PHYSICAL REVIEW E VOLUME 53, NUMBER 5 MAY 1996

Pattern selection in the absolutely unstable regime as a nonlinear eigenvalue problem:
Taylor vortices in axial flow
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A unique pattern selection in the absolutely unstable regime of a driven, nonlinear, open-flow system is
analyzed: The spatiotemporal structures of rotationally symmetric vortices that propagate downstream in the
annulus of the rotating Taylor-Couette system due to an externally imposed axial through-flow are investigated
for two different axial boundary conditions at the inlet and outlet. Detailed quantitative results for the oscil-
lation frequency, the axial profile of the wave number, and the temporal Fourier amplitudes of the propagating
vortex patterns obtained by numerical simulations of the Navier-Stokes equations are compared with results of
the appropriate Ginzburg-Landau amplitude equation approximation and also with experiments. Unlike the
stationary patterns in systems without through-flow the spatiotemporal structures of propagating vortices are
independent of parameter history, initial conditions, and system length. They do, however, depend on the axial
boundary conditions in addition to the driving rate of the inner cylinder and the through-flow rate. Our analysis
of the amplitude equation shows that the pattern selection can be described by a nonlinear eigenvalue problem
with the frequency being the eigenvalue. The complex amplitude being the corresponding eigenfunction de-
scribes the axial structure of intensity and wave number. Small, but characteristic differences in the structural
dynamics between the Navier-Stokes equations and the amplitude equation are mainly due to the different
dispersion relations. Approaching the border between absolute and convective instability the eigenvalue prob-
lem becomes effectively linear and the selection mechanism approaches that of linear front propagation.

PACS numbes): 47.54+r, 47.20.Ky, 47.32-y, 47.20.Ft

I. INTRODUCTION independent of parameter history, initial conditions, and sys-
tem size—in the absolutely unstable regime. This is the pa-
In many nonlinear continuous systems dissipative strucrameter regime of an open-flow system in which the second-
tures branch out of a homogeneous basic state when the eary pattern starting, e.g., from a spatially localized
ternal stress exceeds a critical threshold. Examples for thegerturbation can grow in the upstream as well as the down-
transitions are Taylor-Couette flow, Rayleighs#Bed con- stream directior{17]. By contrast, in the convectively un-
vection, binary-fluid convection, flame-front propagation, stable regimdg18] initial perturbations are blown out of the
and some chemical or biological procesfgk Often, for a  system—both the upstream as well as the downstream facing
fixed configuration of parameters and boundary conditions &ont of the growing structure move downstream. In the ab-
continuous or discrete family of patterns with different wavesolutely unstable regime the structure expansion proceeds
numbers is stable. Their stability regime, e.g., a band ofintil the upstreanidownstreamqmoving front encounters in
wave numbers, might be limited by the possibility of reso-a finite system the inlefoutley and adjusts to the inlébut-
nant triad interactions of modes like those described by théet) boundary condition. The final pattern resulting in such a
Eckhaus or Benjamin-Feir mechanigdl. The stable struc- situation shows a characteristic streamwise profile of the am-
tures within such a band can be generated by appropriatelylitude growing with increasing distance from the inlet and
engineered time histories of the parameters and/or by promf the wave number variation, and a characteristic global
erly changing the boundary conditions, e.g., the system sizascillation frequency associated with the downstream motion
The most intensively investigated examples in this respeadf the pattern.
are the structures of Taylor vorticg8—7] in an annulus In this work we elucidate in numerical and analytical de-
between concentric cylinders of which the inner one rotatesail how such a uniquely selected spatiotemporal pattern
and convective roll patterns in horizontal layers of one-structure can be understood as a nonlinear eigenvalue prob-
component fluid$1,5,8—1] or binary mixtures heated from lem with the oscillation frequency being the eigenvalue and
below[12,13. the profiles of pattern intensity and wave number determin-
This multiplicity of solutions of the underlying nonlinear ing the corresponding eigenfunction. We also show how this
partial differential equations that stably coexist for a fixedpattern selection process is related to the one occurring be-
configuration of parameters and boundary conditions seentsind a front or “domain wall” that spatially separates an
to disappear in an open-flow system: Recent numerical simuinstable, homogeneous state from a stable, structured state.
lations of Rayleigh-Beard convective rolls traveling down- To that end we present results of extensive numerical and
stream in an imposed horizontal Poiseuille flow shofietl-  analytical investigations of vortex patterns in the annulus of
16] that their structure is uniquely selected—i.e., it isthe Taylor-Couette setup with an externally imposed axial
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through-flow. For small through-flow rates and small rota-fied azimuthal velocity, or axial through-flow profil¢40],

tion rates of the inner cylinder the structure of propagatingand later on for various aspect ratios fixed by the diameters

vortex (PV) flow with vortices being advected in the down- of both cylinderd19,20,41,42 Also, many experiments and

stream direction is rotationally symmetric. Only for higher comparisons with the theoretical predictions were d&@ie-

through-flow rates, which are not investigated here, is there 25,28,29,31-35,43,44

bifurcation[19,20 to spirals[20—-26§. We have performed Our paper is organized as follows: In Sec. Il we describe

numerical simulations of the full, rotationally symmetric, the system, the subregions of absolute and convective insta-

two-dimensional2D) Navier-Stokes equation®SE). They  bility, and our methods of investigation. Furthermore, we

are compared with our numerical and analytical results obrecapitulate the GLE. The next section presents the spa-

tained from the appropriaf®7] 1D Ginzburg-Landau ampli- tiotemporal behavior of PV patterns obtained numerically for

tude equationGLE) approximation to the problem of PV two different boundary conditions. In Sec. IV we analytically

flow and with experimental resulf20-22,25,28,2P and numerically elucidate the pattern selection observed
The eigenvalue problem of the pattern selection by thewithin the GLE and the NSE. We compare the results with

imposed flow can best be analyzed and explained within theach other, with front propagation, and with experiments.

GLE framework. Therein, the complex amplitudéz,t) of  The last section gives a conclusion.

the PV flow depends in the absolutely unstable regime on the

streamwise positioa and on timet in a multiplicative way Il. THE SYSTEM

only, . . . . .
Y We investigate time-dependent, rotationally symmetric

(1.1) vortex structures in a Taylor-Couettg appara_ltus with an ex-
ternally enforced axial flow. The viscous, incompressible

fluid is confined to the annulus between two concentric cyl-

inders of inner radiug, and outer radius,. The setup is

. . o 8haracterized by two geometric parameters: the radius ratio
scribes the streamwise variation of pattern modulus and _

b imult v fixed vi vabilit 77=r1/r, and the aspect rati, i.e., the quotient of the axial
\(/jv_?ve r.‘uTh e:c are S|fmu anel_ousy Ixe VIa}aso Vzl“yf;l_?]n'extension of the annulus and the gap widtkr,—r;.
tion 1n the form of a noniinear eigenvaiue probiem. eMostly we have used in our numerical simulations an aspect
selection of() anda(z) seems to result from requiring the

) L . ~ ratio of '=50 and a radius ratio of=0.75. The outer cyl-
spatial variation of the amplitude to be as small as pOSSIbIﬁmer is always kept at rest, while the inner one has a rotation
under the imposed boundary conditions fomat the ends of y

rate (.,;. In addition we impose a small through-flow in
the annulus.

: ial direction. Th iti t
Approaching the border between the absolutely and cone 2 direction. The boundary conditions rt andr, were

! . . - always no slip. The conditions at the two erxds0 andI’ of
vectively unstable regimes the pattern selection mechanis

becomes linear: For driving and through-flow rates on this e annulus are explained in Sec. Ill,
. : 9 1roug : The flow pattern is described by the momentum balance
border line the selected frequency is the one resulting from

linear front whose spatiotemporal behavior is governed by%quatlon for the velocity field, the Navier-Stokes equations

the fastest growing linear mode. The latter is identified by a 1

particular saddle of the complex linear dispersion relation (di+u-V)u=——Vp+vV2, (2.139
over the complex wave number plafig]. Now, the linear P

di_spersion relations of NSE30] and GLE differ for super- 444 the continuity equation

critical control parameters. And therefore the PV structures

selected by NSE or GLE differ in a characteristic way. V.-u=0, (2.1

It should be emphasized that the structural dynamics of
pattern formation in the convectively unstable regime atwhich reflects the incompressibility of the fluid. Herés the
larger through-flow rates and/or smaller driving rates subkinematic viscosityp the mass density, angl the pressure.
stantially differs from the one investigated here in the absoThe system is characterized by two dimensionless control
lutely unstable regime. The latter regime is governed by nonparameters. The Taylor number
linear contributions in the balance equations; the resulting

. . . L. 2 44
patterns are uniquely selected and insensitive to initial con- T— n Qgyd 29
ditions, parameter history, and small perturbations. On the S 1-9 2.2
other hand, in the convectively unstable regime that has at-
tracted more experimental activities lat¢B8,29,31-3%the  is given by the squared rotation ratk,, of the inner cylin-
growing patterns are sensitive to initial conditions and perder. The Reynolds number
turbations. Thus, e.g., the noise sustained pattg36koc- _
curring in this regime depend on details of the spatiotempo- Re— W_d 2.3
ral properties of the perturbation source. v '

The Taylor-Couette systerf87] with an imposed axial L
through-flow has been investigated as a well-defined operis proportional to the mean axial through-flow velocity
flow system theoretically38] and experimentally39] since  For an axially uniform system the homogeneous basic flow
the early 1930s. Linear stability analyses of the basic state tetate[45]
traveling axisymmetric vortices were performed using vari-
ous approximations, e.g., for the narrow-gap limit, or simpli- U(r)=Vecer)e,+Wapg(r)e, (2.9

A(z,t)=a(z)e '™,

after transients have died out. Théndependent frequency
Q) and the complexz-dependent amplitude(z) that de-
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is a linear superposition of circular Couette fl¢@CPH slightly increases with R¢27,31-33. For similar reasons
alateral Poiseuille shear flow suppresses the onset of convec-
B : ; . S
Vo) =Ar+— (2.5  tion rolls with axes perpendicular to the flow in arized
r

. . — . setup of a fluid layer heated from beldd4,46].
in the azimuthal direction and of annular Poiseuille flow

(APF) A. Ginzburg-Landau description
W 2+ Clnr+ DR 2.6 Close to the bifurcation thresholL(Re) of PV flow, i.e.,
apr() = E € ) for small ., the flow has the form of a harmonic wave, e.g.,
in the axial direction. We scale lengths by times by the w(r,z;t)=A(zt)e' & echy(r)+c.c, (212

radial diffusion timed?/ v, azimuthal velocities by the veloc- | ) . _
ity of the inner cylinder.,r,, and radial and axial veloci- with a complex amplitudéi(z,1) that is slowly varying in

ties by v/d. Then z and t. The critical wave numbelk;, frequency w,
[19,20,27,31-3B and eigenfunctiomv(r) [19,47] appearing
7 A in Eq. (2.12 have been obtained from a linear stability
A=— 1t 5’ B=— a2 (278 analysis of the basic flow state as functions of Re. The com-
plex vortex amplitudeéA(z,t) is given by the solution of the
1+9 1 1 1D complex GLE,
=———, D=CIn(l-9)— ———, ,
1=71n7 (1=7) 27 To(A+ugA" ) = p(1+ice) A+ E3(1+icy)A”
. ) —y(1+ic,)|A?A. (2.13
7
E=- 2 1+ (1— )2 +Cl. (2.79 Dot and primes denote temporal and spatial derivatives in the

z coordinate, respectively. All coefficients of the GLE have
Here, 4ReE=4,p is the dimensionless axial pressure gradi-been calculated27] as functions of Re for several radius
ent driving the APF. ratios . As a consequence of the system'’s invariance under

At the critical Taylor numberT.(Re) [19,20,27,3], the combined symmetry operatiqz— —z,Re— —Ré¢} the

which depends on the through-flow rate, the basic flow beeoefficientsr,, gé, v are even in Re while the group veloc-
comes unstable to rotationally symmetric, axially extendedty v, and the imaginary partsg,c;,c, are odd in Re
PV perturbations via an oscillatory instability. There, a non-[15,27.
linear PV solution branches off the basic flow in an axially It should be noted that the control parameter rangg of
infinite system. We consider thaeviation over which(2.12 gives an accurate description of the full
velocity field of PV flow, say, on a percent level is indeed
very small: The asymmetry between radial in- and outflow
intensities rapidly grows witlx and causes higher axial Fou-
gier contributions~ e'"kz [48—5( to the velocity field that
are discarded in the— 0 asymptotics of the GLE approxi-
mation (2.12. However, the modulus of the first Fourier

u(r,z;t)=ue +ve,+we, (2.8

of the velocity field from the basic flow2.4) as the order-
parameter field to characterize the secondary PV structur
We use the relative control parameter

T mode of the vortex structures agrees for=Rkas well as for
n= W—l (298  Re#0 quite well with the one predicted by the GLE—cf.
Sec. Ill. On the other hand, the PV structure selected accord-
corresponding to ing to the GLE differs from the one resulting from the full
field equations—cf. Sec. IV.
T
€ T.(Re=0) ! (2.9 B. Absolute and convective instability

to measure the distance from the onset of PV flow for Re For smalle and Re the control parameter plane is divided

+0 and of stationary Taylor vortex flow for ReD, respec- into three stability regimes—cf. Fig. 1—characterized by dif-
tively. In this notation ferent growth behavior ofinear perturbations of the basic

flow state. Below the critical thresholel.(Re) for onset of
T.(Re) PV flow (dashed line in Fig. lany perturbation, spatially
#e=0 and e(Re)= T.(Re=0) 1 (210 Iocalized as well as extended, decays. This is the parameter
¢ regime of absolute stability of the basic state.

is the critical threshold for onset of PV flow. The relation  Perturbations of the basic state can grow only for

betweenu ande is e>e€.(Re). However, in the presence of through-flow one
has to distinguisf17] between the spatiotemporal growth
€ behavior of spatially localized perturbations and of spatially

a 1+e(Re)" (21D extended ones. The latter having a forre'*? can grow

above e,(Re)—in fact ¢, is determined as the stability
The shear forces associated with the axial through-flowboundary of the basic state against extended harmonic per-
slightly stabilize the homogeneous basic state,esRe) turbations. On the other hand, a spatially localized perturba-
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T
absolutely unstabl

C
/ 70 Meconv
] Vy=———0,=2"\/ (2.15
. *ga+chu ? I

0.2

being smaller than 2.

It should be mentioned that the GLE approximat{@riL4)
of uéony describes the boundary between absolute and con-
vective instability resulting from the NSE30,33 very well
SR for the small Reynolds numbers considered here.

convectively
unstable

0.0 ¢

C. Methods of investigation

R The linear growth analysis of modes ¢ékikz

¢ — wt+me)] shows that for small through-flow rates the ho-

FIG. 1. Stability domains of the basic flow sta@4) in the  mogeneous basic state becomes first unstable to axisymmet-

plane of control parameters. Numerical simulations have been petic pv flow [19,20,52. Up to Re=4 these patterns are also
formed for the paramet.ers marked by circles=(0.028§), Qia- detected experimentally[25,28,29,31-3B However, at
monds €=0.114), and trianglese(=0.186). The dashed line is the 1,001 Re one observes stationary spirals and mixed flow
critical threshold for onset of extended PV flow and the full line the patterng 25,26 in addition to the bifurcation of propagating
boundary(2.14 between absolute and convective instability. The spirals[21—'25 43, The latter are predicted by the linear sta-
parameters enterin@2.149—-cf. Table |—characterize the finite- bility analysis, tol branch off the basic state at 20
differences ver_sion pf the NSE. They have been obtained with thf19 20,52. The PV patterns occurring at small through-flow
methods described in Sec. 11 C. rates (Rec4) that are discussed here are rotationally sym-
tion, i.e., a wave packet of plane wave perturbations is admetric. Therefore it is sufficient to solve the hydrodynamic
vected in the so-called convectively unstable parameter refield equations in am-z cross section of the annulus to de-
gime faster downstream than it grows—while growing in thescribe the resulting field(r,z;t).
co-moving frame it moves out of the systd7,18,36,51 We have performed numerical simulations of the 2D
Thus, the downstream as well as the upstream facing interNSE. They are compared with analytical and numerical re-
sity front of the vortex packet moves in the same directiongyts obtained from the 1D GLE. The latter was solved with
namely, downstream. In this regime the flow pattern thaly cranck-Nicholson algorithm using central differences for
results from a spatially localized source, which generateggayia| derivatives with a resolution of 20 grid points per unit

perturbations for a limited time only, is blown out of any |0, 04h 4 The solution of the NSE was obtained with a time-
system of finite length and the basic state is reestablished. ependent finite-differences marker and &AC) algo-
requires a persistent perturbation source like, e.g., noise tQ

sustain a vortex pattern in the convectively unstable regimé'thm [6,53] with pressure and velocity be_lr_lg_ iteratively
[36]. fid{ipted to each other with the method of grtlflmal compress-
In the absolutely unstable regintghaded region in Fig.)1 |b||_|ty [54]. AIs_o here the spatial resolution was 20 grid
a localized perturbation grows not only in the downstrearPOINtS per unit lengthd. The temporal step size was
direction but it grows and spatially expands also in the up-1/1800 times the radial diffusion tim#?/v.
stream direction until the upstream propagating front en- When comparing finite-differences solutions of the NSE
counters the inlet in a finite system. The final pattern resultWith experiments or with analytical properties, e.g., of the
ing in such a situation shows in the downstream direction &LE, we take into account that the critical properties of the
characteristic axial intensity profile under which the PV flow finite-differences MAC code differ slightly from the latter
develops with increasing distance from the inlet. Approachdue to its finite spatiotemporal resolution. In particular the
ing the boundary between absolute and convective instabilitg'itical Taylor number,T,(Re), of the MAC code lies
the growth length of the PV structure diverges in the absencglightly (less than 1.5%) below the theoretical bifurcation
of any perturbation source and the PV pattern is blown out ofhreshold—cf. Table | anf7]. To find the marginal stabil-
the system. However, in the presence of noise there is #Y curve Tg{k) of the MAC algorithm for axially extended
transition to a noise sustained structure with a characteristiPV perturbations of wave numbérwe analyzed the com-
finite growth length depending on noise properties and conplex growth rates(k) in systems of length 2/k using peri-
trol parameters. odic boundary conditions in the axial direction for through-
Within the framework of the amplitude equation the flow rates up to Re 5. From this analysis we also obtained
boundary(full line in Fig. 1) between absolute and convec- the critical values of the frequenay., group velocityv,
tive instability is given by[36] wave numberk., and the parameters, and gé (Table ).
Furthermore, we have cross checked these results by inves-
tigating the evolution of localized perturbations in long
systems of length$' >50, in particular in the convectively
unstable regime in a manner that is quite similar to experi-
corresponding toeg,,,= €.+ (1+ €c) héony- Thus the abso- mental proceduref29,33: We generated tiny, localized PV
lutely unstable regiméshaded region in Fig.)lis character-  perturbations of about five vortex pairs with wave numbers
ized by u>us,,, or, equivalently, by the scaled group ve- close tok. under an intensity envelope of Gaussian shape.
locity They propagate downstream with the group velooify A

2 2

Mo 7 (214
oV 4£5(1+c)’ '
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TABLE |I. ltalic numbers denote critical values and coefficients
that are appropriate for the finite-differences code with spatial grid
size 0.05 used in our simulations of the NSE and that have been
used for scaling the NSE results. The methods for determining these
numbers are described in Sec. Il C. The imaginary peytsc,,
¢4 are taken from Ref[27] y depends on the normalization of the
linear radial eigenfunctionii(r) which was chosen to be
|G(r,+0.5)=15.2.

l\llllllll\l\llllkll}\l

a=a[ 1+ (az/|ay|)(Refay)?]

Te K¢ 6(2) 7o Y
ag 2420.23 3.1305 0.144 0.0762 8.06
ao 138.62 252.96 —27.23 —49.68 —-12.33

a=a;Rg 1+ (as/|as]) (Relaz)?]

w (rg0.225,z,t) (units of v/d)
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fit to the rate of exponential growth of the envelope gives
ul 7. From the growth of the full width at half maximum
we obtaing3/ 7. These identifications are based upon com- I A T AR OO O IR
paring with the temporal evolution of a Gaussian perturba- 0 10 20 2de 40 >0
tion [36] z (units of d)

FIG. 2. Spatiotemporal structure of PV flow. Thin lines show
z? vertically displaced snapshots of the axial velocity field
ZTA(Z) (2.19 w(r,+0.2252;t) at successive, equidistantly spaced times. Thick
lines show the stationary envelopes. The BCI at the inlet and outlet
of initial axial extensiom , according to the linearized GLE. SuPPresses any vortex flow there, while the BCII suppresses PV
It yields flow but induces stationary Ekman vortices. Parameters are
€=0.114 and Re 2.5.

A(z,t=0)o<ex;{—

1 ot (z—ugt)?
A(z,t)oc ——expg u(l+icy)—— Tg (2.17 is a scaled distance from the boundary between the abso-
A(t) 70 2A4(1) . ) :
lutely and convectively unstable regimes. Its relation to the
with through-flow Reynolds number Re and the Taylor number
T=(1+pu)T.(Re) can be read off from Table I.

t
2 _ A2 2 .
A (t)_A0+2§0(1+'C1)T_O- (218 Ill. PROPAGATING VORTEX PATTERNS

d We investigate PV patterns in the absolutely unstable re-
pgime in an annulus of finite length with two different end
conditions: a basic state boundary conditi@®Cl) in Sec.
1IIA and an Ekman vortex boundary conditiaClIl) in
Sec. lll B. For both boundary conditions numerical simula-
pons have been performed for the parameter combinations
a S

éharked by symbols in Fig. 1. In each case we observe a
attern of vortices propagating downstream under a station-

Test runs with twice the lattice points per unit length showe
that the differences between the critical properties of the co
tinuous system that were obtaing@7] with a shooting
method and the finite-differences system significantly de
crease by one order of magnitude.

We have also investigated the dependence of nonline
saturated PV flow on the numerical discretization. Thes
tests show that the nonlinear vortex structures are basically™" . . .
independent of the discretization—provided it is not too' ry intensity envelope after transients have died out as shown

coarse. However, one should base the comparison of bifut! Fig. 2. The oscillation frequenay of the flow is indepen-

cated flow structures obtained with different discretizationsdent of the radial and axial position while the local wave

on the relative control parametgr=T/T.— 1 that is influ-  "umberk, the phase velocity ;= w/k, and the vortex flow

enced viarl ; by the discretization in question—see also Sec.'me.ns.Ity varies witlr andz. The frequency and the spatial

IVB 3. variation of the PV pattern depe_n_ds on the control param-
When comparing results obtained for differgntand Re eters and on the bOL_”.‘dafV conditions but not on parameter

from numerical simulations of the NSE with those following history or initial conditions.

from the GLE we found it sometimes advantageous to _ -

present them as functions of the scaled group velodijy A. Basic state boundary condition—BCl

(2.195. The deviation Here we discuss vortex suppressing boundary conditions

that are realized by imposing the homogeneous basic state
2=Vy=2-2\pcon/n (219 U(r) (2.9 at the inlet and outlet of the annulus. The flow
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FIG. 3. Scaled growth length (3.1) of PV structures vs scaled 1.96 — (%) -

group velocityV, (2.15. Symbols represent lengths obtained from S 7 T - v e
the NSE for different combinationgcf. Fig. 1) of Re and .
€=0.0288(circles, e=0.114(diamond$, ande=0.186(triangles. z (units of &)

Boundary conditions are BCI for open symbols and BCII for filled  FIG. 4. Structure of PV flow selected for BCI at the inlet and
ones. The line shows the scaling behavior of the GLE subject tgutlet. Shown are the axial variations of ttemporal Fourier
BCI. modes(a) and of the wavelengttb) of w(r,+ 0.225z;t). Full lines

resulting for this boundary condition resembles the experi-resu” from numerical simulations of the full NSE. Dashed lines

mental one of Babcock, Ahlers, and Canr{@8]. There, a come from the GLE. Parameters are 0.114 and Re2.5.
system of flow distributors and meshes at the inlet reduces

external perturbations penetrating the interior of the annulus w(r,z;t)= > wp(r,z)e net 3.2
and seems also to suppress radial fl6&]. Near the inlet no n

statmnaryEkman vortices are visible in thls_experlment andto be useful. To that end we first determined the oscillation
th.ehamphtude of :he d%vglgstégam propagating vortices Startﬁequencyw of the PV pattern and checked that it showed no
with zero or nearly zer$31-33. . L X .

To illustrate the global properties of the flow patterns Wesmp:(;gvvzrrﬁt'&g r'!]no dFL;ﬁWﬂa) |tvr\1/e| Z:r:gﬁr\:v tfggg{tﬂ Ff? gx\er
prgsent in .the.upper pqrt Qf Fig a hidden-line plot of the the NSI% are shown by fuII1 I’ineszv’vhilewl| ?rom the (gLE is
ax"’?" vequFy fle_ldw. Thin lines show snapshots uf at the shown by the dashed one. The latter was rescaled by a factor
radial positionr =r;+0.225 obtained from the NSE at suc- £ ~0.94. which comes from comparing the first axial Fou-
cessive, equidistantly spaced times after transients have died ™" = paring the rst axial -ou
out. Then vortices propagate downstream under a stationaly d'r mode ofw(r_arlr;i- O'CZ;E? at R|e= 0 meankaX|aIka§)erll-
intensity envelopdthick line). This envelope is determined [27'04%3’?;22”"2;”; v(\a/e mentirc()ar?lftr:affor tehce t;ré\;\;? ve?dcity
by the temporal extrema @f(r,+ 0.225%) at anyz position. T . : . : .

The oscillation frequency of the PV pattern is constantger:/?;’t'%%%P%iﬂﬁi%iﬂ'ﬁéﬂﬁgiﬁ?2f'igéesngmg;nnthe
over the entire annulus. Sufficiently away from inlet and out-_ ~. ; ; 1 on
let we observe a bulk region of nonlinear saturated PV flOVJ|n|te-d|fferences NSE. and GLE is only 0.8% at+e.
with spatially uniform amplitude and wavelength. With in- Note that the solution of the GLE2.13
creasing through-flow this bulk pattern is pushed further and A(z,t)=R(z2)ell#@ 01l (3.3
further downstream. The growth lendttirom the inlet over
which the amplitude reaches half its saturation value dependsscillates harmonically with frequendy under a stationary
on u and Re. It increases and finally diverges when the conenvelope
trol parametergu, Re approach the absolute-convective in-
stability bordern ™, that is whenV, (2.15 reaches 2. R(2)=|A(z)] 3.4

In Fig. 3 we compare the scaled growth length after transients have died out. Therefore, the GLE velocity

_ field (2.12 contains no temporal Fourier mode other than
L=ullo @D 21 Whereas the solution of the full NSE has higher har-
computed from the amplitude equati¢solid line) with re-  monics.
sults from the NSEsymbols for various combinations of ~ In the bulk region theemporalmodes obtained for finite
e and Re. Due to the scaling property of the GLR—-16  through-flow from the NSE grow for smail proportional to
keeping in mind the smallness of the imaginary pastall ~ #"? with relative corrections proportional ta. Thus, they
values forl obtained by the GLE subject to BCI fall onto one show the same growth behavior withthat theaxial Fourier
curve in the plot ofL versus V. The open symbols repre- modes[48-50,57,58 of stationary Taylor vortices without
senting the NSE results for BCI lie very close to the GLE through-flow show as a function ef The reason is that all
curve. Full symbols for BCII are discussed in Sec. Il B.  fields in the PV state have the form of propagating waves
For further characterization of the PV flow structure we

found atemporalFourier decomposition of the time-periodic fo(r,z;t)= fb(

w
r,z——t 3.
fields, e.g., Ky ) (33
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in the bulk region—denoted by a subscript There the e IS e e e s e s e

wave numberk, and the phase velocitw/k, do not vary 4 [ (a) | |
with z. =
The Fourier modav, of the PV pattern is not zero every- & 5 Jwy
where since the variation of the flow amplitude under the T 0 F Wo
fronts causes a secondary, stationary, closed flow patternﬁé C
there—see, e.gw, at z~9 and near the outlet in Fig(d. 4 L) |y 4

§ (u

Its strength and structure depend on the steepness of th
front. For example, an increase of Re leads to a smaller gra- .
dient of the upstream facing front and to weaker stationary
secondary flow extending further downstream.

The intensity variatioricf. Figs. 2 and 4] of PV flow
under the fronts also causes there a spatial variation in the =

z

5 |wy

|

225

1+0

IS
P/LIIIIP
o
g
S

local wavelengti\(z) [Fig. 4b)] and in the phase velocity £ 5 [
vp(2) = w\(z)/27 with the oscillation frequencys of PV 0 e Wo !

flow being constant. The fulldashedline in Fig. 4b) is the L

wavelength profilex (z) selected for BCI according to the -4 0_' L '1'0' L '2'0' L '3'0' L '4'0' S—

NSE (GLE). This figure shows that the GLE does not de-

scribe the pattern selection quantitatively. The selected z (units of d)

wavelength in the bulk region of the NSELE) is smaller FIG. 5. Axial structure of vortex patterns subject to BCII. The
(largey than the critical one—see also Sec. IV. zeroth temporal Fourier mode, (thick lines of the axial velocity

The local wavelength shown in Fig(®} was determined field w(r,+0.225z;t) reflects the stationary Ekman vortices. The
from the phase gradient of the first temporal Fourier modemodesw, with n>0 (thin lines characterize the oscillating PV
w1 (z) at the radial positiom=r,+ 0.225. We have analyzed pattern. Parameters aee=0.114 and Re 1.0 (a), 2.5(b), 2.7 (¢).

w, and alsou, at otherr positions and in addition we deter-

mined the axial distances between node positiona ahd modewy (thick line) represents the stationary Ekman vortex

w. Under the fronts there is a significant radial variation of o
. ) flow of th m. Th mporall illating PV str r
\. Furthermore, the wavelengths determined via the phaseO of the syste e temporally oscillating structure

gradients ofwv, andu, differ there from each other and from IS characterized by the modes, (thin lines. The Ekman

. X . : vortex structure at the inlet is only slightly affected by the
those obtained via node distanceswoindu. Butin the bulk through-flow: the strength of the Ekman vortex closest to the

part of the PV structure all these quantities yield the SaM& et decreases somewhat with increasing Re, while its ex-
wavelengthi, . tension increases slightly. The stationary vortices at the out-
B. Ekman vortex boundary condition—BClI| let become more _ar_1d more squeezed together with increasing

] _ ~ Re, and also their intensity reduces. On the other hand, the

In Taylor-Couette experiments without through-flow rigid oscillatory pattern of PV responds dramatically to the
nonrotat|ng end plateS bound|ng the fluid in the axial d|reC"[hr0ugh_ﬂ0W in being more and more pushed downstream_
tion induce stationary Ekman vortex flof2,4,59. These  Note also that for small Re where the PV amplitude of, say,
vortices are also detected by Tsameret and Steinberg in eXy, | overlaps near the inlet with the Ekman vortex intensity
periments with axial through-flow, where meshes at the endge |atter causes axial oscillations in the harmonics of the PV
were used as nonrotating boundaries at the inlet and outlgfo\w and similarly near the outlet—cf. Fig. 5.

[28,29. _ N The filled symbols in Fig. 3 represent the growth length of
~ The second axial boundary condition BCII enforces stathe PV flow intensity. This length diverges in a similar way
tionary Ekman vortices near the ends of the annulus. To th&i; the convective instability bordev,=2 as the one ob-
end we impose at both ends=0, I' zero radial flow, zero tained for BCI. But due to the presence of Ekman vortices at
azimuthal flow, and in the axial direction the annular Poi-the inlet the characteristic growth lendtte, Re) of PV flow
seuille flowW,p(r) (2.6). The spatiotemporal properties of s increased by (0:52.5)d in comparison to the BCI case—
the vortex pattern subject to this BCIl can be seen in thgskman vortices push the PV structure further downstream.
lower part of Fig. 2. There we show a hidden-line plot of the e differencd gc; — | gcy decreases with increasing through-
axial velocity in the same way and for the same parametergoy rate as Ekman vortices and PV flow become more and
as for the BCI pattern in the upper part of Fig. 2. more separated from each other.

In the immediate vicinity of inlet and outlet there asta- As in the BCI case the zeroth temporal Fourier mode
tionary Ekman vortices whose intensity rapidly decreases togyhibits a secondary, stationary, closed flow pattern of low
wards the bulk of the annulus. In addm_on the_re is—as in thﬁntensity under the fronts of the PV pattern. For small Rey-
BCI case—the PV flow structure thascillatesin time with  no|ds numbers this pattern is concealed by the Ekman vortex

a z-independent frequency. The oscillation amplitude fiow, whereas it becomes visible for bigger through-flow
drops to zero near the ends due to the boundary conditiongstes.

and the stationary Ekman vortices increase the growth length
| of the oscillating structure in comparison to the BCI case.
These two different flow elements are best separated by a
temporal Fourier analysis. The results for BCIl are shown in  Our investigations of the PV structures show that the axial
Fig. 5 for different through-flow rates. The zeroth temporalthrough-flow causes a unique pattern selection such that the

IV. PATTERN SELECTION
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selected structure is independent of history and initial condi- 2. Inlet behavior

tions and depends only on the control parameters and bound- .4, (4.18 one finds that the BCI at the inlet and outlet,
ary conditions. Thus, the axial flow causes possible wavey_ o implies the relation
numbers within the Eckhaus-stable band of stationary Taylor

vortex patterns without through-flow to collapse to only one ToVg
uniquely selected PV structure for nonvanishing through- Rih out= 21ticy)
flow rates. However, the PV patterns that are selected ac- 0 !
cording to the GLE approximation and to the full NSE differ
distinctly from each other. We first investigate in Sec. IV A
the selection mechanism within the GLE framework. In Sec
IV B we compare with NSE results and experiments.

2iqin,out Ri’n,out (4'2)

at z=0[I". Hence, whenever the modulus grows with finite
!

slope,R;, ou# 0, the boundary conditioR=0 fixes the wave
number at the inleand outlet to the value;,= Qo

1 U Cq
A. Pattern selection within the GLE E0Qin,out= 09 - = Vitcome (4.3
1

— _C —
_ _ _ 27 g(1+ch) 1+
Here we elucidate how the pattern selection mechanism of

the GLE can be understood as a nonlinear eigenvalue Qghich depends only on Re. This value ensures that the
boundary-value problem where the frequency of the PV patimaginary part of the expression in square bracketd id) is

tern is the eigenvalue. Thus, the selected PV structure igero. For Re=0 one obtaingy;, ou=0 as obtained by Cross
characterized and determined by the combination of eigenet a|.[60]. In addition the conditiorR=0 yields via the real

value and corresponding eigenfunction. part of (4.2) two relations,
1. The eigenvalue problem ToUg
_ = T RE 4.4
We look for solutions of the GLE2.13) of the form(3.3), nout - gf(1+cf) mout “.4
A(zt)=a(z)e”''=R(z)e'l*@ ], (4.18  petween the different slopeR/ #R,, and curvaturesR),

# R}, of the modulus at the two respective boundaries that

with stationary envelop&(z), stationary wave number hold independently of.

a(z)=k(z)—ke=¢'(2), (4.1b Furthermore, one can derive a relation between the eigen-
frequency(), the wave numbeq;, o, and its slope;, ., at
and constant frequency the inlet and outlet. To that end we consider the axial deriva-

tive of (4.1e at the inlet and outlet witflR=0:
Q=0—ow;. (4.10

iTo(Q—vq0)+ u(l+icy)— E2(1+icq)g?
Inserting this solution ansatz into the GI(E13) one obtains ol of)+ il o)~ &l 1

the nonlinear eigenvalue problem R m
X ~[rovg—2iqé5(1+icy) Iy = &5(1+icy) —,,+3iq').
To(—iQa+tvga’)=u(l+ico)at &3(1+icy)a” R R
. 4.9
—y(1+icy)lal’a (4.1d . _
This allows one to solve fdR”/R” andq’ separately. Using

or, equivalently, (4.3 and(4.4) one obtains the relation

iTO(_Q+qu)R+ 7'OUgR, 7'OQZ(Cl_C'O):“"'7'OUgC]in,out_ 3(1+C§)§Sqi,n,out' (4.9
=u(l+ico)R+£3(1+icy)(R"—g’R+iq'R Note that this equation implieg,=q/,.

L, ) 3 The relation(4.6) also demonstrates the nonlocality of the
+2iqR") = y(1+icz)R (4.19 pattern selection mechanism and of the eigenvalue problem.

At first sight one might be tempted to infer from the above
relation betweer() and g;,,q;, that the latter two fix the
frequency. However, Eq(4.6) holds equally well for
Jout»doyt @Nd the outlet properties do not fix either. So the
correct interpretation of Eq4.6) is that the eigenvalu€l,

as a solvability condition witi) being the eigenvalue. We
are interested in solutionR(z) and q(z) that look like the
dashed lines in Fig. 4, i.e., where the variatiorR¢f) and in
particular ofg(z) is “as small as possible.” Such a solution

type seems to be connected with the eigenvdlu¢hat is . - . i
closest to zero. Here we consider the boundary condition eing the characteristic global signature of the pattern, fixes
the local quantitiesy;, ., for the given boundary conditions.

Rinou=0 at the inlet and outlet. These requirements fix four
boundary  conditions—namely,  R&( o) =IM(Ain o)
=0—which are necessary to solve the GLE1LJ.

Note that the eigenfrequendy is in general determined The wave numbegq(z) away from the inlet and outlet in
by global properties and not by thical variation of the general differs fromg;,(=0o.). In order to obtain the full
eigenfunction®R(z) andq(z), say, at the inlet or in the bulk. axial profiles of the eigenfunctiori?(z) andq(z) belonging
Nevertheless it is informative and useful for our further dis-to the eigenvalu€) one has to solve the eigenvalue problem
cussion to list below relations betwedd and structural (4.1) with the boundary conditiorR;, o= 0. Alternatively
properties at the inlet and in the bulk of the annulus. one can solve numerically the time-dependent GRHA3).

3. Bulk behavior
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However, when the system size and the control param- 0.02 ———1— | —
eters are such that the PV pattern forms a bulk part with a ; . ]
homogeneous modul’, and wave numbeqy,, i.e., where 0.00 [ @ %

o 0.02F |
R,=Rp=0q,=0, (4.79 IOV
_ _ _ — 0.00 ¢ ]
then the dispersion relation | 002 g S o W E
700 =(Co— Co)pu+ TovgUpt (C1—C2) &G0 (4.7D) ~<l.* 004 _A A &
provides a relation between the frequency eigenv&lu¢he 0.02 k
bulk wave numben,,, and the bulk modulus 0.00 A
- &92 002 L A E
R§=MTO%. (4.79 0.02 ¢ AN A asah
E L]

M N I
0.5 1.0 1.5 20
V — 70 ’Uz
g wed ( 1+ )

Equation(4.7b establishes together witd.6) also a relation
betweenq, on the one hand ang,= g, and q;,= g, On

the other hand. . .
FIG. 6. Selected wavelengths in the bulk region of PV structures

4. Pattern selection at the convective instability boundary vs scaled group velocity (2.15. Open(half-tong symbols refer
) o N to the NSE(GLE) subject to BCI at the inlet and outlet. Filled

Approaching the convective instability boundaf®.14  sympols refer to the NSE subject to BCII at the inlet and outlet.
we found thatq;, decreases to zero so that the frequencyparameters aree=0.0288 (circles, e=0.114 (diamonds, and
eigenvalue becomes €=0.186(triangles. The small filled triangles are explained in Sec.

IVB 2.
7'Oﬂgonv: —(Cot Cl)MgonV' (4.8

stable regimeu> ug,,, it moves upstream, i.ev,r<0. And
at the boundary. = ¢, the front is stationary-s+=0. We
compare the properties of such a stationary front at

JI+c2(=)1+c2 M= Miony With .those of 'Fhe §q|utio¢k(z,t) (3.3 with station-
- VR o (4.9  ary modulus in a semi-infinite system €<«). The rea-
son for restricting the comparison t@g,,, is that an up-
stream moving front in the absolutely unstable regime will
be pushed against the inlet whence the spatiotemporal struc-
e of the free front gets modified by the inlet.

Then the bulk wave number approaches accordin(48)
and (4.7b the limiting value

go(qb)gonv: c;—Cy
while the inlet wave numbag;, is given by(4.3). Due to the
very small imaginary parts; the solution(4.9) with the plus

. . . . . r
sign has to be discarded, since it corresponds to unphysmalf)lf The far tail of the stationary front resulting from the linear

large wave numbers. . .
In Fig. 6 the bulk wavelengths selected according to theGI‘E is characterized by the local wave number

GLE are shown by half-tone symbols. The results in the

absolutely unstable regim&/;<2, were obtained numeri- —0)=— e S 41
cally by integrating the time-dependent GLE.13. The £odr(vF=0) Ji+¢c? Freanv .19

value shown right at the borde¥,,=2, of the absolutely

unstable regime is the analytical expressidrd). Note that and the oscillation frequency

the selected GLE wavelengths are mostly larger than the

critical one. 70Qr(vE=0)=—(Co+C1) Uony- (4.12

5. Comparison with front propagation In fact in the linear part of the stationary front the flow am-

It is suggestive to compare properties of PV patterns IikéDIItUde

the one in the upper part of Fig. 2 with those behind an
upstream facing front that connects in an axially infinite sys-
tem the basic state at= — o with the developed PV state at
z=+o, A linear growth analysis of the GLE2.13 along

the lines of Ref[1], Sec. VI B 3 shows that the far tail of a
linear front of PV perturbations moves with the front veloc-

ity

A(z,t)~€!lQs? ¢ (4.13

varies with a wave number R@() =qr (4.11), a spatial de-
cay rate ImQ,), a temporal growth rate In§(Qs)]=0, and
an oscillation frequency Ré(Qg)1=Qf (4.12. Here

1 | To | + Cl S
& fOQs__El-l-—ile_ovg__\/Tci\/Mconv (4.14
v,:=vg—27_— m(l+cy). (4.10
° is the saddle position of the complex dispersion relation

In the convectively unstable regime<Qu< ug,,, the front ) . ) ) 20
propagates downstream so that>0. In the absolutely un-  708(Q.x) =T7ovgQ+i(1+ico)u—i(1+ic,)£Q°  (4.19
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LA S S S L N \/1+02(i)\/1+c2
fo(Qb)szo(Qb)gonv:_ - 2\/:"Lgonv

Ci—C .1

far behind the front.

This bulk wave number behind the front has the opposite
sign of the one that is cited {r28] and[29], Egs.(10,14. An
explanation for this might be that the formulas in E(®,

(8), and(9) of Nozaki and Bekk[61] that have been used in
Refs.[28,29 do not seem to have been transformed to a
through-flow situation with arupstreamfacing front that
joins in upstream direction to the basic state, in our case at
z=—oo, After correcting the sign error, the rough qualitative
agreement that was reported[i28,29 between the experi-
1.0 2.0 3.0 4.0 mental wave numbef28,29 and the erroneous GLE results
Re [28,29 disappears. In fact, both, the experimd8,29 and
our numerical simulations of the NSE vyield wave numbers

FIG. 7. Selected oscillation frequency of PV flow obtained with that differ in a common distinctive way from the proper GLE
BCI from the NSE(open symbolsand GLE(half-tone symbolsvs result(4.17)

Reynolds number. The ful{dashedl line is the front frequency

. . As an aside we mention that tlnlinearfront solution
Or=R4 {(Qy)] of the linearized NSEGLE) at the border between . . .
absolute and convective instability. Parameters are0.0288 of Nozaki and Bekki61], Egs.(2)~(7) yields for our GLE

(circles, e=0.114(diamond$, ande=0.186(triangles. The small (2_'13) a f“?”t that is not stationary a’tgonv but rather moves
symbols marking) for these three values show that the eigen- With velocity

1 I 1 | 1 1

I Il 1 Il

- M -
YRS T R AT YT T TN R R S N N M A |

frequencies of the nonlinear equations in the absolutely unstable 5
regime approach th@ limit curve at the right places. _ 1+c] .
UNB a—i Ug (41&
8+9c]
of the linear GLE in the comple® plane determined by the o ]
condition in the upstream direction with a bulk wave number
/. C
dZ(Q) &o(Qp)ng= Peow  r3(1+c?)
aQ |, ° @1 ST e B
+8gn(co— 1) V8(C2— 1) *+9(1+¢4¢,)%].
for ve=0, i.e., atu= puion,- (4.19

So the inlet wave numbaeg;, (4.3) agrees withgg (4.11)

and Q¢ (4.8 coincides withQ ¢ (4.12). Thus, right at the So we conclude that theonlinear front solution of Nozaki
borderuS,,, of the absolutely unstable regime the frequencyand Bekki is unrelated to the PV patternsie,,,. Further-
eigenvalue of the PV pattern growing in the downstreammore, it was note@2] that localized initial perturbations did
direction from the inlet az=0 agrees with the oscillation not evolve into thenonlinear front solution of Nozaki and
frequency selected by the stationaigear front. Within the ~ Bekki [61,63,64. However,vyg and @p)ng differ for small
front propagation point of view the PV pattern develops fromthrough-flow only slightly from the respective values
the basic state with an exponential growth rateof the ve=0 and @u)r. For example, at Re2 one obtains

modulus. This leads foR—0 to R'=«xR,R"=«’R,... vng=—0.004 and @p)ng=1.15@p)¢ -

—0 for z— —o0. On the other hand, the PV flow intensity in _ _

the semi-infinite system in general drops to zero at the inlet 6. Scaling properties

with finite R” andR”. Only at the border ling.= ug,,,, does Scaling length and time according to

the difference disappear since theR¢,R",...—0 for .

z=0. In the absolutely unstable regim¥,<2, the fre- A z .

quency eigenvalueQ = w — w, of the GLE Iiegslightly above = \/ﬁg_o t= e (4.20

the limiting valueQ¢,,, at the border of the absolutely un- R

stable regime. The shaded symbols in Fig. 7 show for threghe GLE for the reduced amplitud&=A./y/x no longer
different e how Q obtained numerically by integrating Eq. containsy and x explicitly but the scaled group velocity
(2.13 approaches with increasing Re the front frequencyVy (2.19 and the coefficientg,,c,,c,. Thus the reduced
RE{(Qg)]1=Qr(ve=0)=Q¢,,, (dashed ling For conve- selected frequency)=r,(}/x and the selected bulk wave
nience, the merging points with this limit line are marked for number Qp= goqb/\/ﬁ depend not only onVy but via
the threee values investigated here by small half-tone sym-Cq,C1,C; also on the Reynolds number. This Re dependence
bols. can alternatively be seen—via the Re dependendé,and
Using this frequency for the full nonlinear PV pattern at of the ¢;’s entering(2.15—also as an additiongk depen-
wiony ONE obtains from the bulk dispersion relatigh7b an  dence. The latter dependence is sufficiently strong to prevent
expression for the bulk wave number a scaling of () with Vg alone. However, by reducing the
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than the critical one with a deviation of up to 2% for the
largeste= 0.186 that was investigated here. These deviations
r . are much stronger than the decrease of the critical wave-
- length with increasing Reynolds numbers.
e Ay 4 It is interesting to note that transversal Rayleighm&el
00F 26 ﬁ oA _ conv.ecFion rolls in h_ori;ontal shear flopi4,15 show a
i O | qualitative and quantitativg 15], e=0.114) correspondence
A to PV flow. Therefore, our results are not limited to PV flow
N in a Taylor-Couette apparatus only. In this context we also
O mention the experimental investigation of Gu and Fahidy
- 1 [23]. They observed that axial through-flow causes a rear-
-1.0 - %— rangement of the vortex centers similar to the one seen for
C %- tranverse convection rolls subject to a horizontal fighb],
05 1.0 15 70 Fig. 2).. Wlthout through-_flow the vortices are allgned alopg
: : : : a straight line roughly in the gap center. With increasing
Vg - To% through-flow the vortices are alternatingly displaced towards
3 ( 1+c5{) the outer or inner cylinder, thereby reducing the axial com-
ponent of their distance and thus the wavelength. Viewed in
FIG. 8. Frequency shifw—w. of PV flow vs scaled group thez-r plane withr, abover ;, right (left) turning vortices—
velocity Vq (2.19 for BCI. Both NSE (open symbolsand GLE  for which w is negative (positive close to the inner
(half-tone symbolsresults are scale_d by the _c_orresponding GLE cylinder—are displaced towards the infeutel cylinder by
frequen_cyﬂgom, (4.9) at the conve.ctlve instability border for the 4 through-flow directed from left to right, since the through-
respective pare.\meters=0.0288 (circles, €=0.114 (diamond$, flow enhances the axial flow componemtof a right turning
and e=0.186 triangles. The small symbols have the same mean- 1oy near the outer cylinder &, and weakens it near the
ing as explained in Fig. 7. inner one at; and vice versa for the left turning one.
Obviously the wavelengths resulting for BCI from the
eigenfrequencie$) (e,Re) selected for our three differeat NSE (open symbols in Fig. Y6differ substantially and sys-
values by the limiting value€ (e,Re,,) = Q¢,,, (4.8 atthe  tematically from those resulting from the GL#half-tone
border of the absolutely unstable regime we have effectivelypymbolg: the former decrease with growing Re aadvhile
eliminated thee dependence and all GLE dathalf-tone the latter increase. Nevertheless we think—cf. the discussion
symbols in Fig. 8 fall onto one curve. A similar scaling in Sec. IV B4—that the selection mechanism is quite
holds for the bulk wave numbey, divided by @) oy (4.9.  Similar.
Remarkably enough, by reducing the NSE frequencies
with the GLE frequency(,,, (4.8) the NSE resultopen
symbols in Fig. 8 almost show this one-variable scaling The NSE wavelengths obtained for the Ekman vortex

with V. However, for the GLE & — w.)/QS,, increases generating I_SCII(fillgdlsymbols in Fig. 6 are similar to the
monotonously with the scaled group velocity whereas the BCI results in the limiting cases of small Re or smglland

NSE results show a monotonous decrease Wijth This dis-  near the border ling/,=2 of the absolutely unstable regime.
crepancy between NSE and GLE results is caused by thé the vicinity of V =2 the stationary Ekman vortices and

different dispersion relations of the full hydrodynamic equa-the PV flow are spatially separated, and their interaction is
tions and the approximate GLE—cf. below. very weak, allowing for PV wavelengths like those for BCI.

For very small Reynolds numbers the agreement in the PV
wavelengths for BCI and BCII is not yet understood. In be-
B. Pattern selection within the NSE tween there is a visible difference of up to 5%=(0.186
Here we compare our numerical solutions of the NSEa@NdVy=~0.4) between the bulk wavelengths obtained for the

with results from the GLE and from experiments. First wefWo boundary conditions. 3
discuss the selected wave numbers in the bulk region of Pv However, we found that the bulk phase velocities,
flow. Then in comparison with front propagation we show?p=@/k, were almost independent of the boundary condi-
common selection properties of NSE and GLE. Finally wetions: the relative difference af, for BCI and BCll is less

T3 A B B B .g_ this boundary condition the wavelengths are mostly smaller

c
conv
1

(w—w. )/

2. The effect of Ekman vortices

compare with experiments. than 0.1% for the parameter regimes investigated here. Fur-
thermore, the deviation ofv, from the critical value
1. Bulk wavelengths—NSE vs GLE (vp)c=wc /K, is less than about 1%. Hence, one can infer

rom the plots in Fig. 6 foin/A.—1 also the variation of the

In Fig. 6 we show all selected bulk wavelengths obtaine4 . ) _
requency eigenvalue with through-flow since

from numerical simulations of the NSE for BCdpen sym-
bols) and BCII (filled symbolg in comparison with results ® v, k k

obtained numerically from the GLE for BQhalf-tone sym- 1= o) ke 1= 1 (4.27)
bolg. The NSE wavelengths that are selected when the basic ¢ pie e ¢

state is enforced at the inlet and outlet weakly decrease with For the largest=0.186 we have observed for the Ekman
increasing Re and. For the smallesté=0.0288 their values vortex generating BCII an interesting behavior for very small
are very close to the critical wavelength (dotted ling. For ~ Re<0.5 (V4=0.3). For these parameters the PV pattern did
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not develop an axially homogeneous wavelength in the spdinear NSE front deviates from the GLE resut&=0. As an

tial region where the flow amplitude was indeed spatiallyaside we mention that a somewhat similar behavior has also
uniform. Under these circumstances the wavelengths roughlyeen observed experimentall3,10] and numerically for
show a linear variation witlz between a larger valu@ipper  Taylor vortices[6,68] or Rayleigh-Beard convection rolls
small filled triangles in Fig. pat the upstream end of the [11] which, however, were located in the nonlinear part of
bulk amplitude region and a smaller val(lewer small filed  propagating fronts. In this context it is useful to keep in mind
triangles in Fig.  at the downstream end of the bulk region that the wavelength profile.(z) of numerically obtained

of constant flow amplitude. So the Ekman vortex at the inlet~|—ay|Or vortex fronts[6,68] shows an axial variation with a

impedes the free downstream motion of the PV flow—it ex-characteristic dip in the steepest region of the front similar to
erts a phase pinning force on the PV pattern that stretches thge one of the full line in Fig. @) nearz=S8.

node distances. The situation is somewhat similar to the ex- Now let us consider the through-flow case. In Fig. 7 we

plicitly phase pinning bogndary conditions that have beerbompare the eigenfrequencies of thenlinear NSE (open
investigated in Rayleigh-Beard convection with through- symbols for BCI with those (solid line) that would be se-
flow [15,65. lected by dinear front that is stationary at the border of the
absolutely unstable regime. To that end Recktenwald and
3. Finite-size effects? Dressler[30] have determined the dispersion relatisfQ)

The selected wavelengths in the bulk region are practiof linear perturbations-e'l(c*@2=(«c* Ot in the complex
cally independent of the system length as long as a saturatidd Plane resulting from the NSE with a shooting method as
of the Taylor vortices takes place. To check this we per-described in Refl33]. The solid line in Fig. 7 represents the
formed a few simulations with aspect ratioE=25 frequencyQge=Re{(Qs)] selected by the stationary front
(e=0.114, Re=2, BCI, and BCl) and I'=10 (ve=0) of thelinear NSE. Again, as discussed for the GLE
(e=0.114, 0.186, Re1l, BCI, and BCI) and compared in Sec. IV A5, this frequency is determined by the saddle
with the results obtained for our standard lenfth 50. The Qs of ((Q) for which the temporal growth rate
change in the selected wavelength or frequency is less thdM{(Qs)=0. This defines the boundary between absolute
0.1% if the aspect ratio is halved 10=25. In the system and convective instability. With increasing Re the eigenfre-
with lengthI’ = 10 no bulk region can be observed, thereforequency of thenonlinear NSE approaches the frequency se-
the wavelength cannot reach a constant value. The oscillatid§cted by thelinear stationary front at the border of the ab-
frequency of the flow pattern is always independent of thesolutely unstable regime as indicated for the theeealues
axial position and mainly unchanged; the deviations are lesghown in Fig. 7. The front frequencies for thesgalues are
than 0.5% even for the very short systemlof 10. marked by small open symbols on the curved £€)] to

We have also investigated the dependence of nonlinealdicate that the eigenfrequencies of the NSE in the abso-
saturated PV flow on the numerical discretization. Thesdutely unstable regimelarge open symbols in Fig.)7do
tests show that the nonlinear vortex structures are basicalljideed end at the right positions on this curve.
independent of the discretization—provided it is not too This NSE behavior is very similar to the GLE behavior
coarse—if one bases the comparison of bifurcated flow struchalf-tone symbols and dashed ljn&lote, however, that the
tures obtained with different discretizations on the relativelinear dispersion relations of NSE and GLE are different: the

control parametep.=T/T,—1 that is influenced vid, by  front frequency  REysg(Qs)]=0.0072Re-0.0056R8
the discretization in questioi©6]. (solid line in Fig. 3 is positive and increases with through-

flow while Rg /g £(Qs) ]=—0.0002Re- 0.0062Ré (dashed
line) is negative and decreases with through-flow. This dif-
ference in the dispersion relations seems to be the major

Let us first consider Taylor vortices without through-flow. cause for the differences in the selected patterns.
Then the GLE(2.13 contains no imaginary coefficients

and the first-order spatial derivative is absent singe 0. In
this case the GLE yields for propagating frop§] as well
as for stationary patterns in finite systef@)] the critical In early experiments by Snyd@21,22 or Takeuchi and
wave number,q(z)=0, all over the extension of the Jankowsk{20] the distinction between absolute and convec-
pattern—the boundary conditioh=0 enforces the collapse tive instability was not yet established. PV patterns were
of the supercritical band of stable bulk wave numbers ofobserved with wavelengths below the critical one for Rey-
nonlinearvortex patterns ta=0. Thisnonlinearlyselected nolds numbers Re10[21,22. However, a pattern selection
wave numberg=0 happens to be for Re0 the same as the was not reported. The wavelengths were seen to vary up to
wave number of maximdinear growth under dinear front 7% from run to run for the same control parameter combi-
whose spatiotemporal evolution is governed by the dispernations and in some cases 5% over the spatial extension.
sion{ e(Q, €;Re=0) (4.7b of thelinear GLE. In the pres- Furthermore, the vortex spacings did not change after the
ence of through-flow, however, the wave number of maximabccurrence of PV flow when increasing the relative Taylor
growth under thdinear front—e.g.,qr (4.1)—of the GLE  number up toe=0.15[22].
differs from the one in thenonlinear bulk far behind the Takeuchi and JankowskR0] obtained wavelengths be-
front [(qp)e (4.17)]. low the critical one, for example, with a deviation of
Now, already without through-flow the dispersion relation ~—2.5% for Re=9.4, €~0.06, »=0.5 that is in the same
of the linear NSE differs significantly from that of the GLE order of magnitude of our NSE results in the absolute insta-
so that the wave number of largest temporal growth under Aaility regime.

4. Comparison with front propagation—NSks GLE

5. Comparison with experiments
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The experimental results of Tsameret and Steinbergystems of finite length. Within the subregion of absolute
[28,29 exhibit a unique selection, similar to the results pre-instabilty a unique pattern selection is observed. The selected
sented here. Their wavelengtf&8] are always less than the PV flow structures are independent of parameter history, ini-
critical one for axial boundaries that enforce stationary Ek-ial conditions, and system lengttprovided it is large
man vortex flow. However, in contrast to our results theyenough to allow for a nonlinear, saturated, homogeneous
observed ne& dependence of the selected wavelengths but abulk region. But they depend on the axial boundary condi-
Re dependence that is much stronger than ours leading totmns. For conditions enforcing the basic state at the bound-
relative deviation from\. of up to —10% at Re=3 for  aries as well as for conditions that enforce stationary Ekman
7=0.707[28]. In addition their phase velocity of PV flow, vortex flow near the boundaries the PV pattern is suppressed
v,=1.055R€28], is much smaller than ours, which is close at the inlet and outlet of the annulus. Then one observes a
to the critical one. All wavelengths observed for through-characteristic stationary axial intensity and wave number
flow rates above Rel belong to noise sustained structuresprofile, whereas the oscillation frequency of the pattern is

in the convectively unstable regid29], which leads to de-
viations fromA ;. of about 3% when one limits the compari-
son to the regime of absolute instability. Since éhealues at
which the measurements (28,29 were performed are not
given we have estimated anvalue of~0.025 based on the
convective instability border at Rel. For thise the above-
mentioned 3% deviation of from \. is an order of magni-
tude larger than our NSE results or the rest®) of the
GLE.

constant all over the system. The analysis of the appropriate
Ginzburg-Landau equation for PV flow shows that the se-
lected frequency of the pattern oscillation is the eigenvalue
of a nonlinear eigenvalue problem for which the axial varia-
tion of the corresponding eigenfunction is smooth and as
small as possible. The eigenfunction is the complex pattern
amplitude that characterizes the intensity and wave number
profiles of the PV structure. The GLE intensity profiles agree
well with those of the NSE. However, there are characteristic

On the other hand, the experimental wave number foundlifferences in the selected frequencies and wave number pro-

in [25] for a known, publishe@~0.38 and Re up to 4 can be
compared directly with our results to check the predicéed

files of the full NSE and the GLE approximation. They are
identified to be mainly caused by the different dispersion

and Re dependence. In this case all experimental wavéelations of the equations. Approaching the border between
lengths[25] decrease up to 10% below the critical one atabsolute and convective instability the eigenvalue problem
Re~3.7 whereas we would expect from our simulations and®ecomes effectively linear and the pattern selection mecha-

from [14,15 less than half the deviation from, .

V. CONCLUSION

nism becomes that one of linear front propagation.
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