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Stokes drag and lubrication flows: A molecular dynamics study
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We have studied the translational and rotational motion of a sphere in a viscous Lennard-Jones liquid using
molecular dynamics simulations. The drag and torque on a sphere in an effectively unbounded fluid are found
to agree with continuum hydrodynamics results even when the size of the sphere is comparable to that of the
fluid molecules. The diffusivity of a spherical tracer particle is in accord with the Stokes-Einstein relation, and
the corresponding Brownian motion is determined by its interaction with the layers formed by fluid molecules
around it. When a sphere moves near a solid wall, we find that the drag and torque agree with lubrication
theory down to molecular scales, but the predicted divergence is regularized at very short distances due to
depletion of fluid molecules near the wall and the appearance of slip at high shear EB&883-
651X(96)06005-9

PACS numbd(s): 47.15.Gf

[. INTRODUCTION This result, which is obviously inconsistent with our ev-
eryday experience, arises from several assumptions made in
The problem of a sphere slowly moving with a constantthe analysis(1) no-slip boundary conditions are vali{?)

velocity in a viscous fluidso that the Reynolds number is the fluid density remains constant, even as the ball ap-
small, Re<1) is one of the most basic problems in hydrody- proaches the solid surface, a8l both solid surfaceof the
namics. For a sphere in an unbounded fluid it was solved bpall and the wa)l are assumed to be perfectly smooth.
Stokes[1] in 1851, who obtained Stokes’ law giving the  No-slip boundary conditions have been employed in hy-
force F acting on a sphere of a radils moving with a  drodynamics for over a century no\@], and only recently

velocity U in a fluid with viscosityw: has it been recognized that although there are many cases
when they are sufficient, sometimes they lead to unphysical
F=6mubU. (1) results. A classic example is the infinite energy dissipation

predicted by hydrodynamics for the motion of a contact line
The exact solution of this problem using continuum hydro-separating two immiscible fluids along a solid surfaég In
dynamics for a sphere in a semi-infinite fluid, bounded onoyr falling ball problem, as the ball comes closer to the wall,
one side by a solid surface was derived more than a centufie separation between its surface and the wall becomes
later by Brennef2]. He obtained the following result for the smaller. The no-slip boundary condition requires a pressure
case of a sphere moving perpendicular to the solid surfacegradient to displace the fluid from the gap between ball and

wall, which diverges as the gap size vanishes. There are two

F=6mubUA, 3 possible factors that can prevent this divergence: first, a
ith breakdown of the no-slip boundary conditions and, second, a
wit depletion of the fluid in the gap between the wall and the
w ball.
A=%sinha S, n(n+1) Similar issues arise when one considers a sphere rotating
° ni=1 (2n—=1)(2n+3) in the vicinity of a wall. Calculations of Dean and O’Neill
) ) [5] and Goldman, Cox, and Brenngs] give the following
2sini(2n+ e+ (2n+1)sinh 2 1 formula for the torqueT acting from the fluid on a sphere
4 sinff(n+ 3)a—(2n+1)? sink? « ' rotating with an angular velocit§) about an axis parallel to
a solid surface at a distantefrom it [Fig. 1(b)]:
a=cosh i(e)=In(e+[e>—1]"?),
T=8muQb3f(h/b),
e=h/b+1,
whereh is the minimal distance between the ball and the x—0, f(x)~In(x), 4
solid surfacdFig. 1(a)]. In the limit h/b— 0 this expression
reduces to x—, f(X)—1.
F=6muUb?h; 3

The functionf(x) cannot be obtained in closed form but can
i.e., the force diverges when the sphere gets close to the sollzk evaluated to any desired accuracy by truncating a series
surface. expansion at the corresponding level.
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@ Our results, obtained in a different context, are in accord
with those of the earlier studies.

IIl. MOLECULAR DYNAMICS

We have used a standard MD algorithm in which mol-
U b ecules interact via a pairwise Lennard-Jones potential:

r\=% [r
o -l
This potential withc=3.4 A ande/kg=120 K, along with
molecular massn=40 a.u., is known to successfully repro-
duce the properties of liquid argd@]. The natural time unit
is then given byr=om/e=2.16x10 12 sec. In the re-
mainder of this paper all dimensional quantities given as
pure numbers will be understood as multiplied by an appro-
priate combination ofr, €, andm.

In our simulations Newton’s equations of motion were
numerically integrated using a fifth order predictor-corrector
algorithm with a time step of 0.0025The layered-linked
cell algorithm[10] was implemented to speed up the code. In
the majority of our runs we used a system of a sizx12
X24, which contained 3136 fluid molecules. The tempera-
ture T was chosen to be 1.2 and the density of the fluid 0.8 to
b correspond to the liquid phase. Periodic boundary conditions
were imposed on the system in two directions. In the third
direction, the fluid was bounded by periodically connected
molecular walls with an fcc structure, consisting of 648 mol-
ecules, interacting with each other, the fluid molecules, and
the ball through a Lennard-Jones potential. The mass of the
wall molecules was chosen to be very large, so that they did
not change their positions during the whole simulation. The
lattice parameter of the walls was chosen to be 162f6e
h nearest neighbor distance between wall molecules is
(1.25642)c] and was incommensurate with the intermolecu-
lar interaction length of the fluid. The parameters of the

7 Lennard-Jones potential for the fluid-solid interaction were
chosen to be the same as that for the fluid-fluid interaction.

FIG. 1. (a) A sketch of a ball moving towards a solid surface. =~ We have considered several models of the ball.

(b) A sketch of a ball rotating near a solid surface. (1) Ball A: a spherical ball without inner structure, inter-
acting with other particles through a modified Lennard-Jones

When the ball is far from the walh>b, one recovers the potential:
well known result for the sphere rotating in the unbounded

==
€ - if r>ry
(o g
o if r<ry, ™

-6

V(r)=4e (6)

fluid:

T=8muQb®. (5) v(r)=

In this paper we report the results of a study of these
problems with the use of molecular dynamid4D) simula-
tions. The basic idea of MD simulations is the integration ofwith ro=2.0 in most of our runs.
Newton’s equations of motion for the constituent molecules (2) Ball B: a spherical ball with molecular structure. It
that interact with each other. Previous work has shown thatvas obtained by constructing a fcc lattice and taking the
even for small sizes and short times, the results of continuurmolecules that were inside a sphere of radigisEach of the
theory are reproducdd,8]. Nevertheless, since a continuum ball molecules interacted with other particles through a
approximation is not made and the molecules are treatebdennard-Jones potential, with the same parameters as the
individually and in anab initio manner, one may hope to fluid-fluid potential. Most of our simulations were carried out
effectively bridge the gap between microscopic and macrowith a ball B1 consisting oh=56 molecules, with the outer
scopic phenomena. Alder, Alley, and Polldéq carried out  molecules being at a distance gf=2 from the center. We
MD simulations for hard spheres and showed that on introalso considered two other balls, B2 with=3 andn=56
ducing a nonlocal viscosity, Stokes’ lai&) holds even for and B3 withry=3 andn=189. The density of the ball B3
spheres whose radii are comparable with a molecular radiusvas the same as that of the ball B1.
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Initially, the fluid molecules were placed at the vertices of TABLE . Effective radii by [obtained from(1)], b; [from (5)],
a fcc lattice. For the temperature and density of the molandb, [from (8)] for five different balls described in the text. The
ecules, this configuration melted into a fluid phase. Thedifference betweeb, andb; (or b,) is a measure of the slip length

whole system was equilibrated for 25During this equili-  for the rotational motion of the ball.

bration, the ball was maintained at a fixed position. After the

system was equilibrated, the ball was set into motion at a bo by b,
constant_ speetd. Most of our data were obta_ined gt=2. Ball ro+1 U=08 U=2.0

We carried out some runs &=0.8 to confirm that the

qualitative results did not depend on the precise valug .of A 3.0 2.9+0.3 3.3t0.3

Typical values of the Reynolds number we@{1). The Al 3.0 3.5:04 3.6:0.4

mass of the ball A was chosen to be very Ia(gdoa) in B1 3.0 2703 3.1+x03 1402 1.70.2
order to maintain the motion at constant speed. For ball B2 4.0 4505 4.3:04 2202 2.6t0.3
the individual molecules were likewise chosen to be veryB3 4.0 4.4-05 4304 2202 2.70.3

heavy, thus maintaining the rigidity of the ball.
In order to study rotational motion we prepared the sys-

tem as described above. After the initial equilibration the ballof the modified Lennard-Jones potentid@). This ball had a

was rotated by assigning velocities=Q X (r;—r.) to the larger effective radius than a regular ball A with the sampe

individual molecules of the ballwe used only ball B to (Table ), consistent with the definition of the effective ra-

study rotational motion, since ball A does not have any strucdius as the radius of a sphere inaccessible to the solvent

ture and thus exerts no rotational drag on the surroundingarticles.

fluid) at every time step, where. is the position of the Likewise, to determine the effective radius of a rotating
center of mass of the ball anglis the coordinate of the ball ball we measured the torque acting on a ball rotating in an
molecule. We use@=1.2 in our simulations. unbounded Lennard-Jones fluid, and extracted the ball radius

(denoted byb,) using(5). (The net torque is the vector sum
of the torques acting on the molecules comprising the ball,
ll. STOKES LAW IN AN UNBOUNDED FLUID measured with respect to the center of miaBke torque was
. . , . averaged over 30 data points, each consisting of a time av-
We begin by addressing how well Stokes® law is repro'erage over 2.5 The results are also shown in Table I. The

duced at the microscopic scale of our MD simulations. Toeffective radius is the same for B2 and B3 and thus indepen-

our knowledge, the only previous study of this problem was ; : -

. ent of the ball density. The values of the effective radii are,
done by AIIe.y and AIQe[?]. They showed that generalized however, quite different from our previous definitiontofs
hydrodynamics quantitatively applies on the molecular sca!c?0+ 1. To understand this difference one may consider the

b_y c;)mptjr;ung_the ?ependenceé)f the_ StOKef. fII’ICtIOH Coeﬁclboundary conditions at the surface of rotating and translating
cient on the size of a massive brownian particle. balls. Both formulag1) and(5) were obtained using an as-

¢ V\{[e n]negiuaeq tthhe forcci alctlng. on afballl moving tW.'th CO?’sumption that the fluid velocity near the ball surface equals
stant velocityd in the central region of a fargé container of y, o 1,5, velocity. The translating ball pushes the fluid mol-

a viscous Lennard-Jones fluid with walls at the top and bot—eCuIes below it, causing them to move with a velocity close

tom and periodic boundary conditions in the transverse d'fo its own. Indeed, a significant fraction of the fluid sur-

rections.[The net force was determined by a vector sum Ofrounding the ball has to merely match the norrtial the

fche i?]divgd?al _I%rces otn _the balbr t?}e moIT_\cuIes comprr]isth Eall) component of its velocity with that of the ball. As stated
ing the bal).] The container was chosen large enough tha arlier the matching of the normal component of the fluid

boundar'y gffects did not ple}y a rolg. Our attempts at using/elocity with that of a solid is quite natural and should be
fully periodic boundary conditions without any walls led to a expected

force that was somewhat smaller due to the effects of the " "o Giher hand, in order to satisfy no-slip in the rota-

replicas_ of the ball in.the direction .Of ”"!O“‘i'me ef_fects of ional case, the fluid surrounding a rotating ball needs to
the replicas, perpendicular to the direction of motion, are nohwatch the tangential component of its velocity with that of

the ball. This requirement is more nontrivial and, indeed, one
er[nay not expect it to be valid on a microscopic scale. In order
to study the boundary conditions on the surface of the rotat-
ing ball we measured the angular velocity of the flair)

as a function of a distance from the ball centeAccording

Yo hydrodynamicso(r) obeys the equation

from the ball. We extracted the effective ball radidenoted
by by) using(1). The force was averaged over 50 data points
each consisting of a time average over 6.Zbhe viscosity
of the Lennard-Jones fluid under the conditions of our run
(T=1.2, p=0.8) has been measured previously{8] and is
equal tox=1.94+0.16. The results are given in Table I. (r)=Qb3¥/r?3, (8)
They agree well with the definition df asry+ 1. This defi-

nition comes from the observation that the effective radius of0 that, on the ball surface € b), the angular velocity of the

a particle in a solvent is the radius of the sphere inaccessibliuid equals the angular velocity of the b&ll

to the solvent particlef7]. Since the effective radius of the Figure Z2a) shows the angular velocity of the fluid, nor-
Lennard-Jones interaction is approximately 1, this radiusnalized byQ versus ¢,/r)®. To obtain this picture we di-
should bery+1 in our case. To check this argument we vided the space around the ball into concentric spherical
performed simulations with a nonwetting ball A1, which in- shells and averaged tlein each shell for 108 It is obvious
teracted with fluid molecules only through the repulsive parthat no-slip boundary conditions are not satisfigd], since
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. FIG. 2. (a) The angular velocity of the fluid,
—_ e e ) surrounding the rotating ball Bl(r,=2.0,
0 02 04 (ro/0)? 06 08 ! 0=1.2) as a function of the inverse cube of the
To/ T distance from the center of the ball. The solid line
1.2 . . . . . - ' . . . is a least squares fit. The bars represent the sta-
F . . tistical error estimategb) The fluid density near
r . . a rotating ball B1(ry=2.0, 2=1.2) showing the
r ) . layering of the fluid around the ball.
1~ T e —
0.8 - -'. |
§ 0.6 - ] .
C 1
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L (b) ]
or |
‘ 1 1 1 ‘ | 1 I L. 1 Il 1
0 1 2
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atr=rg, w~0.60). One can obtain another estimate of thethe mean fluid densitp, versus (/ry). It is interesting to
effective ball radius using8) (we denote this value &s, in note that the rotation of the ball does not destroy layering.
Table |). Estimates based on the slope of the cURig. 2(a)] Further, the fluid density is indistinguishable from that
or on the value ob at which w=( lead to substantially the around a nonrotating ball.

same results. The results show good agreement with the val- We also studied the translational motion of a spherical
ues ofb; extracted from5). Figure Zb) shows a plot of the particle in a polymeric fluid. We used ball A in these studies.
density of the fluido around the rotating ball normalized by The molecules of the fluid were comprised of linear chains.
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Each chain consists of 10 beads connected by an anharmorfor the beads that are nearest neighbors in a chain, an addi-
spring[12]. All the beads interact via a pairwise repulsive tional attractive potential was added:
Lennard-Jones potential

2
r
-12 -6 —0.5%Rj5 In 1—(—) } if r<R
r r 1 0
‘ (_) _(_ *t2 if r<2Ys Vau(r) = Ro
V(r)= T o o if r=Rg, (10
0 if r=2Y%g. 9
T T T T T T T T T T T T I T T T T ‘ T T T T
1+ LB T LI R B T _
0.04 3
0.02 "
S ]
05 M -0.02 14
004 [ J 1
Ceo v v L v v by IR ST T B |
35 36 37 38 39 40
- t/T 7
=
0 -,
0.5 i =
(a)
L L ! Ll T C
0 1 2 3 4 5 ) _ .
/T FIG. 3. The velocity autocorrelation function
for balls (a) D1, (b) D2, and(c) D3. The inset
T T o] shows the behavior at long times.
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with Ry=1.5 andk=30. constant velocity in the fluid. The simplest model describing
The chosen values of fluid density and temperaturdhe motion of such a particle is the Stokes-Einstein model,
(p=0.84,T=1) correspond to the liquid phase. The radius ofwhich gives the following mean square displacement of the
gyration of a polymeric fluid molecule is 2:#8.3. The vis-  diffusing particle at large time:
cosity of such a fluid was measured previously [&2]: )
u=7.09+0.09. We measured the force acting on a ball mov- (re(t))=6Dt, (11)
ing with a constant velocity through this fluid and extracted
its effective radiusb, using (1). The results are given in where
Table II.
The difference betweeln, andb,, can be explained by the D=kgT/(6mpb) (12

fact that since the molecules of the polymer are much largeg the diffusion coefficient, which can also be related to the
than the ball, there should be a significant $lids interest- velocity ~ autocorrelation  function Z(t)=(v(0)-v(t)Y/
ing to note that the force acting on the Lennard-Jones Paly(0)-v(0)).

ticle (ro=0) is the same, whether it moves through a
Lennard-Jones or a polymeric fldid kT (=

We conclude this section by noting that the discrepancies D=—1r f Z(t)dt. (13
between the various length scales listed in Tables | and II, 0
while clearly nonzero, are nevertheless of the order of a mo-

; . e The first MD study of self-diffusion in liquid argofiL4]
lecular diameter, so that in the large length scale limit, theyshowed that MD simulations can reproduce the properties of
would all effectively correspond to no-slip boundary condi-

) liquid argon quite well. In the present work we report the
tions[13]. results of MD simulations of the diffusion of a tracer particle
in a Lennard-Jones fluid. In these studies we used the ball A.
IV. DIFFUSION The fluid molecules were initially placed at the vertices of a
e . L . .., . fecc lattice. Periodic boundary conditions were imposed on
The diffusion of a spherical particle IN & VISCOUS I|qu!d 'S the system. After initial equilibration the ball was allowed to
closely related to the problem of a particle moving with a ¢t se and its velocity was recorded at every time step
(0.0057).
Figure 3 shows the velocity autocorrelation function av-
eraged over four runs for three different balls: Figa)3ball
D1 with ry=3 andm=1; Fig. 3b): ball D2 with ry=3,

TABLE IlI. Effective radii obtained from(1) for the Lennard-
Jones by) and polymer b,) fluids.

fot1 bo by m=10; Fig. 3c): ball D3 with r;=0, m=1 [r, is defined
1 0.52+0.05 0.12-0.01 in (7)]. Ball D3 was simply a tagged liquid molecule.
4 4.4 +0.4 25+0.1 Figure 4 shows the power spectrum S(f)

=lim,_..|(1/7) [ 5dt Z(t)exp(—ift)|? of the velocity auto-
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logo(f7) FIG. 4. The power spectrum of the velocity
autocorrelation function for ball&) D1, (b) D2,
i ‘ 1 and(c) D3.
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correlation function for the same three balls. Unlike that for To explain this behavior we focused on the liquid mol-
ball D3, the velocity autocorrelation functions for balls D1 ecules that are close to the diffusing ball, since the ball mo-
and D2 show oscillations that remain undamped even at reldion is determined by the interaction with these molecules.
tively long times(>407). The periodT of these oscillations The fluid molecules form well pronounced layers around
does not change with time and is related to the timevhen  the ball. The tim&, when the velocity autocorrelation func-
the velocity autocorrelation function becomes zero for thetion goes to zero for the first time can be estimated as a time
first time (T=4t,). The amplitude modulation of the veloc- tg for the diffusing particle to stop after collision with a
ity autocorrelation function of ball D1 is presumably due toliquid molecule from the first layer, assuming that the liquid
periodic boundary conditions. molecule does not moviel5]. An explicit calculation gives
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3 - _ FIG. 4. (Continued.
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t,=0.025, whilet,=0.028 for ball D1 and;=0.145 for ball  formed the first layer immediately after equilibration, then
D3. t; estimates; for D1 much better than for D3 because we calculated what fraction of those particles remained in the
the larger the ball the better the approximation of the modirst layer at later times. Figure 5 shows that the first layer is
tionless liquid molecules. much more stable in the case of ball D1 than in the case of
Second, to see how stable the first layer is we performetdall D3, which should be expected since the number of the
the following simulation: we recorded the fluid particles thatliquid molecules in the first layer around the ball D1 is much

1 .

08 - —

06 -
= i i FIG. 5. The fractionf(t) of the fluid mol-
= I ecules, which were in the first layer at&0,
r which remains in the first layer at tintefor the

04 - - balls D1 and D3.

02 _

0 b— —

Cole e ey ] Ll P B
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TABLE lIl. Effective radii obtained from(1) (by) and (12)  the flow, on the average, in reality, it spends an equal amount
(bp). of time moving with and against the cag@,(t=0)~0,
thus encountering less resistance.

ro+1 by bp

1 0.52+0.05 0.410.04 ,

3 29403 19402 V. STOKES’' LAW IN THE PRESENCE OF A WALL

4 4.4 £0.4 2.7=*0.3 After studying the motion of the ball in the unbounded
fluid we now turn to the problem of a sphere in the vicinity
of a solid wall.

larger than around the ball D3. Figure 5 also shows that a We first considered a ball translating in a fluid towards a
significant fraction of the liquid particles that were in the first molecular solid surface. Most of our results were obtained
layer around ball D1 after equilibration remains there even awith ball A in these studies. A few runs with ball B1 yielded
very long times(~507), which may explain the persistence essentially the same behavior.

of the oscillations. We defineh, the distance from the ball to the wall, so that

We also calculated Zyi(t)=(v(0)-v¢(t))/  ath=0 the force of the wall on the ball vanishes. Our results
[<v2(0)>(v ?(0))]1’2, the correlation function of the veloci- are obtained from 10 runs, during each of which we averaged
ties of the ball and the center of the mass of the first layethe force over 0.25 when the ball was far from the wall
and the velocity autocorrelation functiah(t) of the center (h>2.2) and over 0.025 when the ball was close to the
of the mass of the first layer, enabling us to visualize the ballvall (h<<2.2). Figure 6 shows the comparison between our
motion: it oscillates inside a cadé6] formed by the fluid MD simulations and the Brenner res(®). We find that the
molecules of the first layer, at the same time the cage itselfontinuum results are reproduced until the separation be-
moves more or less in one direction, since the velocity autotween the ball and the wall becomes of the order of a few
correlation function of its center is positive. molecular radii.

The diffusion coefficient was calculated usifitg). The In order to understand the origin of the discrepancy we
diffusion coefficients obtained for balls D1 and D2 were thefocus on the behavior of the layer of fluid closest to the wall,
same, in agreement witfll2). We extracted the effective as the ball comes very close to the wall~(0). Figure Ta)
radius of the ball using12). shows the distribution of fluid molecules in the first layer,

Table Il presents the comparison between effective radinormalized by the mean fluid density, as a function of the
b, obtained from(1) andby from (12) for balls of different  horizontal distance from the center of the ball. In order to
sizes. It is interesting to note that the effective radii obtainedbtain this picture we divided the first layer into rings cen-
from (12) are somewhat smaller than those obtained frontered around the axis going through the ball center and per-
(1). This is due to the fact that although according to thependicular to the wall and averaged the number of fluid par-
Stokes-Einstein model the diffusing particle moves againsticles in each ring over 0.025n 34 independent runs. The

= — molecular wall

20 4
r 4+ — 3-9 wall

P S WI RN NI

—p—

LI B S B B S L

15

FIG. 6. The force of fluid resistance acting on
. ball A approaching a solid molecular or 3-9 po-
1 tential wall, U=2.0,b=3.0. The solid line rep-
- resents the Brenner resyf).
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15 .

o(r)/po

ol } _

Fom 1 FIG. 7. (a) Density of the fluid in the first
* ® - molecular wall layer near the molecular and 3-9 potential wall,
{ when the ball A(b=3, U=2) has just touched
; 4 -3-9wall I the wall. This picture was obtained by averaging
0 m ] over 34 runs; the point indicated bl corre-
e : e SRR sponds to a total of 6 fluid molecules during all
0 05 1 1.5 these runs, whereas the point indicated®ygor-
b responds to a total of 290 molecules. Note that
T —— T — the ring size corresponding tQ is larger than
that for P. (b) Radial velocity distribution in the
- (b} 1 first layer of the fluid near the molecular and 3-9
potential wall, when ball A has just touched the
wall. (c) Normal velocity distribution in the first
layer of the fluid near the molecular and 3-9 po-
tential wall, when ball A has just touched the

r 1 wall.
2 — 3-9 wall

10 — = — molecular wall -

v.(r)/U
w

T T

| |

figure indicates that, although the region under the ball iglistance from the ball center. It shows that fluid molecules
substantially depleted of fluid molecules, a few moleculeshave a nonzero radial velocity profile—they are being
remain trapped under the ball, whereas in equilibrium, thissqueezed out from under the ball along the wall. At the same

region is empty of all fluid molecules. time, the normal component of the fluid molecules velocity
Figure qb) shows the breakdown of another assumptionV, is essentially zergFig. 7(c)].
made in obtaining2)—the validity of no-slip boundary con- In order to assess how these results depend on the type of

ditions [17]. The figure is the plot of the radial velocity, wall we are using, we also performed simulations with a
normalized by the ball velocity as a function of the radial continuum wall, obtained by replacing individual wall mol-
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FIG. 7. (Continued.

r/b

ecules by a uniform density distribution, thus leading to a 3-%anceh<2.2 from the wall. Again, the force follows the
potential in the direction perpendicular to the wall. Our re-continuum curve(2) until the ball-wall separation becomes
sults were obtained from 15 runs, during each of which weof the order of a molecular radiU&ig. 6). In this case the
averaged the force over 0.2%vhen the ball was far from the force drops down earlier than in the case of the molecular
wall (h>2.2) and over 0.025 when the ball was at a dis- wall. Since now the wall surface is smooth, it is much easier
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FIG. 9. The torque acting from the fluid on a
r 1 rotating ball B1,Q0=1.2,r,=2.0. The solid line
shows the predictions of E¢4).

T/(8mn0b?)
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to remove the fluid molecules from the gap between the balthan in the semi-infinite fluid case and, second, the force
and the wall. This can also be seen in Fifp)7which shows does not depend on the ball velocity. Both these features can
the density distribution in the first layer of fluid molecules be explained by the fact that since the film is very thin, fluid
near the wall. The depleted region is larger than in the cas@olecules do not have enough time to get out of the way of
of the molecular wall, and indeed, it is larger than the dethe ball, and because of that the film acts almost like a rigid
pleted region in an equilibrium situation, confirming the factmedium, which exerts a force, primarily depending on the
that it is easy to remove fluid molecules from under the baldisplacement of its molecules and not on the velocity of the
in this case. Figure (B) shows that, again, no-slip boundary ball.

conditions are violated and there is a flux of fluid molecules H We f!OWlt“F” toa baIII rotelltlng |n”the V'C'n'té’ o\1;va wall.dlnb I
away from the ball. The normal velocity is still close to zero N€S€ Simulations a molecular wall was used. We used ba

[Fig. 7(c)]. It is interesting to note that the radial velocity in Bl n these studies, and we employep_a_ls an.effectlve ball
this case is of the order of the velocity of the ball, which is "2diusb. We placed our ball at a specified distance from the
an order of magnitude smaller than for the molecular wall. waII_ gnd rotated it at a constant angu'aT velodity-1.2 ar_1d

A simple explanation of this phenomenon is provided byequ!l!bratgd the whole.system for a period ofTZAfter this
the following analogy: one may consider a ball lying on aequmbratlon, we monitored the torque acting on the ball

surface, which is pushed by some other object moving wit rom the fluid. Figure 9 shows the torqdeversus distance
constant velocity. If the surface is smooth and the ball doe rom the wallh. The values of the torque were averaged over

not get stuck it will move with the velocity of the pushing data points, each _p0|_n_t repr_esentmg an average over.12.5
object; however, if the ball gets stuwhich is the case if The ab_senc_e qf a significant increase of the torque, let alone
the wall potential is corrugated because of the molecula Ioganthmlc divergence as the ball a_pproaches the wall, can
structure it will start to move later(the depletion region is | N explame?hbyta depletion gf the ﬂli': mﬂghe baII[)waII gap.th
smalle)y and with much larger velocity when it is able to get hour case the torque goes down ratner than up because he

depinned. Thus, we see that the breakdown of no-slip boun(P-a” has a smaller number of fluid molecules surrounding it.

ary conditions and the existence of a region depleted of fluid VI. CONCLUSION
(leading to the removal of the divergenc#o not qualita- '
tively depend on the model of the wall being used. We have shown that MD simulations with a Lennard-

We also performed MD simulations for the case whenJones fluid can successfully reproduce the results of hydro-
there is only a thin film(one molecular laygrof fluid ad-  dynamics such a€l) or (5) even for particles that are com-
sorbed on a solid molecular wall. The results for ball A with parable in size to the fluid molecules. The only previous
ro=2.0,U=2.0,r,=2.0,U=4.0, andr,=4.0,U=2.0 are  studies of this problem were performed by Alder, Alley, and
shown in Fig. 8. We performed 15 runs for each ball, averPollock[7], who used a fluid composed of hard spheres. Our
aging the force over 0.025This figure has two interesting results show that the effective radii of the moving balls, de-
features—first, the force takes on values that are much highdined by formulas(1) and (5) are quite close to their geo-
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metrical values. The effective radius of the translating ballother. Our MD simulations show that if one takes into ac-
can be defined as the radius of a sphere inaccessible to tikeunt the molecular aspects of the problem, the divergences
solvent molecules. For the rotating ball the effective radiusare removed. We have also focused on the behavior of the
entering (5), is smaller than the corresponding radius forfluid layer near the wall as the ball approaches the vicinity of
translational motion. This discrepancy is due to the breakthe wall and monitored its density and velocity profile. The
down of no-slip boundary conditions on the surface of thefluid between the ball and the wall is found to be depleted

rotating ball. _ - _ ~and no-slip boundary conditions are found to break down
We have also studied the diffusion of a spherical particleyhen the ball is close to the solid surface.

in a Lennard-Jones fluid. We have shown that fluid mol-
ecules form well pronounced layers around the diffusing par- This work was supported by grants from NSF and NASA,
ticle that are quite stable, and that determine the motion ofhe Pittsburgh Supercomputer Center, and the Center for
the particle. The effective radii, enteririgj2), are somewhat Academic Computing at The Pennsylvania State University.
smaller than those for translational motion due to the collecWe are grateful to Somnath Pal for useful discussions. J.R.B.
tive motion of the fluid molecules. acknowledges the warm hospitality of Alan Bray at the Uni-
We have also addressed the issue of the unphysical diveversity of Manchester and Julia Yeomans at Oxford and sup-
gences arising when two solid surfaces come close to eagtort from the Fulbright Foundation and EPSRC.
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