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We study theoretically the complex network of forces that is responsible for the static structure and prop-
erties of granular materials. We present detailed calculations for a model in which the fluctuations in the force
distribution arise because of variations in the contact angles and the constraints imposed by the force balance
on each bead of the pile. We compare our results for the force distribution function for this model, including
exact results for certain contact angle probability distributions, with numerical simulations of force distribu-
tions in random sphere packings. This model reproduces many aspects of the force distribution observed both
in experiment and in numerical simulations of sphere packings. Our model is closely related to some that have
been studied in the context of self-organized criticality. We present evidence that in the force distribution
context, “critical” power-law force distributions occur only when a paraméiédden in other interpretations
is tuned. Our numerical, mean field, and exact results all indicate that for almost all contact distributions the
distribution of forces decays exponentially at large for¢84.063-651X96)07005-5

PACS numbegps): 02.50.Ey, 81.05.Rm

[. INTRODUCTION bounded, but the number of large forces falls off exponen-
tially with the force. The fluctuations remain roughly the
Disordered geometric packings of granular matejdls same as the average force, regardless of how large the bead
have fascinated researchers for many yg2fsSuch studies, pack becomes. A simple model was introduced to understand
with their applicability to the geometry of glass-forming sys- the results of the experiments and simulations.
tems, initially were concerned with categorizing the void This paper presents the detailed analysis of the model
shapes and densities. More recently, partly in recognition ointroduced in Ref[6]. The model yields force distributions
the ubiquity of granular materials and their importance to awhich agree guantitatively with those obtained in numerical
wide variety of technological processes, interest has focusesimulations of sphere packings. Generic distributions of con-
on how the forces supporting the grains are distributed. Vitacts lead to force distributions which decay exponentially at
sualizations of two-dimensional granular systdBlsdemon-  large forces, though a special distribution exists for which
strate weight concentration into “force chains.” It is natural the force distribution is a power law. We discuss the rela-
to expect that similar concentrations of forces will occur intionship of this model to other related systems and present
three dimensions. The distinctive forces in bead packs alsthe analysis leading to the results that are quoted in [[8gf.
give rise to distinctive boundary-layer floj¢] and novel without derivation.
sound-propagation properti¢s]. The paper is organized as follows. Section Il defines the
Reference[6] presents experiments, simulations, andmodel, discusses several limiting cases that have been dis-
theory characterizing the inhomogeneous forces that occur ioussed previously in other contexts, and then presents our
stationary three-dimensional bead packs, focusing particuanalysis of the force distribution expected in the context of
larly on the relative abundance of forces that are much largefiorce chains in bead packs. Special emphasis is placed on
than the average. If the bead pack were a perfect lattice, theone particular contact distribution, the “uniform” distribu-
at any given depth, no forces would be greater than somgion, which is the most random distribution consistent with
definite multiple of the average force. At the other extremethe constraint of force balance. We first present a mean field
if the network of force-bearing contacts were fra¢t@l then  solution for this model, and then show that this mean field
fluctuations in the force¢characterized, say, by their vari- solution is exact. We also obtain exact results for a countable
ance would become arbitrarily large compared to the aver-set of nongeneric distributions as well as the mean field and
age force at a given depth, as the system size is increasadumerical results for other contact distributions. Evidence is
Referencd 6] shows that the forces in bead packs are interpresented that almost all contact distributions lead to expo-
mediate between these two extremes. The forces are umentially decaying force distributions. Section IIl discusses
numerical simulations of sphere packings, which we analyze
to obtain contact probability distributions to be used indhe
*Present address. model. We show that the force distribution predicted by the
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model with this contact distribution agrees quantitatively

with the force distribution in the simulation. The Appendix D=
presents some mathematical identities concerning the uni- D2
form q distribution which are used in the text.

D=3

Il. THE q MODEL
A. Definition of the model

Here we introduce the model, which assumes that the
dominant physical mechanism leading to force chains is the
inhomogeneity of the packing causing an unequal distribu-
tion of the weights on the beads supporting a given grain. FIG. 1. Schematic diagram showing the paths of weight support
Spatial correlations in these fractions as well as variations ifior a two-dimensional system in tig 4 limit where each site trans-
the coordination numbers of the grains are ignored. We commits its weight to exactly one neighbor below. The numbers at each
sider a regular lattice of sites, each with a particle of massite are the values ofi(i,D).
unity. Each sita in layerD is connected to exactly sitesj
in layerD +1. Only the vertical components of the forces areset ofq distributions, and present mean field and numerical
considered explicitly(it is assumed that the effects of the yegyits for other distributions af’s.
horizontal forces can be absorbed in the random variahjes
defined below. A fraction g;; of the total weight supported
by particlei in layer D is transmitted to particlg¢ in layer B. g model for the “critical” case
D +1. Thus, the weight supported by the particle in laier

We first consider the case where each particle transmits

at theith site,w(D, i), satisfies the stochastic equation its weight to exactly one neighbor in the layer below, so that
the variableq is restricted to taking on only the values 0 and
w(D+1,j)=1+>, dij(D)w(D,i). (2.1) 1. We denote thigsingulaj limiting case of our model by
i

the “qq , limit.” Figure 1 shows the paths of weight support
. . ) for a two-dimensional system in this limit. The solid lines
We take the fractions);;(D) to be random vquables, inde- correspond to bonds for which=1. The paths of weight
pendent except for the constraifijq;;=1, which enforces g,pnort of particles in the top row are coalescing random
the condition of force balance on each particle. We assumg s iks. Since a random walk of lengf has typical trans-
that the probability of realizing a given assortmenty8 at  ,orse excursion oD Y2 for the two-dimensional case the

each site i is given by a distribution function maximum weight supported by an individual grain at depth
p(Qiz--- Gin) ={IL;f(qij)} 6(2j0;; —1). We define the in- b gcales aD2 [8]. BecauseD¥2>D, the mean weight
duced distributiory (q) as supported at deptB, it is plausible that in thejg , limit the
model yields a broad weight distribution.
= dgip(diq,....0i=0,....qin). (2.2 The defining equations of thg, ; limit of our model are
7" il;[k f QP (G- Gic=0e- ). (2.2 known to be identical to those of Scheidegger's model of

river networks 9] and a model of aggregation with injection

Because p(Q;1,...,0in) IS a probability distribution and [10,11]; the model is also equivalent to that of directed Abe-
ZJN:lqi- =1, the induced distribution must satisfy the condi- lian sandpiled12—14. (The number of neighbors below a
tions [3dq 7(q)=1, f 3dq g7(q)=1/N. particle, N, corresponds to the dimensionality in these

In this paper we focus on the force distributi@y(w),  models) The last equivalence followgl3,14 if we define
which is the probability that a site at dephis subject to  Gy(X;;X,) as the probability that the weight of si¥, is
vertical forcew. We obtainQp(w) for different distributions  supported by sit&, in the same row or below it. The con-
of g's. We will also consider the force distributid?, (v) for  ditional probability thatX, is supported byX,, given thatl
the normalized weight variable=w/D. For n(q)=6(q—1/  of the N neighboring particles in the row below are sup-
N), where each particle distributes the vertical force actingoorted byXg, is I/N. Thus,
on it equally among all its neighbors, the force distribution at
a given depth is homogeneou®p(w)= s(w—D), or - o 1 - L -
Pp(v)=8(v—1). At the other extreme, there is a “critical” Go(X1;Xo) = N .21 Go(X1=€:Xo) + 9%, %o (2.3
limit, when g can only take on the values 1 or O, so that
weight is transmitted to a single underlying particle. For this, . .
as discussed in the next section, the force distribution obeywhere{X;—€;} are the neighbors of; in the row below it,
a scaling form and decays as a power law at large forcesand thesfunction term follows because each particle must
Q(w)xw™¢, wherec(N=3)=3 andc(N=2)=3. We dem-  support its own weight. Similarly, the probability that two
onstrate that this power law does not occur whetan take  sitesX; andX, in the same row are supported Ky satisfies
on values other than 1 and 0, as is the case for real packings.
Generic continuous distributions gfs lead to a distribution 1
of weights that, normalized to the mean, is independent of Y W\ — Y 2 W &2 %
depth at largeD and which decays exponentially at large G(X1.X2:X0) N? Z 2 G(X18 X281 %0)
weights. We solve the model exactly for a countable infinite (2.9

N
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for )217&)22. These equations are precisely those that de- The normalization constraintsfgdw Qy(w)=1 and
scribe the behavior of the correlations of the avalanches if jdw wQy(w)=D, yield the conditions

the directed Abelian sandpi[@2,15. In this model, an inte-

ger “height” variable z(X) is assigned each sit¥ on_a a=bc, 1lt+a=2b, (2.6
lattice. The dynamics are defined by the rule that if a¥) so that there is only one free exponent. Bet2, the random

ex<_:eeds a _cr|t|cal valug;, then the v_arlables_ah hearest walk argument at the beginning of this section suggests that
nel_ghbora sites along a preferre_d direction increase by lb=§ [8] which agrees with the exact res{iitl]. For d>2,
while z(X) decreases byn. In this contextGo(X1:Xo) IS 15 40m walks are less likely to coalesce, and this argument
identified with the probability that adding a ggmcl_e Ay breaks down. In mean field theory one obtains the analytic
creates an a\(alanche that topplgs. over the )Sl_teﬂlghgr resultb=2 [10], and exact analytic results for directed Abe-
orqer correlaﬂons are 'mapped similarly. 'I"he. dlgtr|but|on OfIian sandpiles in all dimensiond?2] show that mean field
weights in our model is mapped to the distribution of aVa’theory is valid ford=3 (with logarithic corrections id= 3),

lanche sizes. . 3
. and confirm the result=3 for d=2. (Our exponenb can be
All these model$9—13| have been studied as examples Ofidentified with a+1 of Ref.[12].)

self-organized criticality16] because they lead to power-law
correlations without an obvious tuning parameter. However
in the context of our model, thg, , limit is a singular one,
where the probability of§#{0,1 has been tuned to zero. As
we shall show in this paper, generic distributionsy), for
which the probability thatg+#{0,1} is nonzero(no matter
how smal), yield completely different results, with the dis-
tribution of weights decaying exponentially at large weights.
With hindsight, we identify the probability for a river to split ~ The rest of this paper concerns probability distributions of
in the river network mode[9], and the probability for a theq’s that do not have the property thatakes on only the
colloidal particle to fragment in the aggregation modelvalues 1 and 0. We argue that all such distributions lead to
[10,13 as hidden parameters that were tuned to zero. Théorce distributions that differ qualitatively from those de-
corresponding parameter for directed Abelian sandpiles iscribed in the previous section. Thg, limit is the only one
less obvious. that yields a power-law force distribution; other distributions
The equivalence of our model in tigg ; limit to the mod- lead to a much faster, typically exponential, decay. In addi-
els discussed above can be exploited to obtain some resulion, for otherq distributions, the distribution for theormal-
for the distribution of weights. Recalling that the dimension-izedweightv =w/D, Pp(v) converges to a fixed distribution
ality d in these models corresponds to dlywe know that P(v) as D—. In contrast, in theqy, limit, the quantity

the weight distribution function at a depb, Qp(w), has a Qp(w) converges to a fixed function. In this section we
scaling form for allN: present evidence for these assertions via both numerical

simulations and mean field analysis.

As D—o, the argument of the scaling functianin Eq.
(2.5 is small for any finitew. Thus, in theq ; limit of our
model, the distribution of weightQ(w), is independent of
D asD—, and is of a power-law form, and hence is infi-
nitely broad.

C. q model away from criticality

Qp(w)=D?g(w/DP"), (2.5 1. Numerical simulations
Our numerical investigations all indicate that that foraall
whereg(x) —x~ ¢ asx—0 [with a cutoff atw of O(1)]. distributions except for the, limit, the normalized force

q=0.1:512x512x D

S

FIG. 2. Linear-linear and log-
log plots of the normalized weight
distribution functionPp(v) vs v
for a three-dimensional system on
fcc lattice (N=3), for the q distri-
bution defined in Eq(2.7) with
0o=0.1. The distributionPp(v)

s ] appears to become independent of
2 D asD becomes large, and decays
e ] faster than a power law at large

ST
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—T—— display numerical results foPp(v) versusv for a system
q=0.1;512x 512x D

which is identical except that,=0. In contrast to thgj=0.1
case,Py(v) decays as a power law at large Also, Pp(v)
shows no signs of becoming independentDbfas D —oe.
This is consistent with the result in the previous section that
Qp(w) becomes independent Bf at largeD.

2. Mean field theory

The technique of the mean field analysis for a gengral
distribution is a generalization of that used for g, case
[10]. The weight supported by a given site at def@h
w;(D), depends not only on the weight supported by the sites
at depthD —1 but on the values aj for the relevant bonds:

w;(D)=2, q;w;(D—1)+1. 2.9
FIG. 3. Semilog plot of the normalized weight distribution func- ]
tion Pp(v) vs v for a three-dimensional system on a fcc lattice
(N=3), for theq distribution defined in Eq(2.7) with q;=0.1. The

behavior ofPp(v) at largev is consistent with exponential decay.

In general the values af at neighboring sites in laydd are
not independent; the mean field approximation consists of
ignoring these correlations.

As discussed above, whenis allowed to take on values
other than 0 and 1, it is useful to study the force distribution
function as a function of th@ormalizedweight at a given
depth, o =w/D. In terms of the normalized weight variable
v, the mean field approximation leads to a recursive equation
for the weight distribution functiofP(v):

distribution P5(v) becomes independent Bf asD —». To
illustrate typical behavior, we consider the specdicistri-
bution consisting oN—1 bonds emanating down from each
site with value q=0y<1/(N—1) and one bond with
g=1—(N—1)qq, which has the induced distribution

1 N—1 N
=—8(q-[1-{N-1 +——8(9—qp). (2. ! -
an(Q) N (q [ { }CIo]) N (q qO) ( 7) pD(U):jl_Il[fodan(qj)fo dePDl(Uj)J

Figure 2 displays the normalized force distributi®g(v)
versus v for several different depthdD in a three-
dimensional fcc systefN=3) of dimension 51X512xD,
with gy=0.1. Periodic boundary conditions are imposed in
the transverse directions. A3 becomes largePy(v) con-  The quantityn(q) is defined in Eq(2.2). The constraint that
verges to a function independent bBf which decays faster the q's emanating downward from a site must sum to unity
than a power law. Figure 3 is a semilog plotR®¥(v) versus enters only through the definition of(q) because there is

v for several values dD, showing that the decay &f(v) at  no restriction on the's for the ancestorsof a site. The only
large D is roughly exponential. To see that this behavior isapproximation here is the neglect of possible correlations
qualitatively different from that of the , limit, in Fig. 4 we  between the values af among the ancestors.

N

X 8 21 [(D—l)/D]vjqj—(v—l/D)> . (29
=

g=0;512x 512xD

12 — : ; : ———T10 ¢ o
. #D=8 |1 | T
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X * 0 o CO&O* FIG. 4. Linear-linear and log-log
] xD=32 11107 o XX o E plots of the normalized weight dis-
£~ £ %ZI:DK)()Q— E . . .
0.8 | x oD=64 || i Koo R | ] tribution functionPp(v) vsv for a
I oD=128 | | | ARk 1 ~  three-dimensional system on a fcc
~ — o D=256 . N 2, lattice (N=3), for theq distribution
~ 06 10 2 ey | defined in Eq(2.7) with go=0. For
A e A D=512 g 5 ind . : L
[a ¥ Lo I % ] this special case, the distribution
& 3 Z@Eg 1 Pp(v) does not become indepen-
04 == ] I N 1 dent ofD asD becomes large. The
Raromecx 107 ¢ SOO%E asymptotic decay oPp(v) at large
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By Laplace transforming, one finds thap(s), the 1. Mean field theory for the uniform distribution

Laplace transform of the distribution function of the normal- 5. example of g distribution that can lead to an expo-

ized weightPp(v), obeys nentially decaying distribution of weights is the “uniform”

N distribution ofq’s, for which the probability of obtaining the

(210  values qy,... Gy is p(Qig,---.Gin) =(N=1)15(2;0;—1).

We show in the Appendix that this distribution induces
7,(q)=(N—1)(1—q)""2. Thus, for thisq distribution in

Since ash —o the distributionP(v) becomes independent the limit D—o the mean field force distribution is the solu-

of D [17,18, Eq.(2.10 then becomes tion to the self-consistent equation:

_ 1 _
Pp(s)=e %P fo dq 7(q)Pp_1[sq(D—1)/D]

N

~ 1 ~
P(s)= jo dag 7(q)P(sq) (2.1 N

P(s)=

(2.14

1 —~
fodq(N—l)(l—q)N*ZP(sq)

First we show that the weight distributid(v) decays
faster than any power af for all g distributions except those First consideN=2. For this casey(q)=1, so Eq.(2.14
that only take on the values 0,1. We expand the Laplac®ecomes
transformP(s) in powers ofs, P(s)=1+2f:1PijsJ, and

plug into Eq.(2.11), obtaining 2

P(s)= (2.15

1 ~
J dq P(sQ)
0

N

(2.12

1+P;s+ >, P;s=|1+P;s/N+ >, P;si(g))
i=2 =2

Letting V(s) =[P(s)] Y2 andu=gs, one obtains
Here, s is the Laplace transform variable,
(9'y=/3dq d 5(q), and we have useftj)=1/N. Equating

—~ S —_~
the coefficients of' on the left and right hand sides of the sV(s)=f du V?(u). (2.16
equation, we obtain a linear equation foy: 0

PiIN(Q)~1]=G(P;_1,Pj_5.....,P1), (213  Differentiating with respect ts yields

whereG is some complicated polynomial. This can be iter- iy
ated to obtairP; for successively higher values pf v 2V _oe

Since Eq.(2. 13) is linear inP;, P; can diverge only if its V(s)+s ds Vis), 217
coefficient[N{q')—1] is zero. Ifq can take on only the
values 0 and 1, thexqg')=(q) and [N(g!)—1]=0 for all
j>1. However, forany other distribution ofg’s restricted to
the interval[0, 1], the distribution forg’ is shifted towards
the origin compared to the distribution fa*, whenever \~/(s)— 1
i>k. Since(g'y<(g)=1/N for all j>2, Eqg.(2.13 has a ~1-Cs’
nonzero coefficient foP; for all j>2, which means that all
moments(v’) of P(v) are finite. (For the special case of
j=1, the equation is degenerat®; is set by the normaliza-
tion of v.) If In P(v) were to behave asymptotically as
—alnuv, then(v') would diverge for allj>a—1. Hence
P(v) must fall off faster than any power of and
(dInP(v)/dInv)——w asv—o.

which can be integrated to yield

(2.18

The constant of integratio@ is determined by the definition
of the mean, [ydv vP(v)——dP/dslS o=1. Thus, C
—dV/ds|S O——% Hence one findsP(s)=4/(s+2)? and
P(v)=4ve 2.

This method can be generalized for al. Defin-
ing V(s)=[Pn(s)]*N, inserting in Eq(2.14), and differen-

tiating N—1 times, one finds that’N(s) obeys the differen-
D. Weight distributions away from criticality: tial equation:

Mean field results

Now we consider the distribution of weights for noncriti- g\-1 -
cal distributions ofg’s. Motivated by the geometrical disor- g1 [sN" IV (s)]=(N— 1)'V (s). (2.19
der present in granular materials, we focus especially on con-
tinuous distributions. First we calculate this distribution _
within a mean field approximation for the simplest possibleA solution to this equation i¥(s)=C/(s+ C), whereC is
continuous  distribution, f(q;;) =const, or p(q,-....din) any constant. This can be shown by induction: Assume that
=(N-1)!6(2;q;;—1) (the uniform g distribution. We
show that within mean field theory, all “typical” continuous N2
g distributions lead to a force distribution that decays expo- g (s” 2
nentially at large weights. We will show later that the mean S
field solution isexactfor a countable set o distributions,
including the uniformq distribution. Then

N—-1

(2.20
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vt o, c ) vt v C [ 4InP(v/q)
dSNil S m :W (S+C—C)S m P(U/Q)ZP(U)eXp —T (1—q)+~"
=1
(2.20) : g
P(v) v dInP(v/q) (1-q)+
= v eXp _2 _— _q e
d N-1 K d(vlq) -1
=—C = |(N=-2)l| —= -
ds[ s+C d InP(u)
(222 =P(v)expW i (1—CI)+ . (2.27
N Since dInP(u)/dInu——o as u—x, this expression be-
—(N—1)! (2.23 comes very small as-1q increases. Thus, for large since
\srC ' 7(q)~(1—a)""? for g~1,
Since direct substitution can be used to show that the identity d InP(v)||N"*
holds forN=2, it halds for allN. F(")“P(”)/ ‘ 7o (2.28

The conditiondV/ds=—1/N is satisfied whenC=N.
Hence one finds the weight distribution: Already it is clear thaP(v) for any generiq distribution
has the same large-asymptotics as the uniform distribution,
since the asymptotics are determined entirely by the phase-
Ne 1 No space restrictions om(q) for g=~1. This decay also can be
Pn(v)= (N=1)! v e (224 demonstrated explicitly by assuming faster and slower de-
cays and showing inconsistency with E@.25. If P(v)
) i _ L were to decay faster than exponentially, then the convolution
The question of uniqueness of this solution is discusseg}, Eq. (2.25 would be dominated by the region where all the

N

below. v;’s are roughly equal. But sinceP{v/N)]">P(v), Eq.
. . R (2.29 cannot be satisfied. On the other hand® ({¥) were to

2. Mean field asymptotic force distribution decay slower than exponentially, then the convolution would
for generic continuous q distributions be dominated by the region where one of this is ~v and

We now show that, within mean field theory, generic con-the others ar€©(1). Equation(2.25 would then imply
tinuousq distributions lead to weight distribution functions
P(v) for the normalized weight which have the asymptotic
forms P(v)xvN"te N asy —w andP(v)xvN"t asv—0. P(U)NP(U)/
We consider q distributions of the form
p(Gi1,- - Ain) = {1Lf(0;;)} 6(2;0; — 1) [the uniform distri-  Since the expression in square brackets diverges with
bution iSf(Qij):ConSi If f(0;) has a nonzero limit as this is not possible either. Thus one must haRév)

q;;—0, and does not havedfunction contribution ag;; =0,  =h(v) exp[—av], whereh(v) varies more slowly than an
then phase space restrictions imply that the induced distribiexponential. Equatiof2.25 then implies

tion 7(q)~(1—q)N"? for q—1. This is because if a site
receives a fractiomn of the weight from one of its predeces-

N—-1

d Inv

(2.29

d InP(v)

N
sors, then the fractions received by all titbersuccessors of h(p)= fmd o) oN 1Y sl o= )
that predecessoKq,:--qy}, must add up to %q. For q @) []1_[1 o (vl v EJ: il
close to % this gives a phase-space volume of the order of (2.30
(1-g)N 2

To determine the large asymptotics oP(v), we use the ~ This is satisfied by(v)~uv™™*, so that
result of Sec. Il C 2, thaP(v) must fall off faster than any
power ofv. We write theD — limit of Eq. (2.9 as P(v)~vN"texd —av] (2.31)

for v —oe.
o Hence we have shown that for generic continuqudis-
Pw)=1 11 fo dojF(vj) 18l v—2> v;|, (229  tributions, within mean field theor(v) — v~ texp(—av)
= i
asy —m,

N

3. Mean field theory for singular q distributions

1
F(U;)Zf dq;P(v;/q;) n(q;)/q;. (2.26 We have shown that afj distributions which satisfy the
0 condition [ zdg 5(q)~(1-q)""* asg—1 have a weight
distribution within mean field theory that is of the form
Since P(v) decays quickly(in particular, faster than 4J, P(v)~vN" ! exp[—av] for largev. This condition onz(q)
the apparent singularity nege=0 in Eq.(2.26) is not really  is satisfied under fairly general assumptions: one requiies
there. The integral is dominated ly=1. This follows be- that the probability density for ang;; in Eq. (2.8) have a
cause nonzeroq;;—0 limit and (2) that it not have as-function
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contribution atg;; =0. However, as we shall see below, to with 0<A<1, one can use the method outlined above to find

compare the results of thg model to molecular dynamics that P(s) has a square-root branch cut at sosgeThis an-

simulations and to experiments on real bead packs, it is usewer is not affected by makinglarge, so long as, remains

ful to consider the case where there is a finite probability fomonzero. Asn—o», with all thec;’s for i >0 tending to zero,

some of theg;;’s to be zero, which implies that the induced we can approach arbitrary continuous distributions§¢q)

distribution (q) has asd function atq=0 (and in some cases with & functions atq=0 andqg=1.

at g=1) [19]. Such a choice for(q) is also useful in ex- For N>2, Eq.(2.33 is changed to a higher order equa-

amining the crossover from the criticajy, limit to the  tion. This, however, does not generically change the results

smoothq distributions considered in the preceding section.above. Even for higher order equations, the degeneracy of

We will see thatq distributions of this type lead to force the roots generally occurs only pairwise, so that close to the

distributionsP(v) that decay exponentially, though with dif- point of degeneracy the singularly ranging roots still have a

ferent power laws multiplying the exponential than for con-square-root singularity. It will, however, be possible to find

tinuousq distributions. nongenericchoices forn(q) that could result in an asymp-
We first note that, whem(q) has a finite weight ag=1,  totic form P(v)~v~ "™ exp[—av] with N=m=2.

it is impossible forP(s) to diverge at ang. The solutions of

the form P(s)~1/(q+s/sy)" obtained in Sec. IID 1 were E. Beyond mean field theory

possible because, in E€R.11), the integral ovelq reduces

the singularity, which is compensated by the exponentiation. 1. Proof that mean field theory is exact

With a finite weight aig=1, close to a divergence aj one In this section we prove that the mean field solution pre-
would haveP(s)e[P(s)]N, which would be impossible as sented in the preceding section is exactsolution of the
S—Sp. model with the uniformg distribution for anyN.

It is instructive to consider first a simplified version of In general, the mean field theory presented above is not
such singularg distributions. Let us consider the case of exact because it does not account for the fact that two neigh-
N=2, and assume that(q) has the form boring sites in rowD+1 both derive a fraction of their

weight from the same site in ro®. Suppose a sitgin row

(@) =3(1—0){8(q)+ 8(1—q)t+68(q— 1), (2.32  D+1hasw(j) much larger than the average value. Then it is

likely that the weight supported by an ancesidi) in row
with 0<6<1. This 5(q) satisfies the conditiongdg »(q) D is larger than average also. Because this ancestor transmits
=1 andfdq qn(q)=3 for all 6. Equation(2.11) then sim- its weight to a neighboring site in ro@ +1 as well, there is
plifies to a “correlation” effect that creates a greater likelihood that in
a given layer sites supporting large weight are close together.
On the other hand, there is a “anticorrelation” effect arising
because;q;; =1; if a large fraction of the weight from site
is transmitted to sitg, then small fractions are transmitted to
the other “offspring” sites. When the’s are chosen from
the uniform distribution, these “correlation” and “anticor-
relation” effects cancel exactly.

The result that the mean field correlation functions are

P(s)=[%(1—60)+1(1—6)P(s)+ 6P(s/2) ], (2.33

where we have used the fact tHa0)=1. Equation(2.33
can be solved as follows: for smali, we know that
P(s)=1-s+0(s?) [the coefficient of the linear term being
fixed by the normalization conditiofidv vP(v)=1]. Start-

[ ith I ti I hereP(s) i i- . P
ngt\év(; ag Js:r:aE; e(gagg)/ecgﬁ léz (ﬁte\;vateeéeto(ﬁ%g(ggg?é: exact for the uniform distribution ofi’'s can be understood

n=1,2,...[the correct root of the quadratic equation is choserEy c;}or;)sidgri.r_]g the systen; n terms O.f lweig_hf;csﬂon bon”ds.
by requiringP(s) =1 for P(s/2)=1]. Eventually the result of =ach bondiij} corresponds to a particle with “energy

this iteration scheme is complex rather than real, signifyincfij =v;0;; - Moving down by one layer corresponds to hav-
thats is in a region wheré>(s) has a branch cut. It is easiest ng groups oiN partl_cles COI.“dmg at each S|te_and emerging
to find the origins, of this branch cut by adjustiné(so/Z) with different energies, subject to the constraint that the total

so that Eq.(2.33 has a double root foP(s,), and then energy of allN particles colliding at each site is unchanged

- ; : by the collision.
iteratingbackwardsto obtainP(sy/2"). As n—x, by match- o . o -
ing on to the requirement th&(s) = 1—s for s—0, one can For the “uniform” q distribution, each collision takes

obtainsy. Itis clear from Eq/(2.33 that in the vicinity ofs, particles of energies,,....6,, and changes their energies

5(3) is of the formP(sy) + a\s—So. This yields to E,,---Eay subject only to the constraint that
>e,=2E,. If we start with a “microcanonical” ansatz for
P(v)~v~¥2ex —sew] for v—c. (2.34) the phase-space density, i.e., that it is uniform over the space

>E_,=E, then it is preserved by the collisions. Hence, the
Although the power-law prefactor is different from that in microcanonical density is the correct one for this system.
Eq. (2.31), there is still an exponential decay. With a microcanonical density for a large collection of
We now consider possible changes to F2.34 from  particles, the density for any finite subgroup is canonizal
choosingz(q) of a more complicated form than E(R.32.  the thermodynamic limjt[20]. Thus, we have shown for this
For any n(q) of the form case that the distribution of “bond forces” is exponential,
which is the most random distribution consistent with the
constraint that the sum of the forces is fixed,21].

n
n(Q)ZE c: 5(q_}\i)+(1_2 c-) 8(q)8(q) (2.39 Note that this argument does not hold fpdistributions
= ' other than the uniform one. For instance, in tg limit,
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each collision takes all the energy of the group and gives it to_ 1 1
one of the colliding particles. Thus, even if we start with thePDH(sl, Lsw=11 dqil---J doin(N—1)!
microcanonical distribution, it breaks down at the very first i=1.Jo 0
step. For general distributions, the phase-space density is
not separable, i.e., mean field theory is not exact and there
are spatial correlations within each layer.

The explicit algebraic proof proceeds by constructing ex-
act recursion relations for the correlation functions describ-
ing the weight distribution in the model in ro®¥+1 in terms
those for rowD, and showing that the mean field correlation
functions are invariant under this recursion. We ignore theFOf Pp(x)=(1+x/N)"N, one can use the condition
weight added in each row because we are looking for the [L10; =1 to write
fixed distribution very far down the pile.

Let Pp(u;) be the probability that sitein row D supports _ P 1
weightu; , PD(uil,uiZ) be the probability that sitels andi, PD+1(Slv---’SM):H dqil-.-f dginy(N—1)!
support weight u; and u;, respectively, and 1=1Jo 0
PD(uil,uiz,...,uin) be the normalized joint distribution de-
scribing the probability that sitas,i»,...,i,, support weights
Uiyl respectively. The mean field joint probability dis-
tributions are given by the mean fieR{u) and

N
X8| 1- Qik>
=}

_ M N
Po Z‘, Z ”sj) (2.39

N
81— qik)
=

N
x| > ai
=1

M -N
1+;1 m.(j)sj/N” .

2.4

P(Ug U, ) = P(U) P(Uy) - P(Uy).  (2.38 249
Using the identity{22]

Consider theM-point correlation function in rowD +1

that is obtained when all the correlation functions in rbw N 1_

are the the mean field ones. l{et} be the weights in rovD H (a,) "=(N-1)!

and{v;} be the weights in rowD +1. Consider a cluster of

sitesj=1,...M in row D+1, with ancestors in rowD at S(L—Xy— -+ —Xy)
sitesi=1,... p. (The labels do not imply any particular spa- f dxy-- f dXN (A - F AV

tial relation of the site$.Theq'’s describing the bonds ema-

nating from ancestor areq;, , wherel=1,... N. We define (2.41
7;,(j) to be 1 if sitesi andj are connected by bonidl and M

zero otherwise. TheM-point correlation function in row With a,=1+2i%,7,(j)s/N, one finds

D+1, Pp,4(vq,...,v), Must obey

1
=1 ne1 1+2]M:177in(j)sj/N .

1 1
| [ dann-1 (242

P
Ppi1(v,-com)= H [

=1 0

N

1- > ai

k=1

X,ﬂl 5(uj—2§N‘,

=11=1

X6

We define the general Laplace transform

5(31,..., f dvq-- f dv,P(vq,....00)

TS1V1" T SpUn

Laplace transforming Eq2.37), one obtains

If a given bond{in} connects to no sites in the descendant

(2.42 is zero, and thgin}th term in the product is unity. If
the bond connects to a site in the descendant cluster, then
7n(j) is unity for exactly ong. Each sitej in the descen-

Qi U; )

® cluster, then every term in the sum in the denominator of Eq.
j duy,Pp(u;)

dant cluster is connected to exachyantecedents in row,
SO

(2.37) 1

M
PD+1(Sli----SM):]1;[1 m (2.43)

Thus, the mean field correlation functions are preserved from
row to row for thisq distribution.

2. Other q distributions

We have identified a countable set @fdistributions for
(2.3  Which mean field theory is exact, those of the form
f(g;)=q’, for all integerr (the uniform distribution is
r—O) The resulting force distributio®, (v) v N1 N

has Laplace transform (s)=[1+s/(Nr)]N'. The demon-
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stration that this solution is exact follows precisely the samdremely small forv=0.1, so mean field theory provides an
line of reasoning as for the=0 case presented in the pre- accurate quantitative estimate fé(v) over a large range of

ceding section, utilizing the identify22] v.
3. Uniqueness of the steady state distribution
N S I'(Nr) (1 1 1 1 In this section we show that our resultsumerical and
nﬂl (an) o™ Jo dxoxg - o dxnXy analytica) for the force distribution do not depend on either
the boundary conditions imposed at the top of the system or
S(1—Xy— "+ —Xy) on the specific realization of randomness a particular system
X (agXg+ - +agxy) (2.44  might have.

Consider a system of finite transverse extentn which
weights{w(i)} are put on the particles in the top row. The
In terms of the particle collision picture discussed at theweight then propagates downwards according to(Ed). If
beginning of Sec. Il E 1, a general valuero€orresponds to we now consider the same system with a different loading on
the particles having an energy which is the sumrefl  the top row{w(i)+ éw(i)}, then since Eq(2.8) is linear in
componentgwhich may be viewed as as spatial coordinatesw, the difference between the two solutions satisfies the ho-
in some underlying spageeach one of which is conserved mogeneous equation
individually in a collision. The microcanonical phase-space
density, uniform in theN(r +1)-dimensional space, is pre-
served by the collisions, and yields tRg(v) stated here. sw(D+1j)=2, q (D)dw(D,i). (2.45
The result that mean field theory yields an exact solution i '

of the model holds only for a very limited class gfdistri-
butions. For generaj distributions, the phase-space densitySumming up both sides, we see thatow(D+1,)
is not separable, i.e., mean field theory is not exact, and there 3,6w(D,i), which means that the total excess weight
are spatial correlations within each layer. For example, Fig. placed on the top of the system propagates downwards unal-
showsP(v) for a two-dimensional system witi=2 and the tered. Such a change only affects the normalization of our
g distribution where the two bonds emanating from each takelistributions. Thus, if we are interested in the normalized
on the values)y and 1-qg, with gg=0.1. In the model, a site distribution Py(v), we can without loss of generality con-
(i,D) is connected to sitesi,©+1) and[i+1(mod.),D  sider perturbations{éw(D,i)} satisfying the constraint
+1]; in the mean field calculation, sité,{l) is connectedto =, éw(D,i)=0.
sites(p4(i),D+1) and (p,(i),D+1), wherep, andp, are Equation(2.45 can be viewed as a two stage procéis:
permutations of(1,...L.). This method of simulating mean eachéw(D,i) splits intoN parts,q; ;(D) dw(D,i), and(2)
field theory destroys the spatial correlations between anceshe N fragmentsg; (D) éw(D,i), with i running over the
tor sites, while ensuring that every site has exactly two anneighbors ofj in the row above it, combine to givéw(D
cestors and two descendants. The numerical data were ob-1,j). The important thing is that all the; ;'s are positive.
tained by averaging®(v) for rows 10001-20000 in a Thus if we define the total difference between the two con-
system of transverse exteht=20 000. This figure demon- figurations asA (D) ==,/ éw(D,i)|, then because all thg's
strates explicitly that the mean field force distributiBfw) are positive and;q;; =1, A is unchanged in the first step,
is not exact for this distribution. However, the deviations ofwhile in the second step it can either stay constant or de-
the mean field theory from the direct simulation are ex-crease(depending on whether the signs of the fragments are

N=2, q,=0.1, L=20000

10" e 7 18 T T 1
o L6 [E — FIG. 5. Comparison of force dis-
10" & E ' o mean field theory | tribution P(v) versusv for simula-
1 14 + direct simulation | — tion of mean field theory and of the
10 = 1 original model equation§.1) for a
12 N system with theq distribution Eg.
PRt 4 10k a (2.7) with N=2 andq,=0.1. Both
\>/ P ] data sets were obtained by averag-
a¥ 0% N ] os — ing the bottom 10000 rows of a
3 1 20 000x20 000 system. Mean field
af 0.6 ] theory does not yield the exa(v)
10 = E i for this q distribution. Nonetheless,
04 N it provides an accurate quantitative
107 ERY | estimate for P(v) over a broad
0004 ] range ofv.
10 L vl vl il il il g0 B ‘ CoPoo e b o d
107 107 100 10 10 10 10 0 1 2 3 4 5

v
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the same or different Further, while for anyparticular  Ill. NUMERICAL SIMULATIONS OF SPHERE PACKINGS
value ofD it is possible forA(D) to be equal taA(D +1),

the only way in whichA(D) can remain unchanged & i .
increases is if all the positivéw’s are segregated from all Materials. Although we have shown that iienodel yields

the negative ones. Even if this is the case in the top row, thi&€n exponentially decaying force distribution independent of
becomes increasingly unlikely &3 is increased. In fact, if the_detalls o.f theg distribution, to make quantitative com-
the minimum distance between positive and negafiwss | parison of this model to granular systems, we must know the
in the top row, and if there are n®functions in5(q), then  d distribution for a granular material. To make this compari-
A(D +1) mustbe less thar\(D) for D>1. Thus for a system SOn, we have performed molecular dynamics simulations of
of finite transverse extent, the distribution of weights at thethree-dimensional sphere packings, analyzed the contact dis-
bottom of the system is independent of the loading on the toyributions to estimate the distribution gfs, and then calcu-
row in the limit that the height of the system is infinite. For lated the force distribution in the sphere packing and com-
the case when all dimensions of the system are made infiniteared it to that predicted by the model. Our simulations
the situation is trickier; due to the conservation3#w un-  yield results for the contact force distributions that are con-
der the evolution of Eq(2.45 discussed above, if one were sistent with previous work23—26; the new ingredient here

to makesw positive on one side of the top row and negativeis that the geometry of the packing is characterized simulta-
on the other half, for a system of transverse exteittwould  neously, allowing testing of the statistical assumptions un-
require a heigh©(L?) for the effects of this perturbation to derlying theq model.

“diffuse” away. For generic loading at the top, however, we  our simulation consists of 500 spherical beads of weight
do not expect such an anomalous concentration of fluctuasng diameter unity in a uniform gravitational field with

tions into only the longest wavelength modes of the systemyitational constang=1, interacting via a central forde
andA(D) should decay wittD even if all dimensions of the of the Hertzian form F=FO(5r)3’Z. Here, F, is the force

system are enlarged. . . constant, chosen so that a sphere has a deformatiai of
We have seen that the distribution of weight at the bottom_n 551 \vhen subjected to its own weight, add is the

of any infinite system is independent of the details of hOWdeformation of each bead at the contact. The box containing
forces are distributed at the top, at least in the limit when th

&he beads had a fixed bottom, and lateral dimensions of 5.5
€<5.5. In each simulation, the spheres are initially placed in a

heref | for the full ble of ith d.]ﬁoose rectangular lattice with lattice constants of1X1.5
therefore also true for the full ensemble of systems with dit-5,§ haye random initial velocities uniformly distributed in

ferent realizations of randomnegthe choice ofq;;’s), so the range —Vina<Vy y z< Ve, Where Vi, =50 is large

that the solu;lons we have obta!ned so far for quantities “keenough to yield significantly different packings from run to
P(l.}) are unique. For any particular system, however, therun. By freezing the motion of the beads whenever the total
weights on the different sites at the bottalmdepend on the iqtic energy of the system reaches a maximum, the kinetic
gij’s; in fact, with all theg;;’s specified, the weights on the o000 of the system is reduced and eventually the spheres
different sites are complgtely determlned._ Even for a smg.I%” settle to the bottom of the box. Starting with a flat bottom,
system, however, statistics can be obtained by measuringo roqarity of layerlike packing reduces as the height in-
quantities across all the sites in the bottom row; for a systemoceq A rough bottom was obtained by selecting the beads
of infi_nite transverse size the m_easureme_nts_the_n lead to digis, height betweer andH +1 (typically, H~10) and this
tributions. At least for the “uniform”q distribution, any 1,41 hottom was used for the next simulation. Within a few
quantity like, say_,P(v), IS the same, whether obta!ned bY iterations, the statistical properties of the rough bottom be-
averaging over sites in a single system or for a single sitq, 65 independent of its initial configuration; this configu-
over the entire ensemble.. Thls IS because, as we have S€¢8tion of spheres at the bottom of the box is then fixed and
the ensemble aver_aged distribution{of, ..., } across the used as a boundary condition for subsequent packing simu-
bottom row is of the form P(vq,...v.) lations.

=P(v1)P(vy)---P(v)). For any single system chosen ran- =, o, packings, a sphere can have up to six contacts on
domly from the ensemble, this is the probability density thatyg ,tom half. However, on average, the three strongest
th? normalized weights in the bottom row take on the SP€yertical forces at these contacts sustain over 98% of the load;
C!ﬂc va!ues{vl,vz,...,v L} The probaplllty that of thesel three or fewer particles supported at least 90% of the weight
sites will havev; greater than some, is then for over 92% of the particles. Therefore, comparison with the
g model withN=3 is reasonable.
L - | - L—1 We estimate they distribution for the sphere simulation
( | )(J’ P(v)dv) (1—j P(v)dv) : (2.46 by calculating the fractions of the total vertical force sup-
0 ported by each of the three strongest cont2®. To dis-
play our results for they distribution for the simulation of
) hard spheres, we define the variables=(q;—q,)/V3,
asL—e, I/L is sharply peaked arounff P(v)dv, so that 4 =q, [28]. BecauseS$_,q;=1, the possible values of the
the site averaged result is the same as the ensemble averagts can all be represented as points in the interior of an
We expect this to be the case even for more gereprdils-  equilateral triangle, where the values gfare the perpen-
tributions, for which the ensemble averade@ ,,v,,...,v) dicular distances to each side of the triangle. Moreover, for
does not have a product form, so long as the transverse cathe uniformq distribution, the density of points in the tri-
relation lengths are finite. angle is constant. If one orders thé& so thatq;>qg,>qq,

We now discuss the relevance of thaenodel to granular

v vo
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then in terms of thex variables, all the points lie in the
triangle shown in Fig. 6, which is bounded by the lines
a;>0, a,>0, andv3ay+ a,<1. As Fig. 6 demonstrates, there 030 1~
is some deviation from the uniform distribution because a 025 |-
nonzero fraction of the particles hagg=«,=0. A reason-
able description of the numerically observed particle contact o
distribution is obtained by taking each particle and assigning & °°
with probability p, I, andu into “point,” “line,” and “uni- 0.10 -
form” pieces. In the point piece one of tlggs has value 005 |-
unity, and the other two are zero. In the line piece one of the
g’s is set to zero, and the other two are determined as in the

035 — hard sphere simulation

0.20 -

N=2 uniform distribution. Finally, the particles in the uni- 005 = 00 ol 02 03 04 05 06

form piece have theig’s determined exactly as in tHé=3 o,

uniform distribution. Our numerical data for the spheres are

consistent with the value=0.017+0.0023, | =0.1635 FIG. 6. Scatter plot of contact variables, a, (defined in the
+0.007,u=1-1-p=0.8195-0.007. text) obtained from the sphere simulation described in the text. The

We now discuss our results for the distribution of verticalgraph has 3229 points. On this plot, the unifogndistribution
forces. First, we calculated the force distribution at severayould have a uniform density of points. The “arching” in the
different depthsD. Our numerical data indicate that if one simulation is reflected in the fact that a nonzero fraction of points
considers the normalized forae=w/D, the force distribu- ave@2=0.
tion P(v) indeed becomes independent of depth Boe5,
and it decays exponentially at large The data were ob- IV. DISCUSSION
tained by making a histogram of the vertical force exerted by

spheres in horlzontallshc_es of W'd_szl' Ihe scales are mogeneities in static bead packs and compares the results to
set by the normalization requirementfodv P(v)=1,  nymerical simulations of disordered sphere packings. The
Jodv vP(v)=1. _irregularities of the packing are described probabilistically,

~ We now compare the results of these molecular dynamicy, terms of spatially uncorrelated random variables. Al-
simulations to results from thg model. Figure 7 shows though there is a specigl distribution for theq model that
P(v) calculated via numerical simulation of toemodel Eq.  |eads to a force distribution that decays as a power law at
(2.1) with f(q)=1 at depthD=1024 on a periodically con- |arge forces, we have presented evidence that the force dis-
tinued fcc lattice of side 1024, withN=3. Within our ap- tribution decays exponentially at large forces for almostjall
proximation of placing the grains on a uniform lattice, the distributions. We obtain exact results for all the multipoint
reasonable choice fdW is the dimensionalityd of the sys- force correlation functions at a given depth for a countable
tem: Ford=3 the grains are approximated as being in trian-set of q distributions, including one that is “generic{the
gular lattice layers, with each layer staggered relative to th&uniform” distribution). The force distribution function for
next, so that each grain has three neighbors. As expectethe uniform case agrees quantitatively with that obtained for
since the mean field distribution is exact for the uniformthe sphere simulation. Our numerical calculations demon-
case, there is excellent agreement with E324). On the strate that a modified distribution gfs which more closely
same graph we sho®(v) obtained in the sphere simulation approximates that observed for the sphere simulation im-
described above. Both the sphere simulation andjthmdel  proves the already good agreement between the force distri-
exhibit a P(v) that decays exponentially at large The  bution predicted by the model using the uniforng distri-
guantitative agreement between the two is surprisingly gootbution and simulations of spheres. Thus, this model appears
considering the “arching’[1] in the sphere simulation, as to contain some essential features of the force inhomogene-
reflected in the line and point pieces of thalistribution for ities in granular solids.
the spheres. To examine the effects of arching on the results, Neither our simulations nor thg model of Eq.(2.1) cap-
we examined the force distribution resulting from thg “ tures all features of real bead packs. In our simulations, we
model” with the three-pieceq distribution, which more have included only central forces and have ignored friction;
closely approximates that of the sphere simulation. Figure &eq model ignores the vector nature of the forces, assuming
shows the numerically calculatét{v) for the q model with  that only the component along the direction of gravity plays
the three-piece distribution with=0.017 and =0.1635, to- a vital role. The qualitative consistency between the results
gether with the solution for the uniform distribution and the obtained using the different methods as well as with experi-
numerical data from the sphere simulation. Changingcthe ment[6] provides some indication that the effects that we
distribution has little effect oP(v); to the extent that there have neglected do not determine the main qualitative fea-
is a change, it appears to improve the already good agreédres of the force distribution at large
ment between thg model and the sphere simulation. Several avenues for future investigations are evident. It

Thus, our simulations indicate that our sphere packingshould be straightforward to extend the analysis of the model

are reasonably well-describedt the ~15% leve) by the to calculate longitudinalalong the direction of gravifycor-
uniform g distribution. Deviations from thig distribution  relations of the forces. It is not obvious how to measure these
are observed; accounting for them improves the already goocbrrelations experimentally, but comparison to sphere simu-
agreement between tltemodel and the simulations. lations is clearly possible and would provide further tests of

This paper presents a statistical model for the force inho-
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FIG. 8. The distribution of forceB(v) as a function of normal-

ized weightv=w/D at a given depttD. Dashed line:P(v) at  126d Weightv=w/D at a given deptiD. Dashed lineP,(v) ob-

D =1024 obtained via numerical simulation of the model By1)  t@ined from the analytic mean field solution fpmodel withN=3,

with f(g)=1 on a periodically continued fcc lattice of transverse E0- (2:24. Solid circles:P(v) obtained in the sphere simulation

extent 1024. Solid lineP,(v) obtained from the analytic mean @veraged over deptfi3=6 throughD=13. Open square®(v) at

field solution, Eq.(2.24. The points areP(v) obtained in the D =16 obtained via numerical simulation of the model E2.1)

sphere simulation described in the text at depth 10 (triangles with the three-_parq distribution described m_the_ text, Wlth_param-

and averaged over deptBs=6 throughD =13 (diamonds. There ete_r values given on the graph, on a periodically continued f(_:c

are no adjustable parameters; the scales are set by the normalizatigifice Of transverse extent 256. This figure demonstrates that using
the measured] distribution instead of the uniforny distribution

improves the already good agreement betweergthdel and the

FIG. 7. The distribution of forceB(v) as a function of normal-

requirementggdv P(v)=1, [odv vP(v)=1.

the statistical model. Similarly, the theory makes clearcufSPhere simulation.
predictions for the multipoint correlation functions, which i ) , , )
can be tested both by experiment and by simulations. Thé/hen N=3, configuration will be retained only if
model can be generalized to apply to a broader variety ofiz*d2Fds<1. Therefore, the probability of obtaining a
situations by including vector forces as well as incorporating’2/U€ 0fd is given by
boundary effects. Most interestingly, we plan to investigate 1 1

whether the statistical theory developed here can be extended 7u(q) =M jo day fo ddz6(1—a; -4z~ q)
to provide new insight into the complex dynamical effects

exhibited by granular material4].
In summary, we have presented and analyzed a statistical

model for force inhomogeneities in stationary bead packs.
The model, which predicts that force inhomogeneities decaywhereM is a normalization constant. Sindgdq 7(q) =1,

exponentially at large forces for almost all contact distribu-one immediately find=2=(N—1).
tions, agrees well with numerical simulations of sphere pack- For generaN, 7,(q) can be written:

ings as well as experimen®]. 1
nd@=VMU/LVMN% (A2)
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Using the identity
APPENDIX: UNIFORM q DISTRIBUTION fl‘gnfqm( n—zk+1 )k—l
I= 1- dg,_
Here we consider the “uniform’y distribution, which is 0 ey Om fn-k+1
the simplesty distribution consistent with the restriction that L n—k K
>7-19;=1. It is obtained by choosing each of - (1_ D Qm) , (Ad)
m=1

d1.,92,---,0n—1 independently from a uniform distribution
between 0 and 1, settirtgﬁl—E}\';llqj , and then keeping
only those sets whereqy=0. Here we show that one can show that
74(q)=1/(N—1)(1—q)N 2 for this distribution.

For N=2, if one chooseqy; between 0 and 1, then
q,=1—q; must also be between 0 and 1, so thg(q) =1. () =(N=1)(1—q)N 2.

(A5)
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