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On-shell expansion of the nonequilibrium generating functional: Application to superfluid “He

Y. Suzuki and R. Fukuda
Department of Physics, Faculty of Science and Technology, Keio University, Yokohama 223, Japan
(Received 31 July 1995

The scheme of the on-shell expansion is applied to the nonequilibrium generating funétioftais a
systematic way of extracting physical information frédimthe lowest equation fixes the expectation value of a
chosen operator, the first order term is the equation determining the excitation spectrum, and higher orders
describe the nonlinear effects among the excited modes. The approximation scheme is fixed at the level of the
generating functional, which preserves the symmetry properties of the Hamiltonian. The formalism is illus-
trated using the model Hamiltonian of the superflide. [S1063-651%96)05405-(

PACS numbd(s): 05.30—d, 05.70.Ln

[. INTRODUCTION we have an identity of the Legendre transformation
dI'T¢]/d¢p=—J, and the mathematical expression for re-
When we discuss a macroscopic system that contains moving the probe is the stationary equation
huge number of degrees of freedom, it is crucial to rewrite
the theory in terms of a small number of coordinates. These dI'[ ¢]
variables should include experimentally observable ones and W:
we are interested in a theory written using these macroscopic
coordinates. _ ) _ - o
Several methods have been known to accomplish thd his determines the expectation value(fand is in fact an
above task; the method of the projection operator discusse¥@ct self-consistent equation fgr Necessary formulas of
the dynamical evolution of the system only in the Space'[he Legendre transformation are summar_lzed in Append|x_A.
where all the variables are projected onto the space of the The method of Legendre transformation deals only with
variable we are interested in. In this way we get, for ex-the expectation values so that all th'e \_/arlables that appear in
ample, the equation of motion for the relevant variable. Or@ny expressions are numbers. This is because we have
although quite different technically but essentially equivalentintegrated over all the fluctuations. However, since it is done
in philosophy to the way of the projection operator, we inte-under the presence of the probe coupledtothe fluctua-
grate out in path-integral representation over all the variabletions in the channeD can be extracted in the form of cor-
except for those we need. The resulting theory describes thelation functions by the appropriate differentiations of
system in terms of the coordinates that are left fixed. W[ J] by the probel. The same is also true fé ¢]. In this
There is another method to meet the purpose; the methosenséV[J] or I'[ ¢] has two meanings at the same time: free
of the Legendre transformation. Here we integrate out oveenergy and the generator of correlation functions.
all the variables but do so in the presence of theumber The technique can readily be extended to the dynamical
source term to probe the relevant variable. The probe is set time-dependent case where we introduce the time-dependent
be zero in the end of the calculation. Consider the equilibprobe term and the time-dependent stationary equation deter-
rium statistical mechanics and suppose that we are interestedines the time evolution of the expectation value, i.e., equa-
in the operatoO. (We use the hat to denote the operator andion of motion of(O), .
take a single operator but the generalization to the multiple The purpose of this paper is to apply the method of the
operator case is straightforward:he HamiltonianH of the Legendre transformation, or the generating functional, to the
system is changed intd ;=H —JO and trace out by all the time-dependent non_equ?librium processes and to shpw. how
coordinates(including é)_ Thus we define the generating W€ ¢an get the physical information from the nonequilibrium

(1.3

function, or the Gibbs free energW[J] as generating functional. After introducing the definitions of
’ two generating functionals, the method of on-shell expansion
exp(— BW[J])=Tr exp(—,BI:h). (1.1 is explained and applied to the generating functiolighe

method has already been applied to the zero temperature sys-
Here 8= (kgT) 1; kg is the Boltzmann constant arfidthe  tems[1-5].)
temperature. The Legendre transformation is done as fol- Apart from the obvious hope of elucidating hitherto un-
lows: noticed important properties of the nonequilibrium generat-
ing functional, which has attracted much attention nowadays,

. dWJ] dWJ] . we have other motivations, which are summarized below to-
Ilel=W[J]-J dJ b= - dJ =(0). 1.2 gether with results obtained in this paper. The possible ap-
plications of our studies are also suggested.
In the above expressiod is expressed byp through the (i) First of all we have to know how experimentally ob-

inversion of the second equation(@f.2) and we insertitinto tained data are calculable by the generating functional. The
the first one. We call'[ ¢] the Helmholtz free energy. Now on-shell expansion is the formalism invented for this pur-
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pose. The process is quite systematic; the stationary equatiaa zero in the end. Thus the Hamiltonian of the system
of the generating functional determines the expectation valuehanges with time. It is expressed as

and we expand in terms of the small deviatigm., small

oscill_atior) from the solution thus fixed. The lowest equatic_)n I:|(t)— 0 _j d3x J(t,x)é(x). 2.1)

of this expansion takes the form of an eigenvalue equation,

which gives us the excitation spectrum above the chosen

solution. Then the expectation vaIL(é)(x))t is given as
(ii) A remarkable fact is that all the higher orders of the
on-shell expansion can be summed up and the resulting ex- (0(x))=Tr{p,U(t,t)tO(x)U(t,t)}, (2.2

pression takes the form of the coherent state multiplied by
the density matrix. This newly obtained state is a novel state :
. . . . ~ 1 [t ~
(ground state in the case of zero temperagtwurkich is writ- Ut,t)=T exp( — _f ds H(s)), (2.3
ten as a coherent sum of the modes excited above the old iy
state, thus leading to the connection formula of the two. In
the classical mechanical language, the formula relates twarhere the symbol T implies the time ordering operation and
minima of the potential by summing up infinite series of thet denotes the adjoint. The matrjx is an arbitrary density
small oscillation around one of the minima. operator of the initial time; , which need not necessarily be
(iii) In the field theoretical case, one is frequently inter-an equilibrium distribution.
ested in the condensed ground state and our formula is an Now we try to extend the equilibrium generating func-
exact one, which, in its lowest approximation, coincides withtions presented in the Introduction to the nonequilibrium sys-
the usual form of the simplest trial state in all known casestems. There are two types of nonequilibrium generating
Thus our formula suggests how one takes and improves theinctionals,W[ J;,J,] andT'[ ¢,,¢,], which are extensions
trial state in the variational calculations. The statement camf Gibb's and Helmholtz's free energy in the equilibrium
be applied to the case where one of the states is unstablease, respectively. The definitions oi[J;,J,] and
How one can describe the unstable state by the operator r&{ ¢,,¢,] are given as follows. The generating functional
ferring to the stable ground state is a problem that has a long/[ J,,J,] is first defined by introducing two kinds of real
history. Our formalism may provide a method to this prob-valued sourced,(t) andJ,(t):
lem.
(iv) When one wants to discuss the gauge theory and el/MWRILY2l=Tr{U; 5,(U; )™, (2.9
when the gauge invariance has to be maintained throughout ! 2
the calculation, one has to invent somehow a gauge invariant -
\l:anatlonal approach. But it is not known at present to our UJ_=T exp{ B I_f th( ':"f & Ji(x,t)f)(x))
nowledge. Since our formulas are exact, they are gauge i fiJy,
invariant and they can be a candidate for this trial state.
Indeed this was the first motivation for the present investiga- (i=1,2. (2.5
tions. R
(v) Take a macroscopic system. Our method can be usg

to study the problem of how to separate, or how to elucidat he final timet,. here is_taken to be sufficiently large, satis-
the interplay between, the systematic motion and the fluctu ing {,<t<tg, wheret is the time we look at the system.

tion around it. The systematic motion is represented by the The double path formulation of nonequilibrium theory has

expectation value and the fluctuation by the small oscillation? long h|s.tory., starting _from Schwinger's wofg-10]. For
extensive investigation, see Rdfs0,11].

When the small oscillations are added up, the systematic pa?’tn ; _ i .
shows a macroscopic change, which is expressed in our for- SinceJ, #J, in (2.'4) (othervylseW be_comes mde_:pendent
malism by the shift of théground state. of J; andJ,), the time evolution ofp, is not physical. So

Below we present the general formalism of the on-shellW[J1.J2] itself is not a physical quantity in contrast to the

expansion and then an example is studied taking the supefduilibrium Gibbs free energyV[J] of (1.1), which is &
fluid *He model Hamiltonian. Mathematical manipulations Physical one in the sense that it is the free energy of the

necessary for these topics are mainly contained in AppersyStém with HamiltoniarH —JO. In this sense it is impor-
dixes A—E. tant to note that there is no genuine generating functional of

equilibrium type for the nonequilibrium processes. However,
this does not invalidate the use ¥ff J,,J,]; the functional
WI[J,,J,] does play the role of the generating functional and
A. Definition of W[J;,J,] and I'[ ¢4, ¢-] all the physical quantitiesas far as they are related to the
channel we are probingan be extracted from it. These will
become clear in the following.

IIl. NONEQUILIBRIUM GENERATING FUNCTIONALS

Let us define the nonequilibrium generating functional.
Consider a field theoretical system described by the Hamil A . . .
tonian operator:| (Although we take a field theoretical sys- The second nonequilibrium generating functional is de-

Soon ' fined by the double Legendre transformation,
tem in this paper, the arguments below apply to any dynami-
cal system). Since we want to study the dynamical 2
nonequilibrium processes, a time-dependent external force Ty, do]=W[Iy . dp]- S fd“xJ-(x) oW[J1,J5]
J(t,x) is introduced that couples to some physical quantity 12 R ' 8Ji(x)
O(x) of the system. Thid(t,x) is a fictitious source to be set (2.6
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i1 OWLI1,d2] oW[J1,J;]
(X)=(-1)'""t—= (i=1,2, 2. X)=—(— , 2.1

¢I( ) ( ) 5\]|(X) ( ) ( 7) ¢( ) 5\]1(X) J1=J2=J ( 39
where four-dimensional notations have been introduced; ST[ by, o]
x=(t,X) andfd4xzf§thfd3x. 5163;(x) signifies the func- —I(xX) = —— , (2.14

. . . - 5¢1(X) br=Po=0¢
tional derivative defined as 172
83(X) which are the solution and the equation of motion under the
5J-I(x’) =& S (x—x"). (2.9 presence of the physical sourdéx), respectively. Actually
i

we get(2.14 by solving (2.13 with respect toJ(x), i.e.,

. . . . inversion of (2.13. Several important relations involving
Here. 5*(x) is the four—dmepsmnab fAunct|on.. Then t.he W[J;,J,] and [ &,,d,] are summarized in Appendix B.
physically observed expectation value®ft,x) with t>t,is  \when the initial density matrix is of the equilibrium form

given by P =exp(—,8I:|), it is convenient to introduce another source
J; in the third imaginary time path. This enables one to study
qﬁ(x)z(é(x)): SW[J1,3,] the connection with the equilibrium free energy and is dis-
631(%) 15 23,-0 cussed in Appendix C.
= M (2.9 B. How to calculateI'[ ¢4, ¢b,]
8 '
20 13,-3,-0 The evaluation ofW[J,,J,] is based on the definition

(2.4). In the case of perturbative expansion, for example,
The equation of motion o#(x) is obtained as follows. We  there arises a:2 2 propagator matrik7] specific to the non-
note here the inverted relation (&.7), equilibrium processes. When the initial correlation is taken
into account and if the initial density matrix is assumed to be
o' ¢1,¢2] the equilibrium one, then the propagator become8312—
0¢i(X)

14]. The problem is how to calculald ¢, ¢,] by perform-
ing the Legendre transformatid@.6). For the zero tempera-
which comes from the definition®.6) and(2.7) [see(A6)].  ture and equilibrium nonzero temperature cases, the
In (2.4 we have assumed thal, , are fictitious sources, diagrammatical rule has been knowf5,1§ for several
which are made to vanish at the end. In case a physicdypes of operator©. The results are usually given in the
source coupled t® is really present, the artificial source form of the loop expansion.
term J; has to be set to a physical source Up until now there have been three ways of performing
J(X):31(X) =Jx(X) =J(X). If the sourcel(x) is absent, we the Legendre transformation to get this result; the functional

are considering the case where the nonequilibrium process fgethod, the method relying on the combinatorics of the
realized because the initial density matrix is not equal to th&raphs, and the inversion method. Among others, the inver-
equilibrium distribution. Let us consider the latter case forsion method17] consists of taking perturbatively the inverse

simplicity. Then we are led to the equation of motion of Of the relationg= ¢[J] to getJ=J[ ¢], which is the essen-
d(x): tial part of the Legendre transformation. This type of ma-

nipulation can readily be applied to the nonequilibrium case.

=(-1)'Jx) (i=1,2), (2.10

5T[¢1,¢z]:5f[¢1,¢z]20 2.1
51(X) 5d(X) : : Ill. ON-SHELL EXPANSION OF Ty, 5]

SinceI'[ ¢41,d,] plays the analogous role of the action
The solution to(2.11) satisfies ¢1(X)= ¢o(X)=¢(x) be-  functional in classical analytical dynamics, let us consider
cause of the symmetry under42. Therefore we can use first a classical mechanical system with the coordinages
another type of equation of motion, (i=1-N). The Lagrangian is written ds(qg; ,q;) and in the
time intervalt,<t<tg, the action is defined to be
o L1, 8] 212

P00 o= - itad= [ "at Lam.a), (3.
|

This has a similar form to the equation of motion for the
coordinate variablg in classical analytical dynamics, which The stationary equation for the action functional is the Euler-
is obtained by the stationary condition on the action func-Lagrange equation of motion, which is obtained by writing
tional I[q]; 81[g]/8q(t)=0. Because of this analogy, is qi(t)=qi(°)(t)+ 6q;(t) and requiring that the actior q;] is
also called the effective action. stationary forq(9(t):

We recall here the relation between the equation of mo-
tion and its solution for the case of a nonvanishing physical Sl L d L
source, J;=J,=J#0. If we setJ;=J,=J in (2.9 and _ oGl - ]
b1= o= ¢ in (2.10, we get ogi(t)  agi(t)  dt sg,(t)

(3.2
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Here the derivatives/ §q;(t) is the functional one defined in produces the physical quantities such as scattering matrix

(2.8) and the variation is assumed to satisfy the boundary¥S matrix) elements among the excitation modes. These

conditionsq;(t;)=q;(tg) =0. modes themselves are determined by the lowest equation of
If q{°(t) is a solution, i.e., a physically realizable trajec- the on-shell expansion.

tory, theng(®)(t)+ 8g;(t) is not. This is because the varia-  The purpose of the present section is to apply the same

tion 5q is the one to be taken for the purpose of searching foféchnique to the nonequilibrium generating functional

the physical trajectory. In this sense we cadf the unphysi- I'[¢1.¢2], generalizing the discussions to the field theoreti-

cal (or off-shel) variation.(The terminology “off shell” will ~ cal case. Consider a system described by the Hermitian sca-

become clear when we discuss the field theory. lar field ¢(x). We have in mind the phonon field, photon
Now consider another physical trajectory that lies neafield, or the Yukawa mesofKlein-Gordon field, etc. Let us

q9(t) and write it asg;(t)=q@(t)+Aq;(t). In this case introduce the canonically cqnjugate momentum fiel(k).

both q{®(t) andq(®(t)+ Aq;(t) satisfy the equation of mo- Then the standard Hamiltonian has the structure

tion so thatAq;(t;) andAq;(tg) are not zero in general. The R R R R

variationAg;(t) is called the physicalor on-shell variation H= f d3x{3 T(X)2+ 3 H(X) 0?(— V) p(X) + H [ H]}.

since it leads to the physically realizable trajectory. The (3.

equation satisfied by q;(t) is obtained as follows:

Here w(—V) is the bare dispersion relation of the fiefd

0= ( 5I[qi]) andH, represents the unharmonic interaction term. The cor-
80i(D) /] 4_q011 aq responding Lagrangian or the action functioHap] is given
. as (9,=4lat)
sl[q] tF &°1[q]
- 5q-(t>) 2 dt'(a (0 og,(’ ) i ; ; ; ;
(0 goqo =1 Sy 100G,/ qo i6]= f d*x{3[h()]1*— 2 (X)X~ V) b(x)—H[ $]}.
XAQj(t")+ . (3.3 (3.9

Sinceq(®(t) is a stationary solution andlq;(t) is assumed !N the Heisenberg representation, the following relations
to be a small quantity, the equation for the small deviation0ld:
Aq;(t) is X A X A 1
N , (X =qp(tX), [T(tX),b(ty)]=+(x—y).
i=1 Jy 8;(t) 5q;(t") q=q(® ! . ' R R

) i ) . Now take the operatoty(x) as O. Then we are going to
The solution of the above equation describes a small oscillasydy the expectation value
tion aroundq(®(t). Equation(3.4) can be looked upon as an A i o
eigenvalue equation in matrix form with rows and columns (X)) =Trp,UT(t,1) d(x)U(L,1)). (3.9
specified by {,t) and (j,t"). Therefore we expect a discrete ) ) )
set of solutions, i.e., the modes of oscillations. Equat4)  The solution to (2.11) is written as ¢1(X)= ¢2(X)

is therefore called the mode determining equation-shell = #(x). Then(2.12 takes the form

equation in the case of field thegrylhe higher order equa- ST

tions denoted by dots in E¢3.3) determine the scattering (M) 0. (3.9
among the various modes of small oscillation thus obtained. S¢p1(X) by=dy=\0

In field theoretical systems and for the zero temperature
case, we have already shoywh-4] that the complete paral- Let us perform our on-shell expansion. For this purpose
lelism between the classical action and the effective actiowve  expand T'[¢;,¢,] around @,  writing
persists and that the formal scheme of on-shell expansios; = ¢,= ¢+ A ¢:

:<5F[¢1,¢2]>

O¢p1(X) by 8O

[ oer = 8T 1 o s°r

B 5¢1(x))0+i_21,2 ft, d y( 5¢1(x)5¢i(y)>oA¢(y)+ 2! il,izEzl,Z 4 4. d y2( 0h1(X) i, (Y1) 8¢, (Y2) |
XAp(y)Ap(ys)+---. (3.10

Here (), implies that () is evaluated at= ¢(°) and we note the sum over 1,2, which is specific to the nonequilibrium case.
We further expand\ ¢ as

A(X)=ApD(x)+ A2 (X)+AFD(X)+- -, (3.19
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assuming thaA ¢ is of the order A ¢*))". Then we get our on-shell expansion by requiring {8at0 holds in each power
of A¢(). The zeroth order vanishes becausé®®) and for the first order we get the mode determining equation

0= [ty @ouy) + TRy s ).

31
Sr 312

CIE ) [ p——
i OV = 55 056:y)
Here and in what follows we takg— —oo for simplicity. Equation(3.12) is the generalization of the mode determining

equation of the small oscillatio(8.4) to the nonequilibrium system.
Now the following identities are noted, which are functional analogéBd and (B5):

> | dYy I (xy) (=123 WE (y,2)= 5, . 0%(x—2), (3.13
2 (WP (xY))s,=5,=0, (3.14
i,j=1,2 12
52W
W2 (x,y) =
V=53 083,)
By using these relations we can derive
—d(x—2)= J dy(ME6y) +TE YW (Y, 2) + W (Y,2))]5 = 3,-3- (3.19

Indeed this relation follows by choosirig=i;=1 in (3.13 and by the repeated use .14. However,W{3+ W2 is the
retarded Green’s function,

(vva?(y,z)+M%><y,z>)31232=ﬁ(wg)(y.z))f,';a(yo—z°><[<?><y>,&>(z>]>3, (3.16

therefore the relationI({?+T'{?) o= — (W), implies that Eq.(3.12 determines the pole dV). For constanip(®,
(Fi(jz)(x,y))o is a function ofx—y; therefore in Fourier spad@.12 takes the form

T3 (0,p)+T3(w,p))oA ¢V (w,p)=0. (3.17)

The dispersion relatiom = w(p) can be fixed by requiring that we have nonvanishing® and in this casé\ ¢*) has the
support on the shell defined lay= w(p) in four-dimensional space @= (w,p). This is the reason we cdlB.12 the on-shell
equation and our scheme the on-shell expansion. Because the Hamiltonian or the action ¢B/6nisnsymmetric under
w——o, I'®(w,p) is a function ofw?. Therefore we can write in the vicinity of the shell

P (0,p)+T3(0,p))o=2Z" Hw?- w¥(p)), (3.18

where\/Z is the wave function renormalization factor, i.e., the inverse of the residue of the pmg)qfof the corresponding
mode. Inx space, by using the notatiggk= wt—p- X,

1
TR -+ Yo= 5 5 J d*p exp( —ip(x=y) ('Y (@,p) + T3 (w,p))o
=—Z N+ 0¥~ V)8 (x—y)=—Z (3,0 8*(x—y). (3.19

Here, as indicated, the differentiation applies to the coordirafehere are two independent solutions(817), each having
undetermined constan@™):

C(w=w(p),p) C(w=—w(p),p)

A¢D(w,p)=C(p)8(w* 0 (p))= ——5 " = d(w—w(P)+ ——5 o

Sw+ w(p)). (3.20

Let us define
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C(w==*w(p),*p)
(2m)*\2w(p)

CH)(p)= (3.21

Then, in the coordinate space we have

3
36900~ mss [ d'p expr-ip0ad (p)- [ J;w_i))[d“(p)exr(—ip<°>x>+c<—><p>exmp<°>x>], (3.22

where w(p)=w(—p) is assumed ang©x=w(p)t—p-x. We will see below thatr )(x) is the wave function of the
excited mode. This is shown by deriving another form\a$(*)(x) using the technique of formula due to Lehman, Symanzik,
and Zimmerman(LSZ2) [18,19. [Here A¢™M)(x) is a simple plane wave since we have takﬁrx) asO. If the composite
operator d)(x)gb(y) for example, is adopted theA ™) (x) has the dependence on the internal coordinate besides

exp(p©x).]
For the second or higher orders the required relations are

2 diy(r? <xy>>oA¢><2><y>+—E dy; dyo(C) (6Y1,Y2))eA ¢ P(y)A M (y2) =0, (3.23

'1 iz

2 | dyTPxyea¢® )+ 5 2 dyy dUyo(TE) (x,Y1,Y2)0d 6P (YD) AP (y2) + AP (y1) A M(yy)

'1 iz

E d'y, d%y, d4Y3(F1|1 iis(XY1,Y2 Y3)od ¢V (y1)Ad P (y,) AN (y3)=0, (3.29

'1 P!

etc. After some calculationsee Appendix D A ¢ can be expressed hy¢") in a compact multiretarded form:

1 <o) <o)
A" (x)= f dyy - -dfyy A2y dZy (W )o0xya - Y (W) o M (Y1, 20 (WR)o (Y2, 22)

(W&o XY,z Ad Y (zy) - - - ApP(z,), (3.2

"t iw
n+1) —
W00y, o= 20 ( 53,003,y 31 (V)|

1=92

:(%) Tr(,;, S Bty ety 13003000110

Ll
—

g) (R(@(X) (Y1) - - b(¥n)), (3.26

Oty,ty s -ty )=0(t—ty, )0ty —ty, )~ 0(t,  —ty ).
Here we have define@)=Trp,() and=pyy, . y,; implies the sum over all possible permutationsyf, . .. y,}. Equation
(3.25 expresses the fact that amomgr 1 external lines lines are amputated by the retarded Green'’s function. The arrow on

W implies that it operates to the left, i.e W), ! first amputates the pole oW{ " and then we multiply
AWM. .. AgpD),

Now the above formulas are rewritten by the operator form through the reverse use of the LSZ reduction t¢tBridLe
and we get another physical interpretation of our expansion scheme. In particular infinite series of on-shell expansion can be
summed up into a coherent state of the excitation mode. ConsideA#S?(x). We show that it is related to the wave
function of the excited mode. For this purpose let us rewsigg*)(x) using(3.15 and(3.19;

ag00=- [ dty [ aty 260 5, TRx-y) S, Wy -y) (329

=z1 f d*y AN (y) (5,01 (R(B(X) B(Y))). (3.29
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We have used the fact that since the fadta#*)(y) is present we can use the expressigri9 for F(z) in (3.27). The arrow
indicates that it operates to the right. Since we are assuming the homogeneous $5¢tﬁ(ﬂ) d)(y))) is a function of

X—y so thatf(d,) = f(a,y) = f(ay) [becausd is the even function of its argument, S@19]. Now remembering the fact that
Eqg. (3.12 is equivalent to

f(d,)A¢P(y)=0, (3.29

the partial integration ovefd?y in (3.28) is performed. The boundary term at spatial infinity is assumed to vanish by utilizing
the wave packet regularization for the plane wave. We keep the boundary tésmtat by using the identity

AdPB= 0 (AdB)+(*A)B, AJB=AsB—(4A)B. (3.30

By (3.29 we get, using the notatiop=(y°,y), the following expression. Note that we have takga —oc:

ApM(x)=2" Jd“y f9y0(A¢(1)(Y)f9y0|<R(¢ (X)(y))) =iZ" ( lim — lim )fdsy A¢<1>()/)r9y0<R(<25 )b(Y))).
yOoew YO
(3.3)

We recall here that liga_,.. makes a vanishing contribution because of the presence of filvection |n\/\/(2) and also that at
equal time the fieldg)(t,x) commute among themselves. Thus we arrive at

A =([$(x),Al), (3.32

A=—iz 7t [ @A) F) -~ (Gyed 8B yo-, (3.33

In momentum representatloh takes a simple form. Let us Now A ¢)(x) can be looked upon as a linear combina-
expand¢ and 7 in terms of the creation and annihilation tion of the wave function of the statevhich is not normal-
operators: ized) containing one excited mode annihilated or created by
aora'. In order to see this, let us wri®.32 explicitly in

the number representation usi(®37):

Bt 0= f i [a(p)e~"Px
1:/8)— 2 3/2 )y
(2m)**) J2w(p) 800=2 py (nl[$(x),a"~alln)

+a(p)te" My, (334
) - o =2 pi, (= n(n$(x)In—1)
m(t ’X)ZWJ &*p\/—— [a(pe P” ) X
+n+1({n|p(x)|n+ 1)+ yn+ L(n+ 1| p(x)|n)
—~a(p)e?x], (3.39 .
—n(n=1[(x)|n)}. (3.39
(0) .
wherep™x = w(p)ti —p-x and Here the summation over the indices other thmais sup-
[a(p),a(k) = 6%(p—k) (3.3g  Pressed and the following notations have been used:
while other commutators are zero. Now insertit22), alny=+hln—1), a'ln)=\n+1|n+1).

(334, and(3.39 into the definition(3.33, we get The above result is the generalization of the zero temperature

A=a'—a (3.37) case to finite temperature where the excited modes and the
’ ' thermal background are present at the same time. Indeed we
can show that3.39 reduces to the known expression if we
a”)EZ*l(ZTr)mf d3p cH(p)a(p)”. (3.3 keep only the ground staté0) in the sum. Using
al0)=(0la"=0, we see that ¢Y)(x) is written as

At this point we ?ssume thg initial deAnsity matrix to be the A¢<1)(x)=(0|<}S(x)|1)+c.c.,

equilibrium one:p,=exp(pBH). Then p, does not change

the number of particles corresponding door a'. This is  where c.c. implies the complex conjugate. The above expres-
seen as follows. Sincg=—%, ¢(t,,x) corresponds to in- sion is precisely the wave function of the mode for the case
field of the LSZ formalism and(" annihilates or creates the of Hermite field.

mode, which is an eigenstate of the total Hamiltonian. Recall Consider next\ ¢(?)(x), which can be handled in a simi-
here that it is defined by the pole W) . lar manner:
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2¢@00= [ ay, [ diy, 127Gy 1,12 86Ny, ) (RGO B By

4639

(3.40

The integration ovey, is done first. Following the same process as we have done above, the partial integration leads to

| dtyaiz 20 M 0 1, )RGOO By By =iz [ dy, as(a 825 RGO0 Y By

=iZ‘1J d3y2( lim — lim )Aqs“)(yz)3yg<R(<?)(X)<§5(y1)<?>(yz))>

0 0
Yo—=® Yot

=—iz"? f A3y, AdD(y,) dya([R(G(X) b(y1), (Y2 Do,

=([R($(X) (y1)),Al).

The remaining integration of; can be done similarly with

the result

1 . A
A¢'P(x) = 5([[6(x),ALAD. (3.42

Looking at the above expressions, it is an easy task to guess
the results for general (™ (x). In fact by using the math-
ematical induction technique, we can show the following

form:

1 A A A A
A¢(n)(x): _<[[ t [[¢(X),A],A], e ],A]> (343

n!

Now it is a simple matter to sum up ovarand we get

Aqs(x):n; A¢pM(x)

=TH prexp(—A) p(x)exp(A)]
=TrlexpA)piexp—A)d(x)]. (3.4

Usually the initial density matrix is written withr(x) and
¢(x) so that, by noting the definition ¢B.33 of A, we get
the c-number shift of the initial variables:

exp(A) Dy (77(X), p(X))exp(— A)

=P (F(X)— 7e(X), (X) — pe(x)), (345
T(X)=Z" XA P (X)), (3.46
b()=Z AP (X)), (3.47)

The initial coordinate is shifted as it should:

Ad(t, )=Tr(p{p(t, ) +[ Bt ,x),—iZ AT,
=Tr(py{p(t; ) +(—iZ"HiA¢D(t, ,0)}),
(3.48

=Tr(pi(t, X)) +Z A pM (8, ). (3.49

(3.4)

|
In the momentum representation,
exp(A)py(&(p).a'(p))exp( —A)
=pi@(p)—CM(p),a"(p)~C(p)), (3.50
CHi(p)=z"12m)¥Cc)(p).

Note that exp{A) coincides with the familiar operator,
which brings about the coherent state.

Now we have at hand a way of searching for the correct
condensed state; vai@{)(p) in such a way that ¢(x)
becomes constant in time. Th&@{*)(p) is determined and
we get the density matrix corresponding to the condensed
state. This is illustrated for superfluitHe in the next sec-
tion. (Application of this technique to other real physical
systems is under way.

IV. SUPERFLUID “He: AN EXAMPLE

Let us exemplify the formulas obtained above taking the
system qf“He. Here the complexi.e., non-Hermitg field
operatoriy(x) of “He has a nonvanishing expectation value
below the temperatur&. corresponding to the onset of the
Bose condensation. The model Hamiltonian is the usual one
[20]:

- - h?
Hzf d3x wT(x)( - ﬁvz—ﬂ

$(X)

1 ~ n " N
+3 J A Ay 10 1 (y) Uo(x—y) 3y %),

Uo(x—y)=Ug(y—x), [#(t,%), 4T (t,y)]=E(x—y).
4.1

HereUy(x—Yy) is the assumed repulsive potential of the he-
lium atom andu the chemical potential. In the following we
take, for simplicity, the local form of the potential;
Uo(x—y)=Uy8%(x—y). Below we setopMN(x)=(yM(x))
and introduce the notations
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Similarly the contouré function and the contour functional

b 1 - 23 differentiation are defined:
- | t
& ac(t—t’)=f dt"se(t"—t'), 4.7
Cs c
V il =c(t—t’ 4.8
As for the Legendre transformdd, the formula of the loop
expansion has been established by several aufi&rd6
t; —i0h but these works are limited to the zero temperature case or to
the equilibrium systems. The nonequilibrium case where the
FIG. 1. Contour path€,,C,,Ca. imaginary time path is absent has been discussed by Chou

et al. [10]. We use in the following the contour time path
defined above in the case where the imaginary time path is
needed. It turns out that the use of the contour integral makes

p=t ), =g, ¢=(4"9),

ta_ t _ it easy to generalize the known results to the nonequilibrium
¢'"=(4.0") (a=12. 42
(The superscriptr has nothing to do with the subscripbr
j, which discriminates the branch of the two real time paths. A. On-shell expansion
We need two kinds of sourceks, J; and define 1. The case G §/*

~ A 3 ~ — A Let us take a stationary homogeneous solution
Hy(O=H= | d>{Ji() " () + (X))} (4.3 ¢ =(y*(x)). (For T<T,, there are two solutionsFor the
moment we consider only; andJ, assumingl;=0. Then
In the above definitioni=1,2,3. Ifi=3, we are assuming the on-shell condition takes the form

the equilibrium initial distributionfnzexp(—ﬂlil) and the

time variable takes the imaginary value=t,—ir, with (ifig+Q(=V)ApM(x)=0,
O=7<#hp. _ a
Here we introduce the notion of the complex contour of (—ihd+Q(=V)AT ™ (x)=0. (4.9

the time integration in order to write various formulas in a ) ) i . i
compact way. We are going to generalize the double pathiere ((—V) is the complete dispersion relation including
formalism due to Schwinge6], Keldysh[7], Chou et al. the correcthns due to the interaction. The solution in Fourier
[10], to the three time paths including the imaginary timeSPace Is written as

path. See for this purpose Niemi and Semefn®ff Wagner

[13], and Fukuda and co-workefd4]. The contour time A¢<T><l):f d®p c<i>(p)e(1ip(°)><>, (4.10
integral [-dt extends over the contou€, which runs as

C,—C,—C; (see Fig. 1L Each path is defined to be
Ci:tj—tg and C,:tg—t, (return path Cj:tj—t,—iBh
(imaginary time path The contour time ordering operator
T orders the time sequence according to its location on th
contour. Furthermore the following notation is used:

wherep@x=Q(p)t—p-x. In the formula(3.25, owing to
the presence of the on-shell projectiamp®), (W)~ can
Qe replaced by its pole part:

(W) i (x,y) = =Z"Hiha, + (= V,))8*(x—y),
J(t)=J;(t) if tisonC; (i=1,23. (4.9 (4.11

With these notations and assuming the equilibrium initial (W(RZ));;T(x,y):—Zfl(—iiiat +Q(= V)5 x—y).
distribution, we can write i
Here \Z is the wave function renormalization factor of the
“He field.

Inserting (4.9) and (4.1)) into (3.29, the reverse use of
the LSZ reduction formula, as was done in the previous sec-

=TrTCexr(—i—J dt |Z|J(t))’ (4.5  tion, leads to the following expression, which has the
hlc n-fold commutator:

i i
expﬁW[Jl Jo ,Jg]EeXpﬁW[J]

WhereI:|J(t) is equal toI:|Ji(t) given in (4.9 if t is onC;
with i=1,2,3, respectively. The contodrfunction is intro-
duced as

1 . R -
A(f)a’(n)(x): n_l<[[ —[¥(x),A], - - .],A])y

A=z"1 J d3y(A ¢V (y) T (y)— A DY) d(y))yos,.

fcdtéc(t—t’)f(t)=f(t')- (4.6 (4.12
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C1 H(, 91
> 0-th order: % 4
- >K z = (t,x) 1 3
Cs “ H(’[” ‘»BT)
v FIG. 3. The zeroth-order diagram af¢(x).

H() - C,9t — Ch case of the classical mechanics where the changgtdfat
botht=t, andt=t appear. The reason is that we have a
closed time path for the case of finite temperature while the
time flows straight fromt= —« to + in the zero tempera-
ture case.

FIG. 2. Contour path€,,C,,C; corresponding td4.20. 2. ldentity involving A ¢

oA Ny ) Below we consider the relation of the constant solution of
Let us rewriteA by expandingy"’ in terms of the creation  he nonequilibrium equation of motion and the stationary
or annihilation operator: solution of the equilibrium free energy by deriving a func-
A 1 tional identity. For this purpose it is convenient to introduce
I, )= _mj d3p a(p)Me¥P' ™, (413 the probeJ; into the imaginary time axis and define
(2m) W[J1,J5,J3]. (See Appendix C for the general discussion of
e . . W or I' of three variable$.In the following we do not per-
\(’Zh%ein'?[; )t)ﬂe_(?e(fir;])iiilon?zixl.a h\lle(\a/vgé?sertmg (4.10 and form the Legendre transformation inJ;, therefore
' e I'[ ¢1, 5] is the Legendre transformation W[ J,,J,,J3] in
A=a'—a, (4.14) J, andJ, only andJ; is assum'ed to be a parameter in this
transformation. Furthermoré; is taken to be a constant;
R J; does not contairx. For notational simplicityJ; is not
H(T)Ez_l(ZW)mJ d*p CH(pa(p)™. (415  written explicitly below forI[ ¢4, é,]. With this notation,
we have the relation, byA13),
Assuming the equilibrium initial density matrix, we have the
following expression for the wave function analogous to o[ b1,¢2]  OT[ b1,z 3] 419

(3.39: Spi(x)  6¢y(X)

Now take the uncondensed solutiet®(®’=0 and assume
that Z~*A¢M(t, ,x)=CM=const. By this choice we are
expanding around the normal solution and summing up the
_ _ o (1) _ unstable modes excited above the uncondensed solution.
= n(n x)|n—1

; p'"“{ \/—< 6700l ) Then the naive diagrammatical consideration can be applied
to (4.18 using the Feynman rule given in Appendix E. We

MgV =3 p (nl[¢N(x),aT—a]ln)

+n+1(n|¢M(x)|n+1) write (4.18 as
FnFLn 24 T00I) A" X)=Tr(py(d—C, ' ~CHJ(x). (420
= n(n=1[¢M00)|n)}. (4.1

In Fig. 2, Eq.(4.20 is illustrated. The diagram giving a
We can sum up ¢*(™M(x) into an exponential form to get nonvanishing contribution ta ¢(Y(x) contains at least one
A ¢%(x) as follows: C™M and several lower-order diagrams are shown in Figs. 3,
. 4, and 5 forA¢(x). The pointx is denoted by 1 in the
o () o g o S ATy oy oA figure but it can be 2 or- since(y1(x))=(1»(x)) so that
APT0= 2, APTMOO=TrL g Ie M0 0y (x)) = (300). [ See (CB) for the defini-
(4.1 tion.] At each vertex the number 1 or 2 or 3 is assigned to
indicate the path to which it belongs. The line represents one

=Ty, 9 19(). (4.18
W=g=Z2 (), =9t =27 ). 7 Q
Equation (4.18 tells us thatA¢“(x) is the same as 1t order: T 12 2 +3 * ©
(*(x)) but with the initial operator insidg, shifted by the

amount—Z 1A ¢*®)(t, ,x), which is ac number. This is

reminiscent of the shift of boundary conditions under the z

on-shell variation in classical analytical dynamics; see the 1#@

discussion precedin¢3.3). However, only the shift of the

initial value comes in the formula here compared with the FIG. 4. The first-order diagrams df ¢(x).
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4 1 [ 5Ffree
Q A¢(X)=C—f d*yi Ar(X—y) S61(y)
2nd order: " = 1 L ¢1:¢2:c
ol ]
FATY (4.22
8¢1(y)
¢1=Pp=A¢"

Up until now we did not write thel; dependence explicitly
but J; has to be set to zero to get back to the original theory.
Now we write (4.22 in terms of I'[¢4,¢,,¢3]. Since

=0 implies 6I'/6¢3=0 and since the formuld4.19
holds for the free part and the interacting part separately, Eq.
(4.22 is transformed into

©
n

FIG. 5. The second-order diagrams®(x).

1 f
of the six propagators shown in Appendix E. Let us evaluate Ap(x)=C— f dAVEAR(X—Y)[ ( ﬁ)
the first order diagram Fig. 3; the vertex at the end of the line !

is —uC and the line is the zero momentum limit of ST
G)(x;7y); see(E5). We integrate this quantity by apply- ( int ) } (4.23
ing fﬁﬁdr and the result of this process is 5¢1(y)
e ok=0t=t)/(— u)=1+ fxd"'y%AR(x—y). wherel represent$’[ ¢, ¢, 03] and (k) and &+ ) imply
t |
. . T
Thus the value of Fig. 3 is (%):¢p1=¢,=C, W:O,
3

o ]
+ . d4YEAR(X_y)(_MC)- ST

| = _—

(k% ):d1=d2=Ad, v 0,

In Figs. 4 and 5, the one-patrticle irreducible part is enclosed
by dotted lines. By one-particle irreducible part, we mean gespectively. Now suppose that; = ¢,= 3=C is a solu-
part of a graph that is not separated into two parts if we Cutjon to
any one of the propagators contained in it. It is easy to con-

vince oneself that the one-particle reducible parts sum up to ST ST o

A ¢ itself but it is nowx independent. Thus, summing up all S
the diagrams of higher order, we arrive at the following form o1 Oy s
of A¢p(x);

then by the propertyC13), ¢=C coincides with the station-
ary solution to the equilibrium free energy;
6T g1 5¢| 4—c=0. If we put this solution int¢4.23, then the
term inside] ] vanishes and ¢(x) becomesC consistently.
Thus we have shown that the true value of the condensation
(4.21) C is calculable by requiring\ ¢(x) to be time independent.

e—i=oli=tr) T
() [yt ) ()
’ DY)/ pr=pa=so

_ —A .
c /t, d yh r(z~y)

Ad(z) = & 0 +ZZ T
3 Ug n=1 1

3. The case G= z:{;“;l/"

8Tin,
e+ <5¢1(J)> AJ Next the pairing condensation is discussed. In superfluid
“He, it has been pointed out that not ond® but also

Here Ag(x—Y) is given in Appendix E. In4.21) EUo im- Y*y* may condensg21]. There has been controversy in this

plies the sum over the graphs that contain at leastonend case concerning the existence or the absence of the gap in the
we notice that excitation spectrum. But the gap can be shown to be absent

by our formalism; see the arguments at the end of Sec. IV B.
Here the result of the application of the on-shell expan-

—:r—) . sion to the pairing theory is briefly summarized below. We
5¢1(X) b= bp=C will see that in our formalism the Bogoliubov angle naturally
comes in. For this purpose the pairing is taken up in momen-
In the above expressions we have separfted the sum of tum representatlo(up( p) w(p)> (W(p) zﬂ( p)) by add-
the free part and the part due to interactionsing the source term to the Hamiltonian separately for two
I'=Teet int- In this way we can write time paths as follows:

oI
MC — ( tree
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N A A - The angled, is nothing but the Bogoliubov angle, which is
HJi:H_f d*pQi 1y (P Y (P Y (—p) determined by requiring that®;(t,p) is independent of.
R . As in the case of ), this coincides with the condition of
iy (t,P) P (—=p)¥(p)). minimizing equilibrium free energy.

) We summarize our findings of this section. On-shell ex-
We do not write thel; dependence and the argument goes,ansion naturally changes the initial density matrix into
through in a similar way as in the case @f“). We first
define thg generating function®/ as before and introduce eC‘A/’tCT‘A/’,S o-Cit+cly ee(w;;,;/;% eﬂ(*@*iﬂfm
the notations forw=1,2: ! ' ! '
Ji(t,p) = Qi ytyt(t,p), Ji yy(t,p)), which causes the shift of the operafbnf the initial state by
(4.24 ¢ numberC!" or the rotation of the pair field by the amount
6. It is our claim thatC'™ or # can be obtained by the

D(t,p) = (D] (t,p),;(t,p))= oW _ requirement that ), or (¢ ¢), be independent of, which
' ' 8J{(t,p) coincides with the value fixed by minimizing the equilibrium
o free energy. The above form of the transformed density ma-
Then[ is introduced as trix implies that the new state is constructed by adding an

infinite number of the unstable modes present in the uncon-
r[qﬂ,q)g]zw[,]a,\]g]_z dtJ d®p J*(t,p)PA(t,p). densed state in a coherent way.
I,a

(4.295

The equation that governs the time development of the order
parameter is written as

( oT
o {(t,p)

B. Symmetry breaking and Goldstone mode

When the symmetry of the Hamiltonian or the Lagrangian
is broken by the ground state, the on-shell equation tells us
about the existence of the Goldstone mode as an excited state

=0. (4.26 and its explicit form of wave function. Since we are working

Dy =Dy= in finite temperature, the symmetry breaking nature is char-
acterized by the nonzero thermal expectation value of the

On-shell expansion around the uncondensed solutiosymmetry breaking order parameter. We first discuss the

®MO=0 js obtained by writing problem in general termgFor the special case, the problem
a «(0) a has been discussed in Rg10].)
(L) =P+ ARA(LP), Let us assume that the field operator has several compo-

nents denoted bjbn(x), n=1,2,...N, and suppose that
the  Hamiltonian  or  the Lagrangian  density
L(¢p)=L(¢pn(X),d,én(X)), Whered,=(do,V), be invariant
(Da:(q)T’q))’ D(t,p)=((t,—p)(t,p)), _un_dgr a contlnuqus glob'al transformation of the field whose
infinitesimal version is given as

where the variables without the subscripare the physical
guantities that take the same value ferl and 2:

®'(t,p)=(¢'(t.p) 1 (t,—p)).

b (X)— br(X)+ a, md X), (4.2
ThenA®“(t,p) is obtained, after some algebra, as follows: Pnl) = $a(X) % (%)
AD(t,p)=AD*D(t,p)+AD*P)(t,p)+- - - wherea, ,, is an infinitesimal transformation parameter in-
dependent of x. Consider the generating functional
=Tr:ef dquz(tl ,Q)/Ah(;ﬂ, ;/j’r) W[J;,J;] defined by(2.4 and (2.5 with the operatorO
replaced byg,(x) (with t,= —©):
Xe—fd’é’qAAz(u 'q)&)“(t,p)], (i)W 301 — Ty kalﬁ,l(sz)T (4.29
=Te{p, (', ' HD(t,p)}. . i [ .
o0y )R] KJizTex;{—%f dt(H—Z [ o Jm(x>¢n<x>)
Here the following notations are employed: ‘°° :
o = coshd, (k) —expli argpy)sinhd, ' (—k), (i=1,2). (4.29
y'"=cost, ' (k) —expli arge})sinhg, g —k), ThenW[J;,J,] is invariant under

Ayt q)=Z"ADD(t,q) ¢t @it — )
—AD Ot Q) gty , — Q) gty )],

ok=Z " HADPD(t, k) +ADV(t;,— k)], 0= oyl Therefore we have the relation

Jin(¥)=3in() = 2 Jim(Xam, (i=1,2. (4.30
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2 SW Another example is the excitation spectrum in the case
0=> j A% —=———Jim(X)ann where the pairing occurs. As has been stated, there has been
=1 nm Jin(X) controversy 21] about the presence or the absence of the gap
in the case of pairing condensation. But it is clear from our
= 2 2 f d*x(— 1)i+1(;5in(x).Jim(x)amn discussions that there is no gap in all orders of perturbation if
tonm the expansion parameter is invariant under the transforma-
tion (4.35. Here it is crucial that both(y") and
=—2 2 | d%—— 5¢ (x) ———~Pin(X)ann. 43D (yMyM) have nonvanishing values as stationary solutions.
tonm im This is in contrast with the case of the superconductor where

We have used the relatior8.7) and (2.10. This expresses (#")=0 and the gap is present. See He#] for details.
the symmetry of the Hamiltonian in terms Bbf Now differ-

entiate (4.31) with respect to ¢4 (y) and set ACKNOWLEDGMENT
X) = X) to a symmetry breaking solution(®, sat-
|¢s)$|(n3 () y y g oA One of the author@R.F) is thankful to Dr. M. Sumino for
the collaboration in the early stage of the present work.
orLd] =0 (4.32
Sd1n(X) b1 ()= o ()= O ' ' APPENDIX A: FORMULAS OF LEGENDRE
e e TRANSFORMATION
We assume tha‘bfw )is space-time independent. After mak-  Here several formulas of Legendre transformation are col-
ing the substitutionx—y, we get lected that are sufficient for the discussions in this paper. In
the formulas below conjugate variables of Legendre transfor-
j d4y% [an,lm(xiy)+r nam(%Y) Jam, $0=0, mation are denoted by; and ¢; . The indexi represents all

the attributes characterizing the variable including space-
(4.33  time coordinate: ¢;= ¢,(X), Where the indexa represents

discrete degrees of freedom other thanThereforeX; im-
(4.34 plies actually [fd*xZ,. Kronecker gij  signifies

Sap0*(Xx—Y), wheres*(x—y) is the four-dimensional Dirac

o6 function. For examplege;/d¢;= & implies the func-
The equatior(4.33 just takes the form of the on-shell equa- tional derivative §¢,(x)/ 5¢(y) = 5ab54(x y). The sum-
tion (3.12. Since the integrationfd% projects out mation convention is employed where the repeated index is
(w,k)=(0,0), it says that there is an excitation mode satis-summed or integrated over.
fying the dispersion relatiom(k=0)=0, as long asp{" Legendre transformation betwe®f J] andI'[¢] is de-
#0. This is the Goldstone mod&) appearing as a conse- fined as follows:
guence of the symmetry breaking with the wave function

|n Jm(X y) 5¢|H(X)5¢]m(y) ¢1=¢25¢(0).

ApM(x)=a, n¢'? at four momentum ¢,k)=(0,0). See [ ]

: ' ' r J J , Al
(3.39. Recall here that the above arguments are full order [¢1=WLIT- (AL)
ones.

Let us study an example by taking the system of superwhere ¢ is defined by
fluid “He. The Hamiltoniar{4.1) is invariant under the phase

transformation IW[J]
. . . . . =05 (A2)
Y) = ()", () — (exp( =i 6) (x) ", exp(i 6) () '
~((1-i 9){/,(X)’r,(1+i 9),},0())_ (4.35  This is inverted to get
Thereforea, ;=—i0, a,,=i6, a;,=a,,=0, and we see Ji=Ji[ &], (A3)

that the wave function of the Goldstone mode at four mo-

mentum in the space op*= (¢, ¢?)= (4", ) is propor-  which is inserted intgAl). In this sense, EAL) is written

tional to (— ¢@T,¢©). This is the wave function of the more explicitly as

Goldstone mode corresponding to the symmé#B5). By

puttingk =0 in the mode determining equation we can show, I o]=WLI S]11-Ji[ &1 . (A4)

after some  algebra, that (A¢T(—k),Ap(k))

=(— ¢ ¢(9) satisfies it if we sek,=0 there. This is of

course in accord with the Hugenholtz-Pines theof24].
We want to stress here again that we have started from the Differentiating (A4) by ¢, ,

enerating functional’, which preserves the symmetry of

?he Hamil?onian undef4.35 ang we have doneyno fur'?her ar[¢] IWLI] 99; ‘9_‘]i ,

approximations. This leads automatically to the correct d; dJ; 3¢J ag;

Goldstone spectrum in contrast to the literat[28], where

some adjustments in the course of the calculation are needey (A2), we get

1. Conjugate relation

~J;. (A5)
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PN " and similarly forI". ForJ;=J, we introduce a special nota-
Py —Ji or I'i[¢]=—1J;. (A6)  tion defined by the superscriptas follows:
I
WI(nI)J i (leXZ: e vxn)
2. Inverse matrix relation re
(AEISD)iﬁerentiating (A2) with respect tog; we have, using —(WI1I2 i (XaXa, Xn))3,x)=3,00=dx) - (B2)

ForI" we use also superscriptbut it implies that it is evalu-

= = . (A7) ated atthe value of;(x) satisfying(2.14). The superscript 0

boagy 33103 9¢ 9iddi I P, then implies the stationary valug®(x) ¢;(x) correspond-
ing to J;=J,=0, for example,

dgy  PWLJ] 2 PPW[J] #°T[ 4]

We write this relation briefly as

IO (Xq,Xp, ... X
WRT@=T@W2) = -6, . A8) iy i,(X1:Xe, - Xn)
The first equality is obtained by either noting tH#£) and E(Fffi)z..‘in(xl,XZ, e X))y (0 =y = $0x) - (B3)
W) are a symmetric matrix or by differentiating\6) by
Jj. We first note two important identities:
3. Differentiation by spectator parameter Fi(jz)(xvy)(_ 1)i*JM?|2(y,z)=vaﬁ)(x,y)( - 1)i+jrf,zk)(yyz)
Let @, be some parameter that is regarded as a congant =— 5 0% (x—2), (B4)

spectatorwhen we make the Legendre transformation. Then
the inverse proces#\2) through(A3) is written more explic-

2)J —
itly as JE Wi27(x,y)=0. (B5)
g=Mdal (A9)  The first identity is obtained by differentiating2.10 by
aJ; #i(2) and is an example of the formul&7). The second
one is a consequence of the definitionvigfJ,,J,] given in
—Ji=Ji[ ¢, a]. (A10) (2.4). In order to see this, let us take the derivative(f7)

Now we take the derivative df[ ¢,a] by a, with ¢ fixed. with respect toJ, keeping in mind the fornt2.4)

This is easily done as follows:

WE2(x,y) = 2(TO()O(y)),
ITé,a]=WLé,alal-J[.ald,  (ALD

Ni¢e] oWl WL, a] dJil ¢,a] WS (x,y) = <O(y)O(X)> (B6)
&aa aaa aJI aaa
a3 &,
B, (A12) W)= = (00
Thus we get {000
W5 (xy) = 7 (TO()O(Y). ®7

'[P, a] _ IW[J,a]

dagy day

(A13) _ ~
Here Tdenotes the antitime ordering a@{Xx) is the Heisen-

Higher derivatives are obtained straightforwardly (81.3). berg operator defined by

O(x)=U*(t,t,)0(t=0,x)U(t,t,),
APPENDIX B: IDENTITIES OF THE SECOND

DERIVATIVES OF W[J;,J,] AND I'[¢1, 6] Wherel](t t)) is given in (2.3 and the expectation value is

We take a field theoretical system and use the notatiofefined by()=Trp, - . Because the sum of the above four
x=(t,x). In order to make the formulas explicit, we write €duations is |dent|cally zero owing to the definition of T
the x dependence separately in this appendix. In the followandT, Eg. (BS) follows.
ing the repeated Roman index is summed over 1 and 2, while We consider next the relations for the retarded Green’s
the repeated space-time variable is integrated asd*x.  function. Takei=k=1 in (B4), then
The following ways of writing are adopted below: .

o ’ P TG (— 1WA (y,2)=WE (xy) (- DIT{R(y,2)
"W
n)= , =& (x—2). (B8)
63i (X1) 8J; (X2) - - - 6J; (Xn)
(B1) Here we usé€B4) and (B5) to rewrite (B8) in the form

W (XX X
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A (x,y)+ T y)) W (y,2) + Wi (y,2))

=—8*(x—2). (B9)

But we note the relation
W2(y,2) +W(y,2) = + ({TO()O(2)) ~ (B2 Oy}

i ~ ~
=+ 0(y°*=2°)([0().0(2) ).

(B10)

ThereforeZ ;T 37(x,y) is the inverse of the retarded Green's

function.
A more general proof of the identit{B5) is as follows.

By this technique we can derive various identities. For this

purpose let us putl;(x)=J,(x)=J(x) in (2.7). Since
d1(X) = ¢o(X)=@(X) in this case, we have the identity

OW[J1,J5]

(5\/\/[31132]
8J5(X)

631(x)

>J1(x)=J2(x)J(x) )Jl(x)=JZ(x)J(x)

—0. (B1))

Differentiating (B11) by J(y) we get(B5). Further differen-
tiation leads to various correlation equalities.

Now the same process is applied tBb. Setting
d1(X) = ¢2(X) = d(x) in (2.10, we have the following iden-
tity:

(Aenta)
S1(X) $1(0)=y(x)=h(x)
5F[¢1:¢2])
N (— -0. (B12)
O¢p(X) b1(X)= hy(X)=(X)

Let us differentiatdB12) by ¢(y), then we obtain an analog
of (B5):

| 1212 I'¥%(x,y)=0. (B13)

Using (B4), (B8), and (B13), another identity analogous to
(B9) is obtained:

W2 (x,y) + W (x, y )T E(y,2)+ T3 (y,2))

=—5%x—2). (B14)

APPENDIX C: EXPANSION OF W OR I" IN POWERS
OF J) OR ¢(~)—RELATION WITH EQUILIBRIUM FREE
ENERGY

Let us definenN[J,,J,,J3] by introducing another source
Js in the imaginary time path:

el/MWLIL %2 25 = Tr{U, 5201 (C1)

Y. SUZUKI AND R. FUKUDA

s 1008 . .
p,°=T, ex _gJ'o dr{H—-J;(7)0}|, (C2

where T_. implies ther ordering and we suppress the space
coordinate that is defined i(2.5. The corresponding’ is
also defined as follows:

I'[¢1,¢2,03]=W[I1,d5,3]— J':Od”l(t)dh(t)

o 1 (%8
“‘f dtJo(t) po(t) — I—J drd3(7) ds(7).
t, 0
(C3

Here we have introduced

o oW 1
(|—1,2), 5\]3(7') - |_¢3(T)

(C4

=) e

The following change of variables is performed at this point:

IV=3(0143p), IT=01-0, (CH)
or equivalently
J,=3M 4330 3,=3 - 130, (Ce)

We have the same relations fgi™) and ¢(7). In the fol-
lowing we consider ~ W[J(T) J(7) 3.7 and
[, (), ¢3]. Itis easy to get the following relations:

SW
m:df*)(t), (C7)

oW
_ — g4(H)
Jl¢l_32¢2:J(+)¢(—)+J(—)¢(+)_

Thus we can write
® oW
(+) () —\W— () () —

“dt W
R NS0

jhﬁda W
~Jy 9D S

Now we expandV or T" in powers ofJ(™) or ¢(7). Since
these variables are unphysical ones being set to zero in the
end, we need an expansion coefficient that is linedf in or

¢(7) in practical problems. Then the following equation is
obtained easily:

W[IH),3(7)=0, 33]=W,[J3]. (C8

Here W[ J;] is related to the imaginary time free energy as

h 3
Wyl J3]= i—In Trp,”.
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But together with(C8), the second equation ¢€7) tells us d P (t)=ps(1)=p=consix ¢~ )(t)=0.
that

=) =) Obviously the above relation is transformed to thaf efri-

¢ '—0 asJ '—0. ables as follows;
On the other hand, the identity of the Legendre transforma- J1(1)=J,(t)=J3(7)=const,
tion
ie.,
or )
se - W I (1) =J4(r)=J=const x I )(t)=0.

implies that in the above limif" loses the dependence on Thus we get
(*), Thus when~)— 0, we have a second imaginary time _ _
fdr)ee energy; nay I =00 = hs=)=J3(¢' ' =0,0"= ps=¢)

or
I, ¢ 7)=0,¢5] =—i BM]- (C12
o
OWpl[ J3] _ :
_W,B[‘]S]_ dTJs( D537 e In this way we arrive at
=Tl o], (9 o Y LI IE
) (C13
. . . - 0 (V) lyrm0git)=gy=g 99
Consider next the linear term if ™) or ¢(7). By definition
SW The corresponding obvious equation fatis
=H)
)= #m =0 oW W
0 3)=0 S —i—F, (C14)
éJ (t) J)=03(H)=73,=J o8]
or 1) 3
8 () | 412 s=0 In Sec. Ill, we discuss the on-shell expansiolofwhich is
. . the expansion of ST/5¢ ) (t)]] 410 in powers of ¢ *).
so that the following dual forms are obtained: We will see that the multiple retarded commutator emerges
. and the expansion relates two different density matrices cor-
W[J(Jr)’\](*),\]a]zwﬁ[\]:%]_'_f dtd (1) (1) responding to condensed or uncondensed ground state.
£
+O[(3)2], (C10 APPENDIX D: SOLUTION OF ON-SHELL EXPANSION

Here the solutions of higher orders of the on-shell expan-
sion (3.23, etc. are studied an(B.25 is derived. For this
purpose the graphical notations are introduced.

LA, ¢, =T o o] — ftmdt¢<—><t)a<+><t>

+0[(¢'7)?], (C11
where on the right-hand side of these equatiapls;)(t) or WY (1 2y ) = (D1)
JH)(1) is actually e
¢ ()= =03),3551),
Fg?i)eJ-"i.. (x1,22,. .. awn) = (DZ)

IDW=30( =00 g510).

It can be shown that the expansion coefficients of higher
orders are expressed by the multiple retarded anticommuta-
tors of the operato®. On the other hand, the Tailor expan-
sion in terms ofp(*) brings about the multiple retarded com-
mutator, which has a real physical meaning and will be

reproduced in Sec. Il and Sec. IV A. See also Ra€)].

We have seen that in the limit wheli™) or ¢(7) goes to (n
zero the imaginary time free energy is reproduced. But an- Z;zww i
other important limit exists where the equilibrium free en- '
ergy is recovered. This is the case when

)= )= = t,
$11)= $2()= ga(7)=cons With this notation,(B4), (B9), (B5), (B13), (B14), and
ie. (3.12 are represented as

If the vertex is summed ovar=1,2, then we denote it
as, for example,

(T1,29,...,%p) =
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(B.4)

(B.9), (B.14)

(B.5)

(B.13)

(3.12) A = 0.

Looking at(3.24), we can writeA ¢ (x) for generak as
follows:

1
0= 2 ‘ ad+ 3 D
i=1,2 2<p<k P P

Y. SUZUKI AND R. FUKUDA 53

;(—1)1” ﬂ‘“ ll,////// = —bij,
'o ”////o _ /////o

In the above equation, the summation is taken in the fol-
lowing way. First we dividek points intop groups withn,
(with @=1,2,..., p) points contained in ath group
(n,=1). ThusZ ,_; _n,=Kk. Epk implies the sum over all
possible grouping dk points intop groups and the sum over
all possiblen, satisfying 2 ,-,_,n,=k. Finally we sum
over p of course.

Now apply 8/ 531(x) + 6/ 5J,(x) to (B9). When it oper-
ates on the functional ap, we have to use the chain differ-
entiation rule:

5 _oply) 8 i S2W 5
6Ji(x)  83i(X) S¢;(y) 8Ji(x)8J;(y) d¢;(y)”

Thus we get, after renaming of the space-time points,

Here we insert intdD5) the following relation obtained by rewritin@B5):

o

In this way (D5) is further transformed as

0= x, ‘o /%///: X+X1

(DY)
'/////o (D6)
(D7)



53 ON-SHELL EXPANSION OF THE NONEQUILIBRIW . . . 4649

From (D7) and (B14), the following two equations are obtained:

(D8)

(D9)

(D10)

25p<k Qi P

HereXq, implies the following processk points are divided int@ groups withn, points satisfying> .-, _,n,=k, and

1~k external legs are distributed to these groups. Finally we sum over all possible ways in these processes. It should be
remarked that +k legs are assumed to be distinguishable in these processes. This is different from the surﬁmkation

The proof of(D10) can be done by a mathematical induction. Outline of the proof runs as follows: AgRrfieis correct
for k and apply agairs/ §3,(x) + 6/ 8J,(x) on both sides 0fD10). Then we get

(D11)
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Let us rewrite the first term ofD11) by applying (D8) to the part involving index K+1). After that we can use the
assumption of the induction. As a result the first term is transformed into

(D12

as

(D13
Collecting these observations, we see i2t0) holds fork+ 1.
Now we are in a position to prove the following general formula4at® as shown inD14);
: .1
A¢® = (_I)LH (D14)
Consider first the casle=2. The relation(3.23 is written graphically as follows:
Ag
® Aq&(?) - _l B
=73 » : (D15)
Ag)

Therefore, by usingD9) and(B14), we first get thek=2 version of(D14) plus a term proportional td ¢*), which satisfies

a homogeneous equati¢8.12. However, we are finally interested in the s+ AP+ ...+ A¢pM+ ... and for the
sum it can be absorbed by the redefinition of the scale\ ¢f*). Therefore we neglect such a term in the solution of
AWM,
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The general proof is again due to the mathematical induction; as$Di® is correct fork. Then using(D10), the
right-hand side ofD14) for k+ 1 is transformed as follows:

. . _1)RH
(right-hand side);4; = ((k-i—ﬁ)l)'

_ (_1)k+l 1
T (k1) P!

* 2<p<htl Qupt

1Ykt
= ( 1) 1(_1)"1+ﬂ2+'~+"pn1

(k+ 1) g, P!

ny! - - -

_ (=D D+
(k+ 1) mlngl-m,l pl

 25p<k+l Prya

2<p<htl Py P

= —e A¢,(k+1).

Here in the last equality we have usdo).

+1)0

Finally the following formula is proved, which expresaeé'}llz,_in(x,yl,yz, ...,¥n) in the operator form. It is given by

the multiple retarded Green'’s function,
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~ (4 B(tartyrr by, oty
<h) P{iimyZz;wyn} ) g (D16)
(e [[d(2), ), (w2, - ()],

where we have defined
SO0 =((x)= i,NEXg

31=‘]2_Oq E
Oty ty by, - ty) W]

- E1
=0(t—ty )(t, —t,)---0(t, —t,), (D17 6J2(X) (ED

3,=3,=0,3=3=0
andzp{yl.yz,....yn} signifies the sum over all possible permu- Let us introduce £) variables as i(C5) and the same for
tations of{y;,y», ... ya}. We will write in the following # and ¢. Since the dependence d™) is essential, we
assumel(™) =0 but the recovery of nonvanishing ™) is
easy. Then, writind: o, = (%2k?/2m) — . and understanding
> Oty ty by, - ty) that all theg(")’s are set to zero in the edormal casg the
Plysya, - ot formula is expressed 444]

X[+ [[(x), dyD) ], d(y2)], - b(Yn)]
ER(¢(X),¢(y1),¢(y2), e !d)(yn)) (D18) expr;W[J]zl_R[ fﬁ(wk)eﬁhwkeXFSO

The proof of(D16) is rather trivial.[Forn=1 it has already _
i i i - i
Egﬁn derived iB10).] As for generah, consider the equa Xex;{ _ _f dtV(l//(t),(//T('[))>

y=yt=0
A oA oA E2
(WP (3))3,=3,-3= (U () U). (D19 2

HereV is given by the interaction part of the Hamiltonian

i, (X,¥1,Y2, . ...Yn) is obtained by differentiating 4.1):

(D19) throuth(yl) J(yz) ..... J(y,) and takingJ=0. As-
sumet;=t,=---=t, (every t; is smaller thanx° t of
cours¢ and 0perator5/5J(y1) It operates on botIhJJ and . 1 ~ .
(U,)T, producing the commutatdré(x),#(y,)]. Because V@), T (1)= Ef d3x 3yt (t,x) (L)

of the assumed time ordering, further application of

6l 6J(y,) brings about the commutator of the above commu- X Ug(X—Y) h(t,y) h(t,X). (E3
tator and ¢(y,), etc. For general time ordering, we have
only to supply the fact0|9(tx,ty By o ,tyn) and sum over

. ) If it licitl
all possible combinations of the ordering. This proy@46). we write explicitly

APPENDIX E: FEYNMAN RULE OF NON-HERMITE i i [ )
FIELD—PERTURBATIVE RULE FOR W gf dtV(!ﬂ(t),wT(t)):gJ dtV(iy (1), ¥1(1))
IN NORMAL CASE c b

The nonequilibrium Feynman rule ®¥[J] in the normal _ I—fwdtV(w (1), b))
case has been derived [it4] using the path-integral tech- f 2T
nigue. Since for the normal case the Feynman rule is com-

pactly given, we present it here. It is used in Sec. IVA 2. In + EJhﬁdTV(lﬂ () wT(T))
Ref. [14] the initial density matrix is assumed to be of the h SIS
equilibrium canonical form. The rule is slightly different for

the Hermite and the non-Hermite field and we have to use

the results of the latter for théHe Hamiltonian(4.1). The

source term is inserted as (#4.3) and using4.5), the expec- S is the differential operator, which is written by the vari-
tation value is given, for example, by ablesyM®) and ;= as follows:

(E4)
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) )
sozf fdt ds ofx d3y< w(“(x) (x))AR(x y)&p(‘”(x)
ffdt ds fx d? Ap(X— ( ° L )
S X yaw )( ) A(X y) ¢(+ T(y) (Y)
)
+f fdt ds ofx d3y< S )+ J )(x))A(x y) ¢(+ Sy ) )(y))
5 — )
3 3 (+) . -
+f f ds dr d°x d y—alﬂ(T,X)G (T,X,y)( ¢(+)T(y) J (Y))
+f fdt dr d3x d® L J( I(x) |G(x:7,y) d
XY S0 Y suT(ry)
5 — 1)
+f de dr' d3x dayﬁlﬂ(T,X) D(7,x;7 ,y)m (E5)

Here the notatiorx=(t,x),y=(s,y) is used. There are six — k , ,

kinds of propagators and it should be noticed th#t) is G(x;Ty)= j Wfﬁ(wk)ewkrelk-(x—y)—lwk“*t'),
connected only tap(*) and not tog(™) or ¢3. The propa-

gators are given by

d3k ) D(7,x. 7, :J f elk- (x=y) g=wy(7— 7' = Bh/2)
AR(x—y)=9(t‘S)f(zw)ﬁe'k'(x‘w"“’k“‘s), (XY= | @y tetew)

X{H(T_ T/)ewkﬁﬁ/2+ 0( T’ _ T)efwkﬂﬁ/Z}'

AA(X—Y)=—¢9(S—'f)J (zw)ae'k'(x’y)f"”k(“s), The expectation value of any operator of normal ordered
form O(t/fr ) can be calculated by an_pproprlate differen-
tiation of (E2) with respect toJ(™) and J(™). Or it can be
alternatively ~ obtained by using the formula
(O)=Trp,UTOU/Trp,. This is calculable by inserting the
factor O(y'(x),#(x)) at the end of E2) and discarding the

ik (x—y)—iwy(t—s)

— d3k 1
A(X—y):f(zT)g(fﬁ(a)k)-i-E e

rxty)= f (ZT)g[f;;(wkHl] diagrams that are not connected with the inserted operator
O. Taking only the connected graphs is equivalent to the
X @~ okTelk ey Hlat=t) division by Tip, .
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