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We perform simulations of Turing patterns confined to a monolayer by a gradient of parameters in a
three-dimensional system. The results provide a more comprehensive basis for the interpretation of the actual
experimental results than the usual, but disputable, interpretation in terms of ideal two-dimensional systems.
Systematic comparison of the bifurcation behavior in genuine two-dimensional systems and in such monolay-
ers is achieved with a theoretical model. We show that in the monolayers, hexagonal phases are restabilized as
a result of the longitudinal instability.@S1063-651X~96!09905-9#

PACS number~s!: 47.54.1r, 05.70.Ln, 82.20.Mj, 82.20.Wt

I. INTRODUCTION

Turing structures are self-organized stationary concentra-
tion patterns which result from the sole competition between
reaction and diffusion in a class of chemical systems kept far
from equilibrium by a permanent feed of fresh reactants.
These chemical systems must exhibit the following features.
First, the reaction kinetics is controlled by two antagonistic
feedback loops, namely, an activation process—such as an
autocatalytic reaction—and an inhibitory process. This set of
properties is common to various types of ‘‘active media’’
that exhibit exotic temporal or spatial behavior, like multi-
stability, periodic or chaotic oscillations, excitability, or
wave propagation@1–5#. For Turing patterns to form, a spe-
cies controlling the inhibitory process must diffuse much
faster than any species controlling the activation process.
First predicted in 1952@6#, they have been thoroughly inves-
tigated from a theoretical point of view~for reviews see
Refs.@1, 4, 7#!. Nevertheless, almost 40 years passed before
they were experimentally evidenced with the so-called
chlorite-iodine-malonic acid~CIMA ! reaction@8#, first in a
gel strip reactor@9–11#, then in a gel disk reactor@12,13#.
The latter setup has become the most commonly used. It is
made of a thin flat piece of gel with two opposite faces kept
in contact with permanently refreshed reservoirs of different
input solutions. The input species diffuse from the reservoirs
into the gel where they meet and react. A gradient of the
input reactants concentrations spontaneously develops in the
direction orthogonal to the faces, establishing a continuous
change of control parameters. A pattern, breaking the planar
symmetry, will form in regions where the values of these
local parameters meet the conditions for a Turing instability,
i.e., in a thick stratum parallel to the faces~Fig. 1! @14#. In
the actual experiments, the width of this stratum commonly
reaches three or four wavelengths@15#. Thus—contrary to
the well-known Rayleigh-Be´rnard convective structures—
they present a three-dimensional character. The patterns are
normally looked at in a direction parallel to the gradient, so
that the light absorption is averaged over the film thickness
and there is some uncertainty on the true geometry of the
structures. Nevertheless, when a control parameter is
changed continuously, the width of the unstable region
grows progressively. The structures are thus found to form
one layer after the other, so that just beyond the pattern onset
there is a single layer@16#. We shall call this type of pattern

a ‘‘monolayer.’’ Transverse dimensions of reactors are large
enough~more than 100 wavelengths! for the boundary ef-
fects to be negligible and these patterns are generally coher-
ent and quite periodic over large size domains separated by
topological defects. In these conditions, the most common
regular planforms observed through the gel are stripes or
hexagons. In regard of their quasi-two-dimensional character
and the analogies in planforms, pattern selection theories de-
veloped for genuine two-dimensional~2D! system are com-
monly applied to the experimental monolayers.

Unfortunately, there is no definite evidence that the selec-
tion stability properties are identical in these genuine 2D
patterns and in those restricted to a single layer bounded by
a strong gradient of control parameters. There has been a
number of analytical and numerical studies of patterns in a
ramp of control parameters@11,17–27#. None of them really
meet the requirements above. Analytical methods generally
rely on slow parameter ramps in contradiction with such
strong localization problems. Two-dimensional systems with
parameter ramps may exhibit patterns made of a single row
of dots, the 1D analog of the 2D monolayers@11,21#, but this
problem turns out to be of a different kind due to the nonex-
istence of rotational invariance in one dimension.

In order to clarify the relations between the genuine ho-
mogeneous 2D systems and the monolayers, we have studied
the selection of patterns close to onset for the same model in
both geometries. In Sec. II, we introduce a simple appropri-
ate reaction-diffusion model that exhibits Turing patterns.
Then we study the selection of patterns close to onset and
check the numerical results with those predicted from a
weakly nonlinear analysis. In Sec. III, we mimic a disk re-
actor by introducing a parameter ramp that induces the for-
mation of monolayers in agreement with the experimental
observations. On the basis of 3D numerical simulations we
show that a transverse instability leading to the formation of
a monolayer precedes a longitudinal instability. We show
that, very close to onset, the monolayers behave like genuine
2D systems but that, in relation with the longitudinal insta-
bility, hexagonal phases are restabilized when the distance to
threshold increases. This property is interpreted as a result of
the coupling of the cubic terms with a homogeneous mode,
in agreement with the recent theory of Price@28#.

In the following, we call ‘‘2D systems’’ without further
precision genuine two-dimensional systems with uniform
control parameters. We always consider the relative stability
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of regular periodic patterns—stripes or hexagons patterns—
without topological defects and assume periodic boundary
conditions in the pattern plane. All 2D and 3D computations
were performed with an implicit hopscotch method@29# tai-
lored to handle the nonlinear terms@30#.

II. TWO-DIMENSIONAL SYSTEMS

In order to make clear the comparison with the monolay-
ers, we shall report rather extensively the analytical and nu-
merical properties of the two-dimensional systems that will
be used as a reference in Sec. III.

A. Reaction-diffusion model

The linearization around the stationary state of any two-
variable reaction-diffusion system able to exhibit Turing pat-
terns can always be written in the form

]u

]t
5a1u2ha2v1Du“

2u,

]v
]t

5ha3u2a4v1Dv“
2v, ~1!

whereai.0, h561, andDu andDv are the diffusion coef-
ficients @4,31,32#. The model is calledactivator-inhibitor if

h511 andsubstrate-depletedif h521. The number of co-
efficients can be reduced to three for each type of model by
rescaling the concentrations, the time, and the space coordi-
nates. Without lack of generality, we can restrict ourself to
the activator-inhibitor type. Introducing the ratiod5Dv/Du ,
a convenient form of the rescaled system is

]u

]t
5u2av1“

2u,

]v
]t

5u2bv1d“2v, ~2!

with a.0 andb.0. Variableu is the activator, whereasv is
the inhibitor.

One can define a reaction-diffusion system that give rise
to Turing patterns by adding a minimum of nonlinear terms
to this set of equations:

]u

]t
5u2av1guv2u31“

2u,

~3!]v
]t

5u2bv1d“2v.

The cubic term2u3 limits the exponential growth of the
perturbation and allows for the saturation of the instability.
The quadratic termguv avoids the invariance in the trans-
formation (u,v)→(2u,2v), which is nongeneric in chemi-
cal systems. This particular symmetry can be restored by
settingg50. Although this model has not been derived from
a chemical scheme, it exhibits the same properties and has
been preferred in regard of its simplest analytical properties.

This model has a uniform stationary state (u5v50) in-
dependent of the control parametersa, b, g, d. The linear
stability analysis of this stationary state—hereafter referred
as the ‘‘zero’’ state—follows from the linearization of sys-
tem ~3! which actually reduces to Eqs.~2!. In the absence of
diffusion, the homogeneous system exhibits a Hopf bifurca-
tion at b51 ~whena.1! and an exchange of stability or a
pitchfork bifurcation along the linea5b. The stationary
state is stable to any small homogeneous perturbation for
1,b,a ~Fig. 2!. When the diffusion terms are present, the
stationary state can become unstable, in this parameter do-
main, to a nonuniform perturbationu5u0 exp~ik•r ! of wave
vector kÞ0, whereu5(v1

u1). This Turing bifurcation occurs

when the real part of an eigenvalue of the linear operator

L5S 12k2 2a

1 2b2dk2D ~4!

becomes positive, that is, when the determinantD and the
first derivativedD/dk are simultaneously zero. The Turing
bifurcation is located along the lineAB ~Fig. 2! defined by
the equation

a5ac5
~b1d!2

4d
. ~5!

The critical wavenumberkc is given by

kc
25

d2b

2d
. ~6!

FIG. 1. Scheme of a disk reactor. Input reactants are provided
by solutions 1 and 2. Structures form in the gray region. The arrow
indicates the direction of observation.

FIG. 2. Bifurcation diagram atd520. ~1! Turing space.~2!
Stable stationnaire state~b.1!. AB: limit of Turing bifurcation
~b,20!. CD: limit of Hopf bifurcation ~a.1!.
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The parameter domain where the stationary state is unstable
only to a nonuniform perturbation—sometimes called the
‘‘Turing space’’ @3#—is represented in Fig. 2. As expected,
this domain exists only when the inhibitor species diffuses
faster than the activator species and the area of this Turing
space increases with the ratiod.

We shall now consider the formation and the selection of
patterns close to the onseta5ac—i.e., the lineAB—and
avoid as much as possible coupling with other instabilities,
i.e., the vicinity of linesBD andCD.

If not otherwise stated,a is used as the expandable bifur-
cation parameter and the numerical simulations are carried
out with the valuesd520 andb55. With this parameter set,
the Turing bifurcation is located atac57.8125 and
kc50.6124.

B. Weakly nonlinear theory and selection of patterns

Figure 3 illustrates the different types of stable stationary
patterns that are found in numerical simulations when ex-
ploring the parameter space. The variableu is represented on
a gray scale, changing from black~minimum value! to white
~maximum value!. The variablev changes in phase withu
and exhibits similar patterns. When the patterns spontane-
ously emerge from a noisy initial unstable stationary state,
they naturally contain topological defects that move and re-
lax slowly. If the system is finite these defects tend to vanish
on a long time scale. From now on, we shall consider only
periodic patterns without topological defects. We also as-
sume that they are stable to small charges of wavelength
caused by cross-roll or phase instabilities@33#.

All the patterns in Fig. 3 are made of stripes and hexa-
gons. There are two types of hexagons, respectively referred
to asH0 andHp , according to whether the minima or the

maxima are disposed on the hexagonal lattice. Stripes can be
straight lines or exhibit periodic undulations that result from
a previous zigzag instability@34#. The latter still belong to
the stripe pattern category. The planforms in Fig. 3 are iden-
tical to those observed with other chemical schemes, like the
Schnackenberg model@35,36# or the Brussellator@37#. This
supports the validity of this simplified model.

Close to onset, the eigenvalues associated to the critical
modes are close to zero, so that they evolve on a long time
scale, whereas the noncritical stable modes relax rapidly. The
whole dynamics can be therefore reduced to the dynamics of
the active slow modes, which slave the fast stable modes@2#.
The stability and the selection of the different patterns close
to onset can be derived from the amplitude equations that
governs the dynamics of these active modes. Hexagonal and
stripe patterns are thus well described by a system of three
active resonant pairs of modes~k i ,2k i!i51,2,3making angles
of 2p/3.

Close to onset, the solutions are given by

u5u0•(
k j

@Ajexp~ ik j•r !1A j* exp~2 ik j•r !#, ~7!

whereu0 defines the direction of the eigenmodes in concen-
tration space~i.e., the ratiou/v! and whereAj and the con-
jugateAj* are, respectively, the amplitude associated with
modesk j and2k j . From standard symmetry arguments, one
can predict the general form of these amplitude equations at
third order@38#:

t
]A1

]t
5mA11GA2*A3*2@guA1u21g8~ uA2u21uA3u2!#A1 ,

~8!

wherem5~ac2a!/a is a normalized distance to onset. Simi-
lar equations forA2 andA3 are obtained by circular permu-
tation of indices. To avoid confusions, always keep in mind
that, for model~3!, the stationary state becomes Turing un-
stable when the bifurcation parametera decreases, so that
the distance to onset increases when the bifurcation param-
eter decreases.

The form of Eq.~8! is general for Turing bifurcations, but
the exact expressions of the coefficients are specific to the
model. Their derivation for our particular model~3! is re-
ported in Ref.@30#. For amplitude ofu, they are

t5
2~d21!

b1d
, G5

8dg

~b1d!2
, ~9!

g5
6d

b1d
2
16d2g2~53b123d!

9~b2d!2~b1d!3
, ~10!

g85
12d

b1d
2

32d2g2~3b1d!

~b2d!2~b1d!3
.

For these amplitude equations to be valid, saturation of
the instability must be achieved at third order. This condition
is satisfied when

ugu,gc5
3)~d22b2!

2&@d~53b123d#1/2
. ~11!

Forb55 andd520,gc'5.721, and the above conditions are
satisfied forugu51.

FIG. 3. Two-dimensional patterns.~a! hexagonal patternH0 ~a
57.81,b55, g50.75, d520, size: 1003100!; ~b! hexagonal pat-
ternHp ~a57.81,b55, g50.75,d520, size: 1003100!; ~c! striped
pattern ~a57.45, b55, g51, d520, size: 1003100!; ~d! zigzag
pattern~a57.3,b55, g51, d520, size: 1003100!.
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Amplitudes in Eq.~8! can be writtenAj5r j expwj . It
results from a standard stability analysis@26,38–40# that the
only possible stable solutions are the steady state, a stripe
pattern~r1Þ0, r25r350! and the hexagonal patternsH0 or
Hp ~r15r25r3, with F5w11w21w350 or p, respectively!.
Their existence and stability limits, as a function of the
scaled bifurcation parameterm, are ordered according to the
scheme in Fig. 4 where themi are given by

m15
2G2

4~g12g8!
, m250,

m35
G2g

~g2g8!2
, m45

2g1g8

~g82g!2
G2. ~12!

Stable branchesH0 and Hp are mutually exclusive. The
stable branch isH0 if G.0 andHp if G,0. A subcritical
hexagonal branch comes out first atm5m1,0 but loses sta-
bility whenm.m4.0. The supercritical stripe state branch is
unstable close to the critical point but becomes stable for
m.m3. In the rangem3,m,m4 both branches are stable.
When g50 the nongeneric symmetry (u,v)→(2u,2v) is
restored, one hasG50 andm15m25m35m450. In this case,
the stripe pattern bifurcates supercritically whereas the sta-
bility range of the hexagonal pattern vanishes. The latter is
indeed directly related to the quadratic termG and propor-
tional tog2 @41#, in the modelG}g so this stability range can
be easily tuned.

The amplitude and stability of patterns obtained by direct
numerical simulations and those obtained from the Eq.~8!
are reported in Fig. 5 forg50 andg50.75 as a function of
the distance to onsetac2a. Close to onset, these results are
in excellent agreement and confirm the validity of the ap-
proach.

When the nonlinear coefficients of the model also depend
on the bifurcation parameter, the coefficients in Eq.~8! and
themi ’s may also depend onm so thatoneof the hexagonal
phases can regain stability at largem. This direct reentrant
phenomenon depends on the model and has been extensively
discussed for the Brussellator@37# and for the Schnacken-
berg model@30,36#. Our model~3! avoids such a behavior
that could bias the interpretation of results in Sec. III. How-
ever, Price has recently shown that hexagonal phases can be
also restabilized—even in the absence of quadratic terms—if
an activehomogeneousmode, commonly referred as a d.c.
mode, is present@28#. This can be found in particular when
an homogeneous bifurcation occurs at some distance beyond

onset, as in our model ata5b. In the vicinity of such bifur-
cations, the homogeneous mode becomes active and has to
be included in the amplitude equations. Cubic interaction
involving such an active mode of zero wave vector0 gener-
ates in Eq.~8! a term of the formA0A1*A2* . This term origi-
nates in the conservation lawk152k22k310, where
~k1,k2,k3! is the basic triplet of the hexagonal structure. As it
containsA2*A3* like the quadratic term in Eq.~8!, it plays the
same stabilizing role for the hexagonal patterns. Neverthe-
less, if no other quadratic terms are present,H0 andHp are
equivalent and areboth restabilized. If there are quadratic
terms in the dynamical equations@gÞ0 for model~3!#, one
of these pattern is favored and is restabilized first. This re-
stabilization is shown in Fig. 5 for model~3! whena comes
close tob. As expected,H0 andHp are both reentrant, at a
common valuea5aR256.02 ~i.e., ac2aR251.7925! for
g50 @Fig. 5~a!#, at different values for forgÞ0 @Fig. 5~b!#.
In any case, the bifurcation scheme in Fig. 4 is preserved,
provided thatg remains small enough. Note that since the
wave vector of the faster growing mode gradually change
with the distance to onset, the reentrant branches are actually
only ~re!stabilized for wave vectors slightly different ofkc .
Those represented in Fig. 5 correspond to the wavevectors at
which this restabilization occurs at the closest point to onset
~respectively,kc'0.55 atg50 andkc'0.57 atg50.75!. We
shall see in Sec. III that the restabilization of hexagonal plan-
forms by a d.c. mode can derive in a more indirect way from
a different type of bifurcation.

FIG. 4. Schematic bifurcation diagram forG.0. H0: hexagonal
patterns withF50; Hp : hexagonal patterns withF5p; B: striped
patterns; —: stable states, ---: unstable states. ForG,0, the indices
0 andp must be exchanged.

FIG. 5. Bifurcation diagrams of 2D system for model defined by
Eqs.~3!. d: stable stripes,m: stable hexagons,H0 ~limit at C!, .:
stable hexagonsHp , ~limit at D! ~numerical simulation!, —: stable
states, ---: unstable states@computed from amplitude equations~8!–
~10!#. ~a! b55, g50, d520. ~b! b55, g50.75,d520.
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III. MONOLAYERS

A. Monolayer modeling

We shall mimic the behavior of the experimental three
dimensional disk reactors by introducing permanent gradi-
ents of at least one of the bifurcation parameters. In real disk
reactors the input species concentrations are actually kept
constant only on the feed surfaces but their gradients inside
the gel are controlled both by diffusion and reaction. Thus,
there is a feedback on the control parameters so that they are
dynamical variables of the problem. Although such feed-
backs can be incorporated in theoretical calculations@21#,
they depend on the specific form of the model. Nevertheless,
in many cases, the reaction dynamics can be described by
reduced models in which the control parameters are not the
concentrations of input species themselves, but are effective
constants, obtained by adiabatic eliminations or approxima-
tions on numerous variables. The experimental control pa-
rameters enter the equations through these constants. For in-
stance, some of these species can be precursors that produce
intermediate species at rates depending mainly on the input
concentrations~a formal example is the Schnackenberg
model @11#!. Close to onset, supercritical Turing structures
correspond to small amplitude spatial oscillations around the
unstable stationary state. These small modulations are gener-
ally smoothed out and averaged in the feedback. In practice,
one can thus assume that the spatial profiles of the control
parameters are not coupled to these small variations of con-
centrations. For example, Lengyel and Epstein have pro-
posed a satisfactory model of the~ClO2

–-I2-malonic acid!
reaction, a variant of the CIMA reaction which is also known
to give Turing patterns@42#. They have shown that the whole
set of reactions can be approximated by a two-variable
model in a large range of parameters. The control parameters
only depend on the feed concentrations and on the distance
to the feed surfaces. They can be tuned independently in
order that the system become supercritical in a layer parallel
to the faces@14#, i.e., the conditions expected to produce
monolayers. Although the extension of these conclusions to
the CIMA reaction or other models is not straightforward,
modeling monolayers by introducing a tunable parameter
profile appears to be a sound approach. The exact form of the
model and of this profile do not seem critical for the conclu-
sions that we shall draw in Sec. IV, provided that a few
prerequisites accounting for experimental conditions are met.

In agreement with Sec. I, the following requirements must
be retained:~a! The control parameter in the reaction-
diffusion equations, say,a in Eq. ~3!, must change continu-
ously along the sole directionOz , orthogonal to the opposite
faces, and remain uniform in directionsOx andOy , parallel
to these faces.~b! The profile of this primary parameter must
be controlled through one~or several! tunable secondary
control parameters that play the role of the tunable experi-
mental constraints.~c! The primary control parameter must
be subcritical on the faces~at z50 andz5L! and take su-
percritical values over a rangeDL located at some distance
from these faces. In the explored range of tunable param-
eters,DL must grow from zero toDL;l, in order to go from
a uniform state to a structure extending over at least one
wavelength along the directionOz . WhenDL further grows,

multilayer structures settle. Such structures are beyond the
scope of this paper.

So far, there is no conclusive experimental argument to
chose a particular parameter profile meeting these condi-
tions. Thus we have retained a simple form, that is, a para-
bolic profile centered on the median planez5 1

2L. A priori,
this gradient could be applied to any coefficient of the lin-
earized equations. Since the different coefficients of the lin-
earized equations@before scaling in order to keep all of them;
see Eq.~1!# play different roles in the dynamics, one could
expect that the properties depend of the choice of the coef-
ficient on which the gradient is applied. Whichever coeffi-
cient is concerned, the results actually happen to be similar.
This point will be briefly checked at the end of this section.
The results extensively reported in this section have been
obtained with the model~3! with the following spatial con-
trol parameter profile:

a~z!5a01r~z2z0!
2. ~13!

Parameterr was kept fixed in each series of numerical ex-
periments whereasa0 was used as the tunable parameter.
The function a(z) is maximum in the median plane
z5z05L/2, wherea(z)5a0—the most supercritical value—
and define a supercritical domainDL, wherea(z),ac cen-
tered on this median plane~Fig. 6!. When comparing bifur-
cation diagrams of the 2D uniform systems of Sec. II with
those of these 3D gradient systems, it is natural to use re-
spectivelya anda0, or the distances to onsetDa5ac2a and
Da05ac02a0.

Since the zero stationary state of our particular model is
independent of the primary parametera, the spatial organi-
zation results unambiguously from the Turing instability and
cannot be confused with trivial spatial changes of the station-
ary state.

Two types of instabilities may occur according to the ori-
entation of the wave vector.

A longitudinal instability, if the critical wave vector noted
ki , is oriented parallel to the gradient~orthogonal to the
faces!. The critical parameter can be determined in a 1D
system colinear to the parameter gradient since, in this case,
it is the only possible instability.

A transverse instability, if the critical wave vector noted
k' , is oriented orthogonal to the gradient~parallel to the
faces!. This transverse mode is rotationally invariant in
planes parallel to the faces. When a monolayer is considered
as a 2D system, the wave vectork' matches withk.

Section III B is devoted to the determination of the first
linear instability leading to a Turing structure and the form

FIG. 6. Control parameter profile.
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of the dispersion curve in the 3D systems described above. In
Sec. III C, we report the bifurcation diagrams close to onset
and the relative stability of the different patterns. These nu-
merical results are compared to those obtained in Sec. II for
genuine 2D systems and we discuss the limits of the concept
of ‘‘monolayer.’’ From now on, fixed parameters are given
the following values:b55, d520, r50.15. The linear prop-
erties are independent of the parameterg, which is involved
only in nonlinear terms.

B. Linear instability

We have determined the onset of the longitudinal insta-
bility by numerical simulation of a 1D system. The uniform
stationary state becomes unstable fora0.ai.6.16. The in-
homogeneous profile just beyond the transition is given in
Fig. 7. The transition does not occur fora05ac57.8125, but
is delayed until the width of the supercritical domain is
larger than a critical value, here whenDL'0.65l.

The transverse instability was studied by following the
emergence of a pattern in the median plane. We have deter-
mined, not only the onset of this instability, but also the
dispersion curvess~k'! ~Fig. 8! by following, after the fast
relaxation onto the unstable eigenvector, the growth of a
small perturbation of wavevectork' and amplitudeA. Since,
in the linear regime, the amplitude grows according to the

equationdA/dt5s(k')A, wherek'5uk'u, the eigenvalues
is constant in time and given by

s~k'!5

lnSA~ t1Dt !

A~ t ! D
Dt

. ~14!

A comparison of the upper and the lower limits of the un-
stable band as a function ofa0 with those obtained analyti-
cally for the genuine 2D systems is given in Fig. 9. The
transverse instability is delayed toa05a'.7.135.ac , i.e.,
DL'0.41l. However, sincea'.ai , this transverse instabil-
ity precedes the longitudinal instability, so that the critical
value isa0c5a' andDa05a'2a0.

A significant feature of the monolayer system is that the
sideband rapidly expands on the lower side ofk' when the
distanceDa0 increases. The transverse modek'50 becomes
actually unstable fora05ai . Therefore, the longitudinal in-
stability behaves like an homogeneous instability for the
structures that develop in the transverse direction. This prop-
erty will take a major importance in the interpretation of the
nonlinear properties in Sec. III C. Another noticeable differ-
ence with the genuine 2D case is the shift to lower values of
the wave vector corresponding to the maximum growth, i.e.,
the most unstable mode.

In order to check that the succession of the instabilities
does not depend on the choice of the linear coefficient on
which the parameter ramp is applied, we have successively
applied this ramp to the coefficientsa,b or to the coefficients
a8 andb8 which come from a different normalization of the
linearised equations:

]u

]t
5a8u2v,

~15!]v
]t

5b8u2v.

We have kept the parabolic profile but the factorr has been
adjusted to meet the conditions that define a monolayer sys-
tem, but, to avoid additional spurious effects, we have re-
quired that for the most subcritical values the system do not
comes close to an unstationary instability@e.g., when
b(z);0#. In this purpose the parabolic profile is limited to
the central region and limited to a nondangerous constant
subcritical value elsewhere~e.g., b51.5!. These minor

FIG. 7. Concentration profileu(z) in the 1D system.a056.1,
r50.15,b55, g51, d520.

FIG. 8. Dispersion curves: growth rates~k'! for different a0
values. ~1! a057.2, ~2! a057.1350, ~3! a057, ~4! a056.8, ~5!
a056.3.

FIG. 9. Marginal stability curves of 2D and monolayer (M )
systems.s~k'! is maximal on dotted lines.
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changes are always located well outside the core of the
monolayer@43# The values of the computed critical param-
eter are collected in Table I.

Whichever the ramped coefficient is, both instabilities are
always delayed and the transverse instability always comes
first. This precedence was also predicted some time ago by
Dewel et al. @20#, on the basis of slightly different hypoth-
eses. We shall now focus exclusively on model~3! in the
case where the spatial profile is set on parametera.

C. Stability and pattern selection

To analyze the two-dimensional symmetries of the differ-
ent monolayer patterns, one can use different concentration
amplitudes. Natural choices are the concentrations in the me-
dian plane, that is the most supercritical region with the
higher contrast, or the spatial average of concentrations over
the system depth, i.e., over the range 0,z,L. The latter
representation more closely mimics the experimental obser-
vation in the disk reactor. In practice, there is no qualitative
differences between these two descriptions, as shown in Fig.
10, where both representations of the same monolayer of
hexagonal symmetry are given. To evidence the monolayer

character of the structure, a vertical section parallel toOx is
also shown. Other plane sections parallel to the faces exhibit
the same symmetry, so that one can refer to the 2D termi-
nology to classify the monolayers. If not otherwise stated,
the reported amplitudes will always correspond to the con-
centrations in the median plane.

In Fig. 11, the different kinds of monolayer patterns ob-
served in our numerical simulations are collected. They ex-
hibit precisely the same planforms as the genuine 2D sys-
tems, that is hexagonsH0 or Hp , and straight or zigzag
stripes~compare with Fig. 3!.

The bifurcation diagrams for the monolayers atg50.75
are reported in Fig. 12. The wavelength is set to the critical
value. Note that, contrary to diagrams of Sec. II, full and
dotted lines do not represent analytical predictions, but are

TABLE I. Values of computed critical parameters.

Model
Control

parameters r 2D system

Transverse
instability
(DL)

Longitudinal
instability
(DL)

S1 2a

1 2b
D b55 0.15 ac57.8125 a'57.135

~0.41l!
ai56.16
~0.65l!

S1 2a

1 2b
D a57

b>1.4
20.15 bc53.66

b'54.53
~0.49l!

bi55.77
~0.76l!

Sa8 21

b8 21D b852
a8.0

20.012 ac850.582
a'8 50.640

~0.36l!
a i850.783

~0.67l!

Sa8 21

b8 21D a850.6 0.1 bc852.112
b'8 51.599

~0.37l!
b i851.067

~0.53l!

FIG. 10. Monolayer pattern.a057, r50.15,b53, g53, d520,
size: 80380327. ~a! distribution of concentrationu in the median
plane;~b! distribution of concentrationu averaged over the system
depth;~c! distribution of concentrationu in a plane~Ox ,Oz! parallel
to the parameter gradient.

FIG. 11. Monolayer patterns: distribution of concentrationu in
the median plane. Common parameters:r50.15,b55, d520. ~a!
hexagonal patternH0 ~a057, g53, size: 60360327!; ~b! hexago-
nal patternHp ~a057, g523, size: 60360327!; ~c! striped pattern
~a057, g50, size: 60360327!; ~d! zigzag pattern~a056.6, g53,
size: 1273127327!.
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drawn to highlight the continuity of the numerical branches.
In Fig. 12~a!, we used the amplitudeAmax in median plane,
whereas in Fig. 12~b!, we used the amplitudeAave averaged
over the system depth. As expected, both diagrams exhibit
the same qualitative behavior. Close to onset, they are simi-
lar to those of 2D systems. The hexagonal formH0 bifur-
cates first in a subcritical way. The stripe pattern branch is
supercritical but is unstable nearly beyond onset. It recovers
stability at some distance from the bifurcation point.

Close to onset, the amplitudeAave remains finite. This
attests that the layer thicknessd does not vanish at the criti-
cal point. This thickness can actually been estimated from
the values of the maximum and averaged amplitude if one
assume that the amplitude of a fully developed structure av-
eraged on a wavelength should be aboutAmax/2. In our sys-
tem, one hasL/l;3. From Figs. 12~a! and 12~b! one gets
Amax/Aave;6;2L/l from which we can give an estimated
value d;2LAave/Amax;l. Therefore, at onset, the layer
arises at once with a thickness of one wavelength. When
gÞ0, this in agreement with the subcritical character of the
bifurcation but in contrast with the analog problem in lower
dimensions. Actually, in two-dimensional systems where one
imposes a gradient of input reactant concentrations, the tran-
sition was essentially found to be supercritical@21#.

Although, in the close vicinity of the bifurcation point,
genuine 2D systems and monolayers exhibit similar stability

properties, in the latter, the hexagonal phaseH0 does not lose
stability away from onset. For smaller values ofg, the hex-
agonal branch loses indeed its stability~see Fig. 13,g50.5!,
vanishing as expected wheng50 ~Fig. 14!, but retrieves rap-
idly this stability at larger values ofDa0 as shown in Figs. 13
and 14. Whichever the value ofg is, a stable branch ofHp
hexagons also comes out at some distance from onset. Con-
trary to the two dimensional case of Figs. 5, this branch
exists at k5kc . When g50, the stability ranges of the
branchesH0 and Hp merge. In Fig. 15, we represent the
different stability domains as a function both of
Da05~a'2a0!—the distance to onset—and of the parameter
g. The stability limits are identical forg and2g except that
the hexagon typesH0 andHp are exchanged.

IV. DISCUSSION AND CONCLUSION

We have shown that close to onset, 2D systems and
monolayers have similar stability properties but that in the
latter, when the distance to onset increases, both hexagonal
phases are strongly restabilised. In the range where stripe
patterns are also stable, patterns that form spontaneously
from random fluctuations of the uniform state are indeed

FIG. 12. Bifurcation diagrams for monolayers atg50.75 ~am-
plitude of variableu!. r50.15, b55, d520. m: stable hexagons
H0. .: stable hexagonsHp ~limit at pointD!. d: stable stripes. —:
stable states. ---: unstable states~numerical simulation!. ~a! ampli-
tude in the median plane,~b! amplitude averaged over the system
depth.

FIG. 13. Bifurcation diagram for the monolayers atg50.5 ~am-
plitude of variableu!. r50.15,b55, d520.m: stable hexagonsH0
~limit at point C!. .: stable hexagonsHp ~limit at point D!. d:
stable stripes. —: stable states. ---: unstable states~numerical simu-
lation!.

FIG. 14. Bifurcation diagrams for the monolayers atg50,
r50.15, b55, d520. m: stable hexagonsH0 andHp . d: stable
stripes. —: stable states. ---: unstable states~numerical simulation!.
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stripes, but this does not dismiss the importance of these
hexagonal phases. Since the latter usually bifurcate first, they
can be maintained afterwards by a slow continuous change
of tunable parameters such asa0 or g. This should be a
widespread situation in real experiments, where the concen-
trations gradients build up progressively from the initial state
without physical break off. Simultaneous stabilization and/or
reentrance ofboth types of hexagonal patterns suggests a d.c.
mode induced reentrance. Although we have shown in Sec.
II B, that the 2D model exhibits such a phenomenon in rela-
tion with a transcritical or pitchfork bifurcation ata5b, this
reentrance has a different origin in the monolayers. Due to
the delayed bifurcation, it is more pertinent to use the devia-
tions to onsetDa andDa0 than the parametersa anda0 to
compare the stability of the 2D systems and of the monolay-
ers. Accordingly, the restabilization of hexagonal phases
turns out to be strongly advanced in the monolayers, as il-
lustrated in Fig. 16~a! in the caseg50. This particular ex-
ample was chosen for simplicity since there is no hexagonal
pattern at onset and sinceH0 andHp are both reentrant at the
same valuea5aR3. The shift suggests that the origin of the
d.c. mode is different in the two types of systems. Moreover,
aR3 is close toai , the value at which the longitudinal insta-
bility occurs. To corroborate this point, the numerical simu-
lations have been repeated withd550 @Fig. 16~b!#. In the
monolayers the restabilization point is again significantly ad-
vanced, but remains still located nearby the longitudinal in-
stability. As we have shown in Sec. II B, this instability ac-
tually behaves like a homogeneous instability~d.c. mode! for
the transverse structures of wave vectork' . It is thus natural
that the coupling with this mode restabilizes these transverse
hexagonal structures that constitute the monolayer, in agree-
ment with the Price theory. Therefore, the origin of the d.c.
mode is quite different in the genuine 2D systems and in the
monolayers. In the former, it resulted from the specific form
of the reactive part~and could be absent in other models!,
whereas, in the latter, it follows from the ‘‘geometric’’ effect
induced by the concentrations gradients that confine the
structure. It is an intrinsic property of these monolayers.

So far, we have used a control parameter profile symmet-
ric with respect to the planez5 1

2L. However, we have
checked that the properties reported above do not depend on

this particular choice by replacing the symmetric parabola by
two half-parabolas with different curvatures@30#. The results
are definitely similar to those of Sec. III and are not reported
here.

In conclusion, we have shown than monolayer Turing pat-
terns arise from a transverse instability with a delay when
compared to the genuine 2D systems. The first pattern devel-
ops over a full wavelength in the directionOz . Very close to
onset, monolayers and 2D patterns exhibit similar stability
properties, but important changes occur in the vicinity of the
longitudinal instability: the dispersion curve stretches toward
a d.c. mode and, consequently, both hexagonal patternsH0
andHp are~re!stabilized. Thus, one can say that the patterns
lose their two-dimensional character close to this longitudi-
nal instability. Nevertheless, this instability does not corre-
spond to any visual qualitative change of the structure—
visible multiple layers actually come far beyond the
transition—so that it seems experimentally impossible to dis-
tinguish the narrow parameter range where the 2D descrip-
tion is valid from that of the ambiguous—between 2D and
3D—regime that comes next. Thus, contrary to what is com-
monly accepted, one should be very cautious in the applica-
tion of the well developed 2D pattern selection formalism to
the experimental results, even when the structure is restricted
to a single layer.
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FIG. 15. Nature and stability of patterns in the parameter space
~a0,g!. r50.15, b55, d520. —: stability limit of hexagonsH0.
-•-•: stability limit of hexagonsHp . ---: stability limit of stripes.
H0, Hp , andB, respectively, specify the stability region of patterns
H0, Hp , and stripes.

FIG. 16. Summary of relevant stability limits in 2D and mono-
layer systems. All quantities are defined in the text.~a! g50, b55,
d520, r50.15; ~b! g50, b55, d550, r50.25.
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