" ®)
B
The critical wavenumbek, is given by
FIG. 2. Bifurcation diagram atd=20. (1) Turing space.(2)
Stable stationnaire statgg>1). AB: limit of Turing bifurcation kzzd—,é’ (6)

(B<20). CD: limit of Hopf bifurcation (a=>1). ¢ 2d -
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- maxima are disposed on the hexagonal lattice. Stripes can be

......'. straight lines or exhibit periodic undulations that result from

" .....1 a previous zigzag instabilit}34]. The latter still belong to

......... the stripe pattern category. The planforms in Fig. 3 are iden-

D....’. ..“ tical to those observed with other chemical schemes, like the
.

'... .'%... Schnackenberg _m_odEBS,??Q or th_e_ Brussellatof37]. This
e .’....‘4 supports the validity of thls simplified mod_el. N
.... ...' Close to onset, the eigenvalues associated to the critical
Q........_.J modes are close to zero, so that they evolve on a long time
b scale, whereas the noncritical stable modes relax rapidly. The
" whole dynamics can be therefore reduced to the dynamics of
the active slow modes, which slave the fast stable mpzles
/ The stability and the selection of the different patterns close
to onset can be derived from the amplitude equations that
governs the dynamics of these active modes. Hexagonal and
stripe patterns are thus well described by a system of three
active resonant pairs of modés ,—k;); -1 » gmaking angles
of 27/3.
A Close to onset, the solutions are given by
d

u=uo- X [Ajexplik; 1) +Arexp—ikj-1l,  (7)
k:
FIG. 3. Two-dimensional pattern&) hexagonal patterily (a !

=7.81, B=5, y=0.75,d=20, size: 10&100); (b) hexagonal pat- \hereu, defines the direction of the eigenmodes in concen-

terH ; (a=7.81,5=5, y=0.75,d=20, size: 10&100); () striped  tration spacéi.e., the ratiou/v) and whereA; and the con-

pattern (a=7.45, f=5, y=1, d=20, size: 10&100; (d) zigzag  j,gate Af are, respectively, the amplitude associated with

pattemn(e=7.3, =5, y=1, d=20, size: 10&100. modesk; and—k; . From standard symmetry arguments, one
can predict the general form of these amplitude equations at

The parameter domain where the stationary state is unstabigird order[38]:

only to a nonuniform perturbation—sometimes called the

“Turing space” [3]—is represented in Fig. 2. As expected, r —1=MA1+ TASA% —[alALl?2+g" (|A]2+|As12) 1A,

this domain exists only when the inhibitor species diffuses

faster than the activator species and the area of this Turing ®

space increases with _the ratio . . whereu=(a;.—a)/a is a normalized distance to onset. Simi-
We shall now consider the form_atlon and_ the selection of, equations fol, andA; are obtained by circular permu-
patterns close to the onset-a.—i.e., the lineAB—and  iaiinn of indices. To avoid confusions, always keep in mind
gv0|d as .m.uc_:h as .possmle coupling with other mstabllltlesthaL for model(3), the stationary state becomes Turing un-
i.e., the vicinity of linesBD andCD. stable when the bifurcation parameterdecreasesso that

If not otherwise statedy is used as the expandable bifur- 4, gistance to onset increases when the bifurcation param-
cation parameter and the numerical simulations are carrlegter decreases.

out with the valuesl=20 andB=5. With this parameter set,

The form of Eq.(8) is general for Turing bifurcations, but
the Turing bifurcation is located atw,=7.8125 and a(8)is g d

the exact expressions of the coefficients are specific to the

ke=0.6124. model. Their derivation for our particular mod€s) is re-
ported in Ref[30]. For amplitude ofu, they are
B. Weakly nonlinear theory and selection of patterns 2(d—1) 8dy ©
T= ] = )
Figure 3 illustrates the different types of stable stationary p+d (B+d)?
patterns that are found in numerical simulations when ex- 6d  16d2y*(538+23d)
ploring the parameter space. The variablis represented on (10

9= - 2 3

a gray scale, changing from blaghinimum value to white prd  9(p-d)A(p+d)
(maximum valug The variablev changes in phase with , 1« 32d2y%(3B8+d)
and exhibits similar patterns. When the patterns spontane- 9= B+d (B—d)4(B+d)?
ously emerge from a noisy initial unstable stationary state,
they naturally contain topological defects that move and re- For these amplitude equations to be valid, saturation of
lax slowly. If the system is finite these defects tend to vanishhe instability must be achieved at third order. This condition
on a long time scale. From now on, we shall consider onlys satisfied when
periodic patterns without topological defects. We also as-
sume that they are stable to small charges of wavelength
caused by cross-roll or phase instabilitj@s].

All the patterns in Fig. 3 are made of stripes and hexa-
gons. There are two types of hexagons, respectively referrdéor =5 andd=20, y.~5.721, and the above conditions are
to asH, andH ., according to whether the minima or the satisfied for|y|=1.

3v3(d?—Db?)
2v2[d(538+23d]¥2

|y <7e= (11
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FIG. 4. Schematic bifurcation diagram fb&>0. Hy: hexagonal
patterns with®=0; H ,: hexagonal patterns wittb=; B: striped 0
patterns; —: stable states, ---: unstable statesI<d, the indices
0 and 7 must be exchanged.

Amplitudes in Eq.(8) can be writtenAj=p; expg;. It
results from a standard stability analyg®6,38—4( that the
only possible stable solutions are the steady state, a stripe
pattern(p,#0, p,=p3;=0) and the hexagonal patterik, or
H, (p1=py=p3, With ®=¢;+ ¢, +¢@3=0 or , respectively.
Their existence and stability limits, as a function of the 0.5
scaled bifurcation parametet, are ordered according to the
scheme in Fig. 4 where the, are given by

-

Amplitude

= =0,
Iy _ 2g+g’ 2 12
Ha (9—9g")°’ M4_(9'—g) ' FIG. 5. Bifurcation diagrams of 2D system for model defined by

Egs.(3). @: stable stripesA: stable hexagong{, (limit at C), V¥:
Stable branche#i, and H_ are mutually exclusive. The stable hexagond ., (limit at D) (numerical simulation —: stable
stable branch i, if >0 andH , if ['<0. A subcritical  states, ---: unstable statgmputed from amplitude equatio(®—
hexagonal branch comes out firstuat u;<0 but loses sta- (10)]. (@ =5, y=0, d=20. (b) f=5, y=0.75,d=20.
bility when u>u,>0. The supercritical stripe state branch is

unstable close to the critical point but becomes stable foPnset, as in our model at=g. In the vicinity of such bifur-
u>pus. In the rangeus<u<u, both branches are stable. cations, the homogeneous mode becomes active and has to

When y=0 the nongeneric symmetryu(v)—(—u,—v) is  be included in the amplitude equations. Cubic interaction

restored, one haB=0 and u,= u,=u3=pu,=0. In this case, involving such an active mode of zero wave vediagener-

the stripe pattern bifurcates supercritically whereas the steates in Eq(8) a term of the formA,AT A3 . This term origi-

bility range of the hexagonal pattern vanishes. The latter i®iates in the conservation lak,;=—k,—k3;+0, where

indeed directly related to the quadratic tefimand propor-  (K1,K»,K3) is the basic triplet of the hexagonal structure. As it

tional to y* [41], in the modell>y so this stability range can containsA A} like the quadratic term in Ed8), it plays the

be easily tuned. same stabilizing role for the hexagonal patterns. Neverthe-
The amplitude and stability of patterns obtained by directless, if no other quadratic terms are preséhf,andH . are

numerical simulations and those obtained from the By. equivalent and ar&doth restabilized. If there are quadratic

are reported in Fig. 5 foy=0 andy=0.75 as a function of terms in the dynamical equatiof$+0 for model(3)], one

the distance to onset.—«a. Close to onset, these results are of these pattern is favored and is restabilized first. This re-

in excellent agreement and confirm the validity of the ap-stabilization is shown in Fig. 5 for modé8) whena comes

proach. close toB. As expectedH, andH , are both reentrant, at a
When the nonlinear coefficients of the model also dependommon valuea=ag,=6.02 (i.e., a.—ag,=1.7925 for

on the bifurcation parameter, the coefficients in Bj.and  y=0 [Fig. 5a)], at different values for fory+0 [Fig. 5b)].

the w;'s may also depend op so thatone of the hexagonal In any case, the bifurcation scheme in Fig. 4 is preserved,

phases can regain stability at large This direct reentrant provided thaty remains small enough. Note that since the

phenomenon depends on the model and has been extensivapve vector of the faster growing mode gradually change

discussed for the Brussellatp87] and for the Schnacken- with the distance to onset, the reentrant branches are actually

berg model[30,36. Our model(3) avoids such a behavior only (re)stabilized for wave vectors slightly different &f .

that could bias the interpretation of results in Sec. lll. How-Those represented in Fig. 5 correspond to the wavevectors at

ever, Price has recently shown that hexagonal phases can thich this restabilization occurs at the closest point to onset

also restabilized—even in the absence of quadratic terms—ifespectivelyk.~0.55 aty=0 andk,~0.57 aty=0.75. We

an activehomogeneousnode, commonly referred as a d.c. shall see in Sec. |l that the restabilization of hexagonal plan-

mode, is preseri28]. This can be found in particular when forms by a d.c. mode can derive in a more indirect way from

an homogeneous bifurcation occurs at some distance beyomddifferent type of bifurcation.
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. MONOLAYERS

A. Monolayer modeling

We shall mimic the behavior of the experimental three
dimensional disk reactors by introducing permanent gradi-
ents of at least one of the bifurcation parameters. In real disk
reactors the input species concentrations are actually kept
constant only on the feed surfaces but their gradients inside
the gel are controlled both by diffusion and reaction. Thus,
there is a feedback on the control parameters so that they are o
dynamical variables of the problem. Although such feed-
backs can be incorporated in theoretical calculatiff,
they depend on the specific form of the model. Nevertheless,
in many cases, the reaction dynamics can be described yultilayer structures settle. Such structures are beyond the
reduced models in which the control parameters are not thgcope of this paper.
concentrations of input species themselves, but are effective So far, there is no conclusive experimental argument to
constants, obtained by adiabatic eliminations or approximaehose a particular parameter profile meeting these condi-
tions on numerous variables. The experimental control pations. Thus we have retained a simple form, that is, a para-
rameters enter the equations through these constants. For #elic profile centered on the median plane ;L. A priori,
stance, some of these species can be precursors that proddieis gradient could be applied to any coefficient of the lin-
intermediate Species at rates depending mainiy on the inpﬁarized equations. Since the different coefficients of the lin-
concentrations(a formal example is the Schnackenberg earized equatior[s*.).efore scaling .in order to kegp all of them;
model[11]). Close to onset, supercritical Turing structuresS€€ EA.(1)] play different roles in the dynamics, one could
correspond to small amplitude spatial oscillations around th€XPect that the properties depend of the choice of the coef-

unstable stationary state. These small modulations are gen jcient on which the gradient is applied. Whichever quf.f"
ally smoothed out and averaged in the feedback. In practic lent Is _conc_erned, f[he results actually happen to be 5|r_n|Iar.
: : his point will be briefly checked at the end of this section.

one can thus assume that the spatial profiles of the contrqlhe results extensively reported in this section have been
parameters are not coupled to these small variations of COMptai : y repc ; .

i : btained with the moddl3) with the following spatial con-
centrations. For example, Lengyel and Epstein have Prog o parameter profile:
posed a satisfactory model of tH€lO, -1"-malonic acid _ 2
reaction, a variant of the CIMA reaction which is also known (2)= ot p(2-20)" (13
to give Turing patternp42]. They have shown that the whole parametep was kept fixed in each series of numerical ex-
set of reactions can be approximated by a two-variabl§yeriments whereas, was used as the tunable parameter.
model in a large range of parameters. The control parametefighe function a(z) is maximum in the median plane
only depend on the feed concentrations and on the distange= z =1 /2, wherea(z) = a;—the most supercritical value—
to the feed surfaces. They can be tuned independently iand define a supercritical domaki_, wherea(z) < a. cen-
order that the system become supercritical in a layer parallekred on this median plan&ig. 6). When comparing bifur-
to the faced[14], i.e., the conditions expected to produce cation diagrams of the 2D uniform systems of Sec. Il with
monolayers. Although the extension of these conclusions tthose of these 3D gradient systems, it is natural to use re-
the CIMA reaction or other models is not straightforward, spectivelya anday, or the distances to onsatv=a.—« and
modeling monolayers by introducing a tunable parameteAay=ao—ap.
profile appears to be a sound approach. The exact form of the Since the zero stationary state of our particular model is
model and of this profile do not seem critical for the conclu-independent of the primary parameterthe spatial organi-
sions that we shall draw in Sec. IV, provided that a fewzation results unambiguously from the Turing instability and
prerequisites accounting for experimental conditions are metannot be confused with trivial spatial changes of the station-

In agreement with Sec. I, the following requirements mustary state.

be retained:(a8) The control parameter in the reaction- Two types of instabilities may occur according to the ori-
diffusion equations, sayy in Eq. (3), must change continu- entation of the wave vector.
ously along the sole directio@,, orthogonal to the opposite A longitudinal instability, if the critical wave vector noted
faces, and remain uniform in directio@ andO,, parallel  k;, is oriented parallel to the gradierforthogonal to the
to these facegb) The profile of this primary parameter must faceg. The critical parameter can be determined in a 1D
be controlled through onéor several tunable secondary system colinear to the parameter gradient since, in this case,
control parameters that play the role of the tunable experiit is the only possible instability.
mental constraintsic) The primary control parameter must A transverse instability, if the critical wave vector noted
be subcritical on the facest z=0 andz=L) and take su- k,, is oriented orthogonal to the gradie(garallel to the
percritical values over a rangkL located at some distance faces. This transverse mode is rotationally invariant in
from these faces. In the explored range of tunable paranplanes parallel to the faces. When a monolayer is considered
eters, AL must grow from zero t&L~\, in order to go from  as a 2D system, the wave vector matches withk.
a uniform state to a structure extending over at least one Section Il B is devoted to the determination of the first
wavelength along the directiod,. WhenAL further grows, linear instability leading to a Turing structure and the form

A

FIG. 6. Control parameter profile.
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z FIG. 9. Marginal stability curves of 2D and monolayev {

systemsoa(k, ) is maximal on dotted lines.
FIG. 7. Concentration profile(z) in the 1D systemay=6.1,

p=0.15, =5, y=1, d=20. equationdA/dt=a(k,)A, wherek, =|k, |, the eigenvaluer
is constant in time and given by

of the dispersion curve in the 3D systems described above. In A(t+At)

Sec. Il C, we report the bifurcation diagrams close to onset In AL

and the relative stability of the different patterns. These nu- ok )= (14)

merical results are compared to those obtained in Sec. Il for At

genuine 2D systems and we discuss the limits of the concept _ -
of “monolayer.” From now on, fixed parameters are given A comparison of the upper and the lower limits of the un-

the following values =5, d=20, p=0.15. The linear prop- stable band as a function ef, with those obtained analyti-

erties are independent of the parametewhich is involved cally for th? geng?ne. 2D systems is given in Fig. .9' The
only in nonlinear terms. transverse instability is delayed tg=«a, =7.135>¢«,, i.e.,

AL~0.41\. However, sincex, > ¢, this transverse instabil-
ity precedes the longitudinal instability, so that the critical
value isag.=a, andAay=a, —ay.

We have determined the onset of the longitudinal insta- A significant feature of the monolayer system is that the
bility by numerical simulation of a 1D system. The uniform sideband rapidly expands on the lower side&kpfwhen the
stationary state becomes unstable dgr¢=6.16. The in-  distanceAqg increases. The transverse mdde=0 becomes
homogeneous profile just beyond the transition is given iractually unstable fory,=«;. Therefore, the longitudinal in-
Fig. 7. The transition does not occur feg=«,=7.8125, but  stability behaves like an homogeneous instability for the
is delayed until the width of the supercritical domain is structures that develop in the transverse direction. This prop-
larger than a critical value, here wheri~0.65\. erty will take a major importance in the interpretation of the

The transverse instability was studied by following thenonlinear properties in Sec. Ill C. Another noticeable differ-
emergence of a pattern in the median plane. We have deteence with the genuine 2D case is the shift to lower values of
mined, not only the onset of this instability, but also thethe wave vector corresponding to the maximum growth, i.e.,
dispersion curves(k,) (Fig. 8 by following, after the fast the most unstable mode.
relaxation onto the unstable eigenvector, the growth of a In order to check that the succession of the instabilities
small perturbation of wavevect&ér, and amplitudeA. Since, does not depend on the choice of the linear coefficient on
in the linear regime, the amplitude grows according to thewhich the parameter ramp is applied, we have successively
applied this ramp to the coefficientsg or to the coefficients
o' and B’ which come from a different normalization of the

B. Linear instability

k r LA L I N B B L ] A N A
o(ks) C ] linearised equations:
0.08 |- —
r 8 Ju ,
L ] —=a u—v,
0.04 - Jt
C : ] v (15
0.02 3 - St Ruv
Y /2\ We have kept the parabolic profile but the facidnas been
r ////N\\\\ . adjusted to meet the conditions that define a monolayer sys-
002t 1 L AL L tem, but, to avoid additional spurious effects, we have re-
0 0.2 0.4 0.6 k 0.8 quired that for the most subcritical values the system do not

comes close to an unstationary instabilifg.g., when
FIG. 8. Dispersion curves: growth ratek,) for differentay ~ B8(z)~0]. In this purpose the parabolic profile is limited to
values. (1) ap=7.2, (2) ay=7.1350, (3) ap=7, (4) ax=6.8, (5) the central region and limited to a nondangerous constant
@p=6.3. subcritical value elsewherée.g., =1.5. These minor
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TABLE |. Values of computed critical parameters.
Transverse Longitudinal
Control instability instability
Model parameters p 2D system (AL) (AL)
1 —a B=5 0.15 a.=7.8125 a, =7.135 =6.16
(1 —,3) (0.41n) (0.65\)
1 ~a a=7 B _ B.=4.53 B=5.77
(1 _ B) f=1.4 0.15 Pe=3.66 0.49\) 0.76)
o -1 B'=2 _ . a| =0.640 «=0.783
( 5 - 1) «'>0 0.012 @c=0.582 (0.36\) (0.67)
o -1 L , B =1.599 B =1.067
(B’ —1) @00 o po=2llz (0.3%) (0.53\)

changes are always located well outside the core of theharacter of the structure, a vertical section paralleDids
monolayer[43] The values of the computed critical param- also shown. Other plane sections parallel to the faces exhibit
eter are collected in Table 1. the same symmetry, so that one can refer to the 2D termi-

Whichever the ramped coefficient is, both instabilities arenology to classify the monolayers. If not otherwise stated,
always delayed and the transverse instability always comethe reported amplitudes will always correspond to the con-
first. This precedence was also predicted some time ago bgentrations in the median plane.
Dewel et al. [20], on the basis of slightly different hypoth- In Fig. 11, the different kinds of monolayer patterns ob-
eses. We shall now focus exclusively on mo¢@l in the  served in our numerical simulations are collected. They ex-
case where the spatial profile is set on parameter hibit precisely the same planforms as the genuine 2D sys-
tems, that is hexagond, or H_, and straight or zigzag
stripes(compare with Fig. B

The bifurcation diagrams for the monolayers+at0.75

To analyze the two-dimensional symmetries of the differ-are reported in Fig. 12. The wavelength is set to the critical
ent monolayer patterns, one can use different concentratiofalue. Note that, contrary to diagrams of Sec. Il, full and
amplitudes. Natural choices are the concentrations in the Metotted lines do not represent analytical predictions, but are

dian plane, that is the most supercritical region with the

higher contrast, or the spatial average of concentrations over

Sl
|

representation more closely mimics the experimental obser-
C d

C. Stability and pattern selection

vation in the disk reactor. In practice, there is no qualitative

differences between these two descriptions, as shown in Fig.
10, where both representations of the same monolayer of
hexagonal symmetry are given. To evidence the monolayer

a b

c

FIG. 11. Monolayer patterns: distribution of concentratiom
FIG. 10. Monolayer patterryy=7, p=0.15,8=3, y=3, d=20, the median plane. Common parametgrs:0.15, =5, d=20. (a)
size: 80<80x27. (a) distribution of concentratiom in the median  hexagonal patterhly (ag=7, y=3, size: 60K60x27); (b) hexago-
plane;(b) distribution of concentration averaged over the system nal patterrH . (ag=7, y=—3, size: 60<60X27); (c) striped pattern
depth;(c) distribution of concentration in a plang(O, ,0,) parallel (=7, y=0, size: 660X 27); (d) zigzag patterfay=6.6, y=3,
to the parameter gradient. size: 12K 127X 27).



4890 V. DUFIET AND J. BOISSONADE 53
o o
3 1 5 1t
2 £
B -
g E
< <
0.5 05+
—> —> 0 002 004 006 008 0 0 002 0.04 008
0 L 1 . : ' N
0 0.5 1 1.5 0 0.5 1 1.5 2

Amplitude
©
N

o
-

FIG. 13. Bifurcation diagram for the monolayersyat0.5 (am-
plitude of variableu). p=0.15,3=5, d=20. A: stable hexagond
(limit at point C). ¥: stable hexagon$i . (limit at point D). @:
stable stripes. —: stable states. ---: unstable state®erical simu-
lation).

properties, in the latter, the hexagonal pheigeloes not lose
stability away from onset. For smaller valuesgfthe hex-
agonal branch loses indeed its stabilisge Fig. 13;y=0.5),

vanishing as expected wher=0 (Fig. 14), but retrieves rap-

- —> 70 0w oor ovs oo idly this stability at larger values df« as shown in Figs. 13
0 0 05 ) 5 > and 14. Whichever the value ofis, a stable branch dfi .
’ aj—ap hexagons also comes out at some distance from onset. Con-

FIG. 12. Bifurcation diagrams for monolayers #t0.75 (am-
plitude of variableu). p=0.15, 8=5, d=20. A: stable hexagons
Hy. ¥: stable hexagond , (limit at pointD). @: stable stripes. —:
stable states. ---: unstable statesimerical simulation (a) ampli-

trary to the two dimensional case of Figs. 5, this branch
exists atk=k.. When y=0, the stability ranges of the
branchesH, and H, merge. In Fig. 15, we represent the
different stability domains as a function both of
Aay=(a; —ap)—the distance to onset—and of the parameter

tude in the median plangb) amplitude averaged over the system 7. The stability limits are identical foy and —y except that

depth.

the hexagon typekl, andH , are exchanged.

drawn to highlight the continuity of the numerical branches. IV. DISCUSSION AND CONCLUSION
In Fig. 12a), we used the amplitudd,,, in median plane,
whereas in Fig. 1®), we used the amplituda,,. averaged We have shown that close to onset, 2D systems and

over the system depth. As expected, both diagrams exhibfponolayers have _similar stability p_roperties but that in the
the same qualitative behavior. Close to onset, they are sim|&ttér, when the distance to onset increases, both hexagonal

lar to those of 2D systems. The hexagonal forty bifur- phases are strongly restabilised. In the range where stripe
cates first in a subcritical way. The stripe pattern branch ifatterns are also stable, patterns that form spontaneously
supercritical but is unstable nearly beyond onset. It recover§0om random fluctuations of the uniform state are indeed
stability at some distance from the bifurcation point.

Close to onset, the amplitudé,, remains finite. This
attests that the layer thicknedsloes not vanish at the criti-
cal point. This thickness can actually been estimated from
the values of the maximum and averaged amplitude if one
assume that the amplitude of a fully developed structure av-
eraged on a wavelength should be abApt,/2. In our sys-
tem, one had./A~3. From Figs. 122 and 12b) one gets
AnalAqe—6~2L/N from which we can give an estimated
value 5~2LA, dAmax—N. Therefore, at onset, the layer
arises at once with a thickness of one wavelength. When
v#0, this in agreement with the subcritical character of the
bifurcation but in contrast with the analog problem in lower o
dimensions. Actually, in two-dimensional systems where one
imposes a gradient of input reactant concentrations, the tran-
sition was essentially found to be supercritif2d]. FIG. 14. Bifurcation diagrams for the monolayers &0,

Although, in the close vicinity of the bifurcation point, p=0.15, =5, d=20. A: stable hexagonsi, andH .. @: stable
genuine 2D systems and monolayers exhibit similar stabilitystripes. —: stable states. ---: unstable stétesnerical simulatiopn

Amplitude

1.5 2

0.5 1
a_L_aO
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FIG. 15. Nature and stability of patterns in the parameter space A
(ag,y). p=0.15, B=5, d=20. —: stability limit of hexagond,. ) Q—ORp ,
----: stability limit of hexagonsH .. ---: stability limit of stripes. ) )
Hq, H,, andB, respectively, specify the stability region of patterns a, Apo a=
Ho, H,., and stripes. b t = $ {
’ ’ I oL .aR3-a” | 1 L 1 L J
stripes, but this does not dismiss the importance of these 15 10 5

hexagonal phases. Since the latter usually bifurcate first, they
can be maintained afterwards by a slow .Commuous change FIG. 16. Summary of relevant stability limits in 2D and mono-
Of. tunable pqram_eter_s such ag or v. This should be a layer systems. All quantities are defined in the t¢at.y=0, B=5,
W|d_espread situation in real experiments, where Fh_e_ CONCeNy= o4 ,=0.15; (b) y=0, B=5, d=50, p=0.25.
trations gradients build up progressively from the initial state
without physical break off. Simultaneous stabilization and/or
reentrance obothtypes of hexagonal patterns suggests a d.cthis particular choice by replacing the symmetric parabola by
mode induced reentrance. Although we have shown in Se¢wo half-parabolas with different curvaturg20]. The results
Il B, that the 2D model exhibits such a phenomenon in relaare definitely similar to those of Sec. Il and are not reported
tion with a transcritical or pitchfork bifurcation at=g, this  here.
reentrance has a different origin in the monolayers. Due to In conclusion, we have shown than monolayer Turing pat-
the delayed bifurcation, it is more pertinent to use the deviaterns arise from a transverse instability with a delay when
tions to onsetfAe and Ay than the parameter@ and oy to  compared to the genuine 2D systems. The first pattern devel-
compare the stability of the 2D systems and of the monolayeps over a full wavelength in the directi@,. Very close to
ers. Accordingly, the restabilization of hexagonal phasesnset, monolayers and 2D patterns exhibit similar stability
turns out to be strongly advanced in the monolayers, as ilproperties, but important changes occur in the vicinity of the
lustrated in Fig. 1@) in the casey=0. This particular ex-  |ongitudinal instability: the dispersion curve stretches toward
ample was chosen for simplicity since there is no hexagonai d.c. mode and, consequently, both hexagonal pattégns
pattern at onset and sinek, andH ; are both reentrant at the andH _ are(re)stabilized. Thus, one can say that the patterns
same valuer=ags. The shift suggests that the origin of the |gse their two-dimensional character close to this longitudi-
d.c. mode is different in the two types of systems. Moreoverna| instability. Nevertheless, this instability does not corre-
ags is close toq, the value at which the longitudinal insta- spond to any visual qualitative change of the structure—
bility occurs. To corroborate this point, the numerical simu-yisible multiple layers actually come far beyond the
lations have been repeated with=50 [Fig. 16b)]. In the  transition—so that it seems experimentally impossible to dis-
monolayers the restabilization point is again significantly adtinguish the narrow parameter range where the 2D descrip-
vanced, but remains still located nearby the Iongitudinal inﬂon is valid from that of the ambiguous_between 2D and
Stability. As we have shown in Sec. Il B, this instability ac- 3D_regime that comes next. Thus, contrary to what is com-
tually behaves like a homogeneous instabildyc. mod¢for  monly accepted, one should be very cautious in the applica-
the transverse structures of wave vedtor It is thus natural  tion of the well developed 2D pattern selection formalism to
that the coupling with this mode restabilizes these transversge experimental results, even when the structure is restricted
hexagonal structures that constitute the monolayer, in agregp a single layer.
ment with the Price theory. Therefore, the origin of the d.c.
mode is quite different in the genuine 2D systems and in the
monolayers. In the former, it resulted from the specific form ACKNOWLEDGMENTS
of the reactive partand could be absent in other models
whereas, in the latter, it follows from the “geometric” effect ~ We greatly acknowledge P. De Kepper for a critical read-
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