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Two methods of determination of the surface tension at the interface of a magnetic liquid and another fluid,
in a confined two-dimensional geometry, are presented. The first is based upon a surface instability under the
action of a vertical magnetic field and the second uses the deformation of a magnetic droplet in plane layer
under the influence of a horizontal magnetic field. Theoretical calculations and experimental results are pre-
sented in both cases. Both determinations lead to comparable values of the surface tensions'3
mN m21.@S1063-651X~96!00205-X#

PACS number~s!: 47.65.1a, 75.50.Mm, 68.10.2m

I. INTRODUCTION

Magnetic fluids ~MFs! between two parallel plates~a
Hele-Shaw cell! under the action of a perpendicular magnetic
field present labyrinthine patterns due to the competition be-
tween the short-range attractive forces and the long-range
repulsion forces@1–4#. Different features of these pattern
formation phenomena are quite well understood theoretically
@1–6#. For a quantitative comparison with the existing ex-
perimental data, the knowledge of the surface tension of the
MF s is crucial. Surface tension measurementsin situ are
useful in the study of the behavior of magnetic liquids in
plane layers. For example, describing the behavior of mag-
netic stripe systems in the framework of the smectic analogy
@6#, curvature and compression elasticity constants depend
on the magnetic field and also ons. These elastic moduli can
be determined from macroscopic experiments@7# and it is
essential to knows for a comparison with the theoretical
predictions.

We turn here the analysis of two surface deformations in
two dimensions into two genuines determinations under an
external magnetic field. In our description,s is supposed to
be a field-independent constant. The self-consistency be-
tween the two kinds ofs determinations at different fields
supports this usual hypothesis.

Since MF presents surface instabilities, classical methods
for the determination of the surface tension under a magnetic
field are difficult or even impossible to handle. Deformations
of the free surface strongly disturb measurements with a
Langmuir balance@8# or with ultrasonic waves@9#. Because
both these methods use the surface instabilities for the deter-
mination ofs, they are the only ones to gets for a MF under
the influence of a magnetic field.

II. THEORETICAL BACKGROUND

Our two kinds ofs measurements are based on an analy-
sis of the surface deformation of a MF in a two-dimensional
~2D! geometry and under a magnetic field. In order to de-

scribe the competition between the magnetic forces and the
capillary forces, let us introduce the magnetic Bond number,
which is defined asNB5m0H 0

2h/2s and represents the ratio
of a magnetic pressure and a capillary pressure, whereh is
the thickness of the layer.

A. Normal field instability in plane layers

Instability phenomena at the interface between a MF and
another fluid, under the influence of a magnetic field normal
to the interface, are quite well known@10,11#. Previous stud-
ies have shown that the surface instability leads to peak for-
mations. The wavelength of the surface deformation at the
threshold value of the magnetic field strength is given by the
capillary length of the fluidslc5l052pAs/(r12r2)g. If
the density difference between the two liquids is known, the
measurement of the critical wavelength can be employed for
the determination ofs. However, in the present case, the
results of this 3D analysis cannot be directly employed be-
cause the critical wavelengthlc of the free-surface deforma-
tion is comparable to that of the layer thickness. Conse-
quently, the exact neutral curve of the instability taking into
account the finite thickness of the layer is established.

The system is sketched in Fig. 1. Let us cally5j(x) the

FIG. 1. Sketch of the Hele-Shaw cell with its axes in the peak
instability experiment showing the invariant peak shape in thez
direction.
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equation of the free boundary andH0 the external magnetic
field perpendicular to the interface. The motion of the fluids
in the Hele-Shaw approximation is described by the Darcy
equation@5#

2anW 2¹W p1
m0

h E
2h/2

1h/2

dz~MW •¹W !HW 1rgW 50W,div~nW !50,

~1!

where the permeabilitya is given by the ratio 12h/h2, h is
the viscosity, andnW is the average local velocity of the fluids.

Introducing a magnetic potentialHW 5¹W c and due to the po-

tentiality of the Hele-Shaw flow, the velocity isnW 5¹W w. We
assume that the magnetization is along the external field and
that the influence of the demagnetizing field is neglected.
The Darcy equation for the MF~denoted by 1! can be written
as
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1r1gW •rW50. ~2!

The upper nonmagnetic fluid~denoted by 2! may be de-
scribed by

2a2w22p21r2gW •rW50. ~3!

At the free boundary, we have the modified Laplace law in
order to take into account the magnetic phenomena
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where s is the surface tension between the fluids. In the
stationary state~denoted by 0!, for the flat interface we have
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In the framework of a linear analysis, Eqs.~4!–~6! give,
for the difference of the pressures on the unperturbed surface
as a function of the interface displacementz,
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and for the velocity potential

2a1w11a2w21sz92z~r12r2!g
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dc is the variation of the magnetostatic potential due to the
deformation of the free surface. Taking into account the ki-
nematic boundary condition

]z

]t
5
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5

]w2

]y
,

and the Laplace equation for the velocity potentialDw50,
we obtain, for the Fourier amplitude of the periodic free-
surface deformation~z5zke

ikx!, the equation~k denotes the
index of the Fourier component!

dzk
dt
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The variation of the magnetic field potential valuedc at y50
is obtained by the expression

c52
1

4p E
S
d2r 8

MW •nW 8

urW2rW8u
.

Integration along the free interface~nW 8 is a unit vector nor-
mal to the interface! gives
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where P is the Cauchy principal value. Consequently, the
following result:
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As a result, the expression for the growth increment of the
free-surface perturbations is given as (zk'el(k)t)

l~k!5
k

a11a1
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The flat interface is unstable with respect to periodic defor-
mations ifl(k) becomes positive. This gives the following
condition for the neutrality of the free-surface deformations:
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Introducing the capillary wave vectork052p/l0, Eq. ~10!
permits the determination of the critical magnetic Bond num-
ber as a function of the reduced wave numberkh:
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~11!

The neutral curves determined by Eq.~11! for several
values ofk0h are shown in Fig. 2. The instability corre-
sponds to the minimum of the curve with a critical valuekch.
The dependence ofkch onk0h, obtained numerically accord-
ing to relation~11!, is shown in Fig. 3. On the basis of the
data presented in Figs. 2 and 3, it is thus possible to obtain
the value ofs from the measured value ofkch.

B. Elongation of a magnetic droplet in flat layers

A MF droplet between two parallel walls~i.e., with a
cylindrical symmetry!, under the influence of a magnetic
field normal to the layer, shows a wide variety of different
equilibrium shapes@1,4#. The deformation of a droplet with a
field tangential to the walls has been studied experimentally
in Ref. @12#. It has been shown that the droplet shape be-
comes elliptical. In the present article, the elongation of the
elliptical shape is calculated as a function of the external
field H0 and the surface tensions. The rather complicated
calculations may be simplified by the following assumption:
the magnetization is constant and equal to that of the field

strength acting on the center of the droplet. This seems to be
reasonable since the demagnetizing factor is small in this
case.

Let us consider a MF droplet of volumeV5pR2h, where
R is the initial radius of the circular boundary along the two
walls. The system with its reference axes is sketched in Fig.
4. SinceV andh are constant, the total surface along the two
walls 2S52(pab) is constant. Only the interface between
the MF and the other liquid changes during the experiment.
The general expression for the field strength due to the mag-
netization of the MF is written

HW 52¹W rE
V2V«

d3r 8
1

4p

MW •~rW2rW8!

urW2rW8u3
.

Ve is a cutoff volume. We suppose now that the problem is
invariant in thez direction and that the local field effects are
negligible. Consequently, it can be expressed as

HW 52
1

4p
¹W rE

S2S«

d2r 8
MW •nW 8

urW2rW8u
,

where the integration is along the interface of the droplet~nW 8
is a unit vector perpendicular to the interface!. The magnetic
field strength at the center of the droplet can be expressed as

FIG. 2. Neutral curve for the 2D peak instability given
x2NB5m0M

2h/2s as a function of the reduced wave numberkh
for different values of the reduced capillary wave number
k0h. k0h51.2 corresponds to the experimental result.

FIG. 3. Variation ofkch as a function ofk0h. The measurement
gives the reduced critical wave numberkch51.95, which leads to
the value of the reduced capillary wave numberk0h51.2.

FIG. 4. Sketch of the Hele-Shaw cell in the MF droplet defor-
mation experiment.
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Focusing on the component along the external field after a
simple integration along the surface of an elliptical cylinder
~main axesa,b and heighth!, we have

Hx~0!52
Mhab

pa3
A

e2
@~e221!P~e2,eA!1K~eA!#,

~12!

whereK andP are the complete elliptical integrals of the
first and third kind, e is the eccentricity defined by
e2512b2/a2, and A is the undimensional quantity
A22511(h/2a)2. Under our assumption, the magnetization
of the droplet is determined byM5x„H01Hx~0!…. Introduc-
ing a demagnetizing factorD(e), which depends one, we
haveHx(0)52DM . The magnetic energy of the droplet is

Em52
m0

2
MH0V52

m0

2

xH0
2V

11xD~e!
.

The total energyEtotal of the MF droplet accounting for the
surface energy can be expressed as

Etotal54sahE~e!2
m0

2

xH0
2V

11xD~e!
. ~13!

E(e) is the complete elliptical integral of the second kind.
The minimization the droplet energyEtotal with respect to its
eccentricitye, after simple but tedious calculations, gives the
magnetic Bond numberNB ,

NB5
h

R

1

e2~12e2!1/4
@11xD~e!#2

2px2
dD~e!

de2

F22e2

12e2
E~e!22K~e!G ,

~14!

where the derivative of the demagnetizing factor with respect
to the square eccentricity is expressed as

dD~e!

de2
5

hR2A

pa3e4 FP~e2,eA!2
42e2

4~12e2!
K~eA!

1
e2

4~12e2!
E~eA!G .

It is also possible to derive, by an expansion of the total
energy up to the first nonvanishing terms in small eccentric-
ity, an approximate relation. This relation is valid for the
small elongations of the droplet:

Etotal'2pshRF3e464
2

112B22

16~xAB222112B21!
x2BNBe

2G
1Cte,

whereB is given byB22511(h/2R)2. For small eccentrici-
ties, we obtain as a function of the magnetic Bond number

e2'
2

3

312~B2221!

xAB222112B21
x2BNB . ~15!

III. EXPERIMENTAL DESCRIPTION AND RESULTS

The same cell is used in both determinations of the sur-
face tension. The external fieldH0 is homogeneous and
static.

A. Experimental setup

A MF ~or ferrofluid! is a colloidal suspension of nano-
scopic magnetic particles. Here we use an ionic~water-
based! MF with cobalt ferrite particles~CoFe2O4! of mean
size of roughly 10 nm@13#. The MF saturation magnetization
is Ms540 kA m21, with a particle volume fraction of 10%.
The magnetic susceptibility is equal tox052.260.9. The
cell, sketched in Figs. 4 and 5, is made of two parallel sheets
of Altuglas®; the distance between the two walls gives the
cell thicknessh50.9 mm. This Hele-Shaw cell is filled with
of an organic liquid~white spirit! and a small amount of MF.
This MF is face to face with the organic liquid to avoid
wetting of the MF along the two walls and to decrease
the gravity effect by matching the density
difference: MF: r151580 kg m23 and oil: r25800
kg m23.

An image processing is required to obtain the deformation
of the MF-oil interface. The images are recorded by a charge
coupled device camera and digitized by an acquisition card
in a computer.

B. Spike instability: Results

Figure 5~a! shows a flat interface forH050. Figure 5~b!
shows the perturbed interface for a magnetic field value

FIG. 5. Three photographs of the free MF-oil interface for dif-
ferent magnetic fields: ~a! H050, ~b! H054.9 kA m21, and ~c!
H058.2 kA m21. The underlying millimetric grid gives the scale.
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H054.9 kA m21 just above the threshold. The application of
a field H058.2 kA m21 leads to the formation of a comb
made of a single line of peaks, as shown in Fig. 5~c!. Since
x,2.54, the peak instability is a second-order transition@14#;
this is confirmed here since no hysteresis is detected. The
measured values of the wavelength and of the magnetic field
at the threshold arelc52p/kc5(2.8960.07) mm and
Hc5~4.6060.03! kA m21. If we neglect the demagnetizing
factor, which is small here becauseH0 is applied along the
cell D5~2/p!tan21(h/ l )'431022 ~l is the MF height!, the
magnetization is given byMc5x(Hc)Hc/[11Dx(Hc)]
'x(Hc)Hc'7.9 kA m21. The curve in Fig. 3 giveskh051.2
from khc51.95. This leads to a value of the surface tension
at the MF-oil interface:s5~3.8960.04! mN m21. The value
of Mc deduced from the Fig. 2 isMc56.2 kA m21, 20% less
than the experimental result.

C. Droplet deformation: Results

The elliptical deformations of the MF droplet are shown
in Fig. 6. The experimental results and the numerical calcu-
lation following ~14! for the eccentricitye of the MF droplet
are plotted as a function of the magnetic Bond numberNB in
Fig. 7. The agreement between results allows the determina-
tion of the surface tension between the MF and oil at room
temperatures5~3.0760.04! mN m21.

IV. DISCUSSION AND CONCLUSIONS

We present two general methods of measuring the surface
tension between a magnetic liquid and another immiscible
fluid. Despite the use of different approximations, the agree-
ment between the two types of determination is good.

In the droplet deformation experiment, the hypothesis of a
constant magnetization is a rather good approximation since
the theoretical calculation fits quite well the experimental
data. An important remark necessary to justify the Hele-
Shaw approach in the peak instability experiment is that the
effect of the confined geometry is not a correction:kc'2k0 .

We can notice that a discrepancy between the calculation
and the experimental data in the droplet experiment occurs
for low values of the magnetic Bond number, i.e., below
NB*5m0H0

2R/2s'1, whereR is the radius of the initial
droplet. The reason of this shift could be capillary effects:
because of the confined geometry we have taken a slice of an

infinite system with a magnetization that is invariant perpen-
dicularly to the walls. This basic hypothesis is only an ap-
proximation since a meniscus exists.

In the peak instability experiment the theoretical value of
the magnetic field thresholdHc is lower than the experimen-
tal one. Here again we have postulated a 2D geometry and a
magnetization that is homogeneous and the demagnetizing
field is neglected in the first nonvanishing term obtained by
linearization of the equations of the peak instability. Conse-
quently, in the framework of these strong approximations, it
is not so surprising that discrepancies occur even for mag-
netic Bond numberNB

c5m0H 0
2lc/2s'12, which is greater

thanNB* : it could be again capillary effects that are more
sensitive here to the demagnetizing factor of the meniscus.
Nevertheless, the two calculations give similar results for the
determination of the surface tension, meaning that the es-
sence of the physic is contained in our two models.

In the present work we assume that the surface tension is
not dependent on the applied magnetic field. The autocoher-
ence of our experimental results validates this hypothesis in
the range of the magnetic fields used. For a more detailed
description of the interface, further experiments, such as
x-ray or neutron reflectivity, would be useful. It could detect,
for example, structures of magnetic particles near the inter-
face depending on the magnetic field direction~either paral-
lel or perpendicular to the surface! or the formation of a
depletion layer~or a concentrated layer! close to the inter-
face.
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FIG. 7. Square eccentricity of the MF droplet (e2512b2/a2)
as a function of the productsNB5m0H 0

2h/2: experimental points
and exact calculation~continous line!. Errors bars forsNB are
shown. The surface tension is determined by matching the experi-
mental points by a least-squares method. Points of small eccentrici-
ties are disregarded due to the meniscus phenomena, which are not
accounted for in the present model.

FIG. 6. Photographs of the MF droplet deformation for different
tangential magnetic fields:~a! H050, ~b! H051.2 kA m21, ~c!
H052.4 kA m21, ~d! H052.9 kA m21, ~e! H053.7 kA m21, and~f!
H055.5 kA m21.
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