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This paper shows how particle hopping models fit into the context of traffic flow theory, that is, it shows
connections between fluid-dynamical traffic flow models, which derive from the Navier-Stokes equations, and
particle hopping models. In some cases, these connections are exact and have long been established, but have
never been viewed in the context of traffic theory. In other cases, critical behavior of traffic jam clusters can be
compared to instabilities in the partial differential equations. Finally, it is shown how all this leads to a
consistent picture of traffic jam dynamics. In consequence, this paper starts building a foundation of a com-
prehensivedynamictraffic theory, where strengths and weaknesses of different models~fluid-dynamical, car-
following, particle hopping! can be compared, and thus allowing tosystematicallychose the appropriate model
for a given question.@S1063-651X~96!06805-5#
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I. INTRODUCTION

Traffic jams have always been annoying. At least in the
industrialized countries, the standard reaction has been to
expand the transportation infrastructure to match demand. In
this phase of fast growth, relatively rough planning tools
were sufficient. However, in recent years most industrialized
societies started to see the limits of such growth. In densely
populated areas, there is only limited space available for ex-
tensions of the transportation system and we face increasing
pollution and growing accident frequencies as the downsides
of mobility. In consequence, planning is now turning to a
fine tuning of the existing systems, without major extensions
of facilities. This is, for example, reflected in the United
States by the Clean Air Act and by the Intermodal Surface
Transportation and Efficiency Act legislation. The former
sets standards of air quality for urban areas, whereas the
latter forces planning authorities to evaluate land use poli-
cies, intermodal connectivity, and enhanced transit service
when planning transportation.

In consequence, planning and prediction tools with a
much higher reliability than in the past are necessary. Due to
the high complexity of the problems, analytical approaches
are infeasible. Current approaches are simulation based~e.g.,
@1–4#!, which is driven by necessity, but largely enhanced by
the widespread availability of computing power nowadays.
Yet, also for computers one needs good simplified models of
the phenomena of interest: Just coding a perfect representa-
tion of reality into the computer is not possible because of
limits of knowledge, limits of human resources for coding all
these details, and limits of computational resources.

Practical simulation has to observe tradeoffs between
resolution, fidelity, and scale @5#. Resolution refers to the
smallest entities~objects, particles, and processes! resolved
in a simulation, whereas fidelity means the degree of realism
in modeling each of these entities, and scale means the~spa-

tial, temporal, etc.! size of the problem. It is empirically well
known, for example, from fluid dynamics, that to a certain
extent a low-fidelity high-resolution model~lattice gas au-
tomata@6,7#! can do as well as a high-fidelity low-resolution
model ~discretization of the Navier-Stokes equations! or, in
short, resolution can replace fidelity.

Current state-of-the-art traffic modeling has a fixed unit of
~minimal! resolution and that is the individual traveler. Since
one is aiming for rather large scales~for example, the Los
Angeles area consists of approximately 10 million potential
travelers!, it is rather obvious that one has to sacrifice fidelity
to achieve reasonable computing times.

One important part of transportation modeling is road
traffic. For example, in Germany, road traffic currently con-
tributes more than 81% of all passenger and 52.7% of all
freight transportation@8#. Despite widespread efforts, the
share of road transportation is still increasing. For that rea-
son, it makes sense to start with road traffic when dealing
with transportation systems.

Putting these arguments together, one thing that is needed
for large-scale transportation simulations is aminimal repre-
sentation of road traffic. Particle hopping models clearly are
candidates for this, and even if not, building aminimal
theory of road traffic is certainly the right starting point.

This paper shows how particle hopping models fit into the
context of traffic flow theory. It starts out with a historical
overview of traffic flow theory~Sec. II!, followed by a sys-
tematic review of fluid-dynamical models for traffic flow
~Sec. III! starting from the Navier-Stokes equations. Section
IV defines different particle hopping models that are of in-
terest in the context of traffic flow. Section V then shows the
different connections between the fluid-dynamical traffic
flow models and particle hopping models. In some cases,
these connections are exact and have long been established,
but have never been viewed in the context of traffic theory.
In other cases, critical behavior of traffic jam clusters can be
compared to instabilities in the partial differential equations.
Finally, it is shown how this leads to a consistent picture of
traffic jam dynamics~Sec. VI!. A discussion of the conse-
quences for traffic simulations~Sec. VII! serves as summary
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and discussion, and a collection of open questions~Sec. VIII!
conclude the paper.

II. HISTORICAL OVERVIEW OF TRAFFIC THEORY

Vehicular traffic has been a widely and thoroughly re-
searched area in the 1950s and 1960s. For a review of traffic
theory, see, for example, one of@9–11#. Vehicular traffic
theory can be broadly separated into three branches: traffic
flow theory,car-following theory, and one more recent addi-
tion, particle hopping models.

A. Traffic flow theory

Traffic flow theory is concerned with finding relations be-
tween the three fundamental variables of traffic flow, which
are velocityv, densityr, and current or throughput or flow
j . Only two of these variables are independent since they are
related throughj5rv. Possible units for these variables are
@v#5 km/h, @r#5vehicles/km, and@ j #5 vehicles/h.

The first approach of traffic flow theory historically was
to search fortime-independentrelations betweenj , r, and
v. These relations are the so-called fundamental diagrams.
The form of such a relation is, though, still debated in the
traffic flow literature @12,13#. The problem stems mainly
from the fact that reality measurements are done in nonsta-
tionary conditions. There, only short time averages make
sense and they usually show large fluctuations. I will, at the
end of the paper, discuss how a dynamic, particle-based de-
scription of traffic can resolve these difficulties.

The second step of traffic flow theory was to introduce a
dynamic, i.e., time-dependent description. This was achieved
by a well-known paper from Lighthill and Whitham, pub-
lished in 1955@14#. This paper introduced a description
based on the equation of continuity, together with the as-
sumption that flow~or velocity! depends on the density only,
i.e., there is no relaxation time, velocity adaptsinstanta-
neouslyto the surrounding density.

Prigogine and Herman developed a kinetic theory for traf-
fic flow @15#. They derived the Lighthill-Whitham situation
as a limiting case of the kinetic theory. Kinetic theory antici-
pates many of the phenomena~such as start-stop waves! that
arise in later work, but probably because the mathematics of
working in this framework is fairly laborious, this theory has
not been developed any further until recently@16,17#.

Instead, in 1971, Payne replaced the assumption of instan-
taneous adaption in the Lighthill-Whitham theory by an
equation for inertia, which is similar to a Navier-Stokes
equation@18#. Kühne, in 1984, added a viscosity term and
initiated using the methods of nonlinear dynamics for ana-
lyzing the equations@19–22#. In a parallel development,
Musha and Higuchi proposed the noisy Burgers equation as a
model for traffic and backed that up by measurements of the
power spectrum of traffic count data@23#. In Sec. III these
fluid-dynamical models will be put into a common perspec-
tive.

B. Car-following theory

Car-following theory regards traffic from a more micro-
scopic point of view: The behavior of each vehicle is mod-
eled in relation to the vehicle ahead. As the definition indi-

cates, this theory concentrates on single lane situations where
a driver reacts to the movements of the vehicle ahead of him.
Many car-following models are of the form

a~ t1T!}
v~ t !m

@Dx~ t !# l
Dv~ t !, ~1!

wherea andv are the acceleration and velocity, respectively,
of the car under consideration,Dx is the distance to the car
ahead,Dv is the velocity difference to that car, andm and
l are constants.T is a delay time between stimulus and re-
sponse, which summarizes all delay effects such as human
reaction time or time the car mechanics needs to react to
input.

Other examples for car-following equations arev(t1T)
}Dx @24,25# or a(t)}V@Dx(t)]2v(t) @26,27#, where
V@Dx# gives a preferred velocity as a function of distance
headway. See also@28–30#. Mathematically, parts of this
theory are very similar to the treatment of atomic movements
in crystals and give results about the stability of chains of
cars~‘‘platoons’’! in follow-the-leader situations.

One of the achievements of traffic theory of this period
was that relations between car-following models andstatic
flow-density relations were derived. Car-following theory
will not be treated any further in this paper.

C. Particle hopping models

A more recent addition to the development of vehicular
traffic flow theory are particle hopping models. In particle
hopping models, a road is represented as a string of cells,
which are either empty or occupied by exactly one particle.
Movement takes place by hopping between cells. If all par-
ticles are updated simultaneously~parallel update, see be-
low!, then the particle hopping model treated in this paper
formally are also cellular automata~CA!.

The technical difference between car-following and CA
models for traffic flow is that in the latter, space and time are
discrete, whereas in the mathematical treatment of car-
following models, they are continuous.Simulationsof car-
following models~e.g.,@26–29,107#! discretize time but use
continuous space.

Actually, an initial proposition of a CA model for traffic
is from Gerlough in 1956@31# and has been further extended
by Cremer and co-workers@32,33#. They implemented fairly
sophisticated driving rules and also used single-bit coding
with the goal to make the simulation fast enough to be useful
for real-time traffic applications. The bit-coded implementa-
tion, though, made it too impractical for many traffic appli-
cations.

In 1992, CA models for traffic were brought into the sta-
tistical physics community. Biham and co-workers used a
model with maximum velocity one for one- and for two-
dimensional traffic @34#. One-dimensional here refers to
roads, etc., and includes multilane traffic. Two-dimensional
traffic in the CA context usually means traffic on a two-
dimensional grid, as a model for traffic in urban areas. Nagel
and Schreckenberg introduced a model with maximum ve-
locity vmax55 for one-dimensional traffic, which compared
favorably with real world data@35#. Both approaches were
further analyzed and extended in a series of subsequent pa-
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pers, both for the one-dimensional@28,36–62# ~see also@63#!
and the two-dimensional~see, e.g.,@64–66#! investigations.

That work had two motivations at that time. The primary
motivation was again computational speed, but this time to
make Monte Carlo analysis possible. The second motivation
was to keep the models simple enough to allow analytical
treatment. An additional third motivation was added more
recently: CA methodology is planned to be used as a high-
speed option in traffic projects in Germany@2# and in the
United States@1#.

From a theoretical point of view, the methodology of par-
ticle hopping models lies between fluid-dynamical and car-
following theories and helps to clarify the connections be-
tween these approaches. One contribution of this paper is to
further improve upon the current understanding and to
clarify the relations between particle-hopping models and
fluid-dynamical models for traffic flow.

III. FLUID-DYNAMICAL MODELS FOR TRAFFIC FLOW

This section reviews fluid-dynamical models for traffic
flow. The models can broadly be distinguished by whether
they consider the effects of inertia. Models without consid-
ering inertia can be derived from the equation of continuity
when velocity or current are considered as functions of the
density only. Models considering inertia formally are
Navier-Stokes equations, with a car-specific force term that
takes into account that drivers want to drive at a certain
desired speed. If the time constant of this force term is set to
zero, i.e., assuminginstantaneous adaptionto the surround-
ing density, the models revert to the noninertia case.

A. General equations

Papers on traffic flow theory usually start with stating the
equations under consideration, without setting them in per-
spective. I will therefore in this paper attempt a more funda-
mental approach, similar to conventional fluid dynamics. The
precise presentation of most of these equations is necessary
anyhow because the particle hopping models presented later
relate to these equations.

One might use the standard fluid-dynamical conservation
equations for mass and momentum as a starting point for a
fluid-dynamical description of traffic:

] tr1]x~rv !50 ~equation of continuity! ~2!

and

dv
dt

[] tv1v]xv5F/m ~momentum equation!, ~3!

wherer is the density andv the velocity.d/dt is the indi-
vidual ~Lagrangian! derivative andF is the force acting on
massm. Equation~2! describes mass conservation; Eq.~3!
describes the fact that the momentum of a point of mass may
only be changed by a force. Obviously, for traffic,F has to
include vehicle and driving dynamics.

B. Fluctuations

A standard first step in fluid dynamics@67# is to assume
that v and r fluctuate statistically around average values
^v& and ^r&, i.e.,

v5^v&1v8, ^v8&50 ~4!

and

r5^r&1r8, ^r8&50. ~5!

In this case, one only assumes that^v& and ^r& fluctuate
slowly in space and time; for the general subtleties of hydro-
dynamical theory see, e.g.,@68#. Inserting these relations into
~2! and ~3! and subsequent averaging over the whole equa-
tions „e.g., Š]x@(^r&1r8)(^v&1v8)#‹5]x^r&^v&
1]x^r8v8&… yields

] t^r&1]x^r&^v&1]x^r8v8&50 ~6!

and

] t^v&L1^v&L]x^v&L1
1

2
]x^v8v8&5^F/m&. ~7!

One often parametrizes averaged fluctuations by the cor-
responding gradient~see, e.g.,@67#! ^v8A8&'2a]x^A&,
which leads to the set of equations

] tr1]x~rv !5D]x
2r,

] tv1v]xv5n]x
2v1F/m, ~8!

where, according to convention, the averaging angular brack-
ets have been omitted and the diffusion coefficientD as well
as the~kinematic! viscosityn are assumed to be independent
of x andt. It should be noted that similar diffusion terms can
also be obtained from other arguments.@The idea behind this
parametrization is that, if there is more than average of quan-
tity A ~i.e.,A.^A& or A8[A2^A&.0) at one location and
less than average of quantityA at a neighboring location,
then velocity fluctuations represented byv8 tend to equili-
brate this and that this happens, to first order, linearly in the
concentration gradient ofA. ~Think of A as, say, red color.!#

C. Lighthill-Whitham theory and kinematic waves

If one assumes that the velocity is a function of density
only @v5 f (r)#, then the momentum equation is no longer
necessary. This corresponds to instantaneous adaption; the
particles~or cars! carry no memory. Using, without loss of
generality, the currentj (r)[rv(r) and setting in addition
D50, from ~8! one obtains

] tr1 j 8~r!]xr50 ~9!

~the Lighthill-Whitham equation@14#!, where j 85d j /dr.
For a review of this theory, see, e.g.,@14,69#.

The equation can be solved by the ansatzr(x,t)
5r(x2ct) with

c5 j 8~r!. ~10!

This allows the solution of the characteristics~see, e.g.
@69#,!: A region with densityr travels with constant velocity
c5 j 8(r) and the resulting straight line in space-time is
called characteristic. Whenj (r) is convex, i.e.,j 9,0, then
for regions of decreasing density@r(x1).r(x2) for
x1,x2# the characteristics separate from each other. In re-
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gions of increasingdensity, the characteristics come closer
and closer together. When two characteristics touch each
other, a density discontinuity appears at this place~a front!,
which moves with velocity

c5
j ~x2!2 j ~x1!

r~x2!2r~x1!
5

D j

Dr
. ~11!

Note that formally the fluid-dynamical description has bro-
ken down here because bothr and j are no longer continu-
ous functions ofx.

An illustrative example is a queue, such as at a red light.
When the light turns green, the outflow front quickly
smoothes out, whereas the inflow front remains steep.

Note that usually at maximum flowc5 j 850. Structures
that operate at maximum flow do not move in space.

Leibig @70# gives results of how a random initial distribu-
tion of density steps in a closed system evolves towards two
single steps according to the Lighthill-Whitham theory.

D. Lighthill-Whitham theory with dissipation

Adding dissipation to the Lighthill-Whitham equation
leads to

] tr1 j 8~r!]xr5D]x
2r. ~12!

The solution of this equation is again a nondispersive wave
with phase and group velocityj 8. The difference is thatD
introduces dissipation~damping! of the wave: The amplitude
decays ase2Dk2, wherek is the wave number. This reflects
the intuitively reasonable effect that traffic jams should tend
to dissolve under homogeneous and stationary conditions.

E. The nonlinear diffusion „Burgers… equation

For a further development,j (r) has to be specified. Since
we are mostly interested in the behavior of traffic near maxi-
mum throughput, we start by choosing the simplest math-
ematical form that yields a ‘‘well-behaved’’ maximum

j ~r!5vmaxr~12r!, ~13!

which, in traffic science, is called the Greenshields model
~see@10#!. vmax is, in principle, a free parameter, but it has an
interpretation as the maximum average velocity forr→0.
Mathematicians would setvmax51; traffic scientists use
12r/r jam for the term in parenthesis.r jam is the density of
vehicles in a jam. The maximum currentjmax is reached at
r( jmax)51/2.

Substituting~13! into ~12! yields

] tr1vmax]xr22vmaxr]xr5D]x
2r. ~14!

Musha and Higuchi@23# have shown that by introducing a
linear transformation of variables

x5vmaxt82x8, t5t8, ~15!

one obtains

] t8r12vmaxr]x8r5D]x8
2 r, ~16!

which is the~deterministic! Burgers equation@71#.

The transformation~15! does two things.

~i! Transformation to a coordinate system that is moving
with uniform velocityvmax, that is, vehicles withvmax do not
move at all in this new coordinate system and slower ve-
hicles move backward~i.e., to the left!.

~ii ! A reversal of direction, i.e., the vehicles that are mov-
ing backwards after part~i! of the transformation now move
to the right. Note that this causes a change of sign before the
nonlinear term, which does not have any explanatory value
except that it brings Eq.~16! exactlyto the form treated by
Burgers.

This equation has been investigated in great detail by Bur-
gers@71# as the simplest non-linear diffusion equation. The
stationary solution is a uniform densityr(x,t)5 const. A
single disturbance from this state evolves over time into a
characteristic triangular structure with amplitude;t21/2,
width ;t1/2, bent to the right such that the right-hand side of
the disturbance becomes discontinuous, and moving to the
right with velocity c5 j 852rvmax.

When interpreting this for traffic jams, one has to retrans-
form the coordinates. Jams can then moveboth to the left or
to the right ~with velocities betweenvmax and2vmax) and
the discontinuous front develops at the inflow side of the
jam, i.e., where the vehicles enter the jam. One sees that this
solution is just the solution of the characteristics, with a dis-
sipating diffusion term added, as should be expected because
of D.0.

Some other versions of the Burgers equation have been
investigated thoroughly@72–74#. Of interest in the context of
this paper are the following.

Noisy Burgers equation.Adding a Gaussian noise
term h to the equation @i.e. ^h(x,t)h(x8,t8)&
5h0d(x2x8)d(t2t8)# leads to the noisy Burgers equation

] tr12vmaxr]xr5D]x
2r1h. ~17!

This equation no longer converges towards a homogeneous
state.

Generalized Burgers equation.The nonlinearity of the
Burgers equation can be generalized

] tr5(
b

bb]xr
b1D]x

2r. ~18!

Generalized Burgers equations with arbitraryb have been
investigated@73,72#.

F. Including momentum

The equations so far do not explain the spontaneous phase
separation into relatively free and rather dense regions of
vehicles, which is observed in real traffic. To obtain this, one
has to include the effect of momentum: One can neither ac-
celerate instantaneously to a desired speed nor slow down
without delay. It becomes necessary to include the momen-
tum equation. Here one has to specify the force termF/m,
which describes acceleration and slowing down. At least two
properties are usually incorporated, which are called the ‘‘re-
laxation term’’ and the ‘‘interaction term.’’

A first-order approximation for the relaxation term is
@19,18#
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1

t
@V~r!2v#, ~19!

whereV(r) is the desired average speed as a function of
density andt is a relaxation time. This choice yields expo-
nential relaxation towards the desired speed. The function
V(r) has to be specified externally, for example, from mea-
surements.

A commonly used interaction term@75–77,19,18# is

2
c0
2

r
]xr. ~20!

The meaning is that one tends to reduce speed when the
density increases, even when the local density is still consis-
tent with the current speed.

A more formal possible derivation of the interaction term
is as follows.~I got the idea for this argument from B.S.
Kerner.! In real traffic, the relaxation term actually is asym-
metric with respect to the vehicle position, e.g., say,
v̇(x)5 1/t @V(Dx)2v# ~see car-following section!, where
Dx is the front-buffer-to-front-buffer distance to the next ve-
hicle ahead.

After approximatingV(Dx) by V„r(x1Dx/2)… and then
Taylor expanding, one obtains

1

t
@V~Dx!2v#'

1

t
@V„r~x!…2v#1

1

t
DxV8„r~x!…]xr,

~21!

thus obtaining a formal justification of the interaction term
;]xr out of the asymmetry of the relaxation term.c0 is
treated as constant; in traffic, a typical value forc0 is 15
km/h @20#.

Formally, the interaction term is similar to the pressure
term of compressible flow2(1/r)]xp, wherep is the pres-
sure. Assuming an ideal gas (p5rRT) and isothermic be-
haviorT5const, one obtains waves similar to sound waves
as a solution of the linearized equations.~True sound waves,
though, would assume the gas to behave adiabatically, i.e.,
p}rk.) This leads to Eq.~20!, wherec0 is the speed of the
‘‘sound’’ waves. ~See below for a short discussion.! Note
that sound waves move inboth directions from a distur-
bance, which means that sound waves alone are not a good
explanation for freeway start-stop waves, contrary to what is
sometimes written@78#.

Taking all this together, a possible momentum equation
for traffic therefore is@19#

] tv1v]xv52
c0
2

r
]xr1

1

t
@V~r!2v#1n]x

2v. ~22!

Since one now has two variables, one also needs an equation
of continuity to close the system:

] tr1]x~rv !5D]x
2r. ~23!

Usually,D is set to zero.
For this equation, the homogeneous solution

(v,r)[(v0 ,r0) is unstable for densities near maximum flow
for a suitable choice of parameters. Using the methods of
nonlinear dynamics, Ku¨hne and co-workers@19,22,21# went

beyond linear stability analysis~see also@79,80#!. One finds
a multitude of stable or unstable fixed points and limit
cycles, which suggest that traffic near maximum flow oper-
ates on a strange attractor. This can lead to quasi-periodic
behavior, exactly as is observed in traffic measurements. Ear-
lier work @75,18# has analyzed the same equation without
viscosity (n50).

G. Discussion of fluid-dynamical approaches

Fluid-dynamical models have been used in traffic science
for a long time, with considerable success. But they have
shortcomings. Some of the major points are the following.

~i! One has to give externally the relation between speed
or current and density. This is unsatisfying in terms of the
development of a theory. But an even more intricate problem
is that there is no agreement on a functional form of the
speed-density relation; it is even under discussion if this re-
lation is at all continuous@13,81#.

~ii ! Microscopically, temperature parametrizes the random
fluctuations of particles around their mean speed:T
}^v2&2^v&2. For gases, fluctuations, and therefore tempera-
ture, increase with density. For granular media such as ve-
hicular traffic or sand, fluctuationsdecreasewith density
~i.e., inside a jam!; it has been claimed that exactly this in-
verse temperature effect is responsible for clustering@82#. In
this way, assuming isothermic instead of adiabatic behavior
as done for the momentum equation seems only half the way
one has to go. Helbing@83# discusses this further.

~iii ! Helbing @83# also discusses the effect of excluded
volume to take into account the spatial extension of vehicles.

~iv! Daganzo @84# claims that all second-orderfluid-
dynamical models produce unrealistic behavior~such as
backward moving vehicles caused by a diffusion term! and
are therefore unsuitable for traffic science.

Nonetheless, fluid-dynamical approaches@76,19,22,21#
give systematic insight into traffic dynamics near maximum
flow beyond simple extrapolation of light and dense traffic
results. These results will be further discussed near the end
of this paper.

IV. DEFINITIONS OF PARTICLE HOPPING MODELS

This section defines several particle hopping models that
are candidate models for traffic. They all are commonly de-
fined on a lattice of, say, lengthL, whereL is the number of
sites. Each site can be either empty or occupied by exactly
one particle. Also, in all models particles can only move in
one direction. The number of particlesN is conserved except
at the boundaries. For traffic, particles model cars.

A. The stochastic traffic cellular automaton

The stochastic traffic cellular automaton~STCA!, which
has been treated in a series of papers@43–56#, is defined as
follows. Each particle~car! can have an integer velocity be-
tween 0 andvmax. The complete configuration at time step
t is stored and the configuration at time stept11 is com-
puted from that, i.e., using a parallel or synchronous update.
All cars ~particles! execute in parallel the following steps.
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~i! Let g ~gap! equal the number of empty sites ahead.
~ii ! If v.g ~too fast!, then slow down tov:5g ~rule 1!;

otherwise if (v,g) ~enough headway! and v,vmax, then
accelerate by one:v:5v11 ~rule 2!.

~iii ! Randomization: If after the above steps the velocity is
larger than zero (v.0), then, with probabilityp, reducev
by one~rule 3!.

~iv! Particle propagation: Each particle movesv sites
ahead~rule 4!.

The randomization incorporates three different properties
of human driving into one computational operation: fluctua-
tions at maximum speed, overreactions at braking, and re-
tarded ~noisy! acceleration. Note that, because of integer
arithmetic, conditions such asv.g andv>g11 are equiva-
lent.

When the maximum velocity of this model is set to one
(v max51), then the model becomes much simpler: Each par-
ticle executes the following in parallel: If a site ahead is free,
move,with probability 12p, to that site. Since the STCA
shows different behavior forv max>2 than forvmax51, we
will distinguish them as STCA/1 and STCA/2, respectively.

Due to the given discretization of space and time, proper
units are often omitted in the context of particle hopping or
cellular automata models. Proper units here would be@g#
equal to the number of cells,@v# equal to the number of cells
per time step,@ t# equal to the number of time steps, etc. For
that reason, it is possible to write something such asv,g,
which properly would have to bev,g/~time step!. Note that
one still needs conversion factors to convert, say, velocity
from the particle hopping model to a real world velocity,
e.g., given in km/h. One should note, though, that every
computer program does such a thing. Numbers in computer
programs are always unitless and a proper conversion to real
world numbers has to be put in by the program designer.

B. The cruise control limit of the STCA „STCA-CC…

In the so-called cruise control limit of the STCA@51#,
fluctuations at free driving, i.e., at maximum speed and un-
disturbed by other cars, are set to zero. Algorithmically, the
velocity update~rules 1–3! of the STCA are replaced by the
following. For all cars, do the following in parallel.

~i! A vehicle is stationary when it travels at maximum
velocity vmax and has free headwayg>vmax. Such a vehicle
just maintains its velocity.

~ii ! Otherwise~i.e., if a vehicle is not stationary! the stan-
dard rules 1–3 of the STCA are applied.

Both acceleration and braking still have a stochastic com-
ponent.

C. The deterministic limit of the STCA „CA-189…

One can take the deterministic limit of the STCA by set-
ting the randomization probabilityp equal to zero, which just
amounts to skipping the randomization step. It turns out that,
when using a maximum velocityvmax51, this is equivalent
@72# to the cellular automaton rule 184 in Wolfram’s notation
@85#, which is why I will use the notation CA-184/1 and
CA-184/2.

Much work using CA models for traffic is based on this
model. Biham and co-workers@34# have introduced it for
traffic flow, with vmax51. Other authors base further results
on it @28,36,37,39,40,43#. Some @28,40# also use it with
vmax larger than one. It is also the basis of the two-
dimensional CA models for traffic~e.g.,@64–66#!.

D. The cruise control version for the CA-184„CA-184-CC…

Takayasu and Takayasu@42# introduced a different CA
model that is effectively equivalent to a deterministic cruise
control situation for CA-184/1. This may not be obvious
from the rules, but it will become clear from the dynamic
behavior summarized later. Since they use only maximum
velocity vmax51, the rules are short. For all particles do the
following in parallel.

~i! If v51 and the site ahead is free (g>1), then move
one site ahead.

~ii ! A particle at rest (v50) can move only wheng>2.

Generalizations to maximum velocity larger than one are
straightforward, but do not seem to lead to additional insight.

E. The asymmetric stochastic exclusion process

The probably most-investigated particle hopping model is
the asymmetric stochastic exclusion process~ASEP!. Its be-
havior is defined as follows.

~i! Pick one particle randomly~rule 1!.
~ii ! If the site to the right is free, move the particle to that

site ~rule 2!.

The ASEP is closely related to CA-184/1 and STCA/1
~i.e., both with maximum velocity one!. The difference actu-
ally only is in the manner in which sites are updated. CA-184
and STCA update all sites synchronously, whereas ASEP
uses a random serial sequence.

In order to compare the ASEP with the other, synchro-
nously updated models, one has to note that, in the ASEP,on
averageeach particle is updated once afterN single-particle
updates. A time step~also called update step or iteration! in
the ASEP is therefore completed afterN single-particle up-
dates~which is equal toN attempted hops!.

It has been noted in Ref.@72# that changing the update
from asynchronous to synchronous, i.e., going from ASEP to
CA-184/1, changes the dynamics considerably. In this paper,
I will in addition show that reintroducing the randomness via
the randomization~rule 4! in the STCA again leads to dif-
ferent results.

A systematic way of reducing the noise for the ASEP
could be done using techniques described by Wolf and
Kertesz@86#, i.e., by putting a counter on each particle and
moving it only afterk trials. For largek it becomes more and
more improbable that one particle is moved twice while a
neighboring particle is not moved at all during that time.
Taking the limitk→` then reduces the ASEP to the CA-184
process in a smooth way.

One can also define higher velocities for the ASEP by
simply replacing the ASEP rule 2 by STCA/2 rules 1, 2, and
4. In such a case, each particle has to remember its velocity
v from the last move.
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V. PARTICLE HOPPING MODELS, FLUID DYNAMICS,
AND CRITICAL EXPONENTS

Both for the ASEP/1 and for the CA-184/1, fluid-
dynamical limits and critical exponents are well known~see,
e.g.@74,72,87,73#,!. The most straightforward way to put the
concept of critical exponents into the context of traffic flow
is to consider ‘‘disturbances’’~i.e., jams! of lengthx and ask
for the time t to dissolve them. For example, one would
intuitively assume that a queue of lengthx at a traffic light
that just turned green would need a timet proportional tox
until everybody is in full motion. By this argument, the dy-
namic exponentz, defined byt;xz, should be one.

Yet, there may be more complicated cases. Imagine again
a queue at a traffic light just turned green, but this time there
is also some fairly high inflow at the end of the queue. The
jam queue itself will start moving backward, clearing its ini-
tial position in timet;x. However, the dissolving of the jam
itself may be governed by different rules. An example for
this will be given in the following.

A. ASEP/1

It can be shown that the classic ASEP corresponds to the
noisy Burgers equation~see, e.g.,@72,73#!. More precisely,
the hydrodynamic limit of the particle process is a diffusion
equation] tr1]xj5D]x

2r1h with a current@72,88,89# of
j5r(12r). This yields

] tr1]xr2]xr
25D]x

2r1h, ~24!

which is exactly the Lighthill-Whitham-Greenshields case
with noise and diffusion described earlier. In other words,
the ASEP/1 particle hopping process and the Lighthill-

Whitham theory~plus noise plus diffusion!, specialized to
the case of the Greenshields flow-density relation, describe
the samebehavior.

In the steady state, this model shows kinematic waves
~small jams!, which are produced by the noise and damped
by diffusion ~Fig. 1!. These nondispersive waves move for-
ward ~wave velocity c5 j 85122r.0) for r,1/2 and
backward (c,0) for r.1/2 ~Fig. 2!. At r51/2, the wave
velocity is exactly zero (c50) and this is the point of maxi-
mum throughput@90#. If traffic were modeled by the ASEP,
then one could detect maximum traffic flow by standing on a
bridge: Jam waves moving in flow direction indicate too low
density~cf. Fig. 1! and jam waves moving against the flow
direction indicate too high density.

The ASEP is one of the cases where clearing a site fol-
lows a different exponent than dissolving a disturbance.
~Note that, technically, all these remarks are only valid for
small disturbances. When the system is not close to the
steady state, one sees transient behavior that may be different
@72#.! As long asrÞ1/2, a disturbance of sizex moves with
speed cÞ0 and therefore clears the initial site in time
t;cx;x1, i.e., with dynamical exponentz51. In order to
see how the disturbance itself dissolves, one transforms into
the coordinate system of the wave velocity. One convention-
ally does that by first separating between the average density
^r&L and the fluctuationsr8. By insertingr5^r&L1r8 one
obtains

] tr81~122^r&L!]xr822r8]xr85D]x
2r81h. ~25!

When transforming this into the moving coordinate system
x85x1(122^r&L)t, one obtains

] tr822r8]x8r85D]x8
2r81h, ~26!

FIG. 1. Space-time plot for random sequential update,vmax51
~ASEP/1! and r50.3. Clearly, the kinematic waves are moving
forward. Forr.1/2, the kinematic waves would be moving back-
ward and the plot would look similar to Fig. 2.

FIG. 2. Space-time plot for random sequential update,
v max55 ~ASEP/5! andr50.3, showing that the higher maximum
velocity does not lead to a different appearance as long as one uses
the random sequential update.
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which is the classic noisy Burgers equation.
Note that this transformation is different from the Musha

transformation Eq.~15!. As a formality, we do not change
the sign of thex direction here and in consequence not the
sign of the nonlinear term. More important, we transform
into a coordinate system moving with the speed of thewaves
and this time find thatthe fluctuationsof the system also
obey the Burgers equation.

For this equation it is well known that the dynamical ex-
ponent is z53/2 ~the Kardar-Parisi-Zhang exponent!. In
other words, in the original coordinate system a disturbance
four times as big as another one,x854x, needs
t8;x854x;4t, i.e., four times as much time to clear the
site, but t8;x83/25(4x)3/2;8t, i.e., 8 times as much time
until the jam structure itself is no longer visible in the noise.
A precise treatment of this uses, e.g., correlations between
tagged particles@74#.

The drawback of this model with respect to traffic flow is
that it has neither a regime of laminar flow nor ‘‘real,’’ big
jams. Because of the random sequential update, vehicles
with average speedv̄ fluctuate severely around their average
position given byv̄t. As a result, they always ‘‘collide’’ with
their neighbors, even at very low densities, leading to ‘‘mini-
jams’’ everywhere. This is clearly unrealistic for light traffic.

Actually, this fact is also visible in the speed-density re-
lation. Using the Greenshields flow-density relation, one ob-
tains

v5
j

r
}12r. ~27!

This is in contrast to the observed result that, at low densi-
ties, speed is nearly independent of density~practically no
interaction between vehicles!.

B. ASEP/2

Judging from space-time plots~see Figs. 1 and 2!, chang-
ing the maximum velocity in the update fromvmax51 to
vmax>2 does not change the universality class@54#. It skews

the flow-density relation towards lower densities, but does
not lead to other phenomenological behavior.

C. CA-184

Using a maximum velocity higher than one does not
change the general behavior of CA-184. It therefore makes
sense to directly discuss the general case.

As explained above, the CA-184/1 is the deterministic
counterpart of the ASEP/1. But taking away the noise from
the particle update completely changes the universality class
~i.e., the exponentz) @72#. The model now corresponds to the
nondiffusive, nonnoisy equation of continuity

] tr1 j 8]xr50, ~28!

with the ~except atr5r jmax
) linear flow

j 85
d j

dr
5H vmax for r,r jmax

21 for r.r jmax
.

~29!

The intersection point of the fundamental diagram divides
two phenomenological regimes: light traffic (r,r jmax

) and

dense traffic (r.r jmax
).

A typical situation for light traffic is shown in Fig. 3~with
vmax55). After starting from a random initial condition, the
traffic relaxes to a steady state, where the whole pattern just
movesvmax55 positions to the right in each iteration. Cars
clearly have a tendency of keeping a gap of>vmax55 be-
tween each other. As a result, the currentj in this regime is

j,5rvmax. ~30!

The velocity of the kinematic waves in this regime is
c,5 j,8 5vmax. This means that disturbances, such as holes,
just move with the traffic, as can also be seen in Fig. 3.

Dense traffic is different~Fig. 4!. Again starting from a
random initial configuration, the simulation relaxes to a
steady state where the whole pattern moves one position to
the left in each iteration. Note that cars still move to the
right; if one follows the trajectory of one individual vehicle,

FIG. 3. Space-time plot for CA-184/5 and subcritical density.
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for this car regions of relatively free movement are alternat-
ing with regions of high density and slow speed. Although in
a too static way, this captures some of the features of start-
stop traffic. The average speed in the steady state equals the
number of empty sites divided by the number of particles:
^v&L5(L2N)/N; the current is j.5r^v&L or, with
r5N/L,

j.512r. ~31!

This straight line intersects with the one from light traffic at
r51/(11v max), which is therefore the density correspond-
ing to maximum throughputjmax5vmax/(11vmax).

The velocity of the kinematic waves in the dense regime
is j.8 521, which corresponds to the backward moving pat-
tern in Fig. 4.

Since the second term of Eq.~28! @with ~29!# is ~except at
r5r jmax

) linear in the density, these are linear Burgers equa-

tions and the dynamic exponentz is equal to 1@72#. More
precisely, in terms of traffic the following happens. The out-
flow of a jam in this model always operates at flow
j out5 jmax and densityrout5r jmax

. The timet until a jam of

length x dissolves therefore obeys the average relationt
}x/( jmax2 j in), where j in is the average inflow to the jam.
Since j}r for r<r jmax

, one can write that as

t}
x

r jmax
2r~ j in!

. ~32!

This means that forr,r jmax
, the critical exponentz is in-

deed one, but atr5r jmax
, t diverges. This effect is also

visible when disturbing the system from its stationary state
@28#: The transient timet trans until the system is again sta-
tionary scales as

t trans;
1

r jmax
2r

. ~33!

The scaling law~33! is actually also true forr.r jmax
,

albeit for a different reason with a slightly more complicated
phenomenology. See@28# for more details.

Two observations are important at this point.

~i! Many papers in the physics literature@28,34,36,37,39–
41, 43# use this model for their investigations. Also the two-
dimensional grid models~see, e.g.,@64–66#! essentially use
this model for the one-dimensional part of their movements,
although the two-dimensional interactions seem to change
the flow-density relationship@104#. The CA-184 model lacks
at least two features that are, as I will argue later, important
with respect to reality:~a! The first is bistability: Laminar
flow above a certain density becomes instable, but can exist
for long times. CA-184 does not display this bistability.~b!
The other is stochasticity: CA-184 is completely determinis-
tic, i.e., a certain initial condition always leads to the same
dynamics. Real traffic, however, is stochastic, that is, even
identical initial conditions will lead to different outcomes,
and a model should be capable of calculating some distribu-
tion of outcomes~by using different random seeds!.

~ii ! The so-called cell transmission model@91#, which has
been proposed for traffic applications, technically is a dis-
cretization of the Lighthill-Whitham theory. It turns out that
this model is similar to Eq.~28! with ~29!, especially with
respect to the range of physical phenomena that are repre-
sented. The only difference is that thej -r relation of Ref.
@91# has a flat portion at maximum flow instead of the single
peak of Eq.~29!. That means that in the cell transmission
model low-density and high-density traffic behave similarly
to CA-184, but traffic at capacity has a regime where waves
do not move at all.

Using otherj -r relations in discretized Lighthill-Whitham
models ~e.g., @92,79#! will lead to other relations for the
wave speeds, but the range of physical phenomena~back-
ward or forward moving waves! that can be represented will

FIG. 4. Space-time plot for CA-184/5 and supercritical density.
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always resemble CA-184; in particular, neither the bistability
nor the stochasticity can be represented.

D. CA-184-CC

No fluid-dynamical limits for the other particle hopping
models are known. Yet, results for the jam dynamics for the
cruise control situations@42,51# offer valuable insights.

The important feature of the cruise control version of CA-
184 is a bistability @42#. Using vmax51 in this section
(vmax.1 does not seem to offer additional insight!, this bi-
stability occurs between two densities, i.e., for
rc1,^r&L,rc251/2, where ^r&L :5N/L, and, for
vmax51, rc151/3, andrc251/2. ^ &L means the average
over the whole~closed! system of lengthL. In this range,
some initial conditions lead to laminar flow, but others lead
to traffic including jams. Takayasu and Takayasu determined
that density-velocity relations converge to two types, which
depend upon initial conditions.

~i! Starting with maximally spaced particles and initial
velocity v51, one finds stable configurations with flow
^ j &L5^r&Lvmax5^r&L for low densities ^r&L<1/25:rc2 .
However, for high densitieŝr&L.rc2 , a jam phase appears
for all initial conditions since not all particles can keep
g>1. Once a jam has been created, all particles in the out-
flow of this jam haveg52. For t→`, this dynamics reor-
ganizes the system into jammed regions with densityr51
and zero currentj50 and laminar outflow regions with
r out51/3 and j out51/3. Simple geometric arguments then
lead, for the whole system, tô j &L5(12^r&L)/2 and
^v&L5(1/̂ r&L21)/2.

~ii ! Starting, however, with an initial condition where all
particles are clustered in a jam, this jam is only sorted out up
to ^r&L<1/35:rc1 , leading to^ j &L5^r&L and^v&L51. For
^r&L.rc1 , the initial jam survives forever, yielding
^ j &L5(12^r&L)/2 and ^v&L5(1/̂ r&L21)/2. One observes
that, forrc1,^r&L,rc2 , this initial condition leads to a dif-
ferent final flow state than the initial conditions in~i!. Note
that rc1 is equal to the outflow densityrout.

Starting from an arbitrary initial condition, the density-
velocity relation converges to one of the above two types.

Note that up until this section, all relations betweenj ,
v, andr were also locally correct, which is why averaging
angular brackets were omitted. Now, this is no longer true.
For example, densities slightly aboverc2 do not really exist
on a local level; they are only possible as a global composi-
tion of regions with local densitiesr5rc1 plus others with
local densitiesr51.

Since the model is deterministic, one can calculate the
behavior from the initial conditions. For any particlei with
initial velocity v50 one can determine the influencei has on
particles ‘‘behind it’’ (i11,i12, . . . ). Forparticle i1k to
be the first one not to be involved in the jam caused byi , one
needs the average gap betweeni andk to be larger than two.
This corresponds to a density betweeni and k of
r ik,1/(g11)51/35rc1 . The sequence (gi1 j ) j describes a
random walk, which is positively~negatively! biased for
r.rc1 (r,rc1) and unbiased at the critical point
r5rc5rc1 @42#.

E. STCA-CC/1

The cruise control limit of the STCA combines properties
of the CA-184 and the full STCA. Since the STCA-CC has
no fluctuations at free driving, the maximum flow one can
reach is with all cars at maximum speed andg5v max.
Therefore, onecanmanually achieve flows that follow, for
r<rc2 , the samej -r relationship as the CA-184, where
rc2 now denotes the density of maximum flow of the deter-
ministic model CA-184, i.e.,rc251/(vmax11).

Above a certainrc1 , these flows are unstable to small
local perturbations. This density will turn out to be a ‘‘criti-
cal’’ density; for that reason I will use the notation
rc[rc1 . Many different choices for the local perturbation
give rise to the same large-scale behavior. The perturbed car
eventually reaccelerates to maximum velocity. In the mean-
time, though, a following car may have come too close to the
disturbed car and has to slow down. This initiates a chain
reaction—an emergent traffic jam.

It is straightforward to see@51# that n(t), the number of
cars in the jam, follows a usually biased, absorbing random
walk, wheren(t)50 is the absorbing state~jam dissolved!:
Every time a new car arrives at the end of the jam,n(t)
increases by one, and this happens with probabilityj in ,
which is the inflow rate. Every time a car leaves the jam at
the outflow side,n(t) decreases by one, and this happens
with probability j out. When j in5 j out, n(t) follows an unbi-
ased absorbing random walk.j inÞ j out introduces a bias or
drift term proportional to (j in2 j out)t.

This picture is consistent with Takayasu and Takayasu’s
observations for the CA-184-CC model. The main difference
is that nowboth the inflow gaps and the outflow gaps form a
random sequence. Another difference is conceptual: Taka-
yasu and Takayasu have looked at the transient time starting
from initial conditions rather than looking at jams starting
from a single disturbance. The latter approach@51# leads to a
cleaner picture of the traffic jam dynamics because it con-
centrates on the transition from laminar to start-stop traffic,
which is observed in real traffic.

The statistics of such absorbing random walks can be cal-
culated exactly. For the unbiased case one finds that

^n~ t !&;th, Psurv~ t !;t2d, ^w~ t !&surv;th1d, ~34!

wherePsurv is the survival probability of a jam until timet
andw(t) means the width of the jam, i.e., the distance be-
tween the leftmost and the rightmost car in the jam.^ &
means the ensemble average overall jams that have been
initiated and̂ &survmeans the ensemble average oversurviv-
ing jams. For the critical exponents, one finds as well from
theory as from numerical simulationsd51/2 and h50.
h50 reconfirms that, at the critical densityrc , jams in the
averagebarely survive~unbiased random walk!.

If one now usesj in as the order parameter and, say,
Psurv(t) as the control parameter, then we have a second-
order phase transition, where

Psurv~ t ! 50 for j in, j out, t→`
;t2d for j in5 j out, t→`,
5const for j in. j out, t→`.

~35!
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For that reason, we callj c :5 j out the critical flow and the
associated densityrc :5r( j c) the critical density.

It is important to note thatj in. j out as a stable, long-time
state is only possible with the particular definition of the
cruise control limit and the use of an open system. If one
would use a closed system~periodic boundary conditions,
i.e., traffic in a loop!, the outflow of the jam would eventu-
ally recirculate around loop and become the inflow of the
jam ~see Fig. 5!, leading to the situationj in5 j out; if one
relaxes the cruise control assumption, eventually other jams
would form upstream of the one under consideration and the
outflow of these jams would eventually be the inflow of the
jam under consideration, again leading toj in5 j out.

Deviations from the cruise control limit will be addressed
later; let us now consider aclosedsystem.

~i! For r,rc and arbitrary initial conditions, jams are
ultimately sorted out. Then, every car has velocityv5v max
and g>vmax, is thus in the free driving regime as defined
above.

~ii ! For rc<r<rc2 , the long-time behavior depends on
the initial conditions. For example, even in the extreme case
of r5rc2 , the state where every car has velocityv5vmax
andg5v max is stable and results in a flow ofj5vmaxrc2 .
However, most other initial configurations will lead to jams
and for the limit of infinite system size, at least one of them
never sorts out.

~iii ! For r.rc2 , all initial conditions lead to jams.

Note that this is again consistent with the results of Taka-
yasu and Takayasu for the CA-184-CC system@42#.

F. STCA-CC/2

Replacing the maximum velocityv max51 by vmax>2
~Fig. 6! does not change the critical behavior, but it adds a
complication@51#. Now, jam clusters can branch, with large
jam-free holes in between branches of the jam. As a result,
space-time plots of such jams now appear to show fractal
properties and in simulations at the critical densityw(t) no
longer follows a clean scaling law, whereasn(t) andPsurv
still do.

The explanation for this is that the holes in the jam are
large enough to cause logarithmic corrections to the width,
but not large enough to make it completely fractal. More
precisely, the hole size distributionPh(x), i.e., the probabil-
ity to find a hole of sizex in a given equal time cut~jam
configuration!, scales as

Ph~x!;x2th, ~36!

where both from a theoretical argument and from simula-
tions th52. Yet, it is known that forth<2 the fractal di-
mension for such a configuration isDf5th21 ~see, e.g.,
@93#!. In this sense, such a traffic jam cluster operates at the
‘‘edge of fractality.’’ Such a hole size distribution causes
logarithmic corrections to the width whenn(t) is given
^w(t)&surv;^n(t)&surv(11c lnt).

G. STCA/1

For the STCA atvmax51, from visual inspection~see Fig.
7! individual jams are not distinguishable here. Instead, the
space-time plot looks much more like one from the ASEP.

FIG. 5. Space-time plot for STCA-CC/1, at supercritical density,
with one disturbance. The jam first grows according to
n(t);( j in2 j out)t. Eventually, via the periodic boundary condi-
tions, the outflow reaches the jam as inflow andn(t) follows a
random walk~apart from finite size effects!.

FIG. 6. Space-time plot for parallel update~cruise control limit!,
vmax55 and r50.09, i.e., slightly above critical. The flow is
started in a deterministic, supercritical configuration, but from a
single disturbance separates into a jam and a region of exactly criti-
cal density. This is phenomenologically the same plot as Fig. 5,
except thatvmax55.
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The visual observation is confirmed by theoretical analy-
sis. Schadschneider and co-workers@53–55# have performed
analytical calculations for the stationary state throughputj
given r in a closed system usingn-point correlations
(n-cluster method! and found that forvmax51 this analysis
is already exact forn52. This is no longer true for higher
vmax. For the ASEP, for the same analysis, the mean-field
approximation, i.e.,n51, is already exact. The difference
between the ASEP and the STCA/1 in this analysis is that in
the STCA/1 one finds an effective repulsive force of range
one between particles, caused by the parallel update. This
helps to keep particles more equidistant than in the ASEP
case, thus leading to a higher flow.

H. STCA/2

For vmax>2, then-cluster analysis no longer leads to an
exact solution, indicating a different dynamical regime.~In
practice, though, then-cluster analysis is already fairly close
to simulation results forn.5.) Visual inspection of space-
time plots confirms that the dynamics now is much more
similar to the cruise control limit, i.e., to STCA-CC/2, than
to the ASEP, except that here multiple jams exist simulta-
neously. Jams start spontaneously and independently of other
jams because vehicles fluctuate even at maximum speed, as
determined by a parameterpfreeÞ0.

The STCA displays a scaling regime near the density of
maximum throughputr jmax

. There is an upper cutoff at

t.104 that was observed to depend onpfree @47#. One can
attribute this cutoff to the nonseparation of the time scales
between disturbances and the emergent traffic jams@51#. As
soon aspfree is different from zero, the spontaneous initiation
of a new jam can terminate another one. Obviously, this
happens more often whenpfree is high, which explains why
the scaling region gets longer when one reducespfree.

In other words, in the cruise control limit, there is a
percolation-type phase transition atrc5r jmax

. Using apfree
larger than zero introduces an upper cutoff into this

phase transition. This upper cutoff should scale withp free
and it should destroy the long-range connectivity of the jam
clusters. This is confirmed by earlier simulations@47#.

One would, though, expect that there is still a ‘‘connec-
tivity transition’’ at higher densities, where, in spite of
pfree.0, jam clusters connect to an infinite network@94#.
Csányi and Kertész @45# find such a long-range connectivity
of jams in the STCA/2~using p51/4) at densities much
higher thanr jmax

. Further analysis is necessary to clarify the
exact nature of this ‘‘connectivity transition.’’

A helpful analogy for understanding the phase separation
into laminar and jammed traffic is droplet formation in a
gas-liquid transition@95#, where gas corresponds to the lami-
nar phase and the droplets correspond to the jams. The gas
always ‘‘tests’’ ~in fluctuations! simultaneously at many po-
sitions if droplets can survive, similar topfree.0, which tests
of jams can survive. When one neglects surface tension, then
dropletscannotsurvive at sub-critical density, theycan sur-
vive at supercritical density, and theybarelysurvive exactly
at the critical density, making macroscopic fluctuations
maximal at this point. Note that neglecting the surface ten-
sion of the droplets changes the nature of the phase transition
from first order to second order.

VI. GOING BEYOND: TRAFFIC JAM DYNAMICS

All these results together put us into a position to draw a
fairly consistent picture of traffic jam dynamics.

A. An intuitive starting point

Measurements of human driving behavior show that over
a fairly large velocity range,g is proportional to velocity.
g here isDx2L, whereDx is the front-bumper-to-front-
bumper distance~distance headway! between two cars and
L is the length one car occupies~in the average! in a jam.
This intuitively makes a lot of sense, since it reflects the fact
that thetime gap should be approximately the same as the
delay timeT, which is needed between seeing the brake
lights and actually starting to brake and should therefore be
largely independent of velocity~Pipe’s theory; cf.@11#!.
~Note that traffic science traditionally does not include some
‘‘security space’’ into the definition ofL @11#; therefore
‘‘gap’’ and ‘‘time gap’’ are somewhat different here.!

Field studies~cf. @11#! indeed confirm that the delay time
is approximately constant for velocities between 15 and 40
miles per hour~between 24 and 64 km/h, data from the
1950s!. This delay time consists of several components, in-
cluding, e.g.,, reaction time or the time needed for actually
pressing the brake pedal, and it is of the order of 1 sec.

Therefore, one can assumeg5Tv. Using the average re-
lations 1/Dx5r and 1/L5r jam ~density inside a jam!, we
obtain

v5
1

T S 1r 2
1

r jam
D . ~37!

Thus, for high density, for the currentj one has

j high5rv5
1

T S 12
r

r jam
D . ~38!

FIG. 7. Space-time plot for parallel update,vmax51.
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For low density, one can assume that there is some~av-
erage! vmax that is independent ofg for large enough spac-
ings, and therefore, for low densities,

j low5rvmax. ~39!

At j c2 andrc2 , these two curves intersect and thereby define
the maximum flow according to this model. Assuming, say,
vmax5120 km/h, T51.1 sec, andL57.5 m, one obtains
rc2'1/45 m and j c2'2650 vehicles per hour per lane,
which is slightly above the highest 5-min averages that are
obtained in reality~e.g., @13,96#!. This model is essentially
equivalent to the CA-184/2 particle hopping model.

As a side remark, traffic security experts teach drivers that
one should reach the position of the car ahead only after
more than 2 sec, which is independent of velocity and re-
flects the fact that time headway is approximately equal to
time gap. It is interesting to see that this would actually lead
to a maximum current of two cars per second or 1800 cars
per hour, much less than the up to 2400 cars per hour that are
observed.

B. More realistic traffic jam dynamics

Yet, as argued further above, real traffic behaves differ-
ently from this characterization. At high densities, we do not
observe the homogeneous velocityv5g/T as predicted by
the intuitive argument above, but relatively free flow that is
interspersed by start-stop waves. This is confirmed by mea-
surements of thej -r relation, where, instead of lining up on
a single curve, the measurements form a fairly scattered data
cloud especially in the region of the flow maximum.

For an open system, the explanation of this is as follows.
Due to small fluctuations, laminar traffic at all densities will
always exhibit small disturbances that can develop into jams.
The inflow to the jam determines whether a jam is poten-
tially long lived or not: Since the average outflowj out is fixed
by the driving dynamics,j in. j out makes the jam~in the av-
erage! long lived, j in, j out not. j in5 j out defines a critical
point, i.e.,j c[ j out andrc[rout, where traffic jam clusters in
the average barely survive, as, e.g.,, quantified by
^n(t)&5th with h50.

All this is true for an open system, or a closed system that
is large enough and where times are short enough so that its
closed boundaries are not felt. Conversely, in a closed sys-
tem, the jams ultimately absorb all the excess density
rexcess5r2rc . As a result, all traffic between jams operates
at rc . Average measurements of the long-time behavior of
traffic flow can therefore show no higher flow values than
j c5 j out.
In this situation, the gas-liquid analogy~without surface

tension! again is helpful. Gas can also be brought into a
supercooled regime, for example, by increasing the density
while keeping the temperature constant. But this state is only
metastable and eventually droplets will form and, in a closed
system, absorb excess density until the density surrounding
the droplets is exactly at the critical point~without surface
tension!.

This dynamical picture explains the high variations in the
short-time measurements. Measuring at a fixed position in a
situation such as in Fig. 8, one can measure arbitrary com-
binations of supercritical laminar traffic, critical laminar traf-

fic, jams, or traffic during acceleration or slowing down. See
Fig. 9 for a comparison between short-time~300 time steps!
averages and a schematic picture. Data points along the~a!
branch belong to stable and laminar traffic. Data points along
the ~c! branch belong to still laminar, but only metastable
traffic. Data points along the~d! branch belong to creeping
high-density traffic.

All other data points are mixtures between regimes, where
two or more regimes have been captured during the 300 it-
erations interval. Essentially, these data points should lie be-
tween point~b! and branch~d!, yet, due to high fluctuations
and due to the effects of acceleration and braking, which are
not captured in the steady state arguments, we observe huge
fluctuations. For example, when a car is just leaving a jam,
the density decreases, but the velocity adaption is lagging
somewhat behind. Therefore, the car has too low speed for
the given density, leading to too low a flow value.

This scenario also makes precise the hysteresis argument
of Treiterer and Myers,@97#, also confirmed later@81,96#.
Their measurements confirm the idea that the traffic density
can go above the critical point while still being laminar,
similar to the gas that can be supercooled by increasing the
density. Yet, both for traffic and for supercooled gases, this
state is only metastable and eventually leads to a phase sepa-
ration into jams and laminar flow. Quantitative evidence of
this is planned to be given in a separate paper.

Reference@81# in addition, uses catrastophe theory to in-
terpret the measurements. Although the idea is similar in
spirit to the gas-liquid analogy mentioned above, a detailed
comparison does not seem possible.

The picture is also consistent with recent results both in
fluid-dynamical models and mathematical car-following
models for traffic flow. In Ref.@76#, traffic simulations using
a fluid-dynamical model starting from nearly homogeneous

FIG. 8. Space-time plot for parallel update,vmax55 and
r50.09 @i.e., slightly abover( jmax)#, starting from ordered initial
conditions. The ordered state is metastable, i.e., ‘‘survives’’ for
about 300 iterations until it spontaneously separates into jammed
regions and into regions withr5r( jmax).
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conditions eventually form stable waves. Using the fluid-
dynamical model one can, by usual linearization, find the
parameters for the onset of instability. That is,^n(t)&;th in
the particle hopping model becomes the amplitude
A(t);elt in the fluid-dynamical model and at the onset of
instability A5 const is similar to ^n(t)&5const ~since
h50). Therefore, the wave in the fluid-dynamical model
corresponds to theaveragejam cluster in the particle hop-
ping model.

Lee @98# explains the underlying mechanism for a model
for granular media. He distinguishes ‘‘dynamic’’ from ‘‘ki-
nematic’’ waves. Dynamic waves are found in the Ku¨hne-
Kerner-Konha¨user equations@Eqs. ~22! and ~23!# when the
relaxation timet.0; they are similar to sound waves in
gases. Kinematic waves are found in the same equations
when t→0, in which case the equations reduce to the
Lighthill-Whitham case. The wave formation mechanism
thus is that the instability first triggers the ‘‘sound’’ wave.
The density inside the wave increases and outside the wave
decreases until both densities are outside the unstable range.
Then the kinematic mode takes over.

Kurtze and Hong@80# make this more precise for the
Kühne-Kerner-Konha¨user equations: Below the critical den-
sity, the kinematic wave with wave velocityc5 j 85d j /dr is
the only solution of the linearized equation and this solution

is stable. At the critical density, this solution bifurcates into
two unstable solutions with wave velocityc5 j 86e, where
e→0 for r↘rc and e is the equivalent of the speed of
sound.

Actually, things might be somewhat more complicated.
Kerner and Konha¨user also find a large amplitude instability,
which exists already at lower densities than the instability
obtained from the linearized equations@77#. That opens the
discussion of which of these two instabilities corresponds to
the instability of the STCA or if such a detailed comparison
is possible at all. Intuitively, one would assume that the
large-amplitude instability is the relevant instability for a
noisy system such as the STCA. Bando and co-workers@26#
also find the separation of traffic into laminar and jammed
phases in a deterministic continuous mathematical car-
following model.

VII. SUMMARY AND CONSEQUENCES
FOR TRAFFIC SIMULATION MODELS

These findings have some fairly far-reaching implications
for traffic simulation models.

(i) Robust numerics.Particle hopping models, which seem
at the first glance as too rough an approximation of reality,
include the same range of dynamic phenomena as the most
advanced fluid-dynamical models for traffic flow to date.
Yet, particle hopping models offer some distinctive advan-
tages for practical simulations. Particle hopping models are
known to be numerically robust especially in complex geom-
etries and realistic road networks with all their interconnec-
tions, etc., certainly are complex geometries. Practical road
network implementations of the fluid-dynamical theory are
so far only using the Lighthill-Whitham equations, which are
~without diffusion! marginally stable and can certainly be
made stable by using a stable numerical discretization
scheme.

(ii) ‘‘Universality.’’ Intuitively, a relatively simple micro-
scopic model should be able to show the essential features of
traffic jams. One might even speculate that the critical expo-
nents of traffic jam formation areuniversal, i.e., robust
against changes in microscopic rules. This speculation is
backed up by the fact that the exponents of our model can be
theoretically explained. The consequence for traffic simula-
tion is that, as long as one expects certain simple aspects of
traffic jam formation to be realistic enough for the problem
under consideration, e.g.,, for large-scale questions,the sim-
plest possible model will be sufficient for the task, thus sav-
ing human and computational resources.

(iii) Towards minimal models.The present results show
that closeup car-following behavior is not the most important
aspect of traffic to model. The important crucial aspect is to
model deviationsfrom the optimal~smooth! behavior and
the ways in which they lead to jam formation. Another im-
portant aspect, which seems far from obvious, is theaccel-
eration behavior, especially when there are other cars ahead,
since it is the acceleration behavior that mostly determines
the maximum flow out of a jam~which may be a simple
traffic light!. Therefore, investigations such as this paperare

FIG. 9. Flow-density fundamental diagrams for the STCA. Top:
simulation output from the STCA. Short-time averages are taken
over 300 simulation steps and thus mimic the 5-min averages often
taken in reality. Bottom: schematic view.~a! is the subcritical
branch,~b! is the critical point,~c! is the supercritical branch, and
~d! is the branch where traffic only creeps. The 5-min averages at
densities betweenrc at ~b! and the creep branch are mixtures be-
tween the dynamical regimes.
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important for microscopic modeling as long as one does not
have the perfect model of driving or the computational re-
sources to run it.

(iv) Traffic dynamics.Fast running and easy to implement
particle hopping models can be very useful in interpreting
measurements. Measurements such as for the traditional
5-min-averaged fundamental diagrams~flow vs density vs
velocity! have increasingly recognized the fact that the dy-
namics around the measurement site has an extreme influ-
ence on the outcome of the measurements, thus making the
results far from universal. This point is planned to be further
discussed in another paper.

(v) Microscopic simulations.Particle hopping models are
inherently microscopic, which allows one to add individual
properties to each car such as the identity of travelers, route
plan, and engine temperature~for emission modeling!. These
properties are imperative for the kind of traffic models that
are needed in current policy evaluation processes.

(vi) Stochasticity and fluctuations.Last but not least, par-
ticle hopping models are stochastic in nature, thus producing
different results when using different random seeds even
when starting from identical initial conditions. At first, this is
certainly considered a disadvantage from the point of view of
policy makers or traffic engineers. However, the traffic sys-
tem is inherently stochastic and the variance of the outcomes
is an important variable itself. How will we be able to dis-
tinguish reliable from unreliable predictions without know-
ing something about the range of possible outcomes? Fur-
thermore, there is reason to believe that the average over
several stochastic runs willnotbe identical to a deterministic
run. Imagine, for example, a case where in a deterministic
model, a queue at one intersection has a backspill that, on the
average,justdoes not reach another intersection.~By queue I
mean a queue with spatial extension. This is different from
the use of the word in queuing theory.! In the stochastic
model, the maximum length of this queue will, between dif-
ferent simulation runs, fluctuate around its average value,
thus backspilling into the other intersection in nearly 50% of
all runs. Since this possibly disrupts traffic in this other in-
tersection, this can cause long-range effects and network
breakdown.

VIII. SOME OPEN QUESTIONS

Many open questions remain, though. The following are
examples.

What is the exact relation between average cluster growth
in CA models, wave amplitude growth in fluid-dynamical
models, droplet growth in the liquid-gas transition interpre-
tation, and phase space portraits in car following models?

Is there a hydrodynamical limit for the STCA? If so, how
can it be proven to be correct? Do critical exponents help
here?

What is the exact relation to granular media? Po¨schel has
both observed and simulated similar waves for sand falling
down in a narrow tube@99#. He has also found in the simu-
lations the bistability leading to laminar flow or to jam waves
depending on the initial conditions. Peng and Herrmann
found similar waves in lattice gas automata simulations of
the same situation@100#. Lee and Leibig@101,98# have re-
lated these waves to a fluid-dynamical theory that is similar

to the Kühne-Kerner-Konha¨user theory for traffic flow. Scha¨-
fer finds a similar phase transition as the one stressed in this
paper for simulated granular flow, except that above the criti-
cal point, the flow is exactly zero@102#; supposedly, such a
flow-density relation would also support the same overall
dynamics.

What is theminimal ingredient for the instability that
causes the traffic breakdown? Both the car-following models
~CA and continuous! and the fluid-dynamical approach have
produced the instability after adding an inertia term. Yet,
Goldhirsch and Zanetti point out that an inverse temperature
effect is responsible for the clustering@82#.

What is the exact relation of particle hopping to car-
following models, either continuous in space only or con-
tinuous in both space and time@38#? The range of phenom-
ena that are captured seems comparable. Yet, on one hand,
most car-following models investigated so far do not include
randomness; on the other hand, it is unclear what the better
resolution actually buys in terms of additional insight. Ko-
matsu and Sasa@103# derive a fluid-dynamical equation from
a car-following model.

Can one say more about universality than in Sec. VII?
What can one-dimensional theory say about two-

dimensional problems, such as they are regularly encoun-
tered for urban traffic problems? A series of papers~see, e.g.,
@64–66#! have used cellular automata techniques for building
models for town traffic. These models use the CA-184/1
model for driving dynamics, but add elements for directional
changes. Molera and co-workers have built a theory for their
two-dimensional model@104# and their flow equation is es-
sentially a two-dimensional version of the Lighthill-
Whitham equationwith a quadratic flow-density relation.
That means that adding stochastic directional changes would
change the model from CA-184 type to the ASEP type.

What is the relation to 1/f noise? Musha and Higuchi
have measured 1/f noise in the power spectrum of a car
detector time series@23#. They explained this by a noisy
Burgers equation, in a way, though, that differs from Krug’s
interpretation@90#. Nagel and Paczuski@51# have predicted a
precise 1/f law for the power spectrum of the density time
series, which was roughly confirmed by simulations for
STCA-CC/2. Yet, Nagel and Herrmann find, using a continu-
ous car-following model and following the traffic movement,
a 1/f a law, with a'1.3 @105#. Car following is slightly dif-
ferent from the particle hopping models in this paper; but if
the arguments in@51# were entirely correct, this should not
matter. Choi and Lee find 1/f -like behavior in simulations of
slightly modified versions of the fluid-dynamical equations
for traffic @106#; Zhang and Hu find 1/f -like behavior in
simulations of a discrete-time–continuous-space model
@107#. Understanding 1/f noise behavior would be helpful
because it would be much easier to measure in reality than,
say, lifetime distributions@47,51#.

What is the meaning to the ongoing discussion about the
value of synchronous updating for explaining physical phe-
nomena? Huberman and Glance@108# have reissued the
warning that parallel updating may produce artifacts and that
usually stochastic asynchronous updating would be a better
approximation of reality. Yet, for the traffic case, it is clear
from this paper that the~synchronous! STCA produces a
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much better model for reality than the~asynchronous! ASEP.
One would probably have to go to much higher spatial and
temporal resolutions~and thus lose all the computational ad-
vantages! when one wanted to build a stochastically updating
model of traffic.

This paper treats single-lane models only. It is though
interesting to note that the empirical evidence that backs up
particle hopping models for traffic@35# stems from multilane
highways. I expect, also in agreement with our multilane
simulation results@57–62#, that homogeneousmulti-lane
traffic ~symmetric lane-changing rules, all vehicles the same!
behaves similarly to the single-lane models presented here.
Deviations from homogeneity will introduce more and more
additional effects, which will have to be investigated in
detail.
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