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We use exact enumeration and series analysis methods to study how restricting the degree of branching of
lattice trees and animals affects their growth constants. In addition to trees with only nearest neighbor steps, we
enumerate trees involving next nearest neighbor steps on the triangular and square lattices, allowing us to study
the influence of lattice coordination number on the growth constant. We also study the asymptotics of the
number of subtrees of the Bethe lattice with the same branching restrictions as above and compare the results
with those for lattice tree$S1063-651X96)10505-5

PACS numbsdss): 05.50+q

I. INTRODUCTION N vertices or bonds, is conjectured to be

N 7)—1
The configurational properties of linear polymers in dilute C(m)~ N7, @

solution in a good solvent are now well underst¢afl Self- . .

- : ! where i is independent of the topology under a wide range
avoiding walks are a simple model of linear polymers and " .
have been important in developing our current level of un-Of conditions|9] and scaling theory arguments suggest that

- P ping the exponenty(7) may be written in terms of the exponents
derstandindg2]. Branched polymers are less well understood

X . L for f stars[8].

although there is considerable recent work in this &Bed). . . .
Experimentally branched polymers can be formed when a Lattlceltrees are perhaps the simplest model for Wh.'Ch the
large number of polyfunctional monomers re&8t. There exponential rate of grovyth of the number of embeddings is
are two important lattice models for studying branched pon—Iargzzi tehar\],v;%r ;:elf'\?gg;d;r}gbvgﬂssér;hiaﬂz;n?:é ;f orooted
mers. These are lattice trees and lattice animals. Each gf?th N.v.értices i thought to increase as 00,
these is a connected cluster of vertices of a lattice, but with/ 9
different technical restrictions. A lattice animal can have tn=AANNLI (1 +BN "2+ . ), )

cycles, so that an edge can be deleted without disconnecting

the animal, while a lattice tree has no cycles so that everyth ) ,>u. As N increases more topologigaomeomor-
edge is a cut edge. _This means that upon deleting any ed%ism types can occur and this is responsible for the in-
the tree becomes disconnected. There are at least two V&dreased exponential growth rate. However, the relationship
sions of each of these models. A tressisongly embeddable petween the value of the growth constaxg) and the rate at

if every pair of vertices in the tree that are a unit distanceyhich new topologies appear is not well understood. The
apart in the lattice have an edge of the tree joining themy,ork reported here is an empirical study of this problem in
That is, a strongly embeddable tree is a connected sectiqghich the rate of appearance of new topologies is limited by
graph of the lattice, having no cycles. If two vertices, a unityestrictions placed on the branch vertices. In this sense, the
distance apart, are not necessarily joined by an edge then trb@esem work is complementary to the work#, where the
tree isweakly embeddableThat is, a weakly embeddable appearance of topologies is controlled by a fugacity.

tree is a connected subgraph of the lattice, having no cycles. renormalization group arguments suggest that lattice
S_tro_ngly and weakly embeddable animals are defined in §ees and animals are in the same universality Ja8s11].
similar way. Thus, for animals and trees, the numbgrof rooted clusters

Lattice trees also appear in a related problggtanar  \yith N elements is expected to behave asymptotically as
vesicles discussed in more detail ii7]. Planar vesicles are

closed self-avoiding walks or polygons embedded in a two- ay=AANNI91+BN2+...). 3
dimensional plane and subject to a pressure differential be-
tween the interior and the exterior. When the external presThis generalizes Eq2). \ is the growth constant is the
sure is much larger than the interior one, and the rigidity ofscaling exponent, and the correction-to-scaling exponent.
the vesicle is small, the system is found to exhibitelike = The growth constant is dependent on the lattice, and also on
configurations, i.e., the object dual to the planar vesicle hathe restrictions imposed on the degree of branching of a ver-
few large cycles. tex. In addition\ is different for trees and animald2],
From the point of view of critical phenomena, problems different for strong and weak embeddinds3], and, in the
with fixed topology(i.e., fixed homeomorphism tyjpesuch  case of animals, depends on whether the animal is counted
as self-avoiding walks, stars, combs, ¢8&,9], are relatively by vertices or bond§14]. However, the exponer is be-
well understood. In particular, for a given fixed topology lieved to be universdll5] and equal to 1 in two dimensions
the asymptotic behavior of the number of embeddings, witkand to 3/2 in three dimensions.
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In a reaction to synthesize branched polymers, the monahe restriction is relaxed from=<5 tov <6, and so allowing
mers have a maximum value for their functionality, so thatbranchings withy>6 is not likely to change our conclusions
no monomer can be directly connected to more thanusay noticeably.
other monomers. Similarly, steric hindrance can effectively We have enumerated rooted trees on the sq, tr, sc, bcc,
limit the maximum number of monomers to which a given and fcc lattices using the Martin algorithi®2]. Note that on
monomer can be directly connectJ16]. These effects can the triangular lattice, in addition to trees involving the usual
be modeled by imposing a restriction on the maximum va-nearest neighbor steps, we have enumerated trees that in-
lence of a vertex of a tree or animal. Here, the valence ( clude next nearest neighb@mn) steps. In the case of the sq
(or functionality or degree of branching of a vertdg the lattice, only the nnn case was considered, since in the nearest
number of bonds incident on a vertex. One can investigateeighbor case=uv =4 and the number of possible va-
both the effect of changing this maximum valence and alsdence restrictions is too small to provide a meaningful com-
changing the lattice coordination number. In this work, ourparison. In most cases, the number of terms in the series was
primary aim is to study the detailed effects of valence restricless than 15, owing to computational limitations. The series
tions and lattice coordination numberon growth constants corresponding to the larger coordination numbers were espe-
for trees on lattices including Bethe lattices. As pointed outcially short: in fact, for fcc and trnnn witk=12, we were
in [17], the dependence of growth constants on the latticable to obtain only 11 terms. Copies of the series coefficients
coordination number is of fundamental interest in trying toare available from the authors upon request. As mentioned
understand the relationship between geometrical structurearlier, the animal series used in this work were taken from
and critical phenomena. In addition, polymers containingpublished sourcegl9-21l.
vertices of high functionality can be synthesized and are of The series were studied using standard methods of analy-
considerable interest. In this context, stars on lattices withsis including Neville table extrapolation, D-Log Pade-
high coordination number have previously been stuglie]. proximation, and the Baker-Hunter methi®8]. In addition

We consider bond tredge., weak embedding®n square to the abovedirect analysis, we have also used a method
(sg), triangular(tr), simple cubic(sc), body-centered cubic based on the ratios of coefficients of each restricted series
(bco), and face-centered cubifcc) lattices. In order to ob- and an appropriate reference series. For a given lattice, the
tain larger coordination numbers in two dimensions, we genseries withv <6 has been used as the reference series in each
erate series of trees that include next nearest neiginmo)  case. To demonstrate the advantages of this approach, con-
steps on sq and tr lattic¢$7], and from now on these series sider the generating function of the series of ratios of coef-
will be denoted sgnnn and trnnn. For the sq lattice thisficients, namely,
amounts to increasingfrom 4 to 8, and, for the tr lattice, the

increase is from 6 to 12. In addition to the above, we also _ n

study existing series for strongly embeddable animals on the g(x)—n; ra(v) X )
triangular[19], simple cubic[20], and body-centered cubic

[21] lattices. Herer,=r,(v=<6) is the nth coefficient of the reference

The rest of the paper is organized as follows: In the nexteries, and,(v) is thenth coefficient of one of the restricted
section, we discuss rooted lattice trees in two and three diseries using the same lattice. Substitution of E).imme-
mensions under various branching restrictions, and estimaigiately yields(to lowest order
\ in each case by means of standard methods of series analy-
sis. In addition to studying the original serigsee Eq.(4)
below] in each case, we also performaaatio of coefficients 9(x)~ 2
analysis with some interesting consequences. In Sec. lll, the

asymptotic analysis of trees on Bethe lattices is discussegyhere the dependence @rhas canceled ouk.(v) and\ are
Finally, in Sec. IV, we present an overall discussion and ghe restricted and reference growth constants, respectively.

AX \"

N(v)

ax |71t
) , (6)

o

n=0

summary of our results. The critical point ofg(x) is located ak.=\(v)/\. Because
of the simple pole structurgy(x) is amenable to a straight-
Il. LATTICE TREES WITH RESTRICTED BRANCHING fobrward Padanalysis, in addition to all of the methods cited
above.

Consider the generating function of the rooted tree series The results of thalirect analysis of the series are shown
in Tables | and Il. The values shown are overall estimates
consistent with the Parisi-Sourl§$5] predictions foré in

G(x)= 2 ra(v)x", (4)  two and three dimensions. While the shortness of the series

n=1 does not seem to affect the accuracy of our results for
v<6, 5, 4, and Ishown in Table ), this is not the case for

where we have suppressed thelependence. In this equa- v=4, 5, and §Table Il). For the latter group, the number of
tion, r,(v) is the number of trees witim vertices, andv trees for a given number of verticeg(v) is relatively small.
refers to the restriction imposed on the valence of the brancNow, it is important to note that,(v) includes the number
points. In our work, we impose only the following restric- of walks as well as the number of trees. Since the asymptotic
tions on the valencev( of the branch pointsv=3, v=4, behavior of the number of walks is quite different from that
v=>5,v="6,v=<4,v=<5, andv<6 for all lattices including of trees(in that both\ and ¢ are different, it is not surpris-
those withz>6. The reason, as will be demonstrated later, ising that in these cases our analysis is not very accurate. That
that the growth constant does not change noticeably wheis, the self-avoiding walk contribution to these low order
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TABLE I. Estimates of the growth constant for lattice trees

and animals fow <6, 5, 4, andv <3.
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TABLE lll. Estimates of the ratiaj(v)=N/\(v) for trees and
animals using the method of ratios of coefficients.

z v=<6 v<5 v=<4 v=<3 z q(v=<5) q (vs=4) q (vs<3)
Trees Trees

fcc 12 23.585 23.575 23.4 215 fcc 12 1.009 1.009 1.085
+0.020 +0.010 +0.2 +0.8 +0.005 +0.005 +0.010

bcc 8 15.17 15.160 15.10 13.7 bcc 8 1.0005 1.014 1.08
+0.01 +0.006 +0.05 +0.4 +0.0005 +0.008 +0.01

sC 6 10.549 10.550 10.504 9.95 sc 6 1.0002 1.0047 1.065
+0.002 +0.002 +0.005 +0.05 +0.0001 +0.0003 +0.004

trnnn 12 21.19 21.166 21.00 19.735 trnnn 12 1.005 1.010 1.07
+0.02 +0.020 +0.03 +0.011 +0.005 +0.005 +0.02

sgnnn 8 12.4290 12.4246 12.3655 11.737 sqgnnn 8 1.0003 1.0050 1.060
+0.0006 +0.008 +0.0006 +0.007 +0.0003 +0.0005 +0.002

tr 6 8.396 8.396 8.374 8.06 tr 6 1.0001 1.002 1.044
+0.007 +0.007 +0.004 +0.05 +0.0001 +0.001 +0.002

Animals Animals

bcc 8 11.161 11.142 10.9685 10.5 bcc 8 1.0004 1.009 1.08
+0.007 +0.007 +0.0015 +0.1 +0.0002 +0.001 +0.01

scC 6 8.343 8.340 8.265 7.8 sC 6 1.00015 1.005 1.06
+0.001 +0.007 +0.010 +0.5 +0.00010 +0.001 +0.01

tr 6 5.183 5.181 5.1 4.7 tr 6 1.0005 1.0007 1.075
+0.001 +0.003 +0.3 +0.2 +0.0005 +0.0005 +0.005

terms is still large, and new topologies appear relativelyy <6 are not distinguishable, given the limited length of the
slowly because of the restrictions; we therefore expect theeries used in the analysis. It is then reasonable to suppose
analysis to be affected by crossover effects. In particular, théhat relaxing the branching restriction any further, say to
Baker-Hunter method was not successful in the analysis af <7, even on a lattice wita= 12, is unlikely to produce any
v=>5 and trees, and the values quoted in Table Il are largeljncrease in\ detectable by series analysis. However, pattern
based on Neville table extrapolation and D-Log Pawkth-  theorem arguments similar to those used1i8] show rigor-

ods. It is also worth noting that, in almost all cases, workingously thatA(v<z)>\(v=<z—1). For a given valence re-
with the first and second moments of the series rather thastriction, a plot of \ againstz approximately follows a

the zeroth moment was found to improve considerably thestraight line with only slight scatter in both two and three

precision of the results of the D-Log Paded the Baker-
Hunter analyses.

It is seen from Tables | and Il that in all casesseems
(almos} to saturate once the least restrictive branching,

dimensions.

The results from the ratio of coefficients analysis are
shown in Tables 1l and IV. Note that the ratios
g(v)=N\/\(v), where A=\(v<6), depend much more

v=<86, is reached. In fact, the values af for v<5 and strongly on the valence restrictions than on the lattice. In-

TABLE II. Estimates of the growth constant of lattice trees
forv=3, 4, 5, and 6.

TABLE IV. Estimates ofq(v)=\/\(v) for lattice trees using
ratios of coefficients.

z v=3 v=4 v=>5 v="6 z qg(v=3) qgq@w=4) q@w=5) q@=6)
fcc 12 215 17.3 14 12 fcc 12 1.085 1.37 1.80 1.94
+0.8 +0.1 +1 +1 +0.010 +0.05 +0.15 +0.06
bcc 8 13.7 11.3 9 8.2 bcc 8 1.08 1.38 1.6 1.9
+0.4 +0.3 +2 +0.7 +0.01 +0.05 +0.1 +0.1
sC 6 9.95 7.7 7.45 5.25 sc 6 1.065 1.35 15 2.00
+0.05 +0.1 +0.30 +0.80 +0.004 +0.01 +0.1 +0.06
trnnn 12 19.735 15.7 14 10 trnnn 12 1.07 1.35 1.6 1.9
+0.011 +0.7 +1 +1 +0.02 +0.02 +0.1 +0.1
sqnnn 8 11.737 9.3 7.8 6.8 sgnnn 8 1.060 1.35 15 1.87
+0.007 +0.3 +0.3 *+0.5 +0.002 +0.02 +0.1 +0.03
tr 6 8.06 6.20 5.2 455 tr 6 1.044 1.36 1.57 1.85
+0.05 +0.05 +0.1 +0.01 +0.002 +0.01 +0.06 +0.05
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TABLE V. Estimates ofA (v) andq(v)=N/\(v) for free trees.  infinite uniform Cayley tree rooted at a distinguished vertex
labeled the origin. Initially we focus on subtrees of the Bethe
A(v) a(v) lattice planted at the root of the lattice, with the first bond
specified. We refer to these as planted subtrees. In this sec-

Zzg nglgi 8:8(1)4 1.01080.0006 tion we show that thg generating function for planted su.b—
-4 2 81+0.01 1.0466-0.035 trees of the Bethe lattice determines the generating function
v : ' ' ' for rooted subtrees of the Bethe lattice. Furthermore, the
v<3 2.480-0.005 1.18%0.005 number of rooted subtrees for the Bethe lattice of coordina-
v=4 2.20:0.01 1.341-0.001 tion numberz is an upper bound for the corresponding num-
v= 2.0ac0.05 1.510.06 bers of rooted trees on regular lattices, embeddablg%jn
v=6 1.85-0.06 1.555-0.020 with coordination numbez. For convenience, in the remain-

der of this section the term regular lattice will imply em-

deed, the ratios are almost independent of the lattice chosebrgaddable iR . . S
' We denote the rooted Bethe lattice with coordination

and also, within error t_)ounds, independent of whether th%umberz by .7,. Define P.(v) to be the number of
clusters are trees or animals.

As a means of testing our series analysis methods, eszi_—vertex planted subtrees of, whereu refers to the restric-

cially the Baker-Hunter method, we have also studied®" imposed on the valences of the vertices as in Sec. Il.
planted free treegi.e., abstract trees, with no reference to Rote tthaé P?év):(r)ﬁbprl(vfzi/or’t imrd I:Zév):b%r' DeI;le
their embeddingswith the same branching restrictions as for( ”(Ut)do t?h € 'U')W E oh-ve fe ?Oteh su t_e?_s 2

the lattice trees. The terplanted treerefers to trees that are rooc(ej a th e olr Iginw efrttahv re et.r3 0 We rng‘ ”r? Iontl’:mt-th
rooted at a vertex of degree one. We obtain exact results fdposed on the valences of the vertices. Yve will show that the

the numberdy of planted free trees containing vertices asymptotic behavior of eitheR, or P, is analogous to that
using recursion relations derived from Polya the@ge[24] of lattice treedsee Eq(3)]:

for a more detailed discussibrThe resulting recursion rela- R ~P.~\"n~@ @)
tions obeyed byty are easily solved using Maple. Series noon '

expansions foty may be obtained to any desired order in where the exponent equals 3/2, and\ depends on the
this way. The asymptotic behavior §§ is analogous to that valence restriction imposed.

of lattice treegsee Eq(2)]: We first show that the numbers of planted and rooted
NKi— subtrees of the Bethe lattice with coordination numbere
I AN, (7) upper bounds on the corresponding numbers on a regular

lattice with the same coordination number. Given any regular
lattice with coordination numbeg, just as we defined
r,(v) in Sec. Il to be the number af-vertex rooted lattice
frees with vertex valences restricted according tave now

where the exponent equals 1/2, and\ depends on the
valence restriction imposed.
The free tree series were analyzed using the methods d

ordor to make a fair comparieon wih i Iatics (s resuts STNEP(v) to be the corresponding number of planted Iat
P tice trees. For each vertex of the regular lattice we can define

In all cases, the second moment series seems to yield the b%sginglein bondin z ways and then for each in bond of the

rBeleJ Itrshaitb?meﬂ(]) ué fb yihSe 4v;1lge f;}eft:la?:terd f_r%m :]Ze vertex we can define a unique ordering of the remaining
axer-runter method lar=s,2,9,5 an@ = 4. Forv=- a 1 out bonds For each vertexXexcept the rogton the

6, however, the convergence of the Baker-Hunter m'Ethoéooted Bethe lattice there is a unique in bond, i.e., the bond
and the D-Log Paden_ethods was poor. The resglts, how- connecting that vertex to the root, and we can fix an ordering
ever, showed marked improvement when the series were el the remaining—1 out bonds. Since for every vertéax-
lar%’i?)l?\?%its(;rlgn;s' our results. It is seen that Ms shown cept _the rpcjtin a rooted subtree of a regular Iattice.there is

: . i a unique in bondi.e., the bond of the tree connecting that
compare favorably with the following exact valugt): vertex to the rogt one can define an injection from the set of
rooted subtrees of a regular lattice with coordination number
z to the set of rooted subtrees of, using the out-bond
orderings specified above for each lattice. Hence

A(unrestrictegl=2.9558,

Nv<4)=2.815,

r <R 9

M(v=<3)=2.4833. n(v)=Ralv) ©)
and

lil. TREES ON BETHE LATTICES
Pn(v)=<Pn(v). (10

In the preceding section, we discussed the behavior of the
growth constant for rooted trees embedded in different lat- Let P(x)=P®3(x)==7_P,(v)x" be the ordinary gen-
tices in two and three dimensions. In an attempt to separaterating function for the sequenceBf(v)’s. Let S be the set
the influence of the branching restrictions from those of theof possible numbers of children for a vertex under the branch
lattice and the dimension of the space in which it is embedpoint restrictionv. We can derive a functional equation for
ded, we now consider trees in a Bethe lattice with the saméhe generating functiorP(x) by constructing a recurrence
valence restrictions as before. A rooted Bethe lattice is amelation for the sequence &f,’s as follows. Start with any
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n-vertex planted subtree of, for n=3. First remove from S (i 1)(2_ 1

the subtree the roat, and its adjacent vertex,; (and all =5 j
bonds of the subtree incident on either of these verntidtie

are then left withj rooted trees wherg is the number of  Gjyen valence restriction with corresponding se$, such
children ofv (1<j<z—1,j € S) and the roots of these rees 51 1c S, there is a corresponding homeomorphically irre-

are the %h"ﬁrer.]”%bl' Nowhwe can add ﬁ new b?nd ar?d ducible case with corresponding ses=S—{1}. We note
vertex(which will become the new ropto the root of eac that the termj =1 does not contribute to the left-hand side of

of these trees to ob'_(alnpl_antegl subtrees of,. Letm; be Eq. (15 so s is the same for bothv and . Hence
the number of vertices in théth planted tree. Note that N©)=\(0)+(z—1)

Eikzlmizn—2+j. This implies the following recurrence re- '
lation for P, ,n=3:

)si =0. (15)

The general asymptotic behavior Bf is then as follows:

FX 1/2
z-1 Poj~|=———=—| n~3¥n (16)
P.= . n+1 )
" eTso0 ( ] ) 2N
whereF, andF,,, are evaluated atr(s). Using Egs.(14)
X > Pm,Pm, = Pm - (1D and(15) we get
{mi.i=1,..., j;Ef:lmi:n—2+j}
. _ _ Fy s2\?
Multiplying both sides byx", summing fromn=3,... e = 1 . (17
and then using the fact th&,=P,;=0, P,=1 leads to the ww - |? T 2G| —
. . . 2]ES I”s A
following functional equation: J

i Three cases can be solved fairly easily, and the results can be
(120 summarized as follows.
l.v=k+1 (S={0,1k}), 2<k=z—-1:

P(x)

X

PX) =2 (Z_-l)
jes J

Note that ifv<2 (S={0,1}) then the solution of the result-

ing equation for P vyields the expected result that AN=z—1+ L[(Z_ 1)(k— 1) He (18)
P,(v)=(z—1)"2 (i.e., the number of planted self-avoiding k=1[| k ’
walks on.7>). Since Eq.(12) is a polynomial equation in
P(x)/x of degreek=min{j|j €S}, one could solve this to find - — 1k
P(x)/x and henceP,(v) for at leastk<3. However, we are s=|| | [(k=1) (19
primarily interested in the asymptotic behavior Bf(v),
and in larger values d{, so we take a different approach. In L -
particular we follow Theorem 5 of BendgR5] (p. 502, see Note that in this case, for fixek,
also Hararyet al. [26] and Meir and Moon[27]), replace 11K
P(x)/x by w, and rewrite the functional equation above as A~(z—1)| 1+ W’R<k_') (20)
z—1\ .
Fx,w)= ].EE:S X( i )W] —w=0. (13 as7 goes to infinity. Fok=2,3,4,5, the coefficient af— 1

in Eq. (200 is 1+A2~2.4142, 2.04004, 1.792 805,

Note that sincePo(v) =0 andP,(v)=0, P(x)/x is a power ~ 1.633 1196, respectively.
series inx, which is 0 forx=0 and the radius of conver- ~ 2.v<z(S={0,1,...z—1}):
gence forP(x)/x is equal to the radius of convergence for

P(x). F(x,w) is a polynomial inx andw and hence it is 1\7% (z-»~ !

analytic for allx andw. The coefficients of (x,w) +w are A=(z=D)| 1+ z—2| T (z—2)F % (21)
all non-negative so that Theorem 1, p. 82, of Meir and Moon

[27] guarantees that Bender's result is valid for this problem. 1

Thus the growth constant(v) can be determined by first S= ——. (22)

solving the two simultaneous equatiorig(r,s)=0 and
Fw(r,s)=0 forr ands, whereF,, is the partial derivative of _ . .
F with respect tov. Then, according to Bender’s resuitis ~ The result in Eq(21) agrees with the result of Fisher and
the radius of convergence &(x)/x and hencex(v)= 1/r Essam[28] and with the fact that in this case one can solve
ands=P(r)/r. From Eq.(13) one can solve for ands to  explicitly for P,(v) to obtain

obtain

B (z—l)(n—l)) 1

Pn(v)_( n—1 (z—=2)(n—-1)+1

. z—1\ . (23
)le: ( . )s'l (14)
JjesS J
[see Penrose [29], Eq. (4 and note that
and wheres is the unique positive real solution of Pn(v)=b,_»(z—1)].
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TABLE VI. The growth constank (v) for trees on the Bethe lattice for<z, 6, 5, 4, and 3.

z V=<2 v<6 v<5 v=4 v<=3
12 28.531 167 06 28.526 187 70 28.479 122 19 28.117 664 01 25.832 396 97
8 17.651 384 60 17.650 462 25 17.634 097 02 17.460 761 28 16.165 151 39
6 12.207 031 25 12.207 031 25 12.203 112 42 12.121 540 58 11.324 555 32
3.v=4 (5={0,1,2,3): With one suchm fixed, from Eq.(30) and the equation
1-2/(z—-1) 1 1-1/z-1) Ci-1 .
=(z—-1)| 1+ + - A z-1 z—1) i
e A 22 ) SR . Ct
J j! i=1 z—1
11-1/(z-1
_# 2) (24) )
61-2/(z—-1) we obtain
where (mi)m
A B LUz DPE 1 5= = Dp-2) P (m— 1) 1—1/(z— 1)} 7"
“-z—1]" " 2 B 2 @ 5
z
= ) 32
and z—-1 (
|11 47 N 6 Similarly each term on the left-hand side of Eg9) must be
18 8(z—1) (z-1)° less than one. Hence
15 9 ]2
A— 5| . (26) EPNEa
8 8(2 D"z (m=1) ., |s"<1 (33
In this case
and so
1 1 1 )
A~(z—1) 1+5+§b+ gb ~2.660 324 086z— 1) (mt)m A,
(27) = (z—1)(m—1)Y™TI™ 1—i/(z—1) }1’”‘ z-1
asz goes to infinity, where (34
1—2(11/8+A15/8) 3+ 4(11/8+ A15/8 23 Using the bounds in Eq432) and (34) in Eq. (14) we
= — obtain
4(11/8+A15/813
~ z—1\[ B, ]t A, 1
1.078 616 89. (28) EJ( . ) B } “\®) <El( . ) A }
X eS J (Z 1) je$s J (Z 1)
Other cases can be solved numerically. Tables VI and Vil (35)
show the results fok for the cases corresponding to Tables
I and Il from Sec. Il. Tables VIl and IX show the results for Using equatior(31), equation(35) becomes
NN (v) for the cases corresponding to Tables Il and IV 9 €dq €4
from Sec. Il .
Equations(20) and (27) show that, for these two cases, j ’Z 1] i
\(v) is asymptotically a linear function af— 1. This result (Z_l)jze:s j! .Hl 1- 7—1
can be generalized as follows. Equatid5) can be rewritten
as a1 - i
z
o z-1) <\v)=(z-12 ——1I (1——) (36)
(J_l) ; si=1. (29) jes It i=1
jes—{o} J

Let p=|S|. Assumingp=3 and{0,1}CS, the number of Note that lim_.A,=A, a constant, and lip,..B,=B=
nonzero terms on the left-hand side of E9) is p—2, Al(p—2)Y™ a constant. Therefore, there exists constants

therefore there exist:ie S—{0,1} such that ¢, andc,, which depend or$, such that
(m—1)[ 2 em= 1 (30) ci<lim inf M <jim sup M) ¢ 37)
m /p—2 1 Z—® Z—l Z— 0 Z_l 2
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TABLE VII. The growth constani (v) for trees on the Bethe lattice for=3, 4, 5, 6, andz.

z v=3 v=4 v="5 v="6 v=2

12 25.832 396 97 21.365 634 85 18.479 068 92 16.626 656 55 12.356 131 41
8 16.165 151 39 13.181 927 95 11.268 114 50 10.032 256 04 8.5069 930 66
6 11.324 555 32 9.0716 264 26 7.6239 862 27 6.6493 848 89 6.6493 848 89

j+1

In the caseS={0,1k}, p=3, m=k, and c;=c, SO
: (39

lim, ..\(v)/(z—1)=c, and this is equivalent to the result R(X)=X+X2,
in Eq. (20). Jes
The above analysis was for planted trees. We now wish

to relate these results to the corresponding results fowhich can be rewritten as

rooted trees. LetR(x)=Z;_,R.(v)x" be the ordinary

generating function foR,(v). Let S be the set of possible

numbers of children for a vertefother than the rogtunder .

the branch point restriction. Note that 0= S. We can de- R(X)=X+XD, —

rive a functional equation for the generating functig(x) fesitl

by constructing a recurrence relation for the sequence of

R,’s in terms of the P,’'s as follows. Start with any -

n-vertex rooted subtree of;, for n=2. First remove the root By the definition ofR, and P,

vertexv,y (and any edges incident on.itWe are then left

with j rooted trees wherg is the number of children aofy

(1=<j=z, j—1e9S) and the roots of the trees are the chil-

dren ofv,. Now we can add a new bond and vertahich P(x)

will become the new rodto the root of each of these trees to — SRX)=x+z

obtainj planted subtrees of,. Let m; be the number of

vertices in the ith planted subtree. Note that .

Sk mi=n—1+j. This implies the following recurrence re- Since P(x)/x has the same radius of convergence as

lation for R, ,n=2: P(x), the bounds in Eq.(41) imply thgt the radius of
convergence foR(x) is equal to the radius of convergence

for P(x). Hence the growth constanx is the same for

z) both P, andR,. We also know(from Bender's Theorem)5

that

z
jt1

P(x)
X

P(x)|*?

X

z—l)
j

it is clear thatP,<R,_;.
From this and Eq(40) we obtain

(40)

P(x)]?
T} . (41)

Ry= |
j—1e8j>0 \J

X PPy P (38) P(x)
mi=1,...j :22{—1mi=n1+j} e " T:A(X)(l_"x)1/2+8(x)' (42

Multiplying both sides byx", summing fromn=2,... o
and then using the fact th&,=P,=0, P,=1 andRy=0, where A(x) and B(x) are analytic in a disk with radius
R;=1 leads to the following functional equation: greater than ¥. Using Egs.(42) and(39) yields

i+1 .
Z ) Z +1 .
R(X)=x+x2, | . [AX)(1-AX) Y24 B(x) P l=x+x>, | > : A(X)'(1-1x)"2B(x)1 17!
s+l s\t |
k+1 i1
—x+x>, 1-a0ax)t S (2T T Bt
=0 jesizi-1 \J+1 |
k+1 k
< z \[j+1 . 2]
=x+x > (I-a0)'Ax? X | B(x)I 172+ (1-Ax) Y% >, (1-1x)'A(x)?
= jesFa-1 \J+1)1 21 =0
X z J+1 B(x)I 2 (43
& lit1)l 2142 '
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TABLE VIII. The ratio q(v)=\/\(v) for Bethe lattice trees. TABLE IX. The ratioq(v)=\/\(v) for Bethe lattice trees.
z q(v=>5) q (v=4) q (v=3) z q(v=3) q (v=4) q (v=>5) q (v=6)
12 1.001 653 1.014 529 1.104 280 12 1.104 280 1.335 143 1.543 703 1.715 690
8 1.000 928 1.010 864 1.091 884 8 1.091 884 1.338 990 1.566 408 1.759 371

6 1.000 321 1.007 053 1.077 926

(]

1.077 926 1.345 628 1.601 135 1.835 814

Since thel=0, j=0 term in the final sum is nonzero, We observe, from the numerical data, tha{v<2)
R(x)=B(x)+ (1—Ax)*?A(x), where A(x) and B(x) are <A(v=z-1)<\(v=z-2) <--+ <A (v=3)=\(v=<3)
analytic in a disk with radius larger than\1/This implies by =~ <A(v=4)<---<\(v<z—1). In addition, for fixedv, A (v) is
Darboux’s theorem thaR,/A\"=0(n"%%) as claimed in essentially indistinguishable from a linear functionzt 1
Eq. (8). even for small values dof.
A remarkable feature of our results is that the ratio
M (v) is almost independent of the lattice considered. In-
IV. CONCLUSION deed for the cases wheve=3, 4, or 5(Tables IV and IX,
In this paper we have investigated the way in which thethe variation is comparable with the error estimates for the

. : . : series analysis and the Bethe lattice values of these ratios are
growth constants of animals and trees in various lattices de-

end on(a) the coordination number of the lattice ati) very close to those found for the two- and three-dimensional
P e ) ) lattices. Understanding why these ratios are almost lattice
valence restrictions imposed on the tree or animal. Our re

its d be th i fh h h . “independent may provide insight into how valence restric-
sults describe the specifics of how the growth constant iNgong affect the generation of new topologies as the molecu-
creases as the coordination number increases, increases|&Sweight of a given branched polymer is increased.

k increases for the special case of allowed branch verteypper bounds for the corresponding results on regular lattices

valencek only. Roughly speaking, the growth constants in-and we expect that, as the dimension of the regular lattices

crease more or less linearly with coordination numbergoes to infinity, the Bethe lattice upper bound will become

though we do not expect this increase to be strictly linear. sharper. In light of these results it would be interesting to
For the Bethe lattice with coordination numtzewe have obtain data for valence restricted trees in higher dimensions,

proved that the growth constant is bounded above and beloand to construct a d/expansion about the Bethe lattice re-

by linear functions ofz for large z, which is presumably sults.

related to the quasilinear behavior observed for the regular

lattices. We have used Eq&l5) and (14) to calculate nu- ACKNOWLEDGMENTS
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