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Thermodynamic description of the relaxation of two-dimensional turbulence using
Tsallis statistics

Bruce M. Boghosian
Center for Computational Science, Boston University, 8 Cummington Street, Boston, Massachusetts 02215

(Received 15 May 1995)

Two-dimensional Euler turbulence and drift turbulence in a pure-electron plasma column have
been experimentally observed to relax to metaequilibrium states that do not maximize the Boltz-
mann entropy, but rather seem to minimize enstrophy. We show that a recent generalization of
thermodynamics and statistics due to Tsallis [Phys. Lett. A 195, 329 (1994); J. Stat. Phys. 52,
479 (1988)) is capable of explaining this phenomenon in a natural way. In particular, the maxi-
mization of the generalized entropy Sq with q = — for the pure-electron plasma column leads to
precisely the same profiles predicted by the restricted minimum enstrophy theory of Huang and
Driscoll [Phys. Rev. Lett. 72, 2187 (1994)]. These observations make possible the construction of
a comprehensive thermodynamic description of two-dimensional turbulence.

PACS number(s): 47.27.—i 05.20.—y

I. INTRODUCTION

The kinetic and field equations for the drift motion
of a pure-electron plasma column in a strong magnetic
field are isomorphic to the equations of motion of a two-
dimensional Euler fluid [1]. The density of the plasma
corresponds to the vorticity of the fluid and the elec-
trostatic potential corresponds to the stream function.
This observation has made it possible to use pure-electron
plasmas to study Euler turbulence in the laboratory [2].
Such experiments have followed the relaxation of Euler
turbulence through several identifiable stages [3]: An
initially hollow vorticity profile develops a linear dio-
chotron instability that saturates with the creation of
long-lived vortex patches. These patches move about
for hundreds of diochotron periods, shedding filiaments,
and eventually mixing and inwardly transporting. This
process gives rise to an axisymmetric metaequilibrium
state, whose density decreases monotonically with radius,
which then persists for tens of thousands of diochotron
periods. The eventual decay of this state is due only to
three-dimensional effects that destroy the idealization of
the two-dimensional Euler fluid [1,4].

The shape of the radial vorticity profile of the metae-
quilibrium state is an interesting and fundamental prob-
lem. One would expect that it could be described by a
variational principle, but the most natural principle of
this sort the maximization of the Boltzrnann entropy
under the constraints of constant mass, energy, and an-
gular momentum —has been found to yield profiles that
are substantially flatter than those observed in exper-
iments [4,5]. On the other hand, an alternative vari-
ational principle, in which the enstrophy (the integral
of the square of the vorticity) is minimized, has been
found to yield results in excellent agreement with ex-
periment [4,5]. To date, however, there has existed no
satisfactory theoretical explanation for this unusual vari-

ational principle.
In this paper we show that the failure of the Boltzmann

entropy to predict the radial density profile of the metae-
quilibrium state can be understood as but one example
of a systemic breakdown of Boltzmann-Gibbs statistics
for systems with long-range interactions, long-time mem-
ory [6], or fractal space-time structure [7]. Moreover, we
show that a recent generalization of statistics and ther-
modynamics due to Tsallis [8] is capable of explaining
this phenomenon much more naturally: The maximiza-
tion of the Tsallis entropy Sq, with q = —,leads to pre-
cisely the same profiles predicted by the restricted mini-
mum enstrophy theory of Huang and Driscoll [5] for the
pure-electron plasma. This observation makes it possi-
ble to develop a consistent thermodynamic description
of such systems and to associate this phenomenon with a
wide body of research on generalized statistics and ther-
modynamics.

The outline of this paper is as follows. In Sec. II we
describe the dynamical equations of the pure-electron
plasma column (or, equivalently, of the two-dimensional
Euler fluid), cast them in Hamiltonian format, and
present the constants of the motion. We also review the
experimental results for this system and describe pre-
vious attempts to explain the metaequilibrium density
profile by a variational principle. In Sec. III we describe
Tsallis's generalization of thermodynamics and in Sec. IV
we review the application of Tsallis's formalism to the
problem of stellar polytropes, which are static solutions
to the Poisson-Vlasov equations. This problem was con-
sidered by Plastino and Plastino [9], who applied Tsallis's
methods to a linear energy functional. Noting that the
energy functional of the Poisson-Vlasov system is, strictly
speaking, quadratic [10],we redo this analysis. Finally, in
Sec. V we return to the problem of the metaequilibrium
state of the pure-electron plasma and we show that Tsal-
lis's generalized thermodynamics may be used to explain
the observed density profiles.
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II. NON-NEUTRAL PLASMA PROFILES B. Hamiltonian structure

AND EULER TURBULENCE

A. Dynamical equations

Strongly magnetized pure-electron plasmas in "Pen-
ning traps" with cylindrical geometry and electrostatic
axial confinement have been studied for some time
now [2]. Such plasmas typically have a gyrofrequency
that is much greater than the bounce frequency, which in
turn is much greater than the drift frequency. That being
the case, we can average over the gyro and bounce time
scales, and describe the system by the two-dimensional
drift motion of guiding centers, perpendicular to the mag-
netic field.

Since the magnetic field is uniform, the dominant drift
mechanism is the E x B drift, given by

ExB
vExB c B2 )

where B is the applied magnetic field, E is the self-
consistent electric field, and c is the speed of light. Since
this drift velocity is independent of particle thermal ve-

locity, it is possible to project out the velocity degrees
of freedom in phase space and thereby write a Vlasov
equation directly for the guiding-center density n(r, t),

On(r, t)
0 = ' + vmxn Vn(r, t).

Ot

Writing E = —V4 and adopting dimensionless units
with a magnetic field of unit magnitude, this can be writ-
ten

0= ' +b [VC x Vn(r, t)], (1)
Ot

where b is a unit vector in the direction of the magnetic
field and we have used the vector "triple-product" iden-
tity. The self-consistent electrostatic potential is then
given by the Poisson equation

V 4 (r, t) = 4' en, (r, t),

where —e is the electronic charge. (Henceforth, we set
e =1.)

If we identify n as the vorticity and 4 as the stream
function, we note that these equations are isomorphic to
Euler s equations of inviscid fluid dynamics in two dimen-
sions. Likewise, Dirichlet boundary conditions, for which
the wall is an equipotential, correspond to the condition
that the normal velocity of the Euler fluid vanishes at
the wall. Indeed, simulations of pure-electron plasma
columns provide an important experimental tool for the
study of two-dimensional Euler turbulence. Henceforth,
in discussing the conservative dynamics of these systems,
we interchangibly refer to their physical embodiment as a
pure-electron plasma column or as two-dimensional Euler
turbulence. It should be noted, however, that the dissi-
pation mechanisms for these two systems may be quite
different; we shall return to this point later.

In spite of the fact that we have projected &om phase
space to configuration space, we note that the Vlasov
equation, Eq. (1), has a symplectic Hamiltonian form in
two dimensions. Specifically, taking the magnetic field in
the z direction, so that b = z, the Vlasov equation has
the form

On(r, t) On(r, t) OC'(r, t) On(r, t) O4(r, t)
Ot Ox Oy Oy Ox

= —[n(r, t), h(r, t)],

where the single-guiding-center Hamiltonian is

h(r, t) = —4(r, t),

and we have defined the corresponding Poisson bracket

Oa(r, t) Ob(r, t)
Ox Oy

Oa(r, t) Ob(r, t)
By 19x

so that x and y are canonically conjugate variables. The
configuration space can thus be regarded as a phase space
and the dynamics of the plasma are then a symplectomor-
phism in configuration space.

The corresponding Hamiltonian field structure is non-
canonical and Lie-Poisson in form [10]. That is, the equa-
tion of motion is

On(r, t)
(nr, t), H[n]),

where the field Lie-Poisson bracket of two functionals of
A ls

bA bB
)d, tt) = j dtr n)r, t)

and the field Hamiltonian functional is given by

H[n] = — d'r n(r, t) h(r, t)
2

1 2d r (rn, t)4(r, t)
2

d r n)r, t) f d r' n(r', t) G)r, r'),
2

(2)

where, in turn, G(r, r') denotes the Green's function of
the Poisson problem

V G(r, r') = 4vr8(r —r').

Zr)n] —= f d'r d(n(r, t)),

where g is any function of its argument. These Casimir
functionals commute with any other functional, including

The factor of -' in the Hamiltonian prevents double count-
ing of the energy.

The Lie-Poisson bracket admits the infinite set of
Casimir functionals [10],
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the Hamiltonian, and hence they are constants of the
motion. We may span the set of Casimir functionals with
analytic g by the set

indexed by the integers j & 1. The Casimir functional Z2
is of special importance; it is called the enstrophy, since
its analog for the Euler Quid is the integral of the square
of the vorticity. If we further suppose that the Penning
trap is cylindrically symmetric, with a grounded outer
wall, then the Hamiltonian is invariant under rotation
and time translation, so that the angular momentum

I,[n] = d r r n(r, t)

referred to as robust or rugged invariants, while the Z~
with j ) 2 are termed fragile or dissipated invariants [4).

It is tempting to try to derive the shape of the final
profile &om a variational principle. Most work has cen-
tered on maximizing the Boltzmann entropy, under the
condition that the robust invariants are fixed [12]. Using
the Boltzmann entropy, one can demand

0 = 8(S —nZi —PH —AL),

which yields the relationship

—1 —ln[n(r)] + PC (r) = n+ Ar

Taking the Laplacian of both sides, we arrive at an equa-
tion for the density profile

and the total energy H[n] are also good invariants.
—V' [ln n(r)] + 4z.pn(r) = 4A. (4)

C. Variational descriptions of the metaequilibrium
state

In spite of the elegance of this Hamiltonian structure,
both laboratory and numerical experiments indicate that
some of these theoretical invariants are broken, presum-
ably due to collisional effects that are, of course, ignored
in a Hamiltonian formulation. Such collisional effects are,
at least for the case of the pure-electron plasma column,
poorly understood at present. Moreover, as has been
noted, the details of such dissipation mechanisms for the
pure-electron plasma column and the Euler Quid may be
quite different, and both of these may be likewise different
&om that of any numerical simulation of these systems
(e.g. , a particle-in-cell simulation).

Stable equilibria, both axisymmetric and nonaxisym-
metric, have been observed for the pure-electron plasma
column [ll]. If the plasma is initialized with a hollow
density profile, however, the spatial gradients will ex-
cite diochotron (Kelvin-Helmholtz-like) instabilities on a
short time scale, which will, in turn, give rise to much
longer-lived vortex patches. As these patches move about
and collide, they shed filiaments of particles that erode
the vortex patches further, until a metaequilibrium state
with a characteristic profile shape is eventually reached.
This metaequilibrium state can persist for tens of thou-
sands of diochotron periods, until it is finally destroyed
by three-dimensional effects, which are outside the scope
of this paper [1,4]. Here we focus on the metaequilibria
of initially axisymmetric configurations.

In the course of the above-described evolution, the to-
tal mass Zi and the angular momentum I are well con-
served. The energy H is reasonably well conserved. The
enstrophy Z~ tends to decrease in more-or-less monotonic
fashion and other Casimir invariants, such as the Boltz-
mann entropy

S[a] = —J'S r n(r) ln [n[r)],

Unfortunately, the observed metaequilibrium density
profiles are significantly more peaked than the solutions
to this equation [4,5].

Matthaeus and Montgomery [13] have suggested that
turbulent relaxation follows a selective decay hypothesis,
according to which the approach to equilibrium is gov-
erned by the most slowly decaying &agile invariant. In
this case, because the enstrophy seems to be the most
slow'ly decaying of all the fragile invariants, it has been
proposed that non-neutral plasmas [5] and Euler turbu-
lence [14] tend to minimize enstrophy, rather than max-
imize the Boltzmann entropy, while still respecting the
robust invariants. Indeed, if we replace the above varia-
tional principle with

0 = h(Z2 —aZi —pH —AI),

then we are quickly led to the relationship

n(r) + PC(r) = a+ Ar . (5)

Taking the Laplacian of both sides, we arrive at the linear
Helmholtz equation for the density profile

V n(r) + 4zPn(r) = 4A.

The well behaved cylindrically symmetric solutions to
this equation are of the form

n(r) = v Jo ()sr) + ]]J,,

n(r) = v [Jo(wr) —Jo(e&o)] for 0 ( r & ro
0 forro&r&r

where Jo is the Bessel function and the constants p, v,
and r, which have replaced P, A, and the constant of in-
tegration, are fully determined by the constrained quan-
tities Zi, H, and I.

Because the solutions to the above variational problem
often predict a negative density near the wall, Huang and
Driscoll also introduced a restricted minimum enstrophy

(RME) model [5] in which the above profile is replaced
by the cutoff form

are badly broken. For this reason, Zi), I, and H are often where r is the wall radius (which, in dimensionless units,
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can be set to unity). The constant ro has replaced the
constant p; all three constants are still fully determined
by the three constraints. This form is justified only by the
observation that a negative density near the wall cannot
be physical and that nonmonotonic profiles are typically
subject to diochotron instabilities.

Huang and Driscoll then carefully compared [5] experi-
mental data for the pure-electron plasma column with the
profiles generated by Eqs. (4), (6), and (8). They found
that the data clearly ruled out the maximum Boltzmann
entropy profile of Eq. (4). The minimum enstrophy pro-
file of Eq. (6) was much better. Best of all was the RME
profile of Eq. (8). The experimental data were clearly
consistent with the truncated Bessel function profiles.

To date, a completely satisfactory explanation of this
tendency to minimize enstrophy, rather than maximize
entropy, does not exist. In the remainder of this paper,
we shall show that this phenomenon is consistent with a
generalization of thermodynamics and statistical physics
recently proposed by Tsallis [8]. Though this is still not
an explanation per se, it certainly makes possible the
association of this phenomenon with a much larger —and
growing —body of research.

III. GENERALIZED THERMODYNAMICS

Tsallis [8] has proposed a generalization of thermody-
namics and statistical physics to describe systems with
long-range interactions, or with long-time memory. For
a system with R' microscopic state probabilities p, & 0,
which are normalized according to

(9)

only by the most &equent events. The easiest way of
introducing this sort of inHuence bias into a statistical
physical description is to raise the corresponding proba-
bilities to a power q. Accordingly, systems with q ( 1
give more weight to rare events, while systems with q & 1
give more weight to frequent events [15].

We first note that in the limit as q approaches unity
we recover the familiar expressions

Si ———k) p; lnp;

and

whence we may identify k with Boltzmann's constant kg.
More generally, it has been noted [16] that k may be q-

dependent, and need only coincide with Boltzmann's con-
stant for q = 1; for the purposes of this paper, however,
we disregard that possibility and henceforth adopt units
so that k = k~ ——1. In any case, it is clear that Tsallis's
thermodynamics contain the more orthodox variety as a
special case.

The success of thermodynamics and statistical physics
depends crucially upon certain properties of the entropy
and energy, and much eKort has been devoted to show-

ing that many of these are valid for arbitrary q and to
finding appropriate generalizations of the rest. Following
Tsallis s presentation [17], it is straightforward to verify
the following properties.

Property 1. The generalized entropy is positive.

That is, we have Sq & 0, where equality holds for pure
states (2i, p; = 1) and for q ) 0.

Tsallis bases his formalism upon the following two ax-
ioms.

Property 2.
equiprobability.

The micr ocanonical ensemble has

Axiom 1. The entropy of the system is given by To see this, we extremize the generalized entropy un-
der the constraint of normalized probabilities Eq. (9).
Introducing the Lagrange multiplier A, we set

0= i Sq —A) p, = — p,
' —A.

a ( . q

where k and q are real constants.
Axiom 2. An experimental measurement of an ob-

servable 0, whose value in state i is o;, yields the q-
expectation value,

W

Oq ——) p,'. o,

It follows that

-P(1 )- i/(a —i)

of the observable O.

It is to be emphasized that these statements are taken
as axioms. As such, their validity is to be decided solely
by the conclusions to which they lead and ultimately
by comparison with experiment. From a more intuitive
standpoint, however, we note that the behavior of some
physical systems can be dominated by very rare events,
while that for other physical systems can be dominated

Since this is independent of i, imposition of the constraint
Eq. (9) immediately yields p; = 1/W.

Property 8. The entropy is concave for q ) 0 and
convex for q & 0.

This follows immediately Rom the Hessian matrix
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which is clearly negative (positive) definite for q ) 0

(q ( 0). Thus the generalized entropy is maximized for

q & 0 and minimized for q & 0.
Next, we consider the canonical ensemble. If we define

a state energy e;, so that the generalized internal energy
is given by

then we can extremize Sq under the constraint that prob-
ability is conserved and that the energy is fixed. We find
the following.

Property g. The canonical ensemble probability distri-
bution is

FIG. 1. Zqp(Ps) versus Pe for several values of q.

'
—,
' [1-(1- q) p.,]'~'-'

Pa =
& ifl —(1 —q)Ps, ) 0

, 0 otherwise,

where we have defined the generalized partition function

significantly, we note the following.

Property 5. The Legendre-transform structure of ther-
modynamics is invariant for all q.

To see this, we first note that

and the inverse temperature P = I/T.

(i2)
(z,'-q —I )

rlP
~

1 —q )
We note that, in the limit as q approaches unity, we re-
cover the familiar expressions

whence we identify the free energy

1 (z'-q —I)
P i 1 —q )

It is then possible to verify that

I'q ——Uq —TSq

and it follows that

For q g 1, we note that the absolute value of the energy
may matter —an additive constant in the energy spec-
trum can produce physical effects. Moreover, we note
that, for generic real values of q, the above expression
for p; must cut off to zero when 1 —(1 —q)Ps, ( 0.
This is because, in addition to the equality constraint
Eq. (10) that is enforced in the derivation of the canon-
ical ensemble distribution function, there are also the-
usually implicit —inequality constraints that p; p R and

p, & 0. These inequality constraints are not accorded
much attention in Boltzmann-Gibbs thermostatistics be-
cause they are manifestly satisfied by the distribution
Eq. (13). In the generalized thermostatistics, on the
other hand, their enforcement requires the truncation
specified in Eq. (11). When 1 —(1 —q)Pe'; ( 0, state i is
said to be thermally forbidden and it is excluded from the
sum defining the generalized partition function Eq. (12).
For a positive energy spectrum that is unbounded above
and assuming that p ) 0, this will happen for sufficiently
high e, if q ( 1. Thus, in this situation, the Tsallis dis-
tribution has a natural cutoff in energy for q ( 1. This
cutoff is illustrated for various values of q in Fig. 1. More

BSq 1

t9Uq T

As Tsallis points out [18], these equations lie at the very
heart of thermodynamics and the fact that they are in-
variant under q is significant. The grand canonical en-
semble has also been treated [19].

The most striking and significant differences between
the generalized thermodynamics and the more usual va-
riety have to do with the extensivity of the state vari-
ables. If we partition the microscopic states of the
system into two disjoint subsets I = (1, . . . , V) and
B = (V + 1, . . . , W), with respective probabilities

and

then it is straightforward to verify the following.
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Property 6. The generalized entropy obeys the follow-

ing generalization of the Shannon additivity property:

(pi pvl
Sq(pl) ~ pw) = pLSq

i,PL PL )
q S ~f

pv+i
( pR

+S (pL, pR).

pwca

pz)

Alternatively, we can consider the total entropy of two
completely independent subsystems A and B. Since the
subsystems are independent, the probability that their
union A U B has subsystem A in state i and subsystem
B in state j is given by

AuB A B
u t 2

After a bit of algebra, we And the following.

Property 7. The generahzed entropy obeys the addi-
tivity rule

IV. STELLAR PQLYTROPES

A. Hydrostatic equilibria

One of the first problems to which Tsallis's thermo-
dynamics was applied [9] was that of stellar polytropes,
first studied by Kelvin [27] and treated in detail by Chan-
drasekhar [28). Because stellar polytropes are equilibria
of the Poisson-Vlasov equations, they are highly relevant
to the present study. Therefore, in this section, we shall
review the previous application of Tsallis's formalism to
this problem by Plastino and Plastino [9]. We note that
they used a energy functional that was linear in the distri-
bution function, whereas the full Poisson-Vlasov energy
functional is quadratic. In this treatment, we use the full
quadratic functional and compare our analysis to theirs.
One of the side benefits of this treatment is that it shows
the extension of Tsallis's second axiom to observables
that are quadratic functionals of the distribution.

A polytropic process has the equation of state

P =Kp~,

Sq(A LI B) = Sq(A) + Sq(B) + (1 —q) Sq(A) Sq(B),

and is thus superadditive (entropy of whole is greater
than the sum of its parts) for q ( 1 and subadditive for
q) 1.

Likewise, we find the following.

Property 8. The generalized expectation value of an
observable 0 obeys the additivity rule

where P is the pressure, p is the density, and p is a con-
stant that can be related to the specific heats. If 4(r)
denotes the gravitational potential, then the hydrostatic
equilibrium is given by

0 = —VP —pV'4.

It follows that

0=V/ p~ + C'/.p —1

0 (A LI B) = 0 (A) + 0 (B)

+(1 —q) [0,(A)S, (B) + 0,(B)Sq(A)].

Note that, in both cases, extensivity is recovered only
when q = 1.

It is believed —but not proven at the time of this
writing —that the Tsallis entropy is the only one for
which all of the above properties hold. Moreover, gen-
eralized versions of the Boltzmann H theorem [20],
fluctuation-dissipation theorem [21], and Onsager reci-
procity theorem [22] exist for all q. The formalism is
thus an important generalization of most of the principal
results of thermodynamics and statistical physics.

Of course, to verify that this generalization is useful,
it is necessary to show that it holds' for certain phys-
ical systems with values of q that are difFerent from
unity. In the past two years, much work has been done
along these lines and the method has been applied with
great benefit to astrophysical problems such as stellar
polytropes [9], Levy flights [23], the specific heat of the
hydrogen atom [24], and numerous other physical sys-
tems [25,26]. For some of these systems, strict inequal-
ities have been proven, demonstrating that q must be
difFerent from unity in order to obtain a consistent ther-
modynamic description [9].

We now seek solutions with compact support in domain
D. If we require that the density p vanish on the bound-
ary 027, then we must have the following relationship
between p and 4:

@(o)
Kp

where C~ ~ is the potential on the boundary. The non-
linear Poisson equation for the gravitational potential is
then

(14)

where 4' = 4~ ~ —4' and C is a constant. The boundary
condition is that 4' = 0 on O'V. This equation has, for ex-
ample, spherically symmetric solutions, corresponding to
compact spherical configurations of self-gravitating mass,
which are called stellar polytropes.

B. Kinetic equilibria

As an alternative to the above hydrodynamic descrip-
tion, we can seek polytropic equilibria of the Vlasov
equation for the mass distribution function f (z, t), where
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z = (r, v) coordinatizes the phase space of the system.
As is well known, the equilibria of the Vlasov equations
are functions of the constants of the motion. We denote
the (negative of the) total energy by

f(z)—:0 (r) ——v,m 2

2

so that a marginally confined particle on O'V with zero
velocity has E' = 0 and a confined particle has f ) 0.
Noting that any function of E' is a solution of the Vlasov
equation, we examine solutions of the form

(v'
U, [f] = dz f~(z)

i

—+C(r) i.

In fact, they used M~ and Ui in their work because this
was before Tsallis had advanced his second axiom about
expectation values. This issue was subsequently rectified
in a paper by Nobre and Tsallis [29], and we present only
the corrected version here.

Introducing Lagrange multipliers, the variational prob-
lem

where 0 is a constant. The mass density of a spherically
symmetric confi.guration is then given by yields the equilibrium distribution

p(r) = dz' f(z')b(r —r')

d'v' f(r, v')

f(z) = q 1 —(q —1)n

/2e 2 n —3/2

dv 4~v @(r) ——2 v

2

The integral gives rise to a P function, which can be
expressed in terms of p functions to finally yield

~l(i-~)

+(q —1)PZ(z)

Comparing this to Eq. (14), we can identify

or

1p= 1+ —.
n

For this to be a power law in E, we select n so that 1—(q—
1)(n+ P@ioi) = 0, so we can write f(z) = Df ~i ~)(z),
where D is a constant. The density measured at a point
r is then given by the q-expectation value of the spatial
b function,

p~(r) = dz' f~(z')h(r —r') = D d v' 8 ~~ ~ (r, v').

C. Variational principle
with a linear energy functional

We see that this corresponds to Eq. (15) if we identify
n —

—,
' = q/(1 —q) or

Note that the stellar polytropes comprise a one-
parameter family of equilibria, where the parameter is

p (or, equivalently, n). We now examine the question of
whether or not these polytropic equilibria are thermody-
namically stable, in the sense that they can be obtained
&om an entropic variational principle, and, if so, for what
values of the parameter p (or n) this is possible.

Plastino and Plastino have addressed this question [9]
by extremizing Tsallis's entropy for this problem

dz [f(z) —f'(z)]

under the constraints of fixed mass and energy expecta-
tion values

3n= —+
2 1 —q

As pointed out by Plastino and Plastino [9], it is known
that n must exceed -' in order to avoid the singularity
in the p function in Eq. (16), but that values in excess
of 5 give rise to unnormalizable mass distributions and
are therefore unphysical. This means that q 6 (—oo, ~).
Thus stellar polytropes cannot be described thermody-
namically unless q values less than — are used Finally,
note that the aforementioned cutoff of the distribution
with energy —a generic feature of Tsallis distributions
with q ( 1—naturally gives rise to the spatial cutoff of
the mass distribution and hence the compact nature of
the stellar polytrope.
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D. Variational principle
with a quadratic energy functional

the nonlinear Poisson equation for the gravitational po-
tential

Note that the energy functional in Eq. (17) was re-
garded as linear in fq(z) in the above analysis. Specifi-
cally, in deriving Eq. (18), we wrote the functional deriva-
tive of Uq with respect to f (z) as

bUq z v

8f(z) 2
' =qf' '(z) —+4'(r) .

Strictly speaking, this is not correct because the potential
4(r) depends on f(z) and we did not account for this
in the above variation. This is precisely the problem
of self-consistency of the field —a crucial feature of the
Poisson-Vlasov system [10]. To correct this problem, it
is best to write the energy as a quadratic functional of the
distribution, just as in Eq. (2) only now q-expectation
values should be used throughout. Thus

V2
dz fq(z)—

2

+— dz fq(z) dz' fq(z')G(r, r'),

V'4q = —CC,"

is now satisfied by 4q rather than by tIJ&.

This exercise might be dismissed as demonstrating
little more than the fact that the potential used in
Sec. IV C should be interpreted as the q-expectation value
of the Green's function rather than as the usual one.
This objection notwithstanding, the derivation using the
quadratic energy functional has the following virtues.

(i) It more clearly shows that the conclusions reached
by this method are valid for the system of particles in
their own self-consistent field.

(ii) It demonstrates that Tsallis's second axiom ex-
tends in a natural way to quadratic functionals of dis-
tributions.

(iii) It yields the natural generalization of the potential
and the density and shows that the form of Poisson's
equation, Eq. (20), relating them is q invariant.

(iv) It is generally more consistent with the flavor and
spirit of Tsallis's formalism than previous derivations.

where the superscript Q denotes quadratic, the factor of
-' in front of the potential prevents double counting of the
energy, and G(r, r') is the Green's function for Poisson's
equation which satisfies

V. GENERALIZED THERMODYNAMIC
DESCRIPTION OF PURE-ELECTRON PLASMA

DRIFT TURBULENCE

V' G(r, r') = 4vrb(r —r').

Note that the functional derivative of U with respect to
f (z) is now

where we have defi.ned

dr(r) = f dz' f ( r) z(rG, r'),

which in turn satisfies

'(7'Cq(r) = 4~pq(r).

We now return to the problem of deriving the metae-
quilibrium profiles of relaxed drift turbulence of the pure-
electron plasma column. We redo the calculation of
Sec. IIC, using the Tsallis prescriptions for the entropy
and the robustly conserved quantities. The entropy is
thus

Sr[rz] = f d'r [rr(r) —rrr(r)[

and the constraints, expressed in terms of q-expectation
values, are

Zq[n] = — d r nq(r),
q

The variational principle thus results in an equation
very similar to Eq. (18), except with 8 replaced by

V2
E, —:4, ( ) ——,2'

and

H []=——rfrzd'r rrr(r) f d'r' n (r')ar(r, r'),

where in turn

4 (r)—:4'~ ~ —4' (r).
Setting

Ir[rr] = f d r r rrr(r).

The resulting expression for p is then a power law in 4q,
rather than in O'. We still conclude that h (Sq —nZq —PHq —ALq) = 0,

3n= —+
2 1 —q

and so the upper bound on q of 7 still holds. Note that

we find

n' q(r) —q

q(q —1)
+P4'q(r) = n+ Ar, (20)
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where

C (r)—: d r' n~(r')G(r, r')

VI. GENERALIZED THERMODYNAMIC
DESCRIPTION OF EULER TURBULENCE

satisfies

V' @q(r) = 4am~(r). (21)

Applying the Laplacian to Eq. (21), we obtain the non-
linear Helmholtz equation

1 n' ~(r) +47rpn~(r) = 4A.
q(q —1)

p~(r) = d r' n~(r')b(r —r') = n~(r).

Now, the observed particle density pz (r), i.e. , that
which is measured in any experiment, is then the q-

expectation value of the b function

As has been noted, the dissipation mechanisms of tur-
bulence in the pure-electron plasma and the Euler fluid
may be quite different. Having established that Huang
and Driscoll's results are consistent with q = -' for the
pure-electron plasma, it is interesting to inquire whether
a similar result holds for the Euler fluid.

A partial answer to this question may be found in the
work of Sommeria et al. [30], who have studied the de-
cay of turbulence in the two-dimensional incompressible
Navier-Stokes fluid (Euler fluid with viscous dissipation)
by numerical simulation with a pseudospectral method.
Since the boundary conditions used in this study were
not cylindrically symmetric, the constraint of constant
angular momentum can be discarded; this is most easily
done by setting A = 0 in the analysis of the preceding
section. Equation (24) then indicates the following rela-
tionship betwen the vorticity and the stream function:

In terms of this, Eqs. (20)—(22) can be written p. ~ &(@"—@.)'" ' (24)

(~—~)/~ r~
+ pC~(r) = n+ Ar,

q(q —1)

V' Cq(r) = 4vrpq(r),

1 V' p,
' ' '(r) +4vrppq(r) = 4A.

q(q —1)

(23)

with a cutofI' at @q = @qo. Indeed, Fig. 8 in the paper of
Sommeria et al. [30], which plots vorticity versus stream
function at the longest times reported, clearly indicates a
cutofJ of p~ (denoted by ~ in that reference). Moreover,
the concavity of the curves near the cutofI' indicates that( q & 1. While better measurements are needed to
determine this value more accurately, it is clear that the
generalized thermostatistics provide a much more natural
description of this system than those of Boltzmann and
Gibbs.

As q ~ 1, it is seen that this reproduces the results of the
maximum Boltzmann entropy relationship, Eqs. (3) and
(4). When q = -', on the other hand, we see that, within
trivial redefinitions of the Lagrange multipliers and the
use of 4~~2 instead of C, this reproduces the results ob-
tained by minimizing the enstrophy, Eqs. (5) and (6), but
for a completely different reason Moreover, jus. t as in the
example of the stellar polytrope, the cutofF in density at
a finite radius ro appears as a completely natural and
generic feature of the Tsallis distribution, since q ( 1,
and does not need ad hoc justification Thus we conc.lude
that all prior observations that have indicated that the
relaxation of two-dimensional pure-electron plasma drift
turbulence tends to follow the RME principle of Huang
and Driscoll can now be reinterpreted as rather indicat-
ing that it maximizes the Tsallis entropy Sq for q = —.

We note in passing that there is an easier way to ob-
tain the result that q = -'. Without going through this
analysis, we note that the enstrophy itself looks rather
like (a linear function of) the Tsallis entropy with q = 2.
Of course, this is misleading because it is necessary to use
q-expectation values in the extremization process. Nev-
ertheless, Nobre and Tsallis [29] have shown that one
result of not using q-expectation values in the extrem-
ization process is to effect the transformation q —+ 1/q.
Hence we are again led immediately to the result q = —'
for this system.

VII. CONCLUSIONS

The tendency of a pure-electron plasma column to min-
imize enstrophy, rather than maximize the Boltzmann
entropy, during turbulent relaxation to a metaequilib-
rium state has resisted theoretical explanation to date.
In this work, we have shown that density profiles re-
sulting from the restricted minimum enstrophy theory
of Huang and Driscoll also maximize the Tsallis entropy
Sq with q = —,'. We have also noted that the studies of
the Euler fluid by Sommeria et al. are consistent with( q ( 1. We have thereby provided an alternative
way to understand this phenomenon one in which the
density (vorticity) cutoff at finite radius emerges quite
naturally —and to build a consistent thermodynamical
and statistical physical explanation for it. In the course
of doing this, we have verified Plastino and Plastino's
upper bound of — on q for the stellar polytrope prob-
lem using the full quadratic energy functional for the
Poisson-Vlasov system; we have also demonstrated the
q invariance of the Poisson equation for these systems.

While still short of a first-principles explanation of the
RME model it would be nice, for example, to have an
a priori way of knowing tohy q should be equal to -' for
the pure-electron plasma column —the observation that
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RME is consistent with Tsallis statistics does effectively
associate it with a large and rapidly expanding body of
theory [31]. In recent years, generalized thermodynam-
ics has been used to describe numerous, widely disparate
physical systems, with long-range interactions, long-time
(non-Markovian) memory, or fractal space-time struc-
ture, that have resisted previous attempts at a thermo-
dynamic description. It is hoped that this observation
will stimulate further research in the use of generalized
thermodynamics to describe Quid turbulence.
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