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Structure of transport linear systems in dilute isotropic gas mixtures
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We consider the linear systems associated with the evaluation of transport coefficients in dilute isotro-
pic gas mixtures and corresponding to the first-order Enskog expansion. We obtain the structure and the
mathematical properties of these systems directly from the properties of the integral collision Boltzmann
operator and the variational framework used for its approximation. Using these structure properties, all
the transport coefficients can be expanded into convergent series. These asymptotic expansions are par-
ticularly relevant to computational models in a wide range of practical applications.
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I. INTRODUCTION

In the last decades, the study of transport properties in
gas mixtures has witnessed extensive progress thanks, in
part, to the wide range of related practical applications
[1—3]. In the context of the first-order Enskog expansion
where small deviations from the local Maxwellian equi-
librium distribution are considered, it is well known that
the governing equations of multicomponent Bows contain
the terms for transport fiuxes, written in turn in terms of
transport coefFicients and macroscopic variable gradients
[1—5]. However, these transport coefficients are not
given explicitly by the kinetic theory. Upon using matrix
approximations for the inverse collision operator, the
transport coefficients can be evaluated by solving large
linear systems. Although direct inversion of these trans-
port linear systems is feasible, it is prohibitively expensive
for most practical applications involving multidimension-
al multicomponent fiows [6].

With an eye toward the development of efficient nu-
merical models, there is thus a strong motivation for
deriving cost effective approximations for transport
coefficients in a manner consistent with the underlying
kinetic theory rather than by simply using empirical
mixture-averaged expressions which are often less accu-
rate. Recently, a mathematical and numerical theory of
iterative algorithms for multicomponent transport has
become available [3]. The basic idea of this theory is to
write the transport coefficients as convergent series which
yield by truncation a sequence of approximations for the
transport coeKcients of increasing accuracy. In practice,
only a few iterations yield approximate transport
coefficients which are at least an order of magnitude more
accurate than their empirical counterparts.

The purpose of the present paper is now to extract the
fundamental structure of the transport linear systems
from the kinetic theory and to generalize the results of

[3]. More specifically, we derive a set of basic assump-
tions for the integral collision operator and the variation-
al space used for its approximation. These assumptions
are valid in either a classical, semiclassical, or quantum
mechanical isotropic kinetic theory. With these assump-
tions, we define a sparse transport matrix, denoted by
db(G), formed by the diagonal of the blocks of the origi-
nal transport linear system matrix G. The sparse trans-
port matrix db(G) is then shown to satisfy some structure
properties which yield convergent asymptotic expansions
for the transport coefficients.

In order to keep the present discussion somewhat gen-
eral, we refer to the kinetic equation for the species distri-
bution functions simply as the generalized Boltzmann
equation without any specific reference to its version
(classical, semiclassical or quantum mechanical) [5]. The
theory presented in this paper is, however, restricted in
four ways. First, as stated earlier, we only consider small
deviations from a local Maxwellian equilibrium distribu-
tion. Second, we assume the gas mixture to be sufficiently
dilute so that only binary collisions are relevant. Third,
transport properties are investigated in the isotropic case,
thus excluding the presence of an external electric or
magnetic field. Finally, with a slight exception in Sec. IV,
chemically reacting mixtures are not treated in the
present discussion. In Sec. II we briefly describe the
transport linear systems. In Sec. III we introduce the
sparse transport matrix db(G) and extract the fundamen-
tal assumptions leading to convergent asymptotic expan-
sions for the transport coefficients. These assumptions
apply to the integral collision operator and to the varia-
tional space used for its approximation. Finally, in Sec.
IV we show that the theoretical results obtained in this
paper can be applied to practical problems.

II. TRANSPORT LINEAR SYSTEMS

A. Enskog expansion and collisional invariants

'Corresponding address.

We consider a gas mixture with n species and we
denote by 4= [l,n] the set of species indices. In the well
known first-order Enskog expansion, the species distribu-
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tion functions fk, k HS, are written as a linear perturba-
tion of the local Maxwellian equilibrium distribution
functions fko, k E4, in the form

fk =fk(1+0k» (2.1)

where p=(pk )k~+ is the family of perturbed distribution
functions, V=(Vk )k~& the family of right members, and
X=(Xk )k~& the family of linearized collision operators.
It is then convenient to expand the right member 0 in
terms of the macroscopic variable gradients X" in the
form

The local Maxwellian distributions are constrained to be
such that the corresponding species number densities,
mass averaged velocity, and energy are those of the exact
distributions. It is also assumed that the species distribu-
tion functions do not depend on time and position direct-
ly but implicitly through the macroscopic variable gra-
dients. The species perturbed distribution functions pk,
k E4, are then shown to be the solution of integral equa-
tions involving the linearized Boltzmann collision opera-
tor completed with appropriate integral constraints
I:1-5].

The linear integral equations can be written in the
compact form

(2.2)

where 7;, vE[1,r], with r=3', denotes the canonical
basis of the space of tensors of order a over the three-
dimensional space R . In addition, f are the n +4
linearly independent, scalar collisional invariants of the
mixture. These collisional invariants are chosen to be or-
thogonal with respect to the scalar product ((, )). In the
case of mixtures, the collisional invariants are families of
scalar functions, i.e., we have i)! =(gk)«z. The n col-
lisional invariants it! for I ES, are associated with species
type conservation and are given by it! =(5k!)«&, where

6J,&
is the Kronecker symbol. On the other hand, the col-

lisional invariants it!", v=1, 2, 3, are associated with
momentum conservation and it! with energy conserva-

~n +4

tion.

B.' The bracket product

Between two tensor families g and g, we define the
bracket operator

(2.8)

As a result of the symmetry property of the collision
cross sections, we now make the fundamental assumption
that the bracket product can be cast into the form

[4 0) 2 +k !Ilk kk+kl Pl kk 4k+01 4!]kl

(2.9)

(2.3)

Since X" can be either a scalar, a three-dimensional vec-
tor, or a three by three matrix, we employ here a general
tensor notation with 0 denoting the maximum contracted
product between tensors. Note also that in (2.3) 4" has
the same tensorial order as X". We denote by a =0, 1 or
2 the tensorial order of X".

By isotropy, the expansion (2.3) yields a similar expan-
sion for the species perturbed distribution functions, i.e.,
P =g„P"OX", where each expansion coefficient
satisfies the linearized Boltzmann equations

g (pp) = gtp (2.4)

The integral equations (2.4) must be completed with the
constr ai.nts

(2.6)

where ( )k is an averaging operator involving the local
Maxwellian distribution function fk of the kth species.
In (2.5), we have also introduced the space of tensorial
collisional invariants of the mixture

(2.5)

where ((, )) is a scalar product between tensor quanti-
ties. For two families of functions g=(gk)«z and
g=(gk )k~&, this scalar product is given by

where primes denote values after collision and the extra
superscript is used to distinguish one of the collision
partners from the other in the case where k and I are the
same. In addition, nh, denotes the number density of the
kth species and I, ] k! is a symmetric positive definite bi-
linear form which only involves species pair (k, I) We as-.
sume that the bracket operator is symmetric, positive
semidefinite, and that its kernel is spanned by the col-
lisional invariants. More specifically, we assume the fol-
lowing.

(i) Symmetry: [g, g]=[/, g].
(ii) Positivity: [g,g] 0 and [g,g]=0~/AD J.
As a consequence, the bracket bilinear form [, ] is pos-

itive definite on the functional subspace associated with
(2.5). Assuming that the right-hand side 4" is orthogonal
to its kernel, i.e., ((4",g)) =0, gH J, the integral equa-
tion system (2.4) and (2.5) is generally well posed [2,7].

C. Transport cruxes and transport coe%cients

In the first-order Enskog expansion, the macroscopic
conservation equations are written in terms of transport
Auxes. These transport Auxes are denoted by J"and may
be written, up to a multiplicative factor, as

(2.10)

Using the expansion p =g„p"OX" for p, we can directly
relate the transport Auxes to the macroscopic variable
gradients

J =span[ V,f', (I, v) E [l, n +4]'X [l,r]], (2.7)
J"=g I.""OX!', (2.11)
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I PP = [PP !tsP ] (2.12)

where the tensor elements L» are the transport
coeKcients. In this study we only consider isotropic gas
mixtures so that the transport coe%cient L» is nonzero
only if J"and X" have the same tensorial rank.

The transport coefBcients are directly related to the
bracket operator introduced in Sec. II 8 since we have Ga=P,

aCC,
(3.1)

Making use of the new formalism, the expansion
coefficients ak, (r, k) ES, form a vector
a=(ak)!„k!~&CE which is shown to be the solution of
a constrained linear system in the form

To complete the discussion it is interesting to evaluate
the entropy production o. for the near-equilibrium gas
mixture. We indeed have

where we have defined

grs —
[hark gsl] pr —

((hark @p)) (3.2)

a = —g JPOXP = —g L PP XPOXP,
P PsP

(2.13)
In addition, we have introduced the constraint space C

given by

from which positivity properties of the various transport
coefficients are readily obtained.

C =(span[ Q', (I,v) C [1,n +4]X [ l, r]] ) (3.3)

D. Matrix approximations for the inverse collision
operator

The linear integral Eqs. (2.4) and (2.5) are solved ap-
proximately by using a variational procedure. More
specifically, a finite-dimensional functional space A is
first selected,

where the constraint vectors have components given by

9"„' =((P",'T.f')), (l, v)a[1,n+4]X[1,r],
(r, k)ES . (3.4)

Finally, the transport coefBcients are evaluated from the
products [PP, PP ] in the form

A =span [g"",( r, k) C%], (2.14) [PP, PP']= «PP, +P'» =(a,P'&, (3.5)

where g"", (r, k) CX, are basis functions and where % is a
set of basis function indices. The set of basis function in-
dices is such that %CVXS where V denotes a set of
function type indices. We denote by co the dimension of
the functional space A.

The species perturbed distribution functions PP are
next expanded in the form

where the vector p' has components p'k"= ((p",O'P )) for
(r, k) CS.

B. Properties of 6 and B

The symmetry of the matrix GLAIR ' is directly de-
duced from the symmetry of the bracket operator since

grs
[hark as!] [gs! hark]

gsr (3.6)
yp — y r

hark

(r, k) E%
(2.15)

where the ak are scalars. A classical Galerkin approach
is used by requiring that the difT'erence between the ap-
proximated X(PP} and O'P be orthogonal to the variation-
al space A. With this approach, the scalars ak are then
shown to be the solution of constrained linear systems
which will be written in compact form in Sec. III.

Furthermore, G is positive semidefinite on lR and posi-
tive definite on the constraint space C. Indeed let now
x EE", x =(xk)!„k!~&,let g be its associated function

g =g!„k!~&xk p", and consider the scalar product
(Gx, x ). We have

( GX, X ) = g GkixkX!

(s, I)ES
III. MATHEMATICAL STRUCTURE

OF THE TRANSPORT LINEAR SYSTEMS

A. Compact notation

[V" P')xkx!'=[0 4]
(r, k) E%
(s, I)E%

(3.7)

The components with respect to the basis
(r, k)HX, of the functions g=g~„k!~&xkg"" of A now
form a vector of E denoted by x =(xk )!„k!E&. Ordering
the set % with the lexicographical order, the components
of any vector x HIR" are correspondingly denoted by
x =(xk)!„k!~&,thereby identifying E and E . The set X
can then be used as a natural indexing set. For x,y HR",
the scalar product (x,y ) is given by

X!,k!E~xkyk F«G E E ~, we write
6=(Gk! )!„k~!,i~~& the coefficients of the matrix G. The
nullspace and range of the matrix G are denoted by N(G)
and R (G), respectively.

N(g)= ~ x CE, g xkp HSflA
(r, k) HS

From (3.8) it is then straightforward to establish that

N(G) A C = [0]
which shows that G is positive definite on C.

(3.8)

(3.9)

which is non-negative so that 6 is positive semidefinite.
Moreover, we have (Gx, x ) =0 if and only if g is a col-
lisional invariant, so that the nullspace of 6 is spanned by
the components in the basis P", (r, k}HS, of the col-
lisional invariants that are in A
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Finally, the right member /3 is in the range of the ma-
trix G. Indeed, from the property (( ~II", 'Tg )) =0,
(l, v) E [ l, n +4]X [ l, w], it is easily shown that (x, /3) =0
for x&N(6). Thus, PUN(6) and hence P&R(6)
since G is symmetric.

C. Properties of the constraint space C

It is well known that the constrained linear system (3.1)
is well posed, i.e., admits a unique solution a for any
/3&R (G), if and only if the nullspace of 6 and the con-
straint space C are complementary spaces

N(6)e C'=IR (3.10)

As a consequence, the property (3.10) will be termed "the
well posedness condition. "

We now establish that the well posedness condition
(3.10) holds if and only if the space J is perpendicular to
A

2=2flA e 2AA', (3.11)

The property (3.11) will be termed "the perpendicularity
property. "

For brevity, we only establish here that the well posed-
ness condition (3.10) is a consequence of the perpendicu-
larity property (3.11). The converse property is proved as
in [3]. For x =( x)~k„~ k~EEIR and g=g~„k~~&xkg"", we
first note that the perpendicularity property implies that

(3.13)

Therefore, C has the same dimension as the subspace of
A which is orthogonal to 2AA with respect to the posi-
tive definite quadratic form ((, )), so that

dim(C )=co—dim(J'f1A) . (3.14)

On the other hand, from (3.8), we already know that the
spaces N(6) and J AA have the same dimension, so
that dim[N (6)]+dim( C ) = co. Finally, we have
N(6) 8 C = IOI from (3.9) so that N(6)e C =R".

where J AA denotes the elements of J that are orthogo-
nal to A with respect to the bilinear form ((, ))

(3.12)

D. The sparse transport matrix db( G) and the species
localization property

We now introduce the basic block decomposition of
the matrix 6 =(Gk'i)~„k~ ~, i~~& in R ' . For convenience,
we define the subset S„as the set of species indices for
which the rth function type is selected, and we denote by
co„ the number of elements of 4„. Consider now a pair of
function type indices r, s EV and the associated block
6"'=(Gk'i)«& iE& of size cu„Xco,. Then the matrix 6
can be partitioned into the blocks G=(6"')„,~z. We
denote by db(6)CIR ' the matrix formed by the diago-
nals of all the rectangular blocks G"', r, st%, of 6, so
that

d„(6)k', =Gk75k, , (r, k), (s, l)ex . (3.15)

g,""=0 for l &k, (3.16)

so that g'"=(gk"fiki )«&. Under the assumption (3.16), we
first establish that the matrix 2di, (G) —G is positive
semidefinite and we characterize its kerne1.

E. Positive semidefiniteness of 2db(G) —8
and characterization of' N( 2db ( 6)—6 )

After some algebra, we get that

The sparse transport matrix db(G) plays a fundamental
role in the asymptotic expansion of the transport
coeScients. More specifically, we want to know whether
the matrices di, (6) and 2db(G) —G are positive definite
on I". Under sufficient conditions, we establish that.
2db(G) —G is positive definite when n ~ 3 and we identify
its nullspace when n =2 and n =1. Similarly, we estab-
lish that db(G) is positive definite when n ~2 and we
identify its nullspace when n =1. In the following sec-
tions we only consider the case n ~ 2 since for n =1 we
have db ( 6)=6 and 2db ( 6)—6 =G.

Since we are now interested in some specific coeScients
of the matrix 6, that is to say, in the sparse transport ma-
trix db(6) and not in the full matrix G, the properties of
db(G) and 2db(6) —6 will depend on the particular
choice of the basis functions g"", (r, k)H%. Indeed, we
now assume that the basis functions are "localized with
respect to the species"

&(2db«) —6)x x &= g .nkni[kk kk—Pl+Plkk kk Pl+Pl]kl+ g ink [kk 4k+Ok kk kk 4k+1k kk jkk.
k, I e 0' kcS

k&1

(3.17)

This is a sum of non-negative terms, so that the sym-
metric matrix 2db(6) —6 is positive semidefinite on R .
It is interesting to point out that in (3.17) the terms in the
simple sum indexed by k H 4 are equal to the correspond-
ing term in the expression of ( Gx, x ) whereas the terms

in the double sum indexed by k, l HS, k&l, differ in the
sign of the contributions from the collision partner I.

Keeping in mind that the number densities are posi-
tive, we deduce from (3.17) that x HN(2di, (6)—G ) if and
only if for all species pair (k, 1), with kAl, the subfamily



53 STRUCTURE OF TRANSPORT LINEAR SYSTEMS IN DILUTE. . . 489

(gk, —
g&) is a collisional invariant of the binary submix-

ture (k, I). Denoting by 2k& the space of collisional in-
variants of the submixture (k, l), we have thus established
that for n &2

As a comparison it is interesting to note that for n ~ 2 we
also have

N(G)={xen, Vk, lES,k&l, (gk, g, )&2k, } . (3.19)

The space Sk& is spanned by the functions

Ski=span{ 7 itrk&, (m, v)&({k,l ] U [n + l, n +4])
(3.20)

where gkI, m H {k,l] U[n + 1, n +4], are the scalar col-
lisional invariants of the submixture (k, l). These col-
1isional invariants are related to the full mixture collision-
al invariants g™,m E {k, I ] U [n + l, n +4], since we
have

Pi
= ( +k, @i ), m E {k, I I U [n + 1,n +4], (3.21)

by de6nition of collisional invariants.

F. The species orthogonality property and the nullspace
X(2db( G) —G )

We now identify the nullspace N(2dz(G) —G ) by using
(3.18). This is done by assuming that the perpendiculari-
ty property (3.11) holds, that the species localization
property (3.16) holds, and that the variational space A is
orthogonal to the constant functions. In other words, we
assume that the species collisional invariants 7gr, l HS
and vE [ l, r], are in J AA, that is,

This property will be termed "the species orthogonality
property. "

Assume first that n ~3, let x =(xk)~„k~~&HR and
g=g~„k~~~xkg"", and assume that ((2di, (G)—G)x, x ) =0. From (3.18), we know that for any given
species pair (k, l) with kWl, there exist scalars u. such
that

(kk 51) r uj +A kl + y uj +Akl
j~ I k, I I jr[»+1,» +4]
ve [1,~] ve [1,~]

(3.23)

Introducing the corresponding full mixture collisional in-
variant

VL= g u 7 P+ g uj &,P,
jE I k, I I jE [n + 1, n +4]
vv[1, ~] ve [1,~]

(3.24)

and identifying the kth and 1th components yields that

N(2db(G) —G )

={xelR, Vk, le/, k&l, (gk, —g, )& Jk, ] .

(3.18)

gk
= Ilk and g&

= —Vl&. From gk
=Vlk and the species lo-

calization property (3.16), we obtain that
((+,& g ))=((g, "T,g 8 and therefore that
((Vl, "T,g"))=0 thanks to /HA and the species ortho-
gonality property (3.22). Since (( Vl, 'Tgr" ))
=uk, (( 7gi, 'T p )), we deduce that uk, =0, for
v&[1,r]. Similarly, one can show that u& =0, for
vE [ l, r], so that we have

jE[n + 1 n +4]
ve [1,7.]

u, '7jr'. (3.25)

Since n ~ 3 we can consider k, 1, and m such that k&1,
l&m, and mWk. From the preceding analysis, we can
first write for the species pair (k, l) that gk =Vlk and
g&= —Vli where VC is a collisional invariant of the full
mixture. Similarly, for the species pair ( I, m ), we can
then write that g&

=VI and g = —V where V is anoth-
er collisional invariant of the full mixture in the form

je [n+1,»+4]
vC [1,7.]

v V'f . (3.26)

xk "=( —1)"xk, (r, k) H%,

for k e4= {1,2I.

(3.27)

G. Summary of the properties of G and of the sparse
transport matrix db ( G)

In Secs. III B and III C, we have established that when-
ever the perpendicularity property (3.11) holds, then the
following are true.

(a) G is symmetric positive semidefinite.
(b) N(G) {x&R X(,k) %xkk
(c) G is positive definite on C.
(d) N(G)eC=R .
(e) PER (G).
In Secs. III D —III F, we have shown that whenever the

perpendicularity property (3.11), the species localization
property (3.16), and the species orthogonality property
(3.22) hold, then we have the following.

(f) The matrix 2db(G) —G is symmetric positive
semidefinite for n ~1, (i) 2db(G) —G is positive definite

We now point out that for I&4, the scalar functions
T'

p&, (j,v) H [n + l, n +4]X [ l, r], are associated with ei-
ther momentum or energy conservation and are thus
linearly independent. From Vl& = —

gI = —VI we then
deduce that u~„= —U~, (j,v)H[n+l, n+4]X[1,r], so
that we indeed have VE= —V. By repeating the argu-
ment for the species pair (m, k), we finally obtain that
gk = Vdk = —Rk =0. This now implies that gk =0 for any
k ES, so that x =0 and 2db(G) —G is positive definite if
n 3.

In the special case n =2, it is not possible to change
signs an odd number of times. In this case we have
x&N(2db(G) —G) if and only if x*&N(G), where we
have defined
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for n )3, (ii) N(2db(G) —G)= Ix",x&N(G)] for n =2,
(iii) N(2db(G) —G)=N(G) for n =1, where x* is defined
in (3.27).

Finally the properties of the sparse transport matrix
db(G) result from db(G)= —,'(2d/, (G) —G)+ —,'G. After
some algebra, it is then possible to establish that whenev-
er the perpendicularity property (3.11), the species locali-
zation property (3.16), and the species orthogonality
property (3.22) hold, then we have the following.

(g) The matrix db(G) is symmetric positive semidefinite
for n ) 1, (i) db(G) is positive definite for n )2, (ii)
N(db(G) ) =N(G) for n = 1.

Remark Th.e structure of the matrix 2d/, (G) —G re-
veals that the general case for mixtures is n )3 and that
binary mixtures are a degenerate case.

H. Asymptotic expansions for the transport coeKcients

In order to obtain asymptotic expansions for the trans-
port coeKcients, we use the theory of projective iterative
methods for constrained singular linear systems. Several
mathematical resu1ts have been recently derived in the
framework of multicomponent transport [3,8]. The main
result of interest here is the following theorem.

Asymptotic expansion. Let G ER ' be a singular sym-
metric positive semidefinite matrix and let C be a sub-
space complementary to N (6), i.e., N(G)$ C =IR . Con-
sider a symmetric matrix Isuch that the matrix 2M —6
is positive definite, and define T=I—M G. Let P be
the oblique projector onto the subspace C along N(G).
Let also PER(G), xoEIR, yo=Pxo, and consider for
i )0 the iterates x;+, = Tx, +M '//3 and

y,. +i=PTy, +PM '/3. Then y, =Px, for all i )0, the ma-
trices T and PT are convergent, and we have the follow-
ing limits:

number of steps. Numerical results on practical prob-
lems also show that high convergence rates are obtained
when this algorithm is preconditioned by the sparse
transport matrix db(G). Details of the algorithm with
application to multicomponent transport are given in
[3,8] and are omitted here.

IV. APPLICATION TO MULTICOMPONKNT
TRANSPORT

In the framework of either the semiclassical, the classi-
cal, or the quantum mechanical isotropic kinetic theory,
the resulting bracket operator satisfies the symmetry and
positivity properties discussed in Sec. IIB. The per-
turbed distribution functions P=((//»)»E~ are expanded
in the form

—X 4»'. (Vr/ pY/b/) —4» V(1—~km T»
tel

(4.1)

where (//$ is a traceless symmetric matrix function, P» a
DIscalar function, and ()I(» and P» are vector functions. In

addition, u is the macroscopic mass averaged velocity of
the mixture, p& the partial pressure of the lth species, Yl
its mass fraction, bh the external force acting on the 1th
species, p the density, kz the Boltzmann constant, and T
the temperature.

To the first approximation in the Enskog expansion,
the transport cruxes are the pressure tensor II, the species
diffusion velocities Vk, and the heat Aux vector q given by

(4.2)

limy;=P( limx;)=a, (3.28) (4.3)

where a is the unique solution of (3.1). Furthermore,
upon defining the approximate transport coefficients q = g ph» Y» V» A, *VT +0—» d», —

k&4' km'
(3.29) where p is the thermodynamic pressure, I the identity

matrix, K the volume viscosity —also termed bulk
viscosity —g the shear viscosity, D =(D»/ )» /~+ the
diffusion matrix, dk the diffusion driving force for the kth
species, 9=(8»)»~& the thermal diffusion vector, h» the
enthalpy per unit mass of the kth species, and A,

' the par-
tial thermal conductivity. The diffusion driving forces
are given by

we have

(3.30)

With the results of Sec. IIIG, it is clear that an ap-
propriate choice for the splitting matrix M is the sparse
transport matrix db(G) in the general case n )3, whereas
in the particular cases n =1 or 2, the main diagonal of
db(G) needs to be weighted by some positive coefficients.
We also point out that the projector matrix P in (3.29) en-
sures that at each iteration the approximation to the
species perturbed distribution functions satisfies the phys-
ical constraints.

Finally, we note that another approach for expanding
the transport coeKcients is to consider the conjugate gra-
dient algorithm. This algorithm converges in a finite

d/, =VX/, +(X/, —Y») + y Y/, Y/(b/ —b»), keg,Vp

p p ice
(4.5)

where Xk is the mole fraction of the kth species. Fur-
thermore, the following expressions are obtained for the
transport coeKcients:

k~T k~T
rl=

10
[4" 0"] =

9
[4" 0"1 (4.6)

lim f'/f
=LX (PT(JPM 'P '/L/T) L"" . =

f~oo J==0
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(4.7)

where P denotes the set of species with internal energy.
Assuming that f"+ EA, we obtain the decomposition

(4.12)

(4.&)

By construction, the diffusion matrix is symmetric and
we also have the mass conservation constraints
gkE+YkDkl =0, l &4, and gk~+Yk8k =0. It is
worthwhile to point out that the above results can be gen-
eralized to the case of reactive mixtures in the "tempered
reaction regime, "where the chemical characteristic times
are larger by an order of magnitude than the mean free
time of the molecules. We refer to [3] for a more detailed
drscusscon.

Matrix approximations for the inverse collision opera-
tor are obtained by considering expansion functions P,
(r, k)EX. In the isotropic classical case for linear mole-
cules, the expansion functions are generally chosen as
simple linear combinations of the functions P' ' " [5,9]
defined by

k~ k ) [+a+1/2( k Wk )+0( k )[ k ]~kl }IEg

(4.9)

Here, a, c, and d are integers, wk denotes the reduced ve-
locity of the particles of the kth species, and Jk their re-
duced angular momentum. Furthermore, Xp is the asso-
ciated Laguerre polynomial of order p with parameter q
and ['wk] a tensor of rank a with respect to the three-
dimensional space [1].

In the semiclassical case [1,4,5], the expansion func-
tions are generally chosen as simple linear combinations
of the functions P' '""defined by

(Wk, EkK ) —[En+1/2( Wk 'Wk )

X Wk ( EkK )[ wk ]~ kl }I cg & (4.10)

A. The scalar case

In the scalar case, we assume that the indexing set S
does not contain the indices (00, k ) for k ES. One may
then easily establish that 'T„it/ E J' AA for
(I,v)E[1,n +3]X[1}and that the energy collisional in-
variant satisfies

where 8'k is the Wang Chang and Uhlenbeck polynomial
of order d for the kth species and ekz the reduced inter-
nal energy of the kth species in the Kth internal energy
state. In the isotropic quantum mechanical case, the ex-
pansion functions are given, for instance, in [5] and are
omitted for brevity.

In the following sections we verify that the perpendicu-
larity property and the species orthogonality property are
satisfied with usual choices for the approximation space
A Cspan[P' '"", (cd, k)ES}.

The perpendicularity property and the species ortho-
gonality property are thus satisfied. As a consequence, if
the basis functions of A are also localized with respect to
the species, we conclude that the results of Sec. III apply.

Remark. First-order disequilibrium of several,
mechanically independent, internal energy modes, e.g.,
rotation and vibration, can be treated by generalizing the
semiclassical expansion functions (4.9). In this case it is
possible to consider Wang Chang and Uhlenbeck polyno-
mials in each of the internal energy modes. Denoting by
8 Gxe set of indices for the internal energy modes, an en-
ergy state of a particle is now referred to by a multiindex
K = (K')«@ with reduced internal energies e'„,. One can
then verify that

fn +4 y y0010k+ y y y000ek

km' eBS kEP

with p
' = [X1/2(wk. wk )5kl }1

[ ~k(~kKe)~kl }lent'

and

(4.13)

y100ek

B. The vector case

In the vector case, one may easily establish that we
have 'T,itl'E J'AA for (I,v)E([l, n] U [n +4}) X[1,3]
and (l, v)=(n+v', v), with v, v'E [1,3] and vAv'. More-
over, by iso tropy we also have T,f"+ ' —"T2$"+

E J flA and 'T2itl"+ —'Tg" CSflA . In addition,
one can easily verify that

where mk is the mass of the particles of the kth species.
Assuming then that T,g"+'+ 'T2$"+ + T3$"+ EA, we
obtain the decomposition

R( eT ~~n + 1 + eT yn +2 + eT ~n + 3
)+ g (-)A l (4.15)

The perpendicularity property and the species ortho-
gonality property are thus satisfied. As a consequence, if
the basis functions of A are also localized with respect to
the species, we conclude that the results established in
Sec. III apply.

Another interesting case arises when considering the
thermal conductivity and the thermal diffusion ratios.
These transport efFicients can be defined directly within a
variational framework independently of the partial
thermal conductivity, the thermal diffusion vector, and
the diff'usion matrix [10]. In this case we have

(4.16)

C. The matrix case

~ yn +1+eT qn+2+ ~ qn+3 y (2k Tm )1/2y1000k

keg

(4.14)

qn +4—y y0010k+ y y0001k

kcS keP
(4.1 1) In the matrix case, one may easily establish that

'T P EZAA for any (1,v) E [1,n +4]X [1,9], so that
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J=J ClA' . (4.17)

The perpendicularity property and the species ortho-
gonality property are thus satisfied. As a consequence, if
the basis functions of A are also localized with respect to
the species we conclude that the results established in
Sec. III apply.

matrix db(G). We have then shown from the kinetic
theory that the sparse transport matrix satisfies a set of
fundamental properties and that the transport coefticients
can be expanded as convergent series. Finally, we have
verified that the present theory can be applied to practi-
cal problems in either a classical, semiclassical or quan-
tum mechanical framework.
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