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A unique pattern selection in the absolutely unstable regime of a driven, nonlinear, open-flow system is
analyzed: The spatiotemporal structures of rotationally symmetric vortices that propagate downstream in the
annulus of the rotating Taylor-Couette system due to an externally imposed axial through-flow are investigated
for two different axial boundary conditions at the inlet and outlet. Detailed quantitative results for the oscil-
lation frequency, the axial profile of the wave number, and the temporal Fourier amplitudes of the propagating
vortex patterns obtained by numerical simulations of the Navier-Stokes equations are compared with results of
the appropriate Ginzburg-Landau amplitude equation approximation and also with experiments. Unlike the
stationary patterns in systems without through-flow the spatiotemporal structures of propagating vortices are
independent of parameter history, initial conditions, and system length. They do, however, depend on the axial
boundary conditions in addition to the driving rate of the inner cylinder and the through-flow rate. Our analysis
of the amplitude equation shows that the pattern selection can be described by a nonlinear eigenvalue problem
with the frequency being the eigenvalue. The complex amplitude being the corresponding eigenfunction de-
scribes the axial structure of intensity and wave number. Small, but characteristic differences in the structural
dynamics between the Navier-Stokes equations and the amplitude equation are mainly due to the different
dispersion relations. Approaching the border between absolute and convective instability the eigenvalue prob-
lem becomes effectively linear and the selection mechanism approaches that of linear front propagation.

PACS number~s!: 47.54.1r, 47.20.Ky, 47.32.2y, 47.20.Ft

I. INTRODUCTION

In many nonlinear continuous systems dissipative struc-
tures branch out of a homogeneous basic state when the ex-
ternal stress exceeds a critical threshold. Examples for these
transitions are Taylor-Couette flow, Rayleigh-Be´nard con-
vection, binary-fluid convection, flame-front propagation,
and some chemical or biological processes@1#. Often, for a
fixed configuration of parameters and boundary conditions a
continuous or discrete family of patterns with different wave
numbers is stable. Their stability regime, e.g., a band of
wave numbers, might be limited by the possibility of reso-
nant triad interactions of modes like those described by the
Eckhaus or Benjamin-Feir mechanism@1#. The stable struc-
tures within such a band can be generated by appropriately
engineered time histories of the parameters and/or by prop-
erly changing the boundary conditions, e.g., the system size.
The most intensively investigated examples in this respect
are the structures of Taylor vortices@1–7# in an annulus
between concentric cylinders of which the inner one rotates
and convective roll patterns in horizontal layers of one-
component fluids@1,5,8–11# or binary mixtures heated from
below @12,13#.

This multiplicity of solutions of the underlying nonlinear
partial differential equations that stably coexist for a fixed
configuration of parameters and boundary conditions seems
to disappear in an open-flow system: Recent numerical simu-
lations of Rayleigh-Be´nard convective rolls traveling down-
stream in an imposed horizontal Poiseuille flow showed@14–
16# that their structure is uniquely selected—i.e., it is

independent of parameter history, initial conditions, and sys-
tem size—in the absolutely unstable regime. This is the pa-
rameter regime of an open-flow system in which the second-
ary pattern starting, e.g., from a spatially localized
perturbation can grow in the upstream as well as the down-
stream direction@17#. By contrast, in the convectively un-
stable regime@18# initial perturbations are blown out of the
system—both the upstream as well as the downstream facing
front of the growing structure move downstream. In the ab-
solutely unstable regime the structure expansion proceeds
until the upstream~downstream! moving front encounters in
a finite system the inlet~outlet! and adjusts to the inlet~out-
let! boundary condition. The final pattern resulting in such a
situation shows a characteristic streamwise profile of the am-
plitude growing with increasing distance from the inlet and
of the wave number variation, and a characteristic global
oscillation frequency associated with the downstream motion
of the pattern.

In this work we elucidate in numerical and analytical de-
tail how such a uniquely selected spatiotemporal pattern
structure can be understood as a nonlinear eigenvalue prob-
lem with the oscillation frequency being the eigenvalue and
the profiles of pattern intensity and wave number determin-
ing the corresponding eigenfunction. We also show how this
pattern selection process is related to the one occurring be-
hind a front or ‘‘domain wall’’ that spatially separates an
unstable, homogeneous state from a stable, structured state.
To that end we present results of extensive numerical and
analytical investigations of vortex patterns in the annulus of
the Taylor-Couette setup with an externally imposed axial
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through-flow. For small through-flow rates and small rota-
tion rates of the inner cylinder the structure of propagating
vortex ~PV! flow with vortices being advected in the down-
stream direction is rotationally symmetric. Only for higher
through-flow rates, which are not investigated here, is there a
bifurcation @19,20# to spirals@20–26#. We have performed
numerical simulations of the full, rotationally symmetric,
two-dimensional~2D! Navier-Stokes equations~NSE!. They
are compared with our numerical and analytical results ob-
tained from the appropriate@27# 1D Ginzburg-Landau ampli-
tude equation~GLE! approximation to the problem of PV
flow and with experimental results@20–22,25,28,29#.

The eigenvalue problem of the pattern selection by the
imposed flow can best be analyzed and explained within the
GLE framework. Therein, the complex amplitudeA(z,t) of
the PV flow depends in the absolutely unstable regime on the
streamwise positionz and on timet in a multiplicative way
only,

A~z,t !5a~z!e2 iVt, ~1.1!

after transients have died out. Thez-independent frequency
V and the complex,z-dependent amplitudea(z) that de-
scribes the streamwise variation of pattern modulus and
wave number are simultaneously fixed via a solvability con-
dition in the form of a nonlinear eigenvalue problem. The
selection ofV anda(z) seems to result from requiring the
spatial variation of the amplitude to be as small as possible
under the imposed boundary conditions forA at the ends of
the annulus.

Approaching the border between the absolutely and con-
vectively unstable regimes the pattern selection mechanism
becomes linear: For driving and through-flow rates on this
border line the selected frequency is the one resulting from a
linear front whose spatiotemporal behavior is governed by
the fastest growing linear mode. The latter is identified by a
particular saddle of the complex linear dispersion relation
over the complex wave number plane@1#. Now, the linear
dispersion relations of NSE@30# and GLE differ for super-
critical control parameters. And therefore the PV structures
selected by NSE or GLE differ in a characteristic way.

It should be emphasized that the structural dynamics of
pattern formation in the convectively unstable regime at
larger through-flow rates and/or smaller driving rates sub-
stantially differs from the one investigated here in the abso-
lutely unstable regime. The latter regime is governed by non-
linear contributions in the balance equations; the resulting
patterns are uniquely selected and insensitive to initial con-
ditions, parameter history, and small perturbations. On the
other hand, in the convectively unstable regime that has at-
tracted more experimental activities lately@28,29,31–35# the
growing patterns are sensitive to initial conditions and per-
turbations. Thus, e.g., the noise sustained patterns@36# oc-
curring in this regime depend on details of the spatiotempo-
ral properties of the perturbation source.

The Taylor-Couette system@37# with an imposed axial
through-flow has been investigated as a well-defined open-
flow system theoretically@38# and experimentally@39# since
the early 1930s. Linear stability analyses of the basic state to
traveling axisymmetric vortices were performed using vari-
ous approximations, e.g., for the narrow-gap limit, or simpli-

fied azimuthal velocity, or axial through-flow profiles@40#,
and later on for various aspect ratios fixed by the diameters
of both cylinders@19,20,41,42#. Also, many experiments and
comparisons with the theoretical predictions were done@21–
25,28,29,31–35,43,44#.

Our paper is organized as follows: In Sec. II we describe
the system, the subregions of absolute and convective insta-
bility, and our methods of investigation. Furthermore, we
recapitulate the GLE. The next section presents the spa-
tiotemporal behavior of PV patterns obtained numerically for
two different boundary conditions. In Sec. IV we analytically
and numerically elucidate the pattern selection observed
within the GLE and the NSE. We compare the results with
each other, with front propagation, and with experiments.
The last section gives a conclusion.

II. THE SYSTEM

We investigate time-dependent, rotationally symmetric
vortex structures in a Taylor-Couette apparatus with an ex-
ternally enforced axial flow. The viscous, incompressible
fluid is confined to the annulus between two concentric cyl-
inders of inner radiusr 1 and outer radiusr 2 . The setup is
characterized by two geometric parameters: the radius ratio
h5r 1 /r 2 and the aspect ratioG, i.e., the quotient of the axial
extension of the annulus and the gap widthd5r 22r 1 .
Mostly we have used in our numerical simulations an aspect
ratio of G550 and a radius ratio ofh50.75. The outer cyl-
inder is always kept at rest, while the inner one has a rotation
rate Vcyl . In addition we impose a small through-flow in
axial direction. The boundary conditions atr 1 and r 2 were
always no slip. The conditions at the two endsz50 andG of
the annulus are explained in Sec. III.

The flow pattern is described by the momentum balance
equation for the velocity fieldu, the Navier-Stokes equations

~] t1u•“!u52
1

r
“p1n“2u, ~2.1a!

and the continuity equation

“•u50, ~2.1b!

which reflects the incompressibility of the fluid. Heren is the
kinematic viscosity,r the mass density, andp the pressure.
The system is characterized by two dimensionless control
parameters. The Taylor number

T5
h

12h

Vcyl
2 d4

n2
~2.2!

is given by the squared rotation rateVcyl of the inner cylin-
der. The Reynolds number

Re5
w̄d

n
~2.3!

is proportional to the mean axial through-flow velocityw̄.
For an axially uniform system the homogeneous basic flow
state@45#

U~r !5VCCF~r !ew1WAPF~r !ez ~2.4!
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is a linear superposition of circular Couette flow~CCF!

VCCF~r !5Ar1
B

r
~2.5!

in the azimuthal direction and of annular Poiseuille flow
~APF!

WAPF~r !5
r 21C lnr1D

E
Re ~2.6!

in the axial direction. We scale lengths byd, times by the
radial diffusion timed2/n, azimuthal velocities by the veloc-
ity of the inner cylinderVcylr 1 , and radial and axial veloci-
ties byn/d. Then

A52
h

11h
, B52

A

~12h!2
, ~2.7a!

C5
11h

12h

1

lnh
, D5C ln~12h!2

1

~12h!2
,

~2.7b!

E52
1

2 F11
2h

~12h!2
1CG . ~2.7c!

Here, 4Re/E5]zp is the dimensionless axial pressure gradi-
ent driving the APF.

At the critical Taylor numberTc(Re) @19,20,27,31#,
which depends on the through-flow rate, the basic flow be-
comes unstable to rotationally symmetric, axially extended
PV perturbations via an oscillatory instability. There, a non-
linear PV solution branches off the basic flow in an axially
infinite system. We consider thedeviation

u~r ,z;t !5uer1vew1wez ~2.8!

of the velocity field from the basic flow~2.4! as the order-
parameter field to characterize the secondary PV structure.
We use the relative control parameter

m5
T

Tc~Re!
21 ~2.9a!

corresponding to

e5
T

Tc~Re50!
21 ~2.9b!

to measure the distance from the onset of PV flow for Re
Þ0 and of stationary Taylor vortex flow for Re50, respec-
tively. In this notation,

mc50 and ec~Re!5
Tc~Re!

Tc~Re50!
21 ~2.10!

is the critical threshold for onset of PV flow. The relation
betweenm ande is

m5
e

11ec~Re!
. ~2.11!

The shear forces associated with the axial through-flow
slightly stabilize the homogeneous basic state, soec(Re)

slightly increases with Re@27,31–33#. For similar reasons
alateral Poiseuille shear flow suppresses the onset of convec-
tion rolls with axes perpendicular to the flow in a Be´nard
setup of a fluid layer heated from below@14,46#.

A. Ginzburg-Landau description

Close to the bifurcation thresholdTc(Re) of PV flow, i.e.,
for smallm, the flow has the form of a harmonic wave, e.g.,

w~r ,z;t !5A~z,t !ei ~kcz2vct !ŵ~r !1c.c., ~2.12!

with a complex amplitudeA(z,t) that is slowly varying in
z and t. The critical wave numberkc , frequency vc
@19,20,27,31–33#, and eigenfunctionŵ(r ) @19,47# appearing
in Eq. ~2.12! have been obtained from a linear stability
analysis of the basic flow state as functions of Re. The com-
plex vortex amplitudeA(z,t) is given by the solution of the
1D complex GLE,

t0~Ȧ1vgA8!5m~11 ic0!A1j0
2~11 ic1!A9

2g~11 ic2!uAu2A. ~2.13!

Dot and primes denote temporal and spatial derivatives in the
z coordinate, respectively. All coefficients of the GLE have
been calculated@27# as functions of Re for several radius
ratiosh. As a consequence of the system’s invariance under
the combined symmetry operation$z→2z,Re→2Re% the
coefficientst0 , j0

2 , g are even in Re while the group veloc-
ity vg and the imaginary partsc0 ,c1 ,c2 are odd in Re
@15,27#.

It should be noted that the control parameter range ofm
over which ~2.12! gives an accurate description of the full
velocity field of PV flow, say, on a percent level is indeed
very small: The asymmetry between radial in- and outflow
intensities rapidly grows withm and causes higher axial Fou-
rier contributions;einkz @48–50# to the velocity field that
are discarded in them→0 asymptotics of the GLE approxi-
mation ~2.12!. However, the modulus of the first Fourier
mode of the vortex structures agrees for Re50 as well as for
ReÞ0 quite well with the one predicted by the GLE—cf.
Sec. III. On the other hand, the PV structure selected accord-
ing to the GLE differs from the one resulting from the full
field equations—cf. Sec. IV.

B. Absolute and convective instability

For smalle and Re the control parameter plane is divided
into three stability regimes—cf. Fig. 1—characterized by dif-
ferent growth behavior oflinear perturbations of the basic
flow state. Below the critical thresholdec(Re) for onset of
PV flow ~dashed line in Fig. 1! any perturbation, spatially
localized as well as extended, decays. This is the parameter
regime of absolute stability of the basic state.

Perturbations of the basic state can grow only for
e.ec(Re). However, in the presence of through-flow one
has to distinguish@17# between the spatiotemporal growth
behavior of spatially localized perturbations and of spatially
extended ones. The latter having a form;eikz can grow
above ec~Re!—in fact ec is determined as the stability
boundary of the basic state against extended harmonic per-
turbations. On the other hand, a spatially localized perturba-
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tion, i.e., a wave packet of plane wave perturbations is ad-
vected in the so-called convectively unstable parameter re-
gime faster downstream than it grows—while growing in the
co-moving frame it moves out of the system@17,18,36,51#.
Thus, the downstream as well as the upstream facing inten-
sity front of the vortex packet moves in the same direction,
namely, downstream. In this regime the flow pattern that
results from a spatially localized source, which generates
perturbations for a limited time only, is blown out of any
system of finite length and the basic state is reestablished. It
requires a persistent perturbation source like, e.g., noise to
sustain a vortex pattern in the convectively unstable regime
@36#.

In the absolutely unstable regime~shaded region in Fig. 1!
a localized perturbation grows not only in the downstream
direction but it grows and spatially expands also in the up-
stream direction until the upstream propagating front en-
counters the inlet in a finite system. The final pattern result-
ing in such a situation shows in the downstream direction a
characteristic axial intensity profile under which the PV flow
develops with increasing distance from the inlet. Approach-
ing the boundary between absolute and convective instability
the growth length of the PV structure diverges in the absence
of any perturbation source and the PV pattern is blown out of
the system. However, in the presence of noise there is a
transition to a noise sustained structure with a characteristic
finite growth length depending on noise properties and con-
trol parameters.

Within the framework of the amplitude equation the
boundary~full line in Fig. 1! between absolute and convec-
tive instability is given by@36#

mconv
c 5

t0
2vg

2

4j0
2~11c1

2!
, ~2.14!

corresponding toeconv
c 5ec1(11ec)mconv

c . Thus the abso-
lutely unstable regime~shaded region in Fig. 1! is character-
ized bym.mconv

c or, equivalently, by the scaled group ve-
locity

Vg5
t0

j0A~11c1
2!m

vg52Amconv
c

m
~2.15!

being smaller than 2.
It should be mentioned that the GLE approximation~2.14!

of mconv
c describes the boundary between absolute and con-

vective instability resulting from the NSE@30,33# very well
for the small Reynolds numbers considered here.

C. Methods of investigation

The linear growth analysis of modes exp@ i (kz
2vt1mw)# shows that for small through-flow rates the ho-
mogeneous basic state becomes first unstable to axisymmet-
ric PV flow @19,20,52#. Up to Re54 these patterns are also
detected experimentally@25,28,29,31–33#. However, at
larger Re one observes stationary spirals and mixed flow
patterns@25,26# in addition to the bifurcation of propagating
spirals@21–25,44#. The latter are predicted by the linear sta-
bility analysis to branch off the basic state at Re'20
@19,20,52#. The PV patterns occurring at small through-flow
rates (Re,4) that are discussed here are rotationally sym-
metric. Therefore it is sufficient to solve the hydrodynamic
field equations in anr -z cross section of the annulus to de-
scribe the resulting fieldu(r ,z;t).

We have performed numerical simulations of the 2D
NSE. They are compared with analytical and numerical re-
sults obtained from the 1D GLE. The latter was solved with
a Cranck-Nicholson algorithm using central differences for
spatial derivatives with a resolution of 20 grid points per unit
lengthd. The solution of the NSE was obtained with a time-
dependent finite-differences marker and cell~MAC! algo-
rithm @6,53# with pressure and velocity being iteratively
adapted to each other with the method of artificial compress-
ibility @54#. Also here the spatial resolution was 20 grid
points per unit lengthd. The temporal step size was
1/1800 times the radial diffusion timed2/n.

When comparing finite-differences solutions of the NSE
with experiments or with analytical properties, e.g., of the
GLE, we take into account that the critical properties of the
finite-differences MAC code differ slightly from the latter
due to its finite spatiotemporal resolution. In particular the
critical Taylor number,Tc(Re), of the MAC code lies
slightly ~less than 1.5%) below the theoretical bifurcation
threshold—cf. Table I and@27#. To find the marginal stabil-
ity curveTstab(k) of the MAC algorithm for axially extended
PV perturbations of wave numberk we analyzed the com-
plex growth rates(k) in systems of length 2p/k using peri-
odic boundary conditions in the axial direction for through-
flow rates up to Re55. From this analysis we also obtained
the critical values of the frequencyvc , group velocityvg ,
wave numberkc , and the parameterst0 and j0

2 ~Table I!.
Furthermore, we have cross checked these results by inves-
tigating the evolution of localized perturbations in long
systems of lengthsG.50, in particular in the convectively
unstable regime in a manner that is quite similar to experi-
mental procedures@29,33#: We generated tiny, localized PV
perturbations of about five vortex pairs with wave numbers
close tokc under an intensity envelope of Gaussian shape.
They propagate downstream with the group velocityvg . A

FIG. 1. Stability domains of the basic flow state~2.4! in the
plane of control parameters. Numerical simulations have been per-
formed for the parameters marked by circles (e50.0288), dia-
monds (e50.114), and triangles (e50.186). The dashed line is the
critical threshold for onset of extended PV flow and the full line the
boundary~2.14! between absolute and convective instability. The
parameters entering~2.14!—cf. Table I—characterize the finite-
differences version of the NSE. They have been obtained with the
methods described in Sec. II C.
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fit to the rate of exponential growth of the envelope gives
m/t0 . From the growth of the full width at half maximum
we obtainj0

2/t0 . These identifications are based upon com-
paring with the temporal evolution of a Gaussian perturba-
tion @36#

A~z,t50!}expF2
z2

2D0
2G ~2.16!

of initial axial extensionD0 according to the linearized GLE.
It yields

A~z,t !}
1

D~ t !
expFm~11 ic0!

t

t0
2

~z2vgt !
2

2D2~ t ! G ~2.17!

with

D2~ t !5D0
212j0

2~11 ic1!
t

t0
. ~2.18!

Test runs with twice the lattice points per unit length showed
that the differences between the critical properties of the con-
tinuous system that were obtained@27# with a shooting
method and the finite-differences system significantly de-
crease by one order of magnitude.

We have also investigated the dependence of nonlinear,
saturated PV flow on the numerical discretization. These
tests show that the nonlinear vortex structures are basically
independent of the discretization—provided it is not too
coarse. However, one should base the comparison of bifur-
cated flow structures obtained with different discretizations
on the relative control parameterm5T/Tc21 that is influ-
enced viaTc by the discretization in question—see also Sec.
IV B 3.

When comparing results obtained for differentm and Re
from numerical simulations of the NSE with those following
from the GLE we found it sometimes advantageous to
present them as functions of the scaled group velocityVg
~2.15!. The deviation

22Vg5222Amconv
c /m ~2.19!

is a scaled distance from the boundary between the abso-
lutely and convectively unstable regimes. Its relation to the
through-flow Reynolds number Re and the Taylor number
T5(11m)Tc(Re) can be read off from Table I.

III. PROPAGATING VORTEX PATTERNS

We investigate PV patterns in the absolutely unstable re-
gime in an annulus of finite length with two different end
conditions: a basic state boundary condition~BCI! in Sec.
III A and an Ekman vortex boundary condition~BCII! in
Sec. III B. For both boundary conditions numerical simula-
tions have been performed for the parameter combinations
marked by symbols in Fig. 1. In each case we observe a
pattern of vortices propagating downstream under a station-
ary intensity envelope after transients have died out as shown
in Fig. 2. The oscillation frequencyv of the flow is indepen-
dent of the radial and axial position while the local wave
numberk, the phase velocityvp5v/k, and the vortex flow
intensity varies withr andz. The frequency and the spatial
variation of the PV pattern depends on the control param-
eters and on the boundary conditions but not on parameter
history or initial conditions.

A. Basic state boundary condition—BCI

Here we discuss vortex suppressing boundary conditions
that are realized by imposing the homogeneous basic state
U(r ) ~2.4! at the inlet and outlet of the annulus. The flow

FIG. 2. Spatiotemporal structure of PV flow. Thin lines show
vertically displaced snapshots of the axial velocity field
w(r 110.225,z;t) at successive, equidistantly spaced times. Thick
lines show the stationary envelopes. The BCI at the inlet and outlet
suppresses any vortex flow there, while the BCII suppresses PV
flow but induces stationary Ekman vortices. Parameters are
e50.114 and Re52.5.

TABLE I. Italic numbers denote critical values and coefficients
that are appropriate for the finite-differences code with spatial grid
size 0.05 used in our simulations of the NSE and that have been
used for scaling the NSE results. The methods for determining these
numbers are described in Sec. II C. The imaginary partsc1 , c2 ,
c3 are taken from Ref.@27# g depends on the normalization of the
linear radial eigenfunctionû(r ) which was chosen to be
uû(r 110.5)u515.2.

a5a0@11(a2 /ua2u)(Re/a2)2#
Tc kc j0

2 t0 g

a0 2420.23 3.1305 0.144 0.0762 8.06
a2 138.62 252.96 227.23 249.68 212.33

a5a1Re@11 (a3/ua3u) (Re/a3)2#
vg vc c0 c1 c2

a1 1.20 3.647 1/138 1/40.7 1/287
a3 251.8 70.5 297.8
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resulting for this boundary condition resembles the experi-
mental one of Babcock, Ahlers, and Cannell@33#. There, a
system of flow distributors and meshes at the inlet reduces
external perturbations penetrating the interior of the annulus
and seems also to suppress radial flow@55#. Near the inlet no
stationaryEkman vortices are visible in this experiment and
the amplitude of the downstream propagating vortices starts
with zero or nearly zero@31–33#.

To illustrate the global properties of the flow patterns we
present in the upper part of Fig. 2 a hidden-line plot of the
axial velocity fieldw. Thin lines show snapshots ofw at the
radial positionr5r 110.225 obtained from the NSE at suc-
cessive, equidistantly spaced times after transients have died
out. Then vortices propagate downstream under a stationary
intensity envelope~thick line!. This envelope is determined
by the temporal extrema ofw(r 110.225;t) at anyz position.

The oscillation frequency of the PV pattern is constant
over the entire annulus. Sufficiently away from inlet and out-
let we observe a bulk region of nonlinear saturated PV flow
with spatially uniform amplitude and wavelength. With in-
creasing through-flow this bulk pattern is pushed further and
further downstream. The growth lengthl from the inlet over
which the amplitude reaches half its saturation value depends
onm and Re. It increases and finally diverges when the con-
trol parametersm, Re approach the absolute-convective in-
stability bordermc

conv, that is whenVg ~2.15! reaches 2.
In Fig. 3 we compare the scaled growth length

L5Am l /j0 ~3.1!

computed from the amplitude equation~solid line! with re-
sults from the NSE~symbols! for various combinations of
e and Re. Due to the scaling property of the GLE@14–16#
keeping in mind the smallness of the imaginary partsci all
values forl obtained by the GLE subject to BCI fall onto one
curve in the plot ofL versus Vg . The open symbols repre-
senting the NSE results for BCI lie very close to the GLE
curve. Full symbols for BCII are discussed in Sec. III B.

For further characterization of the PV flow structure we
found atemporalFourier decomposition of the time-periodic
fields, e.g.,

w~r ,z;t !5(
n

wn~r ,z!e2 invt ~3.2!

to be useful. To that end we first determined the oscillation
frequencyv of the PV pattern and checked that it showed no
spatial variation. In Fig. 4~a! the zeroth temporal Fourier
modew0 and the moduliuw1u, uw2u, anduw3u resulting from
the NSE are shown by full lines whileuw1u from the GLE is
shown by the dashed one. The latter was rescaled by a factor
of '0.94, which comes from comparing the first axial Fou-
rier mode ofw(r5r 110.225) at Re50 in an axially peri-
odic system with the GLE result of Recktenwaldet al.
@27,47#. As an aside we mention that for the radial velocity
u having a nodeless radial profile with a single maximum the
deviation of the first Fourier mode ofu(r5r 110.5) between
finite-differences NSE and GLE is only 0.8% at Re50.

Note that the solution of the GLE~2.13!

A~z,t !5R~z!ei @w~z!2Vt# ~3.3!

oscillates harmonically with frequencyV under a stationary
envelope

R~z!5uA~z,t !u ~3.4!

after transients have died out. Therefore, the GLE velocity
field ~2.12! contains no temporal Fourier mode other than
n51 whereas the solution of the full NSE has higher har-
monics.

In the bulk region thetemporalmodes obtained for finite
through-flow from the NSE grow for smallm proportional to
mn/2 with relative corrections proportional tom. Thus, they
show the same growth behavior withm that theaxial Fourier
modes@48–50,57,58# of stationary Taylor vortices without
through-flow show as a function ofe. The reason is that all
fields in the PV state have the form of propagating waves

f b~r ,z;t !5 f bS r ,z2
v

kb
t D ~3.5!

FIG. 3. Scaled growth lengthL ~3.1! of PV structures vs scaled
group velocityVg ~2.15!. Symbols represent lengths obtained from
the NSE for different combinations~cf. Fig. 1! of Re and
e50.0288~circles!, e50.114~diamonds!, ande50.186~triangles!.
Boundary conditions are BCI for open symbols and BCII for filled
ones. The line shows the scaling behavior of the GLE subject to
BCI.

FIG. 4. Structure of PV flow selected for BCI at the inlet and
outlet. Shown are the axial variations of thetemporal Fourier
modes~a! and of the wavelength~b! of w(r 110.225,z;t). Full lines
result from numerical simulations of the full NSE. Dashed lines
come from the GLE. Parameters aree50.114 and Re52.5.
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in the bulk region—denoted by a subscriptb. There the
wave numberkb and the phase velocityv/kb do not vary
with z.

The Fourier modew0 of the PV pattern is not zero every-
where since the variation of the flow amplitude under the
fronts causes a secondary, stationary, closed flow pattern
there—see, e.g.,w0 at z'9 and near the outlet in Fig. 4~a!.
Its strength and structure depend on the steepness of the
front. For example, an increase of Re leads to a smaller gra-
dient of the upstream facing front and to weaker stationary
secondary flow extending further downstream.

The intensity variation@cf. Figs. 2 and 4~a!# of PV flow
under the fronts also causes there a spatial variation in the
local wavelengthl(z) @Fig. 4~b!# and in the phase velocity
vp(z)5vl(z)/2p with the oscillation frequencyv of PV
flow being constant. The full~dashed! line in Fig. 4~b! is the
wavelength profilel(z) selected for BCI according to the
NSE ~GLE!. This figure shows that the GLE does not de-
scribe the pattern selection quantitatively. The selected
wavelength in the bulk region of the NSE~GLE! is smaller
~larger! than the critical one—see also Sec. IV.

The local wavelength shown in Fig. 4~b! was determined
from the phase gradient of the first temporal Fourier mode
w1(z) at the radial positionr5r 110.225. We have analyzed
w1 and alsou1 at otherr positions and in addition we deter-
mined the axial distances between node positions ofu and
w. Under the fronts there is a significant radial variation of
l. Furthermore, the wavelengths determined via the phase
gradients ofw1 andu1 differ there from each other and from
those obtained via node distances ofw andu. But in the bulk
part of the PV structure all these quantities yield the same
wavelengthlb .

B. Ekman vortex boundary condition—BCII

In Taylor-Couette experiments without through-flow rigid
nonrotating end plates bounding the fluid in the axial direc-
tion induce stationary Ekman vortex flow@2,4,59#. These
vortices are also detected by Tsameret and Steinberg in ex-
periments with axial through-flow, where meshes at the ends
were used as nonrotating boundaries at the inlet and outlet
@28,29#.

The second axial boundary condition BCII enforces sta-
tionary Ekman vortices near the ends of the annulus. To that
end we impose at both endsz50, G zero radial flow, zero
azimuthal flow, and in the axial direction the annular Poi-
seuille flowWAPF(r ) ~2.6!. The spatiotemporal properties of
the vortex pattern subject to this BCII can be seen in the
lower part of Fig. 2. There we show a hidden-line plot of the
axial velocity in the same way and for the same parameters
as for the BCI pattern in the upper part of Fig. 2.

In the immediate vicinity of inlet and outlet there aresta-
tionaryEkman vortices whose intensity rapidly decreases to-
wards the bulk of the annulus. In addition there is—as in the
BCI case—the PV flow structure thatoscillatesin time with
a z-independent frequencyv. The oscillation amplitude
drops to zero near the ends due to the boundary conditions,
and the stationary Ekman vortices increase the growth length
l of the oscillating structure in comparison to the BCI case.

These two different flow elements are best separated by a
temporal Fourier analysis. The results for BCII are shown in
Fig. 5 for different through-flow rates. The zeroth temporal

modew0 ~thick line! represents the stationary Ekman vortex
flow of the system. The temporally oscillating PV structure
is characterized by the modeswn ~thin lines!. The Ekman
vortex structure at the inlet is only slightly affected by the
through-flow: the strength of the Ekman vortex closest to the
inlet decreases somewhat with increasing Re, while its ex-
tension increases slightly. The stationary vortices at the out-
let become more and more squeezed together with increasing
Re, and also their intensity reduces. On the other hand, the
oscillatory pattern of PV responds dramatically to the
through-flow in being more and more pushed downstream.
Note also that for small Re where the PV amplitude of, say,
uw1u overlaps near the inlet with the Ekman vortex intensity
the latter causes axial oscillations in the harmonics of the PV
flow and similarly near the outlet—cf. Fig. 5.

The filled symbols in Fig. 3 represent the growth length of
the PV flow intensity. This length diverges in a similar way
at the convective instability borderVg52 as the one ob-
tained for BCI. But due to the presence of Ekman vortices at
the inlet the characteristic growth lengthl (e,Re) of PV flow
is increased by (0.522.5)d in comparison to the BCI case—
Ekman vortices push the PV structure further downstream.
The differencelBCII2 lBCI decreases with increasing through-
flow rate as Ekman vortices and PV flow become more and
more separated from each other.

As in the BCI case the zeroth temporal Fourier mode
exhibits a secondary, stationary, closed flow pattern of low
intensity under the fronts of the PV pattern. For small Rey-
nolds numbers this pattern is concealed by the Ekman vortex
flow, whereas it becomes visible for bigger through-flow
rates.

IV. PATTERN SELECTION

Our investigations of the PV structures show that the axial
through-flow causes a unique pattern selection such that the

FIG. 5. Axial structure of vortex patterns subject to BCII. The
zeroth temporal Fourier modew0 ~thick lines! of the axial velocity
field w(r 110.225,z;t) reflects the stationary Ekman vortices. The
modeswn with n.0 ~thin lines! characterize the oscillating PV
pattern. Parameters aree50.114 and Re51.0 ~a!, 2.5 ~b!, 2.7 ~c!.
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selected structure is independent of history and initial condi-
tions and depends only on the control parameters and bound-
ary conditions. Thus, the axial flow causes possible wave
numbers within the Eckhaus-stable band of stationary Taylor
vortex patterns without through-flow to collapse to only one
uniquely selected PV structure for nonvanishing through-
flow rates. However, the PV patterns that are selected ac-
cording to the GLE approximation and to the full NSE differ
distinctly from each other. We first investigate in Sec. IV A
the selection mechanism within the GLE framework. In Sec.
IV B we compare with NSE results and experiments.

A. Pattern selection within the GLE

Here we elucidate how the pattern selection mechanism of
the GLE can be understood as a nonlinear eigenvalue or
boundary-value problem where the frequency of the PV pat-
tern is the eigenvalue. Thus, the selected PV structure is
characterized and determined by the combination of eigen-
value and corresponding eigenfunction.

1. The eigenvalue problem

We look for solutions of the GLE~2.13! of the form~3.3!,

A~z,t !5a~z!e2 iVt5R~z!ei @w~z!2Vt#, ~4.1a!

with stationary envelopeR(z), stationary wave number

q~z!5k~z!2kc5w8~z!, ~4.1b!

and constant frequency

V5v2vc . ~4.1c!

Inserting this solution ansatz into the GLE~2.13! one obtains
the nonlinear eigenvalue problem

t0~2 iVa1vga8!5m~11 ic0!a1j0
2~11 ic1!a9

2g~11 ic2!uau2a ~4.1d!

or, equivalently,

i t0~2V1vgq!R1t0vgR8

5m~11 ic0!R1j0
2~11 ic1!~R92q2R1 iq8R

12iqR8!2g~11 ic2!R
3 ~4.1e!

as a solvability condition withV being the eigenvalue. We
are interested in solutionsR(z) andq(z) that look like the
dashed lines in Fig. 4, i.e., where the variation ofR(z) and in
particular ofq(z) is ‘‘as small as possible.’’ Such a solution
type seems to be connected with the eigenvalueV that is
closest to zero. Here we consider the boundary conditions
Rin,out50 at the inlet and outlet. These requirements fix four
boundary conditions—namely, Re(Ain,out)5Im(Ain,out)
50—which are necessary to solve the GLE~2.13!.

Note that the eigenfrequencyV is in general determined
by global properties and not by thelocal variation of the
eigenfunctionsR(z) andq(z), say, at the inlet or in the bulk.
Nevertheless it is informative and useful for our further dis-
cussion to list below relations betweenV and structural
properties at the inlet and in the bulk of the annulus.

2. Inlet behavior

From ~4.1e! one finds that the BCI at the inlet and outlet,
R50, implies the relation

Rin,out9 5F t0vg
j0
2~11 ic1!

22iq in,outGRin,out8 ~4.2!

at z50,G. Hence, whenever the modulus grows with finite
slope,Rin,out8 Þ0, the boundary conditionR50 fixes the wave
number at the inletandoutlet to the valueqin5qout,

j0qin,out52
1

2
c1

t0vg
j0~11c1

2!
52

c1

A11c1
2
Amconv

c , ~4.3!

which depends only on Re. This value ensures that the
imaginary part of the expression in square brackets in~4.2! is
zero. For Re50 one obtainsqin,out50 as obtained by Cross
et al. @60#. In addition the conditionR50 yields via the real
part of ~4.2! two relations,

Rin,out9 5
t0vg

j0
2~11c1

2!
Rin,out8 , ~4.4!

between the different slopesRin8 ÞRout8 and curvaturesRin9
ÞRout9 of the modulus at the two respective boundaries that
hold independently ofm.

Furthermore, one can derive a relation between the eigen-
frequencyV, the wave numberqin,out, and its slopeqin,out8 at
the inlet and outlet. To that end we consider the axial deriva-
tive of ~4.1e! at the inlet and outlet withR50:

i t0~V2vgq!1m~11 ic0!2j0
2~11 ic1!q

2

2@t0vg22iqj0
2~11 ic1!#

R9

R8
5j0

2~11 ic1!SR-
R9

13iq8D .
~4.5!

This allows one to solve forR-/R9 andq8 separately. Using
~4.3! and ~4.4! one obtains the relation

t0V5~c12c0!m1t0vgqin,out23~11c1
2!j0

2qin,out8 . ~4.6!

Note that this equation impliesqin8 5qout8 .
The relation~4.6! also demonstrates the nonlocality of the

pattern selection mechanism and of the eigenvalue problem.
At first sight one might be tempted to infer from the above
relation betweenV and qin ,qin8 that the latter two fix the
frequency. However, Eq.~4.6! holds equally well for
qout,qout8 and the outlet properties do not fixV either. So the
correct interpretation of Eq.~4.6! is that the eigenvalueV,
being the characteristic global signature of the pattern, fixes
the local quantitiesqin,out8 for the given boundary conditions.

3. Bulk behavior

The wave numberq(z) away from the inlet and outlet in
general differs fromqin(5qout). In order to obtain the full
axial profiles of the eigenfunctionsR(z) andq(z) belonging
to the eigenvalueV one has to solve the eigenvalue problem
~4.1! with the boundary conditionRin,out50. Alternatively
one can solve numerically the time-dependent GLE~2.13!.
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However, when the system size and the control param-
eters are such that the PV pattern forms a bulk part with a
homogeneous modulusRb and wave numberqb , i.e., where

Rb85Rb95qb850, ~4.7a!

then the dispersion relation

t0V5~c22c0!m1t0vgqb1~c12c2!j0
2qb

2 ~4.7b!

provides a relation between the frequency eigenvalueV, the
bulk wave numberqb , and the bulk modulus

Rb
25

m2j0
2qb

2

g
. ~4.7c!

Equation~4.7b! establishes together with~4.6! also a relation
betweenqb on the one hand andqin5qout andqin8 5qout8 on
the other hand.

4. Pattern selection at the convective instability boundary

Approaching the convective instability boundary~2.14!
we found thatqin8 decreases to zero so that the frequency
eigenvalue becomes

t0Vconv
c 52~c01c1!mconv

c . ~4.8!

Then the bulk wave number approaches according to~4.8!
and ~4.7b! the limiting value

j0~qb!conv
c 52

A11c1
2~6 !A11c2

2

c12c2
Amconv

c , ~4.9!

while the inlet wave numberqin is given by~4.3!. Due to the
very small imaginary partsci the solution~4.9! with the plus
sign has to be discarded, since it corresponds to unphysically
large wave numbers.

In Fig. 6 the bulk wavelengths selected according to the
GLE are shown by half-tone symbols. The results in the
absolutely unstable regime,Vg,2, were obtained numeri-
cally by integrating the time-dependent GLE~2.13!. The
value shown right at the border,Vg52, of the absolutely
unstable regime is the analytical expression~4.9!. Note that
the selected GLE wavelengths are mostly larger than the
critical one.

5. Comparison with front propagation

It is suggestive to compare properties of PV patterns like
the one in the upper part of Fig. 2 with those behind an
upstream facing front that connects in an axially infinite sys-
tem the basic state atz52` with the developed PV state at
z51`. A linear growth analysis of the GLE~2.13! along
the lines of Ref.@1#, Sec. VI B 3 shows that the far tail of a
linear front of PV perturbations moves with the front veloc-
ity

vF5vg22
j0
t0

Am~11c1
2!. ~4.10!

In the convectively unstable regime 0,m,mconv
c the front

propagates downstream so thatvF.0. In the absolutely un-

stable regimem.mconv
c it moves upstream, i.e.,vF,0. And

at the boundarym5mconv
c the front is stationary—vF50. We

compare the properties of such a stationary front at
m5mconv

c with those of the solutionA(z,t) ~3.3! with station-
ary modulus in a semi-infinite system (0<z,`). The rea-
son for restricting the comparison tomconv

c is that an up-
stream moving front in the absolutely unstable regime will
be pushed against the inlet whence the spatiotemporal struc-
ture of the free front gets modified by the inlet.

The far tail of the stationary front resulting from the linear
GLE is characterized by the local wave number

j0qF~vF50!52
c1

A11c1
2
Amconv

c ~4.11!

and the oscillation frequency

t0VF~vF50!52~c01c1!mconv
c . ~4.12!

In fact in the linear part of the stationary front the flow am-
plitude

A~z,t !;ei @Qsz2z~Qs!t# ~4.13!

varies with a wave number Re(Qs)5qF ~4.11!, a spatial de-
cay rate Im(Qs), a temporal growth rate Im@z(Qs)#50, and
an oscillation frequency Re@z(Qs)#5VF ~4.12!. Here

j0Qs52
1

2

i

11 ic1

t0
j0
vg52

i1c1

A11c1
2
Amconv

c ~4.14!

is the saddle position of the complex dispersion relation

t0z~Q,m!5t0vgQ1 i ~11 ic0!m2 i ~11 ic1!j0
2Q2 ~4.15!

FIG. 6. Selected wavelengths in the bulk region of PV structures
vs scaled group velocityVg ~2.15!. Open~half-tone! symbols refer
to the NSE~GLE! subject to BCI at the inlet and outlet. Filled
symbols refer to the NSE subject to BCII at the inlet and outlet.
Parameters aree50.0288 ~circles!, e50.114 ~diamonds!, and
e50.186~triangles!. The small filled triangles are explained in Sec.
IV B 2.
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of the linear GLE in the complexQ plane determined by the
condition

dz~Q!

dQ U
Qs

50 ~4.16!

for vF50, i.e., atm5mconv
c .

So the inlet wave numberqin ~4.3! agrees withqF ~4.11!
andVconv

c ~4.8! coincides withVF ~4.12!. Thus, right at the
bordermconv

c of the absolutely unstable regime the frequency
eigenvalue of the PV pattern growing in the downstream
direction from the inlet atz50 agrees with the oscillation
frequency selected by the stationary,linear front. Within the
front propagation point of view the PV pattern develops from
the basic state with an exponential growth ratek of the
modulus. This leads forR→0 to R85kR,R95k2R, . . .
→0 for z→2`. On the other hand, the PV flow intensity in
the semi-infinite system in general drops to zero at the inlet
with finite R8 andR9. Only at the border linem5mconv

c does
the difference disappear since thereR8,R9, . . .→0 for
z50. In the absolutely unstable regime,Vg,2, the fre-
quency eigenvaluesV5v2vc of the GLE lie slightly above
the limiting valueVconv

c at the border of the absolutely un-
stable regime. The shaded symbols in Fig. 7 show for three
different e how V obtained numerically by integrating Eq.
~2.13! approaches with increasing Re the front frequency
Re@z(Qs)#5VF(vF50)5Vconv

c ~dashed line!. For conve-
nience, the merging points with this limit line are marked for
the threee values investigated here by small half-tone sym-
bols.

Using this frequency for the full nonlinear PV pattern at
mconv
c one obtains from the bulk dispersion relation~4.7b! an

expression for the bulk wave number

j0~qb!F5j0~qb!conv
c 52

A11c1
2~6 !A11c2

2

c12c2
Amconv

c

~4.17!

far behind the front.
This bulk wave number behind the front has the opposite

sign of the one that is cited in@28# and@29#, Eqs.~10,14!. An
explanation for this might be that the formulas in Eqs.~2!,
~8!, and~9! of Nozaki and Bekki@61# that have been used in
Refs. @28,29# do not seem to have been transformed to a
through-flow situation with anupstreamfacing front that
joins in upstream direction to the basic state, in our case at
z52`. After correcting the sign error, the rough qualitative
agreement that was reported in@28,29# between the experi-
mental wave numbers@28,29# and the erroneous GLE results
@28,29# disappears. In fact, both, the experiments@28,29# and
our numerical simulations of the NSE yield wave numbers
that differ in a common distinctive way from the proper GLE
result ~4.17!.

As an aside we mention that thenonlinear front solution
of Nozaki and Bekki@61#, Eqs.~2!–~7! yields for our GLE
~2.13! a front that is not stationary atmconv

c but rather moves
with velocity

vNB52S 3A 11c1
2

819c1
221D vg ~4.18!

in the upstream direction with a bulk wave number

j0~qb!NB5
Amconv

c

~c22c1!A819c1
2 @3~11c1

2!

1sgn~c22c1!A8~c22c1!
219~11c1c2!

2#.

~4.19!

So we conclude that thenonlinear front solution of Nozaki
and Bekki is unrelated to the PV patterns atmconv

c . Further-
more, it was noted@62# that localized initial perturbations did
not evolve into thenonlinear front solution of Nozaki and
Bekki @61,63,64#. However,vNB and (qb)NB differ for small
through-flow only slightly from the respective values
vF50 and (qb)F . For example, at Re52 one obtains
vNB520.06vg and (qb)NB51.15(qb)F .

6. Scaling properties

Scaling length and time according to

ẑ5Am
z

j0
; t̂5m

t

t0
, ~4.20!

the GLE for the reduced amplitudeÂ5AAg/m no longer
containsg and m explicitly but the scaled group velocity
Vg ~2.15! and the coefficientsc0 ,c1 ,c2 . Thus the reduced
selected frequencyV̂5t0V/m and the selected bulk wave
number q̂b5j0qb /Am depend not only onVg but via
c0 ,c1 ,c2 also on the Reynolds number. This Re dependence
can alternatively be seen—via the Re dependence ofVg and
of the ci ’s entering~2.15!—also as an additionalm depen-
dence. The latter dependence is sufficiently strong to prevent
a scaling ofV̂ with Vg alone. However, by reducing the

FIG. 7. Selected oscillation frequency of PV flow obtained with
BCI from the NSE~open symbols! and GLE~half-tone symbols! vs
Reynolds number. The full~dashed! line is the front frequency
VF5Re@z(Qs)# of the linearized NSE~GLE! at the border between
absolute and convective instability. Parameters aree50.0288
~circles!, e50.114~diamonds!, ande50.186~triangles!. The small
symbols markingVF for these threee values show that the eigen-
frequencies of the nonlinear equations in the absolutely unstable
regime approach theVF limit curve at the right places.
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eigenfrequenciesV(e,Re) selected for our three differente
values by the limiting valuesV(e,Reconv

c )5Vconv
c ~4.8! at the

border of the absolutely unstable regime we have effectively
eliminated thee dependence and all GLE data~half-tone
symbols in Fig. 8! fall onto one curve. A similar scaling
holds for the bulk wave numberqb divided by (qb)conv

c ~4.9!.
Remarkably enough, by reducing the NSE frequencies

with the GLE frequencyVconv
c ~4.8! the NSE results~open

symbols in Fig. 8! almost show this one-variable scaling
with Vg . However, for the GLE (v2vc)/Vconv

c increases
monotonously with the scaled group velocityVg whereas the
NSE results show a monotonous decrease withVg . This dis-
crepancy between NSE and GLE results is caused by the
different dispersion relations of the full hydrodynamic equa-
tions and the approximate GLE—cf. below.

B. Pattern selection within the NSE

Here we compare our numerical solutions of the NSE
with results from the GLE and from experiments. First we
discuss the selected wave numbers in the bulk region of PV
flow. Then in comparison with front propagation we show
common selection properties of NSE and GLE. Finally we
compare with experiments.

1. Bulk wavelengths—NSE vs GLE

In Fig. 6 we show all selected bulk wavelengths obtained
from numerical simulations of the NSE for BCI~open sym-
bols! and BCII ~filled symbols! in comparison with results
obtained numerically from the GLE for BCI~half-tone sym-
bols!. The NSE wavelengths that are selected when the basic
state is enforced at the inlet and outlet weakly decrease with
increasing Re ande. For the smalleste50.0288 their values
are very close to the critical wavelengthlc ~dotted line!. For

this boundary condition the wavelengths are mostly smaller
than the critical one with a deviation of up to 2% for the
largeste50.186 that was investigated here. These deviations
are much stronger than the decrease of the critical wave-
length with increasing Reynolds numbers.

It is interesting to note that transversal Rayleigh-Be´nard
convection rolls in horizontal shear flow@14,15# show a
qualitative and quantitative~@15#, e50.114) correspondence
to PV flow. Therefore, our results are not limited to PV flow
in a Taylor-Couette apparatus only. In this context we also
mention the experimental investigation of Gu and Fahidy
@23#. They observed that axial through-flow causes a rear-
rangement of the vortex centers similar to the one seen for
tranverse convection rolls subject to a horizontal flow~@15#,
Fig. 2!. Without through-flow the vortices are aligned along
a straight line roughly in the gap center. With increasing
through-flow the vortices are alternatingly displaced towards
the outer or inner cylinder, thereby reducing the axial com-
ponent of their distance and thus the wavelength. Viewed in
thez-r plane withr 2 abover 1 , right ~left! turning vortices—
for which w is negative ~positive! close to the inner
cylinder—are displaced towards the inner~outer! cylinder by
a through-flow directed from left to right, since the through-
flow enhances the axial flow componentw of a right turning
vortex near the outer cylinder atr 2 , and weakens it near the
inner one atr 1 and vice versa for the left turning one.

Obviously the wavelengths resulting for BCI from the
NSE ~open symbols in Fig. 6! differ substantially and sys-
tematically from those resulting from the GLE~half-tone
symbols!: the former decrease with growing Re ande while
the latter increase. Nevertheless we think—cf. the discussion
in Sec. IV B 4—that the selection mechanism is quite
similar.

2. The effect of Ekman vortices

The NSE wavelengths obtained for the Ekman vortex
generating BCII~filled symbols in Fig. 6! are similar to the
BCI results in the limiting cases of small Re or smalle, and
near the border lineVg52 of the absolutely unstable regime.
In the vicinity of Vg52 the stationary Ekman vortices and
the PV flow are spatially separated, and their interaction is
very weak, allowing for PV wavelengths like those for BCI.
For very small Reynolds numbers the agreement in the PV
wavelengths for BCI and BCII is not yet understood. In be-
tween there is a visible difference of up to 5% (e50.186
andVg'0.4) between the bulk wavelengths obtained for the
two boundary conditions.

However, we found that the bulk phase velocities,
vp5v/k, were almost independent of the boundary condi-
tions: the relative difference ofvp for BCI and BCII is less
than 0.1% for the parameter regimes investigated here. Fur-
thermore, the deviation ofvp from the critical value
(vp)c5vc /kc is less than about 1%. Hence, one can infer
from the plots in Fig. 6 forl/lc21 also the variation of the
frequency eigenvalue with through-flow since

v

vc
215

vp
~vp!c

k

kc
21.

k

kc
21. ~4.21!

For the largeste50.186 we have observed for the Ekman
vortex generating BCII an interesting behavior for very small
Re,0.5 (Vg&0.3). For these parameters the PV pattern did

FIG. 8. Frequency shiftv2vc of PV flow vs scaled group
velocity Vg ~2.15! for BCI. Both NSE ~open symbols! and GLE
~half-tone symbols! results are scaled by the corresponding GLE
frequencyVconv

c ~4.8! at the convective instability border for the
respective parameterse50.0288 ~circles!, e50.114 ~diamonds!,
ande50.186~triangles!. The small symbols have the same mean-
ing as explained in Fig. 7.
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not develop an axially homogeneous wavelength in the spa-
tial region where the flow amplitude was indeed spatially
uniform. Under these circumstances the wavelengths roughly
show a linear variation withz between a larger value~upper
small filled triangles in Fig. 6! at the upstream end of the
bulk amplitude region and a smaller value~lower small filled
triangles in Fig. 6! at the downstream end of the bulk region
of constant flow amplitude. So the Ekman vortex at the inlet
impedes the free downstream motion of the PV flow—it ex-
erts a phase pinning force on the PV pattern that stretches the
node distances. The situation is somewhat similar to the ex-
plicitly phase pinning boundary conditions that have been
investigated in Rayleigh-Be´nard convection with through-
flow @15,65#.

3. Finite-size effects?

The selected wavelengths in the bulk region are practi-
cally independent of the system length as long as a saturation
of the Taylor vortices takes place. To check this we per-
formed a few simulations with aspect ratiosG525
(e50.114, Re52, BCI, and BCII! and G510
(e50.114, 0.186, Re51, BCI, and BCII! and compared
with the results obtained for our standard lengthG550. The
change in the selected wavelength or frequency is less than
0.1% if the aspect ratio is halved toG525. In the system
with lengthG510 no bulk region can be observed, therefore
the wavelength cannot reach a constant value. The oscillation
frequency of the flow pattern is always independent of the
axial position and mainly unchanged; the deviations are less
than 0.5% even for the very short system ofG510.

We have also investigated the dependence of nonlinear,
saturated PV flow on the numerical discretization. These
tests show that the nonlinear vortex structures are basically
independent of the discretization—provided it is not too
coarse—if one bases the comparison of bifurcated flow struc-
tures obtained with different discretizations on the relative
control parameterm5T/Tc21 that is influenced viaTc by
the discretization in question@66#.

4. Comparison with front propagation—NSEvs GLE

Let us first consider Taylor vortices without through-flow.
Then the GLE~2.13! contains no imaginary coefficientsci
and the first-order spatial derivative is absent sincevg50. In
this case the GLE yields for propagating fronts@67# as well
as for stationary patterns in finite systems@60# the critical
wave number,q(z)50, all over the extension of the
pattern—the boundary conditionA50 enforces the collapse
of the supercritical band of stable bulk wave numbers of
nonlinearvortex patterns toq50. Thisnonlinearlyselected
wave numberq50 happens to be for Re50 the same as the
wave number of maximallinear growth under alinear front
whose spatiotemporal evolution is governed by the disper-
sionzGLE(Q,e;Re50) ~4.7b! of the linearGLE. In the pres-
ence of through-flow, however, the wave number of maximal
growth under thelinear front—e.g.,qF ~4.11!—of the GLE
differs from the one in thenonlinear bulk far behind the
front @(qb)F ~4.17!#.

Now, already without through-flow the dispersion relation
of the linear NSE differs significantly from that of the GLE
so that the wave number of largest temporal growth under a

linear NSE front deviates from the GLE resultq50. As an
aside we mention that a somewhat similar behavior has also
been observed experimentally@3,10# and numerically for
Taylor vortices@6,68# or Rayleigh-Be´nard convection rolls
@11# which, however, were located in the nonlinear part of
propagating fronts. In this context it is useful to keep in mind
that the wavelength profilel(z) of numerically obtained
Taylor vortex fronts@6,68# shows an axial variation with a
characteristic dip in the steepest region of the front similar to
the one of the full line in Fig. 4~b! nearz58.

Now let us consider the through-flow case. In Fig. 7 we
compare the eigenfrequencies of thenonlinearNSE ~open
symbols! for BCI with those~solid line! that would be se-
lected by alinear front that is stationary at the border of the
absolutely unstable regime. To that end Recktenwald and
Dressler@30# have determined the dispersion relationz(Q)
of linear perturbations;ei @(kc1Q)z2(vc1z)t# in the complex
Q plane resulting from the NSE with a shooting method as
described in Ref.@33#. The solid line in Fig. 7 represents the
frequencyVF5Re@z(Qs)# selected by the stationary front
(vF50) of the linear NSE. Again, as discussed for the GLE
in Sec. IV A 5, this frequency is determined by the saddle
Qs of z(Q) for which the temporal growth rate
Imz(Qs)50. This defines the boundary between absolute
and convective instability. With increasing Re the eigenfre-
quency of thenonlinearNSE approaches the frequency se-
lected by thelinear stationary front at the border of the ab-
solutely unstable regime as indicated for the threee values
shown in Fig. 7. The front frequencies for thesee values are
marked by small open symbols on the curve Re@z(Qs)# to
indicate that the eigenfrequencies of the NSE in the abso-
lutely unstable regime~large open symbols in Fig. 7! do
indeed end at the right positions on this curve.

This NSE behavior is very similar to the GLE behavior
~half-tone symbols and dashed line!. Note, however, that the
linear dispersion relations of NSE and GLE are different: the
front frequency Re@zNSE(Qs)#.0.0072Re10.0056Re3

~solid line in Fig. 7! is positive and increases with through-
flow while Re@zGLE(Qs)#.20.0002Re20.0062Re3 ~dashed
line! is negative and decreases with through-flow. This dif-
ference in the dispersion relations seems to be the major
cause for the differences in the selected patterns.

5. Comparison with experiments

In early experiments by Snyder@21,22# or Takeuchi and
Jankowski@20# the distinction between absolute and convec-
tive instability was not yet established. PV patterns were
observed with wavelengths below the critical one for Rey-
nolds numbers Re,10 @21,22#. However, a pattern selection
was not reported. The wavelengths were seen to vary up to
7% from run to run for the same control parameter combi-
nations and in some cases 5% over the spatial extension.
Furthermore, the vortex spacings did not change after the
occurrence of PV flow when increasing the relative Taylor
number up toe50.15 @22#.

Takeuchi and Jankowski@20# obtained wavelengths be-
low the critical one, for example, with a deviation of
'22.5% for Re59.4, e'0.06, h50.5 that is in the same
order of magnitude of our NSE results in the absolute insta-
bility regime.
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The experimental results of Tsameret and Steinberg
@28,29# exhibit a unique selection, similar to the results pre-
sented here. Their wavelengths@28# are always less than the
critical one for axial boundaries that enforce stationary Ek-
man vortex flow. However, in contrast to our results they
observed noe dependence of the selected wavelengths but an
Re dependence that is much stronger than ours leading to a
relative deviation fromlc of up to 210% at Re'3 for
h50.707 @28#. In addition their phase velocity of PV flow,
vp51.055Re@28#, is much smaller than ours, which is close
to the critical one. All wavelengths observed for through-
flow rates above Re51 belong to noise sustained structures
in the convectively unstable region@29#, which leads to de-
viations fromlc of about 3% when one limits the compari-
son to the regime of absolute instability. Since thee values at
which the measurements of@28,29# were performed are not
given we have estimated ane value of'0.025 based on the
convective instability border at Re51. For thise the above-
mentioned 3% deviation ofl from lc is an order of magni-
tude larger than our NSE results or the results~4.9! of the
GLE.

On the other hand, the experimental wave number found
in @25# for a known, publishede'0.38 and Re up to 4 can be
compared directly with our results to check the predictede
and Re dependence. In this case all experimental wave-
lengths@25# decrease up to 10% below the critical one at
Re'3.7 whereas we would expect from our simulations and
from @14,15# less than half the deviation fromlc .

V. CONCLUSION

We have investigated propagating vortex structures in an
axial flow for different realistic axial boundary conditions in

systems of finite length. Within the subregion of absolute
instabilty a unique pattern selection is observed. The selected
PV flow structures are independent of parameter history, ini-
tial conditions, and system length~provided it is large
enough to allow for a nonlinear, saturated, homogeneous
bulk region!. But they depend on the axial boundary condi-
tions. For conditions enforcing the basic state at the bound-
aries as well as for conditions that enforce stationary Ekman
vortex flow near the boundaries the PV pattern is suppressed
at the inlet and outlet of the annulus. Then one observes a
characteristic stationary axial intensity and wave number
profile, whereas the oscillation frequency of the pattern is
constant all over the system. The analysis of the appropriate
Ginzburg-Landau equation for PV flow shows that the se-
lected frequency of the pattern oscillation is the eigenvalue
of a nonlinear eigenvalue problem for which the axial varia-
tion of the corresponding eigenfunction is smooth and as
small as possible. The eigenfunction is the complex pattern
amplitude that characterizes the intensity and wave number
profiles of the PV structure. The GLE intensity profiles agree
well with those of the NSE. However, there are characteristic
differences in the selected frequencies and wave number pro-
files of the full NSE and the GLE approximation. They are
identified to be mainly caused by the different dispersion
relations of the equations. Approaching the border between
absolute and convective instability the eigenvalue problem
becomes effectively linear and the pattern selection mecha-
nism becomes that one of linear front propagation.
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