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This paper shows how particle hopping models fit into the context of traffic flow theory, that is, it shows
connections between fluid-dynamical traffic flow models, which derive from the Navier-Stokes equations, and
particle hopping models. In some cases, these connections are exact and have long been established, but have
never been viewed in the context of traffic theory. In other cases, critical behavior of traffic jam clusters can be
compared to instabilities in the partial differential equations. Finally, it is shown how all this leads to a
consistent picture of traffic jam dynamics. In consequence, this paper starts building a foundation of a com-
prehensivedynamictraffic theory, where strengths and weaknesses of different m@igts-dynamical, car-
following, particle hoppingcan be compared, and thus allowingsistematicallychose the appropriate model
for a given question.S1063-651X96)06805-3

PACS numbdss): 05.40:+j, 89.40+k

[. INTRODUCTION tial, temporal, etg.size of the problem. It is empirically well
known, for example, from fluid dynamics, that to a certain
Traffic jams have always been annoying. At least in theextent a low-fidelity high-resolution modélattice gas au-
industrialized countries, the standard reaction has been tmmata[6,7]) can do as well as a high-fidelity low-resolution
expand the transportation infrastructure to match demand. Imodel (discretization of the Navier-Stokes equatipos, in
this phase of fast growth, relatively rough planning toolsshort, resolution can replace fidelity.
were sufficient. However, in recent years most industrialized Current state-of-the-art traffic modeling has a fixed unit of
societies started to see the limits of such growth. In denselyminimal) resolution and that is the individual traveler. Since
populated areas, there is only limited space available for exene is aiming for rather large scalé®r example, the Los
tensions of the transportation system and we face increasingngeles area consists of approximately 10 million potential
pollution and growing accident frequencies as the downsidegavelers, it is rather obvious that one has to sacrifice fidelity
of mobility. In consequence, planning is now turning to ato achieve reasonable computing times.
fine tuning of the existing systems, without major extensions One important part of transportation modeling is road
of facilities. This is, for example, reflected in the United traffic. For example, in Germany, road traffic currently con-
States by the Clean Air Act and by the Intermodal Surfaceributes more than 81% of all passenger and 52.7% of all
Transportation and Efficiency Act legislation. The former freight transportation8]. Despite widespread efforts, the
sets standards of air quality for urban areas, whereas thehare of road transportation is still increasing. For that rea-
latter forces planning authorities to evaluate land use polison, it makes sense to start with road traffic when dealing
cies, intermodal connectivity, and enhanced transit servicevith transportation systems.
when planning transportation. Putting these arguments together, one thing that is needed
In consequence, planning and prediction tools with afor large-scale transportation simulations isaimal repre-
much higher reliability than in the past are necessary. Due tgentation of road traffic. Particle hopping models clearly are
the high complexity of the problems, analytical approachesandidates for this, and even if not, buildingnainimal
are infeasible. Current approaches are simulation b@gd  theory of road traffic is certainly the right starting point.
[1-4]), which is driven by necessity, but largely enhanced by  This paper shows how particle hopping models fit into the
the widespread availability of computing power nowadays.context of traffic flow theory. It starts out with a historical
Yet, also for computers one needs good simplified models obverview of traffic flow theory(Sec. I), followed by a sys-
the phenomena of interest: Just coding a perfect representeematic review of fluid-dynamical models for traffic flow
tion of reality into the computer is not possible because ofSec. Il) starting from the Navier-Stokes equations. Section
limits of knowledge, limits of human resources for coding all IV defines different particle hopping models that are of in-
these details, and limits of computational resources. terest in the context of traffic flow. Section V then shows the
Practical simulation has to observe tradeoffs betweenlifferent connections between the fluid-dynamical traffic
resolution fidelity, and scale[5]. Resolution refers to the flow models and particle hopping models. In some cases,
smallest entitiegobjects, particles, and processessolved these connections are exact and have long been established,
in a simulation, whereas fidelity means the degree of realisnbut have never been viewed in the context of traffic theory.
in modeling each of these entities, and scale meanéstiee  In other cases, critical behavior of traffic jam clusters can be
compared to instabilities in the partial differential equations.
Finally, it is shown how this leads to a consistent picture of
*Electronic address: kai@lanl.gov traffic jam dynamicgSec. V). A discussion of the conse-
"Electronic address: kai@santafe.edu guences for traffic simulationSec. VI)) serves as summary
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and discussion, and a collection of open questi@ez. VIII) cates, this theory concentrates on single lane situations where

conclude the paper. a driver reacts to the movements of the vehicle ahead of him.
Many car-following models are of the form
[l. HISTORICAL OVERVIEW OF TRAFFIC THEORY o(H)M

Vehicular traffic has been a widely and thoroughly re- a(t-i_-r)oc[Ax(t)] Av(b), @

searched area in the 1950s and 1960s. For a review of traffic

theory, see, for example, one m._ll]' Vehicular traﬁfic wherea andv are the acceleration and velocity, respectively,
theory can be broadly separated into three branches: traﬁ@r the car under considerationx is the distance to the car

flow theory, car-following theory, and one more recent addi- aheadAv is the velocity difference to that car, amd and

tion, particle hopping models. | are constantsT is a delay time between stimulus and re-
sponse, which summarizes all delay effects such as human
A. Traffic flow theory reaction time or time the car mechanics needs to react to

Traffic flow theory is concerned with finding relations be- MPUt: . _
tween the three fundamental variables of traffic flow, which Other examples for car-following equations arg +T)
are velocityu, densityp, and current or throughput or flow <AX [24,.23 or a(t)<V[Ax()]—uv(t) [26,27, where
j. Only two of these variables are independent since they ar¥[AX] gives a preferred velocity as a function of distance

related throughj = pv. Possible units for these variables are N€2dway. See als{28-30. Mathematically, parts of this
[v]= km/h, [p]=vehicles/km, andj]= vehicles/h. theory are very similar to the treatment of atomic movements

The first approach of traffic flow theory historically was in crystals and give results about the stability of chains of

to search fortime-independentelations betweer, p, and caré(“pla:ot%ns”) Ln foIIow-tPe—Ife?deﬁr. si;tﬁations.f thi iod
v. These relations are the so-called fundamental diagrams. ne ot the achievements of traflic theory ol this perio

The form of such a relation is, though, still debated in the!VaS that relations between car-following models atatic

traffic flow literature [12,13. The problem stems mainly flqw-density relations were dgrivgd. Car-following  theory
from the fact that reality measurements are done in nonsta\’y'II not be treated any further in this paper.

tionary conditions. There, only short time averages make

sense and they usually show large fluctuations. | will, at the C. Particle hopping models

end of the paper, discuss how a dynamic, particle-based de-
scription of traffic can resolve these difficulties.

The second step of traffic flow theory was to introduce
dynamic, i.e., time-dependent description. This was achieve
by a well-known paper from Lighthill and Whitham, pub-
lished in 1955[14]. This paper introduced a description
based on the equation of continuity, together with the as
sumption that flow(or velocity) depends on the density only,
i.e., there is no relaxation time, velocity adaptstanta-
neouslyto the surrounding density.

Prigogine and Herman developed a kinetic theory for traf
fic flow [15]. They derived the Lighthill-Whitham situation
as a limiting case of the kinetic theory. Kinetic theory antici-
pates many of the phenome(guich as start-stop wavethat .
arise in later work, but probably because the mathematics Oqontlnuous space.

A A : : Actually, an initial proposition of a CA model for traffic
\r/]v(())trlgggnln dg]\;segz;nde\gﬁ;kﬂlfrt:]a!rl)ﬁ:,iﬁorggg;hg'iﬂtheory has is from Gerlough in 195631] and has been further extended

Instead, in 1971, Payne replaced the assumption of instart?-y Cfef.“ef and c.o.—workef§2,33. They |mplemented_fa|rly_
taneous adaption in the Lighthill-Whitham theory by an sc_>ph|st|cated driving rules_ and ?'SO used single-bit coding
equation for inertia, which is similar to a Navier-StokesW'th the goal to make the simulation fast enough to be useful

equation[18]. Kiihne, in 1984, added a viscosity term and{.Or retil-tlmﬁ traff(ljc E_l{i)!{:)hC&_lthhS. ;I.—hel ?'t'COded tlm?fl_ementla-
initiated using the methods of nonlinear dynamics for ana-(;g?i(’mSOUQ » Made 1t 1oo impractical Tor many traffic appli-
lyzing the equationd19-22. In a parallel development, X ) .

Musha and Higuchi proposed the noisy Burgers equation as astliza}ggr?’sﬁg r:;]gri(rarl\i;?tr traBjifI!fz:a_vmvezra_engrcc:)g—gv\r/]ct)rll?é?sthues:ga-a
model for traffic and backed that up by measurements of th%,ln del \E)vit% maximum v Iy ity one for on nd for tw
power spectrum of traffic count daf23]. In Sec. Il these ode aximum Velocily one for one- and for two-

fluid-dynamical models will be put into a common perspec-d'mens'onalI traff|c[34]. One-qllmensmn_al here _refers_ to
tive. roads, etc., and includes multilane traffic. Two-dimensional

traffic in the CA context usually means traffic on a two-
dimensional grid, as a model for traffic in urban areas. Nagel
and Schreckenberg introduced a model with maximum ve-
Car-following theory regards traffic from a more micro- locity v,,="5 for one-dimensional traffic, which compared
scopic point of view: The behavior of each vehicle is mod-favorably with real world dat@35]. Both approaches were
eled in relation to the vehicle ahead. As the definition indi-further analyzed and extended in a series of subsequent pa-

A more recent addition to the development of vehicular
traffic flow theory are particle hopping models. In particle

opping models, a road is represented as a string of cells,
which are either empty or occupied by exactly one particle.
Movement takes place by hopping between cells. If all par-
ticles are updated simultaneoudlyarallel update, see be-
low), then the particle hopping model treated in this paper
formally are also cellular automat&€A).

The technical difference between car-following and CA
_models for traffic flow is that in the latter, space and time are
discrete, whereas in the mathematical treatment of car-
following models, they are continuouSimulationsof car-
following models(e.g.,[26—29,107) discretize time but use

B. Car-following theory
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pers, both for the one-dimensiorjaB,36—62 (see als$63]) v=v)+v’, (v')=0 4
and the two-dimensiondkee, e.g.[64—686) investigations.

That work had two motivations at that time. The primary and
motivation was again computational speed, but this time to , ,
make Monte Carlo analysis possible. The second motivation p=(p)tp', (p")=0. )
was to keep the models simple enough to allow analytica :
treatment. Xn additional thirdp motivati%n was added r)r/1ore|n this case, one only assumes tifa and(p) fluctuate

. . “slowlyin space and time; for the general subtleties of hydro-
recently: CA methodology is planned to be used as a high- : . : :
speed option in traffic projects in Germafg] and in the dynamical theory see, e.§68]. Inserting these relations into

United State$1]. (2) and (3) and subsequent averaging over the whole equa-

From a theoretical point of view, the methodology of par—iogs< ) ’)()e-?éids (@l ({p)F+p") (o) +0 ) ]}=xp)v)
ticle hopping models lies between fluid-dynamical and car- “* poNy
following theories and helps to clarify the connections be- ap)+da(p)v)+ap'v')=0 (6)
tween these approaches. One contribution of this paper is to
further improve upon the current understanding and taand
clarify the relations between particle-hopping models and .
fluid-dynamical models for traffic flow. (v ) (V)L a0+ §0X<v’v’>=(F/m). &
Il. FLUID-DYNAMICAL MODELS FOR TRAFFIC FLOW . .
One often parametrizes averaged fluctuations by the cor-

This section reviews fluid-dynamical models for traffic responding gradientsee, e.g.,[67]) (v'A’')~—ad(A),
flow. The models can broadly be distinguished by whethewhich leads to the set of equations
they consider the effects of inertia. Models without consid-

ering inertia can be derived from the equation of continuity dyp+dx(pv)=Dasp,
when velocity or current are considered as functions of the 5
density only. Models considering inertia formally are dw +vdg =vdv+F/im, (8)

Navier-Stokes equations, with a car-specific force term that ) ) )
takes into account that drivers want to drive at a certaifVhere, according to convention, the averaging angular brack-

desired speed. If the time constant of this force term is set t§tS have been omitted and the diffusion coefficieras well
zero, i.e., assumingstantaneous adaptioto the surround-  8S the(kinematig viscosity v are assumed to be independent

ing density, the models revert to the noninertia case. of x andt. It should be noted that similar diffusion terms can
also be obtained from other argumerffehe idea behind this
A. General equations parametrization is that, if there is more than average of quan-

) . . tity A (i.e., A>(A) or A’=A—(A)>0) at one location and
Papers on traffic ﬂO.W thepry us_ually start_W|th stating theless than average of quantify at a neighboring location,
equations ”Uder con3|de_rat|(_)n, without setting them in P€Tthen velocity fluctuations represented by tend to equili-
spective. | will therefore in this paper attempt a more funda:

- i ! i r his and that this h n first order, linearly in th
mental approach, similar to conventional fluid dynamics. Th(;b ate this and that this happens, to first order, linearly in the

. . ! ; concentration gradient @. (Think of A as, say, red color
precise presentation of most of these equations is necessary
anyhow because the particle hopping models presented later
relate to these equations.

One might use the standard fluid-dynamical conservation If one assumes that the velocity is a function of density
equations for mass and momentum as a starting point for anly [v=f(p)], then the momentum equation is no longer
fluid-dynamical description of traffic: necessary. This corresponds to instantaneous adaption; the

] o particles(or carg carry no memory. Using, without loss of
dip+dx(pv)=0 (equation of continuity  (2)  generality, the current(p)=pv(p) and setting in addition
D=0, from (8) one obtains

C. Lighthill-Whitham theory and kinematic waves

and

dv dp+]'(p)dp=0 9
——=dw+vdw=F/m (momentum equation (3)
dt (the Lighthill-Whitham equation(14]), where j’=dj/dp.

wherep is the density and the velocity.d/dt is the indi-  FOF & review of this theory, see, e.§14,69.

vidual (Lagrangian derivative andF is the force acting on The equation can be solved by the ansatgt)
massm. Equation(2) describes mass conservation; E8). =p(x—ct) with
describes the fact that the momentum of a point of mass may c=j’(p) (10)
only be changed by a force. Obviously, for traffi€,has to '

include vehicle and driving dynamics. This allows the solution of the characteristi¢see, e.g.

[69],): A region with densityp travels with constant velocity

c=j'(p) and the resulting straight line in space-time is
A standard first step in fluid dynami¢67] is to assume called characteristic. Whey{(p) is convex, i.e.j”<0, then

that v and p fluctuate statistically around average valuesfor regions of decreasing densityp(x,)>p(x,) for

(v) and(p), i.e., X1<X,] the characteristics separate from each other. In re-

B. Fluctuations
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gions ofincreasingdensity, the characteristics come closer The transformatior{15) does two things.
and closer together. When two characteristics touch each
other, a density discontinuity appears at this plecdront,
which moves with velocity

(i) Transformation to a coordinate system that is moving
with uniform velocityv,ax, thatis, vehicles with ,,, do not
move at all in this new coordinate system and slower ve-
j(X)—j(xy)  Aj hicles move backward.e., to the lef}.
= m = A_p (11 _ (i) A reversal of direction, i.e., the veh|cle_s that are mov-
ing backwards after part) of the transformation now move
Note that formally the fluid-dynamical description has bro-to the right. Note that this causes a change of sign before the
ken down here because bgthand| are no longer continu- nonlinear term, which does not have any explanatory value
ous functions of. except that it brings Eq16) exactlyto the form treated by
An illustrative example is a queue, such as at a red lightBurgers.
When the light turns green, the outflow front quickly
smoothes out, whereas the inflow front remains steep.
Note that usually at maximum flow=j’=0. Structures
that operate at maximum flow do not move in space.
Leibig [70] gives results of how a random initial distribu-
tion of density steps in a closed system evolves towards tw
single steps according to the Lighthill-Whitham theory.

This equation has been investigated in great detail by Bur-
gers[71] as the simplest non-linear diffusion equation. The
stationary solution is a uniform densify(x,t)= const. A
single disturbance from this state evolves over time into a
characteristic triangular structure with amplitudet =2,
Riidth ~t¥2 bent to the right such that the right-hand side of
the disturbance becomes discontinuous, and moving to the
right with velocityc=j'=2pv nax-

When interpreting this for traffic jams, one has to retrans-

Adding dissipation to the Lighthill-Whitham equation form the coordinates. Jams can then mbuéhto the left or
leads to to the right(with velocities between . and —v 5,0 and

the discontinuous front develops at the inflow side of the
ap+i'(p)dxp=Dd%p. (12)  jam, i.e., where the vehicles enter the jam. One sees that this
] ) o ] ) ) solution is just the solution of the characteristics, with a dis-
The solution of this equation is again a nondispersive wavgjpating diffusion term added, as should be expected because
with phase and group velocity . The difference is thaD of D>0.
introduces disgipatiofdamping of the wave: The amplitude Some other versions of the Burgers equation have been
decays a® P, wherek is the wave number. This reflects investigated thoroughlj72—74. Of interest in the context of
the intuitively reasonable effect that traffic jams should tendhis paper are the following.
to dissolve under homogeneous and stationary conditions.  Noisy Burgers equation.Adding a Gaussian noise
term 7z to the equation [i.e. (7(xt)n(x',t'))
E. The nonlinear diffusion (Burgers) equation = no8(Xx—x")S(t—t")] leads to the noisy Burgers equation

D. Lighthill-Whitham theory with dissipation

For a further developmenﬁ(p) has to be SpeC.Ierd. Slnce. Gip+ 20mapdsp= [)(5,)2(er 7. (17)
we are mostly interested in the behavior of traffic near maxi-

mum throughput, we start by choosing the simplest mathThis equation no longer converges towards a homogeneous

ematical form that yields a “well-behaved” maximum state.
Lo 1 13 Generalized Burgers equatiorhe nonlinearity of the
1(p)=vmap(1=p), 13 Burgers equation can be generalized

which, in traffic science, is called the Greenshields model

(se€[10]). v maxis, in principle, a free parameter, but it has an p=2, bﬁﬁxpﬁ-i- Dd2p. (18
interpretation as the maximum average velocity for 0. B

Mathematicians would seb=1; traffic scientists use
1—plpjam for the term in parenthesi,,y is the density of
vehicles in a jam. The maximum currej},,, is reached at

Generalized Burgers equations with arbitrg@yhave been
investigated 73,72.

P ma = 1/2. ;
Substituting(13) into (12) yields F. Including momentum
5 The equations so far do not explain the spontaneous phase
P+ U maxdxP — 2V maxp Ixp =D d5p. (14 separation into relatively free and rather dense regions of

vehicles, which is observed in real traffic. To obtain this, one
has to include the effect of momentum: One can neither ac-
celerate instantaneously to a desired speed nor slow down

Musha and Higuchj23] have shown that by introducing a
linear transformation of variables

X=vmet — X', t=t’, (15) without delay. It becomes necessary to include the momen-
tum equation. Here one has to specify the force t&rm,
one obtains which describes acceleration and slowing down. At least two
properties are usually incorporated, which are called the “re-
Ot P+ 20 ma@ Oy p= Dai,p, (16)  laxation term” and the “interaction term.”

A first-order approximation for the relaxation term is
which is the(deterministi¢ Burgers equatiof71]. [19,18
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1 beyond linear stability analysisee alsd79,80). One finds
~[V(p)—vl, (19  a multitude of stable or unstable fixed points and limit
cycles, which suggest that traffic near maximum flow oper-
where V(p) is the desired average speed as a function ofites on a strange attractor. This can lead to quasi-periodic
density andr is a relaxation time. This choice yields expo- Pehavior, exactly as is observed in traffic measurements. Ear-
nential relaxation towards the desired speed. The functiofier work [75,18 has analyzed the same equation without
V(p) has to be specified externally, for example, from mea-iscosity (#=0).

surements.
A commonly used interaction terfit5-77,19,18is G. Discussion of fluid-dynamical approaches
c2 Fluid-dynamical models have been used in traffic science
- Faxp. (200  for a long time, with considerable success. But they have

shortcomings. Some of the major points are the following.

The meaning is that one tends to reduce speed when the (j) one has to give externally the relation between speed

densny increases, even when the local density is still consiss, cyrrent and density. This is unsatisfying in terms of the

tent with the current speed. _ , development of a theory. But an even more intricate problem
A more formal possible derivation of the interaction termig that there is no agreement on a functional form of the

is as follows. (I got the idea for this argument from B.S. gpeed-density relation; it is even under discussion if this re-

Kerner) In real traffic, the relaxation term actually is asym- |5tion is at all continuou$13,81].

metric with respect to the vehicle position, e.g., say, (i) Microscopically, temperature parametrizes the random

v(X)= 1/7[V(Ax) ~v] (see car-following section where  fcryations of particles around their mean speex:
Ax is the front-buffer-to-front-buffer distance to the next ve- «(v2)—(v)2. For gases, fluctuations, and therefore tempera-

hicle ahead. ture, increase with density. For granular media such as ve-
After approximatingV(Ax) by V(p(x+Ax/2)) and then  picylar traffic or sand, fluctuationdecreasewith density
Taylor expanding, one obtains (i.e., inside a jam it has been claimed that exactly this in-
1 1 1 verse temperature effect is responsible for clustef@gj. In
;[V(Ax)—v]m ;[V(p(x))—v]-f- ;Axv’ (p(X))dxp, this way, assuming isothermic instead of adiabatic behavior

as done for the momentum equation seems only half the way
(21) " one has to go. HelbinfB3] discusses this further.
(iii) Helbing [83] also discusses the effect of excluded

thus obtaining a formal justification of the interaction term . . . )
~a.p out of the asymmetry of the relaxation termy, is volume to take into account the spatial extension of vehicles.
X

treated as constant; in traffic, a typical value fgris 15 (iv) Daganzo[84] claims thatall second-orderfluid-
kmv/h [20] ' ' dynamical models produce unrealistic behavisuch as
i backward moving vehicles caused by a diffusion teemd

Formally, the interaction term is similar to the pressure . : ;
are therefore unsuitable for traffic science.

term of compressible flow- (1/p)d.p, wherep is the pres-

sure. Assuming an ideal gap€pRT) and isothermic be- : :
havior T=const, one obtains waves similar to sound waves . Nonetheless, fluid-dynamical approachg®6,19,22,21

as a solution of the linearized equatiofifrue sound waves, give systemati_c insight into tra_ffic dyn_amics near maximu_m
though, would assume the gas to behave adiabatically, i.ef.IOW heyond simple extr_apolat|on of “ght and dense fraffic
pocp*.) This leads to Eq(20), wherec, is the speed of the résu[ts. These results will be further discussed near the end
“sound” waves. (See below for a short discussipriNote of this paper.

that sound waves move ihoth directions from a distur-

bance, which means that sound waves alone are not a goodlv. DEFINITIONS OF PARTICLE HOPPING MODELS

explanation for freeway start-stop waves, contrary to what is hi ion defi | icle hooi dels th
sometimes writtefi78]. This section defines several particle hopping models that

Taking all this together, a possible momentum equatio re candidate' models for traffic. They al! are commonly de-
for traffic therefore ig19] |_ned ona Iatt_lce of, say, I_englh, whereL is the _number of
sites. Each site can be either empty or occupied by exactly
cé 1 one particle. Also, in all models particles can only move in
wtvdow=——dp+ ;[V(p)—v]-i— m?)z(v. (22 one direction. The number of particlbkis conserved except
p at the boundaries. For traffic, particles model cars.

Since one now has two variables, one also needs an equation

of continuity to close the system: A. The stochastic traffic cellular automaton
dp+ dy(pv)=Dd2p. (23 The stochastic _traffic c_eIIuIar automattbﬁ'l_’CA), _which
has been treated in a series of pagdd®-56, is defined as
Usually, D is set to zero. follows. Each particlgcar can have an integer velocity be-

For this equation, the homogeneous solutiontween O and .. The complete configuration at time step
(v,p)=(vg,pg) is unstable for densities near maximum flow t is stored and the configuration at time stepl is com-
for a suitable choice of parameters. Using the methods gbuted from that, i.e., using a parallel or synchronous update.
nonlinear dynamics, Kwne and co-workerfl9,22,23 went  All cars (particles execute in parallel the following steps.
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(i) Let g (gap equal the number of empty sites ahead. Much work using CA models for traffic is based on this
(i) If v>g (too fas}, then slow down ta:=g (rule 1); model. Biham and co-worker34] have introduced it for
otherwise if p<g) (enough headwayand v <v ., then traffic flow, with v .= 1. Other authors base further results

accelerate by onet:=v+1 (rule 2. on it [28,36,37,39,40,43 Some[28,4( also use it with
(iii) Randomization: If after the above steps the velocity isv max larger than one. It is also the basis of the two-
larger than zerou>0), then, with probabilityp, reducev dimensional CA models for traffite.g.,[64—686).
by one(rule 3.
(iv) Particle propagation: Each particle movessites D. The cruise control version for the CA-184(CA-184-CCO)

ahead(rule 4. Takayasu and Takayagd2] introduced a different CA

TS ; ._model that is effectively equivalent to a deterministic cruise
The randomization incorporates three different proper'ue%nOntrol situation for CA-184/1. This may not be obvious

f human driving into on mputational ration: fluctua- L :
of human driving into one computational operation: fluctua from the rules, but it will become clear from the dynamic

tions at maximum speed, overreactions at braking, and reb havior summarized later. Since th Alv maximum
tarded (noisy) acceleration. Note that, because of integer enavior summarized 1ater. ce they use only maximu

arithmetic, conditions such as>g andv=g+ 1 are equiva- velocifcy U max= 1, the rules are short. For all particles do the
lent ' following in parallel.

When the maximum velocity of this model is set to one () If y=1 and the site ahead is freg£1), then move
(v max=1), then the model becomes much simpler: Each parpne site ahead.
ticle executes the following in parallel: If a site ahead is free,  (ji) A particle at rest ¢=0) can move only wheg=2.
move, with probability 1—p, to that site. Since the STCA
shows different behavior foy ,,,=2 than forv,,,, =1, we  Generalizations to maximum velocity larger than one are
will distinguish them as STCA/1 and STCA/2, respectively. straightforward, but do not seem to lead to additional insight.
Due to the given discretization of space and time, proper
units are often omitted in the context of particle hopping or E. The asymmetric stochastic exclusion process

cellular automata models. Proper units here would ¢ ) , . . .
equal to the number of cellfy ] equal to the number of cells  The probably most-investigated particle hopping model is

per time stepft] equal to the number of time steps, etc. Forthe asymmetric stochastic exclusion proceSSEP). Its be-

that reason, it is possible to write something suchasg, ~ havior is defined as follows.

which properly would have to be<g/(time step. Note that (i) Pick one particle randomlgrule 1).

one still needs conversion factors to convert, say, velocity ji) If the site to the right is free, move the particle to that

from the particle hopping model to a real world velocity, sjte (rule 2).

e.g., given in km/h. One should note, though, that every

computer program does such a thing. Numbers in computer The ASEP is closely related to CA-184/1 and STCA/1

programs are always unitless and a proper conversion to regle., both with maximum velocity oneThe difference actu-

world numbers has to be put in by the program designer. ally only is in the manner in which sites are updated. CA-184
and STCA update all sites synchronously, whereas ASEP

B. The cruise control limit of the STCA (STCA-CC) uses a random serial sequence.

In order to compare the ASEP with the other, synchro-
nously updated models, one has to note that, in the ASEP,
averageeach particle is updated once afiérsingle-particle
eupdates. A time stefalso called update step or iteratjan
the ASEP is therefore completed aftérsingle-particle up-
dates(which is equal td\ attempted hops

(i) A vehicle is stationary when it travels at maximum It has been noted in Ref72] that changing the update
velocity v . and has free headway= v .. Such a vehicle from asynchronous to synchronous, i.e., going from ASEP to

In the so-called cruise control limit of the STC[&1],
fluctuations at free driving, i.e., at maximum speed and un
disturbed by other cars, are set to zero. Algorithmically, th
velocity updatgrules 1-3 of the STCA are replaced by the
following. For all cars, do the following in parallel.

just maintains its velocity. CA-184/1, changes the dynamics considerably. In this paper,
(“) Otherwise(i_e_, if a vehicle is not Stationa)'yhe stan- I will in addition show that reintroducing the randomness via
dard rules 1-3 of the STCA are applied. the randomizatior{rule 4) in the STCA again leads to dif-

ferent results.

Both acceleration and braking still have a stochastic com- A systematic way of reducing the noise for the ASEP
ponent. could be done using techniques described by Wolf and
Kertesz[86], i.e., by putting a counter on each particle and
o moving it only afterk trials. For largek it becomes more and

C. The deterministic limit of the STCA (CA-189) more improbable that one particle is moved twice while a

One can take the deterministic limit of the STCA by set-neighboring particle is not moved at all during that time.
ting the randomization probability equal to zero, which just Taking the limitk— o then reduces the ASEP to the CA-184
amounts to skipping the randomization step. It turns out thatprocess in a smooth way.
when using a maximum velocity,,,,= 1, this is equivalent One can also define higher velocities for the ASEP by
[72] to the cellular automaton rule 184 in Wolfram’s notation simply replacing the ASEP rule 2 by STCA/2 rules 1, 2, and
[85], which is why | will use the notation CA-184/1 and 4. In such a case, each particle has to remember its velocity
CA-184/2. v from the last move.
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space (roa) -> N space (road)

<-- time

FIG. 2. Space-time plot for random sequential update,

FIG. 1. Space-time plot for random sequential updafg,=1 v =5 (ASEP/9 andp=0.3, showing that the higher maximum
(ASEP/]) and p=0.3. Clearly, the kinematic waves are moving velocity does not lead to a different appearance as long as one uses
forward. Forp>1/2, the kinematic waves would be moving back- the random sequential update.
ward and the plot would look similar to Fig. 2.

Whitham theory(plus noise plus diffusion specialized to
V. PARTICLE HOPPING MODELS, FLUID DYNAMICS, the case of the Greenshields flow-density relation, describe
AND CRITICAL EXPONENTS the samebehavior.

Both for the ASEP/1 and for the CA-184/1, fluid- In the steady state, this model shows kinematic waves
(small jamg, which are produced by the noise and damped
by diffusion (Fig. 1). These nondispersive waves move for-
ward (wave velocity c=j'=1-2p>0) for p<1/2 and
backward ¢<0) for p>1/2 (Fig. 2). At p=1/2, the wave
velocity is exactly zero¢=0) and this is the point of maxi-
mum throughpuf90]. If traffic were modeled by the ASEP,
then one could detect maximum traffic flow by standing on a
bridge: Jam waves moving in flow direction indicate too low
density(cf. Fig. 1) and jam waves moving against the flow
ﬂirection indicate too high density.

The ASEP is one of the cases where clearing a site fol-
ows a different exponent than dissolving a disturbance.
(Note that, technically, all these remarks are only valid for
small disturbances. When the system is not close to the
steady state, one sees transient behavior that may be different
[72].) As long asp# 1/2, a disturbance of sizemoves with
speedc#0 and therefore clears the initial site in time
t~cx~x%, i.e., with dynamical exponert=1. In order to

A. ASEP/1 see how the disturbance itself dissolves, one transforms into

It can be shown that the classic ASEP corresponds to thiéhe coordinate system of the wave velocity. One convention-
noisy Burgers equatiofsee, e.g.[72,73). More precisely, ally does that by first separating between the average density
the hydrodynamic limit of the particle process is a diffusion{p), and the fluctuationp’. By insertingp={(p)_+p’ one
equationd,p+ d,j =D d2p+ 5 with a current[72,88,89 of  obtains

j=p(1—p). This yields
o' +(1=2(p))dxp' —2p' dxp' =Dp' + 7. (29

dynamical limits and critical exponents are well knoysee,
e.g.[74,72,87,73). The most straightforward way to put the
concept of critical exponents into the context of traffic flow
is to consider “disturbancesti.e., jams of lengthx and ask
for the timet to dissolve them. For example, one would
intuitively assume that a queue of lengthat a traffic light
that just turned green would need a titproportional tox
until everybody is in full motion. By this argument, the dy-
namic exponeng, defined byt~x* should be one.

Yet, there may be more complicated cases. Imagine agal
a queue at a traffic light just turned green, but this time ther
is also some fairly high inflow at the end of the queue. Th
jam queue itself will start moving backward, clearing its ini-
tial position in timet~x. However, the dissolving of the jam
itself may be governed by different rules. An example for
this will be given in the following.

dip+ dxp— dxp?=Ddzp+ 7, (24)
When transforming this into the moving coordinate system
which is exactly the Lighthill-Whitham-Greenshields caseX’ =X+ (1—2(p).)t, one obtains
with noise and diffusion described earlier. In other words,
i i ighthi dwp' —2p' dyp' =Da2p + (26)
the ASEP/1 particle hopping process and the Lighthill- tP p oxp x P
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FIG. 3. Space-time plot for CA-184/5 and subcritical density.

which is the classic noisy Burgers equation. the flow-density relation towards lower densities, but does

Note that this transformation is different from the Mushanot lead to other phenomenological behavior.
transformation Eq(15). As a formality, we do not change
the sign of thex direction here and in consequence not the C. CA-184
sign of the nonlinear term. More important, we transform
into a coordinate system moving with the speed ofitlawes
and this time find thathe fluctuationsof the system also
obey the Burgers equation.

For this equation it is well known that the dynamical ex-
ponent isz=3/2 (the Kardar-Parisi-Zhang expongntin
other words, in the original coordinate system a disturbanc
four times as big as another ones'=4x, needs
t'~x'=4x~4t, i.e., four times as much time to clear the
site, butt’ ~x'%?=(4x)%?~8t, i.e., 8 times as much time dp+j'ap=0, (28)
until the jam structure itself is no longer visible in the noise.

A precise treatment of this uses, e.g., correlations betweetith the (except atp=p; ) linear flow
tagged particle§74].

The drawback of this model with respect to traffic flow is o dj | Umax for p<p;j
that it has neither a regime of laminar flow nor “real,” big J “dp | -1 for p>pi (29)

. . h j .
jams. Because of the random sequential update, vehicles max
with average speedl fluctuate severely around their average The intersection point of the fundamental diagram divides

position given byt. As a result, they always “collide” with two phenomenological regimes: light traffip<€ p; ) and

their neighbors, even at very low densities, leading to “mini- yanse traffic 6>pi ). ma

jams” everywhere. This is clearly unrealistic for light traffic. . Lo oma . - - .
Actually, this fact is also visible in the speed-density re- A typical situation for light traffic is shown in Fig. Guith

lation. Using the Greenshields flow-density relation, one ob¥max=5). After starting from a random initial condition, the
tains traffic relaxes to a steady state, where the whole pattern just

movesv hax= 5 positions to the right in each iteration. Cars
i clearly have a tendency of keeping a gap=of =5 be-

v=—xl—p. (270  tween each other. As a result, the currgmm this regime is
p

Using a maximum velocity higher than one does not
change the general behavior of CA-184. It therefore makes
sense to directly discuss the general case.

As explained above, the CA-184/1 is the deterministic
counterpart of the ASEP/1. But taking away the noise from
the particle update completely changes the universality class
%.e., the exponert) [72]. The model now corresponds to the
nondiffusive, nonnoisy equation of continuity

j<= PU max- (30)
This is in contrast to the observed result that, at low densi-

ties, speed is nearly independent of dengjisactically no 1" Velocity of the kinematic waves in this regime is
interaction between vehiclgs C-=]_=vmax This means that disturbances, such as holes,

just move with the traffic, as can also be seen in Fig. 3.
B. ASEP/2 Dense t_rz_iffic is d_iffere_n(Fig. 4). Again §tarting from a
: random initial configuration, the simulation relaxes to a
Judging from space-time plofsee Figs. 1 and)2chang- steady state where the whole pattern moves one position to
ing the maximum velocity in the update frony,,,=1 to  the left in each iteration. Note that cars still move to the
vma=2 does not change the universality clg54). It skews  right; if one follows the trajectory of one individual vehicle,
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FIG. 4. Space-time plot for CA-184/5 and supercritical density.

for this car regions of relatively free movement are alternat- The scaling law(33) is actually also true fop>p; .
ing with regions of high density and slow speed. Although ing|heit for a different reason with a slightly more complicated
a too static way, this captures some of the features of starghenomenology. Se@8] for more details.
stop traffic. The average speed in the steady state equals the Two observations are important at this point.
number of empty sites divided by the number of particles:
2UZ>'N/|EL N)/N;the current is j=p(v). or, with (i) Many papers in the physics literatUre8,34,36,37,39—
’ 41, 43 use this model for their investigations. Also the two-
j-=1—p. (31 dimensional grid model¢see, e.g.[64—66) essentially use
this model for the one-dimensional part of their movements,
This straight line intersects with the one from light traffic at although the two-dimensional interactions seem to change
p=1/(1+v may, Which is therefore the density correspond- the flow-density relationshifi04]. The CA-184 model lacks
ing to maximum throughpuit .= v max/ (1 + 0 max - at least two features that are, as | will argue later, important
The velocity of the kinematic waves in the dense regimewith respect to reality(a) The first is bistability: Laminar
is jL=—1, which corresponds to the backward moving pat-flow above a certain density becomes instable, but can exist
tern in Fig. 4. for long times. CA-184 does not display this bistabiliti)
Since the second term of E@8) [with (29)] is (except at The other is stochasticity: CA-184 is completely determinis-
p=pj__) linear in the density, these are linear Burgers equatic, i.e., a certain initial condition always leads to the same
tions and the dynamic exponentis equal to 1[72]. More ~ dynamics. Real traffic, however, is stochastic, that is, even
precisely, in terms of traffic the following happens. The out-identical initial conditions will lead to different outcomes,
flow of a jam in this model always operates at flow and a model should be capable of calculating some distribu-
j our= i max and densitypo,=p; . The timet until a jam of tion of outcomedby using different random seeds
length x dissolves therefore obeys the average relation (ii) The so-called ceII.transmlss[on mocﬂ@ll],. Wh'ch has .
g Y g
X/ (1), Wherej:, is the average inflow to the jam. bee_n p_roposed for_ trafflc apphcatlons, technically is a dis-
Sincej e p for p<p; one can write that as cretization of the Lighthill-Whitham theory. It turns out that
Jmax’ this model is similar to Eq(28) with (29), especially with
X respect to the range of physical phenomena that are repre-
E— (32 sented. The only difference is that thep relation of Ref.
Pima PUin) [91] has a flat portion at maximum flow instead of the single
) " . peak of EQ.(29). That means that in the cell transmission
This means that fop<p; . the critical exponenz is in- e Jow-density and high-density traffic behave similarly
deed one, but ap=p; . t diverges. This effect is also to CA-184, but traffic at capacity has a regime where waves
visible when disturbing the system from its stationary statedo not move at all.
[28]: The transient time ;,,¢ until the system is again sta-

tionary scales as Using otherj-p relations in discretized Lighthill-Whitham

1 models (e.g., [92,79) will lead to other relations for the
trans ——— (33) wave speeds, but the range of physical phenonieaak-
imax P ward or forward moving waveshat can be represented will

Jmax
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always resemble CA-184; in particular, neither the bistability E. STCA-CC/1

nor the stochasticity can be represented. The cruise control limit of the STCA combines properties
of the CA-184 and the full STCA. Since the STCA-CC has
D. CA-184-CC no fluctuations at free driving, the maximum flow one can
. . - . . reach is with all cars at maximum speed age v ax-
moﬁgIéll;?e;dkﬁr:)a\‘/\r/?wlcileltm;giufl?sr ftgftﬁéh_zrmpgrtr']ﬂ;itgag'rnt%eTherefore, onecan manually achieve flows that follow, for
cruise control situeitionéélz 51] offer vaIuJabIe i};si ht P=pcz, the samej-p relationship as the CA-184, where
X y . gnts. pc> Now denotes the density of maximum flow of the deter-
The important feature of the cruise control version of CA- | 5.0 010l CA-184 ie.n..= V(v ot 1)
184 is a bistability[42]. Using vma=1 in this section r =P max o

- Lo P Above a certainp.;, these flows are unstable to small
(vma¥.>1 does not seem to offer addmonal. !nsmhms bi- local perturbations. This density will turn out to be a “criti-
stability occurs between two densities, i.e., for

. L cal” density; for that reason | will use the notation
p01<—</i>l_<p£21_/31/2'nd Whe_r(i/2<p)|_.—nl]\|/Lr,] tﬁnd' for pe=pe1- Many different choices for the local perturbation
l(})max_th, pc?ﬂ ( I, a d p°2t_ 'f<|>L the_a Is th('a average give rise to the same large-scale behavior. The perturbed car

ver the wholelclosed system ot fengtiL.. In this range, eventually reaccelerates to maximum velocity. In the mean-
some initial conditions lead to laminar flow, but others lead

. L - ““time, though, a following car may have come too close to the
to traffic including jams. Takayasu and Takayasu determine 9 9 Y

that densit locity relati {0 tWo t hich isturbed car and has to slow down. This initiates a chain
at density-velocily relations converge o two types, WhiChye 4 ction—an emergent traffic jam.
depend upon initial conditions.

It is straightforward to seg51] thatn(t), the number of

(i) Starting with maximally spaced particles and initial cars in the jam, follows a usually biased, absorbing random
velocity v=1, one finds stable configurations with flow walk, wheren(t)=0 is the absorbing statgam dissolvegt
() ={(p)Lvma={p)L for low densities(p) <1/2=:p,. Every time a new car arrives at the end of the jar(t)
However, for high densitie&), >pc,, a jam phase appears increases by one, and this happens with probabjlify,
for all initial conditions since not all particles can keep Which is the inflow rate. Every time a car leaves the jam at
g=1. Once a jam has been created, all particles in the outhe outflow side,n(t) decreases by one, and this happens
flow of this jam haveg=2. Fort—oo, this dynamics reor- With probability joy. Whenji,=jou, n(t) follows an unbi-
ganizes the system into jammed regions with dengityl ~ ased absorbing random walkn# j o introduces a bias or
and zero currenj=0 and laminar outflow regions with drift term proportional to [(in—jout.

P ou= 1/3 andjout: 1/3. S|mp|e geometric arguments then This piCtUre is consistent with Takayasu and TakayaSU,S
lead, for the whole system, tdj) =(1—(p) )/2 and observations for the CA-184-CC model. The main difference

() =(1p) —1)/2. is that nowboththe inflow gaps and the outflow gaps form a
(i) Starting, however, with an initial condition where all fandom sequence. Another difference is conceptual: Taka-
particles are clustered in a jam, this jam is only sorted out upyasu and Takayasu have looked at the transient time starting
to (p)<1/3=:p;, leading to{j ), =(p), and(v) =1. For from initial conditions rather than looking at jams starting
(p)>pc1, the initial jam survives forever, yielding from a single disturbanceThe latter approacf51] leads to a
(I'.=(1—(p))/2 and(v), = (1Kp)_ —1)/2. One observes cleaner picture of the traffic jam dynamics because it con-
that, for pey <(p).<pc2, this initial condition leads to a dif- Centrates on the transition from laminar to start-stop traffic,
ferent final flow state than the initial conditions (. Note ~ Which is observed in real traffic.
that p., is equal to the outflow densityoy. The statistics of such absorbing random walks can be cal-
culated exactly. For the unbiased case one finds that

Starting from an arbitrary initial condition, the density- (N(t))~t7,  Poud)~t7%  (W(t))sun~t""°, (39
velocity relation converges to one of the above two types.
Note that up until this section, all relations betwegn
v, andp were also locally correct, which is why averaging wherePg,, is the survival probability of a jam until time
angular brackets were omitted. Now, this is no longer trueandw(t) means the width of the jam, i.e., the distance be-
For example, densities slightly aboge, do not really exist tween the leftmost and the rightmost car in the jan).
on a local level; they are only possible as a global composimeans the ensemble average om#trjams that have been
tion of regions with local densities=p.; plus others with initiated and( ), means the ensemble average osanviv-
local densitiep=1. ing jams. For the critical exponents, one finds as well from
Since the model is deterministic, one can calculate théheory as from numerical simulationd=1/2 and 7=0.
behavior from the initial conditions. For any partidlevith 7n=0 reconfirms that, at the critical density, jams in the
initial velocity v =0 one can determine the influenickas on  averagebarely survive(unbiased random walk
particles “behind it” (i+1,+2,...). Forparticlei+k to If one now usesj;, as the order parameter and, say,
be the first one not to be involved in the jam caused,lpne  Pgyn(t) as the control parameter, then we have a second-
needs the average gap betweéemdk to be larger than two. order phase transition, where
This corresponds to a density betweén and k of
pik<1/(g+1)=1/3=p. . The sequencey, ;); describes a o
random walk, which is positivelynegatively biased for Paundt) =0 for jin<jou, t—
p>pea (p<pey) and unbiased at the critical point ~t7° for jin=jou, t—, (35
p=pc=pc1 [42]. =const forji>jou, t—c°.
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space (road) --> ] space (road) -->
. ///////////// .
/! ///////}7/{ /

<--time
<-- time

FIG. 5. Space-time plot for STCA-CC/1, at supercritical density,
with one disturbance. The jam first grows according to
n(t)~(jin—Jjouwt- Eventually, via the periodic boundary condi-
tions, the outflow reaches the jam as inflow amd) follows a
random walk(apart from finite size effects

FIG. 6. Space-time plot for parallel upddtzuise control limi},
Uma=5 and p=0.09, i.e., slightly above critical. The flow is
started in a deterministic, supercritical configuration, but from a
single disturbance separates into a jam and a region of exactly criti-
cal density. This is phenomenologically the same plot as Fig. 5,
except thawv = 5.

For that reason, we caljl,:=j,, the critical flow and the
associated density.:=p(j.) the critical density. F. STCA-CC/2
It is important to note that;,>| ., as a stable, long-time Replacing the maximum velocity =1 by v,p=2

state is only possible with the particular definition of the . " . A
cruise control limit and the use of an open system. If One(Flg. 6) does not change the critical behavior, but it adds a
would use a closed systeperiodic boundary condit.ions complication[51]. Now, jam clusters can branch, with large

i.e., traffic in a loop, the outflow of the jam would eventu- jam-freg holes in between.branches of the jam. As a result,
'”" ireulat ' dl d b J the infl f th space-time plots of such jams now appear to show fractal
ally recirculate around loop and become hé intiow o Cproperties and in simulations at the critical densitgt) no

jam (see Fig. 3, leading to the situationin=jou; if ON€ " |5hger follows a clean scaling law, wherea&) and P,
relaxes the cruise control assumption, eventually other jams;j;"qo.

would form upstream of the one under consideration and the The explanation for this is that the holes in the jam are
outflow of these jams would eventually be the inflow of the|arge enough to cause logarithmic corrections to the width,

jam under consideration, again leadingj 0= j ou- but not large enough to make it completely fractal. More
Deviations from the cruise control limit will be addressed precisely, the hole size distributid®,(x), i.e., the probabil-
later; let us now consider elosedsystem. ity to find a hole of sizex in a given equal time cugiam

configuration, scales as

(i) For p<p. and arbitrary initial conditions, jams are Ph(X)~Xx"Th, (36)
ultimately sorted out. Then, every car has velogity v ax

and g=v nax, IS thus in the free driving regime as defined i )
above. where both from a theoretical argument and from simula-

(||) For pcgpgpczy the |ong_time behavior depends on tions Th:2. Yet, it is known that forThSZ the fractal di-
the initial conditions. For example, even in the extreme cas@ension for such a configuration B;=7,—-1 (see, e.g.,
of p=pe, the state where every car has veloaits vy [93]). In this sense, such a traffic jam cluster operates at the
and g=v IS Stable and results in a flow ¢ v yapco- “edge of fractality.” Such a hole size distribution causes
However, most other initial configurations will lead to jams logarithmic corrections to the width when(t) is given
and for the limit of infinite system size, at least one of them{W(t))suv={n(t))sun( 1+ Int).
never sorts out.

(iii) For p>p¢,, all initial conditions lead to jams. G. STCA/L

For the STCA ab 5= 1, from visual inspectioitsee Fig.
Note that this is again consistent with the results of Taka~) individual jams are not distinguishable here. Instead, the
yasu and Takayasu for the CA-184-CC systeia. space-time plot looks much more like one from the ASEP.
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phase transition. This upper cutoff should scale with.,
and it should destroy the long-range connectivity of the jam
clusters. This is confirmed by earlier simulatidds].

One would, though, expect that there is still a “connec-
tivity transition” at higher densities, where, in spite of
Piec>0, jam clusters connect to an infinite netwdi@4].
Csanyi and Kertsz[45] find such a long-range connectivity
of jams in the STCA/2(using p=1/4) at densities much
higher tharpjmax. Further analysis is necessary to clarify the

exact nature of this “connectivity transition.”

A helpful analogy for understanding the phase separation
into laminar and jammed traffic is droplet formation in a
gas-liquid transitiod95], where gas corresponds to the lami-
nar phase and the droplets correspond to the jams. The gas
always “tests” (in fluctuationg simultaneously at many po-
sitions if droplets can survive, similar {@,.>0, which tests
of jams can survive. When one neglects surface tension, then
dropletscannotsurvive at sub-critical density, thegan sur-
vive at supercritical density, and théwarely survive exactly
at the critical density, making macroscopic fluctuations
maximal at this point. Note that neglecting the surface ten-
sion of the droplets changes the nature of the phase transition
from first order to second order.

The visual observation is confirmed by theoretical analy-
sis. Schadschneider and co-workgs8—-55 have performed VI. GOING BEYOND: TRAFFIC JAM DYNAMICS
analytical calculations for the stationary state throughput
given p in a closed system using-point correlations
(n-cluster methodand found that fow ,,,,= 1 this analysis
is already exact fon=2. This is no longer true for higher
Umax- FOr the ASEP, for the same analysis, the mean-field
approximation, i.e.n=1, is already exact. The difference
between the ASEP and the STCA/1 in this analysis is that in Measurements of human driving behavior show that over
the STCA/1 one finds an effective repulsive force of rangea fairly large velocity rangeg is proportional to velocity.
one between particles, caused by the parallel update. Thig here isAx—L, where Ax is the front-bumper-to-front-
helps to keep particles more equidistant than in the ASEPumper distancédistance headwaybetween two cars and

FIG. 7. Space-time plot for parallel update,.,=1.

All these results together put us into a position to draw a
fairly consistent picture of traffic jam dynamics.

A. An intuitive starting point

case, thus leading to a higher flow. L is the length one car occupiém the averagein a jam.
This intuitively makes a lot of sense, since it reflects the fact
H. STCA/2 that thetime gap should be approximately the same as the

F ~2 th | vsi | lead delay timeT, which is needed between seeing the brake
Or vma=>2, then-cluster analysis no longer leads 1o an jjns and actually starting to brake and should therefore be
exact solution, indicating a d'fferef?t Qynamlcal rgglmm largely independent of velocityPipe’s theory; cf.[11]).
practice, though, tha-cluster analysis is already fairly close (\ote ‘that traffic science traditionally does not include some
to simulation results fon=5.) Visual inspection of space- “security space” into the definition ol [11]; therefore
time plots confirms that the dynamics now is much more“gap” and “time gap” are somewhat different heje.

similar to the cruise control limit, i.e.., to .STCA'C.C/Z’_ than Field studiegcf. [11]) indeed confirm that the delay time
to the ASEP, except that here multiple jams exist simulta;

, is approximately constant for velocities between 15 and 40
neously. Jams start spontaneously and independently of 0thgfijaq her hour(between 24 and 64 km/h, data from the
jams because vehicles fluctuate even at maximum speed,

5 #8503. This delay time consists of several components, in-
determined by a parametpf.# 0.

; i : ) luding, e.g.,, reaction time or the time needed for actually
The STCA displays a scaling regime near the density oﬁ

) : ressing the brake pedal, and it is of the order of 1 sec.
maximum throughpulp; . There is an upper cutoff at " therefore, one can assurgeTu. Using the average re-

t=10" that was observed to depend pRee [47]. One can  [ations 1Ax=p and 1L=pj,, (density inside a jam we
attribute this cutoff to the nonseparation of the time scalegbtain

between disturbances and the emergent traffic j&tik As

S00N aPyc is different from zero, the spontaneous initiation 111
of a new jam can terminate another one. Obviously, this U1 p Piam (37
happens more often whew, is high, which explains why
the scaling region gets longer when one redyzgs. Thus, for high density, for the curreptone has

In other words, in the cruise control limit, there is a .
percolation-type phgse transition @t=p; . Using gpfree ' fign=pv = _( 1- p ) (39)
larger than zero introduces an upper cutoff into this T Pjam
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For low density, one can assume that there is s¢ane space (road) -->
erage v nax that is independent aof for large enough spac-
ings, and therefore, for low densities,

J low= PV max- (39

At j., andp.,, these two curves intersect and thereby define
the maximum flow according to this model. Assuming, say,
Umax=120 km/h, T=1.1 sec, and.=7.5 m, one obtains
pe2~1/45 m andj.,~2650 vehicles per hour per lane,
which is slightly above the highest 5-min averages that are
obtained in reality(e.g.,[13,96]). This model is essentially
equivalent to the CA-184/2 particle hopping model.

As a side remark, traffic security experts teach drivers that
one should reach the position of the car ahead only after
more than 2 sec, which is independent of velocity and re-
flects the fact that time headway is approximately equal to
time gap. It is interesting to see that this would actually lead
to a maximum current of two cars per second or 1800 cars
per hour, much less than the up to 2400 cars per hour that are
observed.

<-- time

FIG. 8. Space-time plot for parallel update,,,=5 and
p=0.09][i.e., slightly aboveo(j 0], starting from ordered initial

Yet, as argued further above, real traffic behaves differconditions. The ordered state is metastable, i.e., “survives” for
ently from this characterization. At high densities, we do notabout 300 iterations until it spontaneously separates into jammed
observe the homogeneous velocity: g/T as predicted by regions and into regions with=p(jmay-
the intuitive argument above, but relatively free flow that is
interspersed by start-stop waves. This is confirmed by medic, jams, or traffic during acceleration or slowing down. See
surements of thg-p relation, where, instead of lining up on Fig. 9 for a comparison between short-tif890 time steps
a single curve, the measurements form a fairly scattered datverages and a schematic picture. Data points alongajhe
cloud especially in the region of the flow maximum. branch belong to stable and laminar traffic. Data points along

For an open system, the explanation of this is as followsthe (c) branch belong to still laminar, but only metastable
Due to small fluctuations, laminar traffic at all densities will traffic. Data points along théd) branch belong to creeping
always exhibit small disturbances that can develop into jamshigh-density traffic.

The inflow to the jam determines whether a jam is poten- All other data points are mixtures between regimes, where
tially long lived or not: Since the average outflgyy,is fixed  two or more regimes have been captured during the 300 it-
by the driving dynamicsj;,>j,, makes the janiin the av-  erations interval. Essentially, these data points should lie be-
erage long lived, jin<jou NOt. jin=]ou defines a critical tween point(b) and brancHd), yet, due to high fluctuations
point, i.e.,j .=jout@ndp.=pou. Where traffic jam clusters in and due to the effects of acceleration and braking, which are
the average barely survive, as, e.g., quantified byiot captured in the steady state arguments, we observe huge
(n(t))=t7 with =0. fluctuations. For example, when a car is just leaving a jam,

All this is true for an open system, or a closed system thathe density decreases, but the velocity adaption is lagging
is large enough and where times are short enough so that isemewhat behind. Therefore, the car has too low speed for
closed boundaries are not felt. Conversely, in a closed syghe given density, leading to too low a flow value.
tem, the jams ultimately absorb all the excess density This scenario also makes precise the hysteresis argument
Pexcess= P— Pc- As a result, all traffic between jams operatesof Treiterer and Myers[97], also confirmed latef81,96].
at p.. Average measurements of the long-time behavior ofTheir measurements confirm the idea that the traffic density
traffic flow can therefore show no higher flow values thancan go above the critical point while still being laminar,
ie=]out similar to the gas that can be supercooled by increasing the

In this situation, the gas-liquid analodwithout surface density. Yet, both for traffic and for supercooled gases, this
tension again is helpful. Gas can also be brought into astate is only metastable and eventually leads to a phase sepa-
supercooled regime, for example, by increasing the densityation into jams and laminar flow. Quantitative evidence of
while keeping the temperature constant. But this state is onlthis is planned to be given in a separate paper.
metastable and eventually droplets will form and, in a closed Referencd81] in addition, uses catrastophe theory to in-
system, absorb excess density until the density surroundinigrpret the measurements. Although the idea is similar in
the droplets is exactly at the critical poifwithout surface  spirit to the gas-liquid analogy mentioned above, a detailed
tension. comparison does not seem possible.

This dynamical picture explains the high variations in the The picture is also consistent with recent results both in
short-time measurements. Measuring at a fixed position in #uid-dynamical models and mathematical car-following
situation such as in Fig. 8, one can measure arbitrary conmodels for traffic flow. In Ref[76], traffic simulations using
binations of supercritical laminar traffic, critical laminar traf- a fluid-dynamical model starting from nearly homogeneous

B. More realistic traffic jam dynamics
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simulated traffic is stable. At the critical density, this solution bifurcates into
06 T horttime a\;erag'es . two unstable solutions yvith wave _velocityzj "+ €, where
05 | long-time average —-- ] e—0 for p\,p. and e is the equivalent of the speed of
sound.
04 Actually, things might be somewhat more complicated.
z Kerner and Konhaser also find a large amplitude instability,
S 03 which exists already at lower densities than the instability
02| & obtained from the linearized equatiof&7]. That opens the
discussion of which of these two instabilities corresponds to
0.1 I 5 the instability of the STCA or if such a detailed comparison
b A is possible at all. Intuitively, one would assume that the
0 0102 03 04 05 06 07 08 09 1 large-amplitude instability is the relevant instability for a
sé’f:;‘gic noisy system such as the STCA. Bando and co-workz8b
0.6 : . . also find the separation of traffic into laminar and jammed
stable laminar (a) — phases in a deterministic continuous mathematical car-
05 | unstable laminar éc) e followi del
; croep (d) oliowing moael.
04l o
VIl. SUMMARY AND CONSEQUENCES
§_ 03} Y 1 FOR TRAFFIC SIMULATION MODELS
ozt a \ d ] These findings have some fairly far-reaching implications
o1l | for traffic simulation models.
0 : . : .
0 02 0'4densityo‘6 08 ! (i) Robust numericarticle hopping models, which seem

at the first glance as too rough an approximation of reality,

FIG. 9. Flow-density fundamental diagrams for the STCA. Top: include the same range of dynamic phenomena as the most
simulation output from the STCA. Short-time averages are taker@dvanced fluid-dynamical models for traffic flow to date.
over 300 simulation steps and thus mimic the 5-min averages ofteiet, particle hopping models offer some distinctive advan-
taken in reality. Bottom: schematic viewa) is the subcritical tages for practical simulations. Particle hopping models are
branch,(b) is the critical point,(c) is the supercritical branch, and known to be numerically robust especially in complex geom-
(d) is the branch where traffic only creeps. The 5-min averages atries and realistic road networks with all their interconnec-
densities betweep, at (b) and the creep branch are mixtures be- tjgns, etc., certainly are complex geometries. Practical road
tween the dynamical regimes. network implementations of the fluid-dynamical theory are

so far only using the Lighthill-Whitham equations, which are

conditions eventually form stable waves. Using the fluid-(without diffusion marginally stable and can certainly be
dynamical model one can, by usual linearization, find themade stable by using a stable numerical discretization
parameters for the onset of instability. That(is(t))~t”in  scheme.
the particle hopping model becomes the amplitude (ii) “Universality.” Intuitively, a relatively simple micro-
A(t)~eM in the fluid-dynamical model and at the onset of scopic model should be able to show the essential features of
instability A= const is similar to(n(t))=const (since traffic jams. One might even speculate that the critical expo-
n=0). Therefore, the wave in the fluid-dynamical modelnents of traffic jam formation areiniversal i.e., robust
corresponds to thaveragejam cluster in the particle hop- against changes in microscopic rules. This speculation is
ping model. backed up by the fact that the exponents of our model can be

Lee [98] explains the underlying mechanism for a modeltheoretically explained. The consequence for traffic simula-
for granular media. He distinguishes “dynamic” from “ki- tion is that, as long as one expects certain simple aspects of
nematic” waves. Dynamic waves are found in théhke- traffic jam formation to be realistic enough for the problem
Kerner-Konhaser equation$Egs. (22) and (23)] when the  under consideration, e.g.,, for large-scale questitimes sim-
relaxation time7>0; they are similar to sound waves in plest possible model will be sufficient for the tatius sav-
gases. Kinematic waves are found in the same equatioriag human and computational resources.
when 7—0, in which case the equations reduce to the (iii) Towards minimal modelsThe present results show
Lighthill-whitham case. The wave formation mechanismthat closeup car-following behavior is not the most important
thus is that the instability first triggers the “sound” wave. aspect of traffic to model. The important crucial aspect is to
The density inside the wave increases and outside the waveodel deviationsfrom the optimal(smooth) behavior and
decreases until both densities are outside the unstable rangke ways in which they lead to jam formation. Another im-
Then the kinematic mode takes over. portant aspect, which seems far from obvious, isaheel-

Kurtze and Hong[80] make this more precise for the eration behavioyespecially when there are other cars ahead,
Kuhne-Kerner-Konhaser equations: Below the critical den- since it is the acceleration behavior that mostly determines
sity, the kinematic wave with wave velocity=j' =dj/dpis  the maximum flow out of a janiwhich may be a simple
the only solution of the linearized equation and this solutiontraffic light). Therefore, investigations such as this paguer
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important for microscopic modeling as long as one does noto the Kihne-Kerner-Konhaser theory for traffic flow. Scha
have the perfect model of driving or the computational re-fer finds a similar phase transition as the one stressed in this
sources to run it. paper for simulated granular flow, except that above the criti-
(iv) Traffic dynamicsFast running and easy to implement cal point, the flow is exactly zerf102]; supposedly, such a
particle hopping models can be very useful in interpretingflow-density relation would also support the same overall
measurements. Measurements such as for the traditiong{namics.
5-min-averaged fundamental diagrarttow vs density vs What is theminimal ingredient for the instability that
velocity) have increasingly recognized the fact that the dy-cayses the traffic breakdown? Both the car-following models
namics around the measurement site has an extrem(_a 'nﬂ'fbA and continuousand the fluid-dynamical approach have
ence on the outcome of the measurements, thus making t oduced the instability after adding an inertia term. Yet,
results far from universal. This point is planned to be furthe Goldhirsch and Zanetti point out that an inverse temperature

discussed in another paper. : : _
- L ; . . effect is responsible for the clusterifg2].
(v) Microscopic simulationsParticle hopping models are What is the exact relation of particle hopping to car-

inherently microscopic, which allows one to add individual . ) . .
tf@llowmg models, either continuous in space only or con-

properties to each car such as the identity of travelers, rou 7 .
plan, and engine temperatuffer emission modeling These ~ UNUOUS in both space and tin@8]? The range of phenom-

properties are imperative for the kind of traffic models that€n@ that are captured seems comparable. Yet, on one hand,
are needed in current policy evaluation processes. most car-following models investigated so far do not include

(vi) Stochasticity and fluctuationkast but not least, par- randomness; on the other hand, it is unclear what the better

ticle hopping models are stochastic in nature, thus producinggsolution actually buys in terms of additional insight. Ko-
different results when using different random seeds evefnatsu and Sagd 03] derive a fluid-dynamical equation from
when starting from identical initial conditions. At first, this is a car-following model.
certainly considered a disadvantage from the point of view of Can one say more about universality than in Sec. VII?
policy makers or traffic engineers. However, the traffic sys- What can one-dimensional theory say about two-
tem is inherently stochastic and the variance of the outcomedimensional problems, such as they are regularly encoun-
is an important variable itself. How will we be able to dis- tered for urban traffic problems? A series of pagses, e.g.,
tinguish reliable from unreliable predictions without know- [64—66) have used cellular automata techniques for building
ing something about the range of possible outcomes? Fumodels for town traffic. These models use the CA-184/1
thermore, there is reason to believe that the average ovefiodel for driving dynamics, but add elements for directional
several stochastic runs willot be identical to a deterministic changes. Molera and co-workers have built a theory for their
run. Imagine, for example, a case where in a deterministigyo-dimensional model104] and their flow equation is es-
model, aqueue at one intersection h_as a bac_ksplll that, on tf?entially a two-dimensional version of the Lighthill-
averagejustdoes not reach another intersectitBy queue | \hitham equatiorwith a quadratic flow-density relation.
mean a queue with spatial extension. This is different fromrpa¢ means that adding stochastic directional changes would
the use of the _word in queumg.theo)ryn the stochastlc. change the model from CA-184 type to the ASEP type.
model, the maximum length of this queue.wnl, between dif-  \yhat is the relation to ¥/ noise? Musha and Higuchi
ferent smulg‘qon_runs, quctua‘ge arounq |t§ average valug,sve measured fl/noise in the power spectrum of a car
thus backs_pllllng into the_ other_ intersection in nearly 50% ofyetector time serief23]. They explained this by a noisy
all runs. Slnc_e this possibly disrupts traffic in this other IN-Burgers equation, in a way, though, that differs from Krug's
tersection, this can cause long-range effects and ”etworilﬁterpretatior[go]. Nagel and Paczusks1] have predicted a
breakdown. precise 1f law for the power spectrum of the density time
series, which was roughly confirmed by simulations for
STCA-CC/2. Yet, Nagel and Herrmann find, using a continu-
ous car-following model and following the traffic movement,
Many open questions remain, though. The following area 1f¢ law, with a~1.3[105]. Car following is slightly dif-
examples. ferent from the particle hopping models in this paper; but if
What is the exact relation between average cluster growtthe arguments if51] were entirely correct, this should not
in CA models, wave amplitude growth in fluid-dynamical matter. Choi and Lee find filike behavior in simulations of
models, droplet growth in the liquid-gas transition interpre-slightly modified versions of the fluid-dynamical equations
tation, and phase space portraits in car following models? for traffic [106]; Zhang and Hu find Xflike behavior in
Is there a hydrodynamical limit for the STCA? If so, how simulations of a discrete-time—continuous-space model
can it be proven to be correct? Do critical exponents helg107]. Understanding ¥/ noise behavior would be helpful
here? because it would be much easier to measure in reality than,
What is the exact relation to granular mediazéh®l has  say, lifetime distribution$47,51].
both observed and simulated similar waves for sand falling What is the meaning to the ongoing discussion about the
down in a narrow tub§99]. He has also found in the simu- value of synchronous updating for explaining physical phe-
lations the bistability leading to laminar flow or to jam waves nomena? Huberman and Glanf&08] have reissued the
depending on the initial conditions. Peng and Herrmanrwarning that parallel updating may produce artifacts and that
found similar waves in lattice gas automata simulations ofusually stochastic asynchronous updating would be a better
the same situatiofl00]. Lee and Leibig[101,99 have re- approximation of reality. Yet, for the traffic case, it is clear
lated these waves to a fluid-dynamical theory that is similafrom this paper that thésynchronous STCA produces a

VIlIl. SOME OPEN QUESTIONS
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