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For a system of point charges that interact through the three-dimensional electrostatic Coulomb potential
~without any regularization! and obey the laws of nonrelativistic quantum mechanics with Bose or Fermi
statistics, the static correlations between particles are shown to have a 1/r 6 tail, at least at distances that are
large with respect to the length of exponential screening. After a review of previous work, a term-by-term
diagrammatic proof is given by using the formalism of paper I, where the quantum particle-particle correlations
are expressed in terms of classical-loop distribution functions. The integrable graphs of the resummed Mayer-
like diagrammatics for the loop distributions contain bonds between loops that decay either exponentially or
algebraically, with a 1/r 3 leading term analogous to a dipole-dipole interaction. This reflects the fact that the
charge-charge or multipole-charge interactions between clusters of particles surrounded by their polarization
clouds are exponentially screened, as at a classical level, whereas the multipole-multipole interactions are only
partially screened. The correlation between loops decays as 1/r 3, but the spherical symmetry of the quantum
fluctuations makes this power law fall to 1/r 5, and the harmonicity of the Coulomb potential eventually
enforces the correlations between quantum particles to decay only as 1/r 6. The coefficient of the 1/r 6 tail at low
density is planned to be given in a subsequent paper. Moreover, because of Coulomb screening, the induced
charge density, which describes the response to anexternalinfinitesimal charge, is shown to fall off as 1/r 8,
while the charge-charge correlation in the medium decreases as 1/r 10. However, in spite of the departure of the
quantum microscopiccorrelations from the classical exponential clustering, thetotal induced charge is still
essentially determined by the exponentially screened charge-charge interactions, as inclassical macroscopic
electrostatics.@S1063-651X~96!05205-1#

PACS number~s!: 05.30.2d, 71.45.Gm

I. INTRODUCTION

The present paper is the second part of a series about the
equilibrium static correlations in matter under usual condi-
tions, i.e., when electrons and nuclei can be seen as nonrel-
ativistic quantum point charges. The first point of the paper
is to show that the particle-particle correlation in a multicom-
ponent plasma does have a 1/r 6 tail, when the quantum sta-
tistics is taken into account and the interaction is the pure
Coulomb potential~without any regularization!. These two
aspects of real matter were approximated in previous works
about the decay of correlations in multicomponent plasmas
@1–5#. Another aim of the paper is to display clearly how the
harmonicity of the Coulomb potential and the spherical sym-
metry of the quantum-fluctuation distribution for one particle
enforce this power law. As explained in Sec. VI of paper I,
the standard perturbation many-body theory is not very help-
ful in this respect and we use the loop formalism devised in
paper I. Moreover, this formalism also allows one to obtain
the following results: the charge-charge correlation decays
only as 1/r 10, while the induced charge density and the cor-
responding total potential, which measure the linear response
to a localized infinitesimal external charge, fall off as 1/r 8

and 1/r 6, respectively. The reason is that screening mecha-
nisms that are similar to the usual effects in classical macro-

scopic electrostatics do survive in the plasma at a quantum
microscopic level. We notice that, for each announced alge-
braic tail, we are not able to control the convergence of the
whole diagrammatic series, each diagram of which decays
algebraically with the exponent mentioned above. However,
the calculation of the coefficient of the 1/r 6 tail at low den-
sity @6# strongly suggests that no more cancellation occurs.
In the present introduction, the connection between screen-
ing and the decay of the correlations is reviewed~Sec. I A!
and the insight given by the loop formalism is pointed out
~Sec. I B!.

A. Historical review about screening and correlations

As recalled in paper I, the harmonicity of the Coulomb
potential is responsible for a very special screening that
arises in both dielectric and conductive phases of Coulomb
plasmas at a classical as well as at a quantum level. The
Coulomb screening enforces the local neutrality relation be-
tween the densities of charges and, at a more microscopic
level, ensures that the net charge of a point charge in the
medium together with its polarization cloud is zero. Subse-
quently, this net charge creates an effective potential that
decays at large distances faster than the 1/r Coulomb poten-
tial. This latter property is linked to the fact that the total
induced charge in the presence of an external static charge is
finite, as stressed in Sec. IV D of paper I. The charge neu-
trality of a particle and its polarization cloud also exists if the
potential decays more slowly@7# or faster@8# than the Cou-
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lomb interaction, but the harmonicity of the Coulomb poten-
tial generates further screening effects.

Some properties of the particle-particle correlation can be
investigated by considering the perturbation in the charge
distributions that is induced by anexternal infinitesimal
charge distribution~this fixed charge is assumed to be clas-
sical!. The latter perturbations are related exactly to some
charge distribution functions through the linear response
theory, but the relation is different in the classical and quan-
tum regimes. For instance, in a conductive phase, the total
induced charge around an infinitesimal charge distribution
dq~r ! is exactly opposite the total charge*dr dq~r ! @see Eq.
~1.3! of paper I# and, as recalled in Sec. IV D of paper I, this
property implies a sum rule for the second moment of the
charge-charge correlation function in the classical case and
for the second moment of the zero-frequency component of
the time-ordered charge-charge correlation in the quantum
case. More generally, information about the decay of the
truncated distribution functions can be inferred from the
variation in then-body distribution functions between par-
ticles of the medium when an infinitesimal external charge is
immersed in the plasma. At a classical level, if the variation
decreases exponentially fast far away from the external
charge, then the classical charge distributions for the par-
ticles of the medium satisfy the so-called multipole sum
rules. The multipole sum rules describe a ‘‘perfect’’ screen-
ing in which the polarization clouds compensate not only the
total charge but even all the multipoles of any given configu-
ration of charges. In quantum statistics@9#, this perfect
screening would be realized if the distribution functions for
the particles of the medium decreased faster than any inverse
power law, as is the case in classical statistics@7,10# when
the correlations in the plasma have a fast clustering. We
notice that, for any other integrable power-law potential@11#,
the falloff of the classical correlations is bounded below by
an inverse power and such a perfect screening cannot exist.

The first descriptions of screening in plasmas dealt with
the simplest quantities: the charge density that is induced in
the plasma when an infinitesimal distribution of chargedq~r !
is immersed into it and the total potentialVtot in the bulk in
the presence of the external charge. These two quantities are
related by the Poisson equation~6.7! ~see paper I!. Self-
consistent models were solved for classical electrolytes@12–
14# ~Debye-Hückel theory! and for the fermionic one-
component plasma~OCP! in the semiclassical regime at high
density @15,16# ~Thomas-Fermi theory! as well as in the
quantum case@17,18#, with the many versions of the so-
called random-phase approximation~RPA!. ~For a brief his-
torical review about the RPA theory, see Ref.@17#.! In the
classical and semiclassical regimes, the self-consistent mod-
els are mean-field approachs in which the correlations be-
tween particles are approximated in an indirect way: the clas-
sical particles or the quantum quasiparticles do not interact
together, but they move in a mean-field potential. The ap-
proximation is reasonable for classical plasmas in a weak
coupling regime~low density or high temperature! and for
fermionic quantum plasmas in a semiclassical regime when
the density is sufficiently high so that the interaction energy
becomes negligible with respect to the fermionic quantum
kinetic energy. Indeed, in this regime and under the semi-
classical assumption that the total potential is appreciable

only in a finite region and varies slowly over scales larger
than the mean interparticle distance, the system can be de-
scribed by quasiparticles with a chemical potential
ma
01eaVMF

tot ~r !. In the linearized versions of the mean-field
models, at large distances, the approximated induced charge
density(aeara,MF

ind is proportional to the potentialVMF
tot ,

(
a

earMF,a
ind ~r !52

kMF
2

4p
VMF
tot ~r !, ~1.1!

where kMF is an inverse length that depends on the self-
consistent mean-field model. According to the Poisson equa-
tion ~6.7! of paper I, the corresponding mean-field potential
VMF
tot in the presence of a point chargedq located atr50 is a

Yukawa-like potential

VMF
tot ~r !5dq

e2kMFr

r
~1.2!

and the induced charge density has the same exponential
falloff. In the quantum case, a more detailed description of
the correlations must be used. In the various versions of the
self-consistent RPA model,(aearRPA,a

ind ~r ! andVRPA
tot ~r ! de-

cay faster than any inverse power law and the leading terms
in their asymptotic behaviors are similar to the mean-field
Yukawa potential~1.2!. Since(aeara

ind~r ! andVtot~r ! are re-
lated indirectly to the particle-particle correlation by the lin-
ear response theory, this result proves to be linked to a fast
decay of the corresponding approximated correlation be-
tween particles@4,5#. We notice that, in this microscopic
model, an oscillatory algebraic term, known as the Friedel
oscillations@19#, occurs atzero temperature because of the
discontinuity of the Fermi distribution for independent enti-
ties in the ground state. This phenomenon has been observed
as a broadening of nucleon magnetic resonance lines in di-
lute alloys~see Ref.@18# and references cited therein!. How-
ever, atfinite temperature, the Fermi surface is smeared over
a thicknesskBT in energy~wherekB is the Boltzmann con-
stant! and the oscillations are multiplied by an exponentially
decaying factor.

Though the picture of Debye screening for the particle-
particle correlation is usually taken for granted, very few
rigorous results are known about it. For a classical multi-
component plasma~with short-ranged regularization of the
Coulomb potential in order to avoid collapse!, in the limit of
weak coupling~low-density or high-temperature regime!, the
existence of exponential clustering of the correlation func-
tions was proved first for a lattice Coulomb gas~with the
discretized version of 1/r ! by Brydges@20# and for the con-
tinuous system by Brydges and Federbush@21#. Next the
proof was extended to the OCP by Imbrie@22#. However, in
the quantum case, strong doubts about an exponential falloff
were raised by Brydges and Federbush@1# and then by
Brydges and Seiler@2#. In the latter reference, the authors
cast the nonrelativistic quantum Coulomb system into the
form of some kind of lattice gauge model and found that an
infinite correlation length appears in some Green’s functions
associated with external charges depending on an imaginary
time. They conjectured that the electric field of a static ex-
ternal source should not be screened exponentially; rather it
should have a long-ranged tail decaying as an inverse power
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of the distance. Indeed, in nearly classical regimes, the ex-
ponential decay would be very close to the truth for all but
extremely large distances. In the language of field theory, the
interpretation is that vacuum polarization produces dipoles
@23# and dipoles do not screen@24#. In other words, though a
charge of the medium and its cloud carry no mean charge
and no mean dipole as a whole, nevertheless, it has a nonva-
nishing instantaneous dipole because of fluctuations and in
the quantum case the interactions between dipolar fluctua-
tions are not screened as efficiently as in the classical regime.
Henceforth, the correlation between two particles of the sys-
tem has an algebraic tail that may fall offa priori only as a
1/r 3 dipole-dipole interaction energy. In fact, smaller upper
bounds on the decay of the correlations were obtained by
Alastuey and Martin@3,4# in a regime of high temperature
and low density. In this regime, the correlations are assumed
to decrease monotonically with an integer inverse power-law
expansion starting with 1/r 3 and the hierarchy of equilibrium
equations for imaginary-time observables~or ‘‘evolution
equations’’! is supposed to be valid in the thermodynamic
limit. Under those assumptions, the particle-particle correla-
tion decreases at least as 1/r 5 in a multicomponent plasma
~and faster than 1/r 6 in the very special case of the OCP, in
which charge and particle observables are proportional to
each other!. In contrast, the corresponding investigation of
the equilibrium equations in the classical case enables exclu-
sion of any monotonic inverse power law@11#.

The next steps in questioning the nature of the asymptotic
behavior of the quantum correlations were done by perturba-
tive approachs. First, in the approximation of Maxwell-
Boltzmann statistics for a modified Coulomb potential, alge-
braic lower bounds were obtained from an\ expansion
developed by Alastuey and Martin@4# in a path integral for-
malism. The approximation of distinguishable particles~clas-
sical Maxwell-Boltzmann statistics! is valid only in a regime
of high temperature and low density and requires a regular-
ization of the potential at short distances in order to prevent
the macroscopic collapse of the plasma~except in the case of
the OCP, where there is only one species of point charges!.
In this semiclassical regime, the exchange effects appear as
corrections that vanish exponentially when\ goes to zero
@25#. In the\ expansion of the correlations about their clas-
sical values, the correction of order\2 has a fast decay, but
each term of order\2n, with n>2, decays algebraically as
1/r 6. In particular, the particle-particle correlation should not
decay faster than 1/r 6, while the several point correlations
should have even the slower decay 1/r 3, when groups of
particles are separated. These bounds are compatible with the
upper ones that are deduced from the above nonperturbative
approach of the equations of motion for a system with quan-
tum statistics@4#. Moreover, they do not violate the basic
sum rules recalled in Eqs.~1.1!–~1.3! of paper I @26#. We
notice that a formally similar analysis can be carried out for
the classical time-displaced particle-particle correlation at
equilibrium; a short-time expansion about the static correla-
tions together with an investigation of the Bogoliubov-Born-
Green-Kirkwood-Yvon hierarchy also leads to an algebraic
decay of the classical time-displaced correlations@3#. The
reason is that collisions tend to destroy the ‘‘perfect’’ orga-
nization of the clouds, while inertia prevents classical par-
ticles to follow instantaneously the moving charge. In a

quantum regime, the above lower algebraic bounds show that
the intrinsic quantum fluctuations destroy even the static per-
fect organization of the polarization cloud around a charge of
the medium. The quantum nature of the subsequent ‘‘dipole-
dipole-like’’ interaction between two point charges is quite
different from the van der Waals interaction that arises be-
tween objects with an internal structure, such as atoms or
molecules, and that comes from the polarizability of quan-
tum bound states. Indeed, the algebraic falloff appears in the
OCP, where no bound states can be formed, while the large-
distance correlation between two quantum point charges em-
bedded in a classical plasma proves to be exactly a 1/r 6

decay@4#.
At this point a natural question to ask was the following:

how can one go beyond the RPA and find algebraic tails in
the standard many-body perturbation theory at finite tem-
perature? In this formalism, the Fermi statistics is taken into
account, so the results are valid even at low temperatures and
the potential dealt with as a perturbation is the true Coulomb
potential. The particle-particle correlation is derived from the
sum of all chains built with ‘‘proper polarization’’ graphs
linked by Coulomb interaction lines; the Fourier transform of
the total potentialVtot in the presence of an infinitesimal
external charge distribution is proportional to the zero-
frequency component of the ‘‘effective’’ potential of the for-
malism, which is defined as the sum of all chains of bare
Coulomb interaction lines linked by proper polarization
graphs. As detailed in Sec. V, the RPA theory consists in
approximating the proper polarization by its value for non-
interacting particles, namely, a loop of fermionic free propa-
gators. The next natural correction to the RPA value for the
proper polarization is the graph where two loops of fermi-
onic free propagators are linked by two RPA effective po-
tential lines. It happens that two exact sum rules@27,17# can
be deduced for the OCP because in this model the charge
density is proportional to the particle density. These rules
allow one to show@5# that, when the above correction to the
RPA proper polarization is taken into account,Vtot decays as
1/r 6, the induced charge density as 1/r 8, and the density-
density correlation as 1/r 10, whereas the corresponding RPA
quantities decrease faster than any inverse power of the dis-
tance.~All the ladder graphs with more than two interaction
lines in the proper polarization lead to faster algebraic de-
cays.! We notice that, even at zero temperature, diagrams
analogous to those exhibited in Ref.@5# are expected to gen-
erate a 1/r 6 tail in some density-density response function of
the homogenous electron gas@28,29#. Moreover, they seem
to play a crucial role in the existence of fine-scale peaks in
the frequency dependence of the dynamic structure factor for
large fixed momentum transfers at metallic densities@30#. As
a conclusion, the investigation of the standard many-body
theory shows that the exchange effects, which are rather im-
portant in short-ranged phenomena, prove not to change
drastically the results obtained previously@4# for the OCP in
the semiclassical Maxwell-Boltzmann regime at the order\4.

However, these results rely on the assumption that the
tails induced by some particular diagrams are not canceled
by those coming from other proper polarization graphs in the
perturbation series. The validity of this assumption is not
obvious because the study of the large-distance behavior of
the particle-particle correlation is cumbersome in the stan-
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dard perturbation framework. In the latter, the basic objects
are the frequency components of the proper polarization and
the small-k behavior of the diagrams can be investigated
only for isolated and very simple diagrams. Moreover, in the
absence of general sum rules, as it is the case for multicom-
ponent plasmas, no conclusion about the particle-particle
correlation can be drawn from the investigation of the large-
distance behavior of the proper polarization graphs. At this
point the formalism of paper I proves to be more efficient.

B. New results

According to paper I, the virial expansions in the loop
formalism give the following picture, after resummation of
the collective effects due to the interactions between the total
charges of the loops. Before averaging over the shapes of the
loops, the charge-charge and charge-multipole interactions
between loops are exponentially screened, while the
multipole-multipole interactions are only partially screened
because of the difference between the bare loop potential and
the classical electrostatic potential between charged loops.
Subsequently, an algebraically decaying resummed bondFR
appears. According to paper I, the contribution to the
particle-particle correlation arising directly from the ex-
change between particles decays faster than any inverse
power law~except in a phase similar to a Bose condensation,
where it tends to a finite constant value plus fast-decaying
corrections!.

In the present paper, we show that the part of the particle-
particle correlation given by configurations in which the par-
ticles atra andrb belong to different exchange loops has an
algebraic falloff induced by the algebraicFR bond, the as-
ymptotic behavior of which can be written as a series of 1/r g

algebraic tails, withg>3. Each tail of the Mayer bondFR
involves the shapes ofboth its arguments because the re-
sidual interactions after resummation of the interactions be-
tween the total charges of the loops are essentially multipole-
multipole-like. Subsequently, since the interaction bonds
between the loops as well as the measure associated with the
shapes of the loops are invariant under global rotation of
their arguments, a mere dimensional analysis shows that the
part of the particle-particle correlation where the two par-
ticles are not exchanged within the same cycle decays at least
as 1/r 5, though the loop correlation decays only as 1/r 3. This
1/r 5 behavior comes from the 1/r 3 and 1/r 4 terms in the
algebraic resummed bond and may appear for the diagrams
that can be written as convolution chains involving at least
one algebraic bond. The harmonicity of the Coulomb poten-
tial enforces in fact a slower 1/r 8 decay for the latter convo-
lution chains. Eventually, the leading asymptotic behavior of
the particle-particle correlation originates from a product of
two functions, both of which involve at least one dipole-
dipole-like interaction, and decays as 1/r 6. We notice that the
mechanism is not as simple as in the case of a classical
system of point particles with fundamental 1/r 3 dipole-dipole
interactions, in which the asymptotic behavior of the
particle-particle correlation is determined by the fluctuations
of interactions and decays as~1/r 3!2 because of rotational
invariance. Besides, in the multicomponent plasma, the sub-
leading tails of the quantum particle-particle correlation are
1/r 8, 1/r 9, and 1/r g, with g>10.

We stress that the reason why the 1/r 5 falloff allowed by
the dimensional analysis proves not to appear lies in the
harmonicity of the Coulomb potential. Indeed, the rotational
invariance of interactions and quantum fluctuations of one
particle is such that some terms with at least two derivatives
of the Coulomb potential, which area priori long ranged,
prove to be short ranged because they involveD~1/r !5
24pd~r ! once the integration over the shapes of the loops
has been performed. In the case of a diagram made of one
algebraicFR bond, the shape of each root point is integrated
over with a weight equal to the fast-decaying loop density;
then, the 1/r 3 and 1/r 4 tails are canceled by rotational invari-
ance, while the square of the Laplacian of 1/r is generated
from the 1/r 5 tail and the corresponding contribution decays
faster than any inverse power law, as in the following ex-
ample. IfG~uXu! is invariant under rotations ofX and is a
fast-decaying function of the extent of the loop,

E D~X!G~ uXu!@X#m1
@X#m2

]m1m2n1n2S 1r D
5]n1n2

DS 1r D 1

3 E D~X!G~ uXu!X2 ~1.3!

is short ranged.~The space indexm of the vector components
runs from 1 to 3 and]m denotes a partial derivative with
respect to the component@r #m of r .! Eventually, the diagram
considered decays as some kind of squared 1/r 3 tail. The
mechanism for a convolution involving algebraic bonds and
algebraically decaying subdiagrams is a little more compli-
cated than for a diagram with a single bond because the
property exemplified in~1.3! involves only the leading tail of
the convolution and the latter still has an algebraic decay
determined by the terms that would have been only sublead-
ing without this special property. The basic mechanism is
exemplified in the following equation, where a function,
which decays as 1/r 4 according to rotational invariance argu-
ments and dimensional analysis, proves to have a faster de-
cay because of the appearance of the Laplacian of 1/r . If
G~r ,X! is invariant under global rotations of~r ,X! and falls
off at least as 1/r 6 when r goes to infinity,

E dr 8E D~X!G~r 8,X!@X#m]mnS 1

ur 82r u D
;
r→`

]nDS 1r D 1

3 E dr 8E D~X!G~r 8,X!~r 8•X!1OS 1r 6D .
~1.4!

@O(1/r 6) denotes a term that decays at least as 1/r 6.# As
detailed in Sec. I C, the possible 1/r 5 asymptotic behavior of
the particle-particle correlation allowed by dimensional
analysis arises in convolution chains that involve 1/r 3 of 1/r 4

tails as first and last algebraic terms and 1/r 3 intermediate
tails ~together with functions decaying at least as 1/r 6 at both
ends and in the middle of the convolution.! In Fourier space,
the singularities coming from the 1/r 3 and 1/r 4 tails of I
resummed algebraic bonds in these convolutions are
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)
i51

I

@km i
kn i
vC~k!#, km1,1

km1,2
kn1

vC~k!)
i52

I

@km i
kn i
vC~k!#.

~1.5!

Since the derivatives of the Coulomb potential are contracted
with one or two space components ofboth loop shapesX i
andX j in the 1/r 3 and 1/r 4 tails of the algebraic resummed
bondFR~P i ,P j !, rotational invariance arguments show that,
after integration over the shapes of the loops, the singulari-
ties ~1.5! are contracted with the product of the tensor
kn I

P i51
I21dn i ,m i11

and the tensorskm1
and dm1,1,m1,2

, respec-
tively, with a coefficient independent fromk. Subsequently,
the singularities~1.5! lead to analytic contributions because
vC~k!}1/k2. @The corresponding tails in position space in-
volve derivatives of the LaplacianD~1/r !, which is short
ranged.# Thus the algebraic decay of one of the above con-
volution chains is due to subleading tails and the convolution
decreases faster than the inverse power that is associated by
dimensional analysis with the derivatives of 1/r involved in
its dominant large-distance behavior.

We point out that, in various formalisms, it can be under-
stood in terms of the chain potentials, which describe the
screening of the monopole-monopole interaction~see paper
I!, how the 1/r 3 dipole-dipole-like interaction between
charges surrounded by their polarization clouds eventually
lead not to a 1/r 5 tail of the particle-particle correlation, as
the sole rotational invariance would imply, but to a 1/r 6 tail
enforced by the harmonicity of the Coulomb potential. In
particular, in the approximation where only the graph with
one chain-potential bond is retained, the corresponding ap-
proximated induced charge density and particle-particle cor-
relation both decrease faster than any inverse power law of
the distance because the rotational invariance makes the
short-ranged Laplacian of the Coulomb potential appear.
More generally, in the exact correlation function, the rota-
tional invariance of the quantum fluctuations of the polariza-
tion cloud around a quantum charge and the harmonicity of
the Coulomb potential cancel the long-ranged part of the
chain interaction and only products of two convolutions,
each of which involves the algebraic part of the chain poten-
tial, remain in the dominant asymptotic behavior of the
particle-particle correlation. This is the general mechanism
that leads to the 1/r 6 power law of the particle-particle-
correlation decay.

Moreover, the loop formalism allows one to discuss the
large-distance behavior of the charge-charge correlation and
induced charge density. Since the nonexchange part of the
particle-particle correlationraa8

(2)TQ(r ) decays as 1/r 6, a mere
dimensional analysis of the linear response relation in the
loop formalism@see~4.27! of paper I# shows that the induced
charge density(aeara

ind~r ! in the presence of a localized in-
finitesimal external charge decays at least as 1/r 4 and, ac-
cording to the Poisson equation@see~6.7! of paper I#, the
corresponding total potential falls off at least as 1/r 2. How-
ever, in a multicomponent plasma, the charge density
(aeara

ind~r ! is expected to decay faster than the correlation
between quantum particles@4#. Though there is no exact sum
rule for the nonzero moments of(aeara

ind~r ! in multicompo-
nent plasmas, the present loop formalism allows one to show
that(aeara

ind~r ! rather decays as 1/r 8 ~and the corresponding

total potential as 1/r 6!, while the quantum charge-charge
structure factorCQ~r ! decays as 1/r 10. On one hand, the dif-
ference between the latter two exponents is mainly a conse-
quence of the response relation~4.32! of paper I. Roughly
speaking, the change from auku7 singularity in the Fourier
transform ofCQ~k! to a uku5 singularity in(aeara

ind~k! origi-
nates from the fact that(aeara

ind~k! involves a quantity very
similar toCQ~k! divided byk2. On the other hand, the fall
from a 1/r 6 decay for the particle-particle correlation
raa8
(2)TQ(r ) to a 1/r 10 large-distance behavior for the charge-

charge correlation(aea(a8ea8raa8
(2)TQ(r ) is determined by

two mechanisms. The first one is very similar to the mecha-
nism that ensures that, in the classical regime, the exact
charge density of the system made of a particle and its po-
larization cloud, as well as its Debye expression, both have
Fourier transforms that behave asuku2 when uku goes to zero.
In other words, in both cases, the total induced charge
around an infinitesimal external charge distribution is exactly
opposite it.@The Debye model amounts to approximating the
classical Ursell functionhaaab

cl (k) by 2beaa
eab

fDH(k).#
This macroscopic classical Debye screening still operates in
the quantum system, where it is described by the resummed
charge-charge bondFcc. The second mechanism is that the
large-distance ‘‘diffraction-like’’ quantum effects described
by the resummed multipole-charge bondsFmc andFcm also
partially screen the quantum algebraic tail. Moreover, the
total induced charge is completely determined by the dia-
gram with only one charge-charge resummed bondFcc: the
screening of macroscopic electrostatics is not changed by the
departure of the quantum microscopic correlations from the
classical exponential clustering.

C. Contents

The discussion of the exponent of the algebraic decay of
the part of the quantum particle-particle correlation coming
from the loop correlation is organized as follows. The alge-
braic tail of theFR bond is equal to exp(W)21, whereW is
a series of algebraic termsWg ~g>3, whereg is an integer!,
each of which decays as 1/r g. In Sec. II A we stress the
particularity of the discussion that comes from the noninte-
grability of the algebraic resummed bondFR and the basic
peculiar mechanism due to the harmonicity of the Coulomb
potential is exemplified on the simplest diagram. In Sec. II B
the diagrammatics are reorganized in order to display a con-
tribution H and convolution chainsC made of bondsW
joined directly together or linked by graphsH. In Sec. II C
we give the principles of the technical discussion in Fourier
space that allow one to determine the exponent of an alge-
braic decay in position space.

The graphH decays as 1/r ab
6 ~Sec. III A! and a possible

slower decay of the particle-particle correlation can arise
only from the convolutions involvingH and bondsW. How-
ever, the latter convolution chainsC prove to decrease faster
than 1/r 6. Indeed, we show in Sec. III B that, after integra-
tion over the shapes of the loops, rotational invariance argu-
ments determine the order of the first two terms in the
small-k expansion of a chainC and, because of the harmo-
nicity of the Coulomb potential, the first term proves to be
analytic. This mere dimensional analysis shows that 1/r 7 is
an upper bound for the algebraic large-distance behavior of a
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convolutionC. The translation of the discussion in position
space~see Appendix A! is that, after averaging over the
shapes of the loops, rotational invariance arguments and di-
mensional analysis enforce a falloff faster than 1/r 6 for all
chainsC, except those with a bondW3 or W4 at both ends
and onlyW3 intermediate bonds, which may decreasea pri-
ori only as 1/r 5. However, by virtue of the specific forms of
W3 andW4 in terms of the derivatives of the Coulomb po-
tential, they decay at least as 1/r 7 becauseD~1/r !524pd~r !.
The general diagrammatic structure of the 1/r 6 tail of the
particle-particle correlation is given in Sec. III C. In Sec.
III D ~and Appendix B!, we give the general tensorial struc-
ture of the algebraic tails of a diagram inH before integra-
tion over the shapes of its end points. The allowed exponents
of the various tails ofH and of the convolutionsC are dis-
cussed in Secs. III E and III F~and Appendix C!. H gener-
ates 1/r 6,1/r 8,1/r 9,... tails, while the convolutionsC only
contribute to 1/r 8,1/r 10,1/r 11,... tails. Eventually, the alge-
braic tails of the particle-particle correlation are 1/r 6, 1/r 8,
1/r g with g any ~even or odd! integer greater than or equal to
9 ~and there are no logarithmic corrections!.

In Sec. IV A we show that, at a classical level, the fact
that the exact total induced charge around an infinitesimal
external chargedq~r ! is equal to2dq~r ! can be linked to the
fact that its Debye approximation also satisfies this property.
The link lies in a suitable reorganization of the classical re-
summed diagrammatics, which exhibits the ‘‘dressing’’ of
the particle-particle correlation by the Debye polarization
cloud around a charge of the medium.~This structure im-
poses a constraint on the construction of coherent approxi-
mations in the diagrammatic framework.! In Sec. IV B we
point out the basic mechanisms that operate in the loop sys-
tem. In Sec. IV C we introduce integral relations for the loop
Ursell functions, which exhibit the dressing by some kind of
‘‘Debye’’ loop polarization cloud. These relations are used
to reorganize the diagrams of the loop Ursell function~Sec.
IV D ! and a discussion similar to that performed for the
particle-particle correlation shows that the charge-charge
correlation decays at least as 1/r 10 ~see also Appendixes C
and D!. A slightly different reorganization~Sec. IV E! allows
one to show that the induced charge density falls off as 1/r 8.
In Sec. IV F we give a diagrammatic expression for the sec-
ond moment of the charge-charge correlation~which in-
volves the diagram with only oneFcc bond together with
other diagrams!. However, theFcc bond proves to contribute
by itself to the total induced charge and we mention the
corresponding constraints that are required to build approxi-
mations ~in the loop formalism! that satisfy the screening
sum rule~1.3! of paper I.

As a conclusion~Sec. V!, we compare the screening
mechanisms in various models. In Sec. V A, we investigate
the fast decay of the quantum particle-particle correlation
and induced charge density in the chain approximations and
particularly in the version of the RPA model written in the
standard perturbation many-body theory. The various screen-
ing lengths defined from the large-distance behavior of the
induced charge density are compared in Sec. V B. In order to
see how the algebraic tail of the chain potential eventually
pollutes the correlations in various formalisms, one has to
take into account diagrams with at least two chain potentials
~Sec. V C!. Eventually, we recall a very simple model that

exhibits the basic mechanisms involved in papers I and II.

II. ALGEBRAIC DECAY IN THE LOOP FORMALISM

A. Basic mechanisms

As shown in paper I, the resummed Mayer diagrams for
the loop-density expansion of the loop correlation involve
both exponentially decaying bondsFcc, Fcm, andFmc and an
algebraic bondFR . The asymptotic behavior of theFR bond
is given by the expansion of exp(W)21 and its leading term
behaves as 1/r 3, which is the borderline of integrability.
Henceforth, the asymptotic behavior of the loop correlation
r(2)T~L,L8! is not given by the result for a classical fluid of
noncharged particles interacting by a potentialF with an
integrable power-law decay@31#. In the case of such a one-
component fluid, the correlation behaves as

r~2!T cl~r ab! ;
r ab→`

E dr1E dr2S
cl~ra ,r1! f as~r1 ,r2!

3Scl~r2 ,rb!

;
r ab→`

2bF~r ab!Fr2xT

b G2, ~2.1!

where f as52bF is the asymptotic behavior of the Mayer
bond f5exp~2bF!21. The classical structure factor
Scl(r i ,r j )[rd(r i)1r (2)T cl(r i ,r j ), which is equal to the
classical density-density response function, obeys the
Ornstein-Zernicke relations~2.10! and ~2.11! of paper I,
which are valid for either quantum or classical quantities.
However, since the resummed diagrams of the loop-density
expansion are integrable, the loop correlation is expected to
decay as 1/r 3, while the power law of the asymptotic behav-
ior of the quantum correlation may be greater because of the
integration over the internal degrees of freedom of the loops.
The first algebraic term in the\ expansion of the large-
distance quantum correlation in a OCP is given by a formula
that is analogous to~2.1! @5#, but involves the square of some
kind of effective potential instead of the bare potential.
Moreover, in the special latter case, according to~1.2! of
paper I,*dr Scl~r !50 and the above term involves in fact
derivatives of the squared effective potential, so that the cor-
relation eventually proves to have a 1/r 10 falloff.

As an introduction to the following discussion, we study
the asymptotic behavior of theP diagram with only
one FR bond. The algebraic tail ofFR can be written
as the sum ofW and exp(W)212W. It can be readily
shown that, after integration with the weight
D(Xa)D(Xb)raa ,pa

(Xb)rab ,pb
(Xb), W gives short-ranged

contributions to the asymptotic behavior of the diagram and
the dominant large-distance decay of the latter is in fact
given by the 1/r 6 leading term in the algebraic tail12(W)2.
Indeed, according to paper I,ra,p~X! is a fast-decaying func-
tion of uXu, every moment ofra,p~X! is finite, and Eqs.
~5.33!–~5.35! of paper I allow to write the Fourier transform
of the contribution fromW to the particle-particle correlation
as a series~over pa , pb , m, andn; m>1, n>1!, in which
each term is proportional to
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E
0

pa
dtE

0

pb
dt8$d„@t2P~t!#2@t82P~t8!#…21%

3
1

k2 S E D~Xa!raa ,pa
~Xa!@k•Xa~t!#mD

3S E D~Xb!rab ,pb
~Xb!@k•Xb~t8!#nD . ~2.2!

Let Xm be the component ofX with space indexm ~m
51,...,3!. Because of the rotational invariance of
D~X!ra,p~X!, the moment*D(X)ra,p(X)Xm1

•••Xmm
van-

ishes if m is odd; if m is even ~m52m8>2!
*D~X!ra,p~X!~k•X!2m8 is proportional to ~k2!m8 times a

function independent from the orientation ofk. Sincem8>1,
the singularity 1/k2 is canceled and the term~2.2! is in fact
analytic. In position space, this means that powers of the
Laplacian of 1/r appear in the asymptotic behavior of
*D(Xa)*D(Xb)raa ,pa

(Xb)rab ,pb
(Xb)W(La ,Lb) and the

corresponding terms are in fact short ranged. The mechanism
is similar to what happens to the contribution of the analog
of W in the\ expansion of the Maxwell-Boltzmann correla-
tions in terms of the classical correlations@4#; in this latter
case, all the classical distribution functions are fast-decaying
functions and they play the role of the weightra,p~X!.
Eventually, the dominant asymptotic behavior of the diagram
with one FR bond is given by the leading term in
exp(W)212W, 12W3

2, and reads

(
pa

paE D~Xa!raa ,pa
~Xa!(

pb
pbE D~Xb!rab ,pb

~Xb!
1
2 @W3~rab ,Xa ,Xb ;aa ,pa ;ab ,pb!#

2

5
b2eaa

2 eab
2

2 (
m,n

F]mnS 1

r ab
D G2(

pa
pa(

pb
pbE

0

pa
dt1E

0

pb
dt18$d„@t12P~t1!#2@t182P~t18!#…21%

3E
0

pa
dt2E

0

pb
dt28$d„@t22P~t2!#2@t282P~t28!#…21%E D~Xa!raa ,pa

~Xa!
1
3 @Xa~t1!•Xa~t2!#

3E D~Xb!rab ,pb
~Xb!

1
3 @Xb~t18!•Xb~t28!#. ~2.3!

B. Topological reorganization of the diagrams

Our aim is to analyze the influence of the nonintegrable
algebraic decayFR on the large-distance behavior of the dia-
grams after integration over the shapes of the loops and to
show that the large-distance contributions that involve only
oneW or only one convolution involving at least oneW
decay faster than 1/r 6. For this purpose, we splitFR into

FR5W1FR6 . ~2.4!

The dominant asymptotic behavior ofW~r ,x i ,x j ! up to order
1/r 6 is equal toW31W41W51W6 and that ofFR6 is

1
2W3

2.
We introduce theP̃ diagrams that have the same topological
definition as theP diagrams, with the only difference that
the bondFR is now replaced by either aW or anFR6 bond.
The F̃ bonds in theP̃ diagrams are equal to eitherFcc, Fcm,

Fmc,W, or FR6. SinceFR is just the sum ofW andFR6, we
get an identity analogous to Eq.~5.9! of paper I,

h~La ,Lb!5(
P̃

1

SP̃
E )

m51

M

dPmr~Pm!F) F̃ G
P̃

.

~2.5!

For instance, theP diagram with only one bondFR leads to
two P̃ diagrams, as shown in Fig. 1. TheP̃ diagrams are
integrable at large distances, as theP diagrams~see paper I!.
They may be not integrable at short distances because of
products of theF̃ bond. However, this does not matter be-
cause this nonintegrability does not interplay with the large-
distance behavior of the diagrams and, further, this is an
artifact that disappears when theP̃ diagrams are collected
together properly, as in the case ofP diagrams@32,33#.

The next step of the general discussion is to exhibit the
subclass of the so-calledP̃Wc diagrams defined as theP̃
diagrams that remain connected when an insertionW is re-
moved. LetH~rab ,x i ,x j ! denote both the sum of theP̃Wc
diagrams and the graph associated with it. According to the
topological definition of theP̃Wc diagrams,h~La ,Lb! can
be reexpressed by an exact Dyson equation in terms of con-
volution chains involving bothH andW. Let x5~a,p,X! be
a global notation for the internal degrees of freedom of a

FIG. 1. Diagrammatic representation of the decomposition~2.4!
of anF bond into two auxiliaryF̃ bonds. TheFR6 bond is denoted
by a solid line with a superscriptFR6 and theW bond is represented
by a serrated line.
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loop, with the associated measure*dx5(a51
ns (p51

` *D(X).
In Fourier space, the relation reads

h~k,xa ,xb!5H~k,xa ,xb!1(
I51

` E dx1•••dx Idx18•••dx I8

3K~k,xa ,x1!W~k,x1 ,x18!K~k,x18 ,x2!•••

3W~k,x I ,x I8!K~k,x I8 ,xb!. ~2.6!

For brevity, we have introduced

K~Ri j ,x i ,x j ![d~Ri2Rj !dx i ,x j
r~x i !1H~Ri j ,x i ,x j !,

~2.7!

with dx i ,x j
[da i ,a j

dpi ,pj
d(X i2X j ) and r(x i)[ra i ,pi

(X i).
The representation of~2.6! in terms of the graphH and a
sum of chains made with graphsK linked by I , W bonds is
shown in Fig. 2.

C. Characterization of an algebraic tail

The analysis of the algebraic decay of the graphs is per-
formed according to the following principles. First, only a
finite number of the moments of a function with an algebraic
asymptotic decay are well defined and the dominant term in
the asymptotic behavior of a functiong~r ! decreases as 1/r g

or ~ln r !n/r g, with g andn nonzero positive integers, if and
only if its Fourier transformg~k![*dr exp~ik•r !g~r ! has a
small-k expansion that becomes nonanalytic with respect to
the components of the vectork at the orderukug23. Thefirst
nonanalytic termS(g23,n)~k! corresponds to the divergent
moment ofg~r ! with the lowest order and is given by the
theory of distributions@34#. For instance, first nonanalytic
terms such askmkn/k

2 and lnuku correspond to 1/r 3 decays, a
dominant term~lnuku!2 signals a~ln r !/r 3 falloff, while first
nonanalytic terms such asuku and uku2 lnuku originate from
1/r 4 and 1/r 5 decays, respectively. Second, the large-distance
behavior of the convolution of several functions with alge-
braic decays is more conveniently studied in Fourier repre-
sentation than in position space. The reason is that a convo-
lution of various functionsg~r ! is changed into a product in
Fourier space and, according to the previous argument, its
dominant large-distance behavior is merely deduced from the
first nonanalytic term in the expansion of the product of the
small-k behaviors of the Fourier transformsg~k!. These prin-
ciples are further detailed in the present section.

In the generic case, according to the theory of distribu-
tions, in a position space of dimension 3, if a function, which
is regular at short distances, decays algebraically at large
distances with aleadingtermgas~r !5A~ln r !n/r g, with n>0,
the small-k expansion of its Fourier transform contains a
leading singular termS(g23,n)~k! of order ukug23~lnuku!n11 if

g23 is even andukug23~lnuku!n if g23 is odd.@As discussed
below, if gas~r ! is a partial derivative of 1/r , S

(g23,n50)~k! is
a nonanalytic term of orderukug23 without any logarithm,
even if g23 is even.# The singular terms of greater order
than S(g23,n)~k! are nonanalytic termsS(g23,n8)~k! with
n8,n and singular terms of higher order inuku that all de-
pend on the subleading terms in the large-distance behavior
of g~r !2gas~r !. More precisely, the dominant behavior
gas(r )5A~ln r !n/r g is a purely algebraic function and, in a
position space of dimension 3, this function is not integrable
at the origin if g>3. Thus we have to consider the corre-
sponding distributiongalg,reg that is regularized at short dis-
tances and the Fourier transform of the latter reads

gas,reg~k!5a reg
~0!uku2m1 (

n851

n

a reg
~n8!uku2m~ lnuku!n81A

3c3,2m,nuku2m~ lnuku!n11 ~2.8!

if g2352m, while

gas,reg~k!5ã reg
~0!uku2m111 (

n851

n21

ã reg
~n8!uku2m11~ lnuku!n81A

3 c̃3,2m11,nuku2m11~ lnuku!n ~2.9!

if g2352m11. In these cases,S(g23,n)~k! is equal to the

greatest term in~2.8! and ~2.9!. The coefficientsa reg
(n8) and

ã reg
(n8) depend on the regularization at short distances,

whereasc3,2m,n and c̃3,2m11,n depend only on the dimension
of space~here 3! and on the powersg andn. For instance,
the Fourier transform of~1/r 3!reg is equal to 4p lnuku plus a
constant term that depends on the regularization at short dis-
tances. According to~2.8! and~2.9!, if the dominant asymp-
totic behavior ofg~r ! at large distances isgas~r !5~ln r !n/r 3,
while @g2gas,reg#~r ! decays faster than 1/r

3, thengas,reg~k! is
of order zero inuku andÃg,reg[*dr @g(r )2gas,reg(r )# is finite
~if there is no short-distance nonintegrability!. In this case,

g~k!5Ãg,reg1gas,reg~k!1O~ uku!, ~2.10!

whereO~uku!5*dr @exp~ik•r !21#@g2gas,reg#~r ! starts at the
order uku. If gas~r !5~ln r !n/r g with g>4, the Fourier trans-
form of g~r ! reads

g~k!5 (
p50

g24 E dr ~ ik•r !p@g~r !2gas,reg~r !#

1E dr eik•rgas,reg~r !1E drFeik•r2 (
p50

g24

~ ik•r !pG
3@g~r !2gas,reg~r !#. ~2.11!

Wheng andgas,regare sufficiently regular at short distances,
the first term is a sum of analytic terms. Since@g2gas,reg#~r !
decays at least as~ln r !n21/r g, the second term contains
S(g23,n)~k! plus terms of orderukug23 times a possible
~lnuku!n8 ~with n8<n21!, while the third term contains only
~nonanalytic and analytic! terms that are of order greater than
that ofS(g23,n)~k!. If n50, as will be the case in the follow-
ing, ~2.11! implies that

FIG. 2. Diagrammatic representation of the Dyson equation
~2.6!. The small white disks correspond toLa andLb and the
black points to the internal pointsx and x8. The big white disk
stands forH and the hachured disks representK.
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g~k!5@g2gas,reg#~k50!

1 (
p51

g24

km1
•••kmp

]p@g2gas,reg#

]km1
•••]kmp

~k50!

1S~g23,0!~k!1Õ„S~g23,0!~k!… ~2.12!

whereÕ„S~g23,0!~k!… denotes~analytic or nonanalytic! terms
of order greater than that ofS~g23,0!~k!.

In the case of the algebraic tails of theP̃ diagrams~see
Secs. III D and III E!, there appears no~ln r !n/r g with n.0,
while there proves to be no need of short-distance regular-
ization forgas~r !. Indeed, ifgas~r !5]mn~1/r !, then the singu-
lar term iskmkn times the nonanalytic term in the Fourier
transform of 1/r , which reduces to 4p/k2 ~without any lnuku!;
moreover, the Fourier transform of 1/r does not need any
short-distance regularization, while its derivatives become
integrable after integration over the orientation ofr because

only powers of the Laplacian of 1/r survive and the latter is
short ranged. For instance, the Fourier transform of every
purely algebraic termWg , defined in~5.33! of paper I and
which involves only derivatives of 1/r , reduces to one term
S~g23,0!~k! of order ukug23 and without any lnuku, and
*dr Wg(r ,x i ,x i8) is conditionally convergent at short dis-
tances. According to the property~5.35! of paper I, the Fou-
rier transforms ofW3 andW4, respectively, read

W3~k,x i ,x i8!5bea i
ea

i8E0
pi
dt iE

0

pi8dt i8

3$d„@t i2P~t i !#2@t i82P~t i8!#…21%4p

3
@X i~t i !•k#@X i8~t i8!•k#

k2
~2.13!

and

W4~k,x i ,x i8!5bea i
ea

i8E0
pi
dt iE

0

pi8dt i8$d„@t i2P~t i !#2@t i82P~t i8!#…21%

34p
@X i~t i !•k#2@X i8~t i8!•k#2@X i~t i !•k#@X i8~t i8!•k#2

2k2
. ~2.14!

SinceFR2W decays as12@W3(r ,x i ,x i8)#
2, plus faster tails,

according to~2.11!,

@FR2W#~k,x i ,x i8!5A~x i ,x i8!1Am
~1!~x i ,x i8!km

1Amn
~2!~x i ,x i8!kmkn

1Amns
~3! ~x i ,x i8!kmknks

1E dr eik•r 12 @W3~r ,x i ,x i8!#2

1O~ uku4!, ~2.15!

where

A~x i ,x i8![E dr @FR2W2 1
2W3

2#~r ,x i ,x i8!, ~2.16!

Am
(1)(x i ,x i8)5 i*dxxm@FR2W2(1/2)W3

2#(x,x i ,x j ), and so
on. km ~xm! is the component of the vectork ~x! with space
index m. O~ukug! denotes a function starting at the order
ukug.

Subsequently, the large-distance behavior of convolutions
can be determined precisely. The asymptotic behavior of the
convolution [g1* g2] ~r ! is dominated by the inverse Fourier
transform of the lowest-order nonvanishing singular term in
g1~k!g2~k!. We distinguish the cases whereg1 andg2 decay
with different inverse power laws from the cases where they
decrease algebraically with the same exponent. Moreover,
we assume the following properties. Ifg~r ! decays faster
than 1/r 3, then*dr g~r ! is supposed to be finite~there is no
singularity at short distances!, so that its Fourier transform is

given by~2.12! with gas in place ofgas,reg. If g~r ! decays as
1/r 3, whengas~k! is a pure function ofk/uku with no constant
term, we assume thatAg[*dr @g~r !2gas~r !# is finite @the in-
tegral is absolutely~conditionally! convergent at large~short!
distances#, and whengas,reg~k!5ã reg

~0!1A34p lnuku, we as-
sume that Ag[*dr @g~r !2gas,reg~r !#1ã reg

~0! is finite; then
~2.10! becomes

g~k!5Ag1Sg
~0,0!~k!1O~ uku!. ~2.17!

If g1~r ! decays as 1/r g1 and g2~r ! as 1/r g2, with
3<g1,g2, then, according to~2.12! or ~2.17!, the first sin-
gular term in g1~k!g2~k! is g2(k50)Sg1

(g123)(k) @if

g2~k50!Þ0# and g1* g2 decays as the slowest of the two
functionsg1 andg2:

@g1* g2#~r ! ;
r→`

Sg1
~g1!

~r !S E dx g2~x! D1oS 1

r g1D ,
~2.18!

where o(1/r g1) denotes a term that decays faster than
1/r g1. Moreover, ifg111,g2 and the first subleading term in
the large-distance behavior ofg1 falls off as 1/r

g111, then the
first subleading asymptotic behavior ofg1* g2 is the inverse
Fourier transform ofg2(k50)Sg1

(g122)(k)1km(]g2 /]km)(k

50)Sg1
(g123)(k), namely,
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@g1* g2#~r !2Sg1
~g1!

~r !S E dx g2~x! D
;
r→`

Sg1
~g111!

~r !S E dx g2~x! D1]s@Sg1
~g1!

~r !#

3S E dx xsg2~x! D1oS 1

r g111D . ~2.19!

If g1~r ! and g2~r ! decay with the same power law 1/r g,
with g.3, Sg1

(g)(k) andSg2
(g)(k) are of the same order inuku

and the asymptotic behavior ofg1* g2 is given by the sum of
the two termsg1(k50)Sg2

(g23)(k) andg2(k50)Sg1
(g23)(k),

@g1* g2#~r ! ;
r→`

S E dx g1~x! DSg2~g!~r !1S E dx g2~x! D
3Sg1

~g!~r !1oS 1r gD . ~2.20!

If g1 andg2 are proportional to 1/r
3 at large distances, then,

with the notations of~2.17!, Sgi
(0,0)(k)5ci34p lnuku and

g1* g2 behaves as the inverse Fourier transform of the zeroth
order terms Ag1

Sg2
(0,0)(k)1Ag2

Sg1
(0,0)(k)1Sg1

(0,0)(k)Sg2
(0,0)(k),

namely,

@g1* g2#~r ! ;
r→`

Ag2
Sg1

~3,0!~r !1Ag1
Sg2

~3,0!~r !

1@Sg1
~3,0!

*Sg2
~3,0!#~r !. ~2.21!

@Sg1
(3,0)

*Sg2
(3,0)#(r ) is the inverse Fourier transform of a term

~lnuku!2 and it behaves as~ln r !/r 3. However, in the following
discussion, the singular terms of order zero inuku are of the
form Sg

(0,0)(k)5km1
•••kmp

/k2, which contains no logarithm,

so that@Sg1
(3,0)

*Sg2
(3,0)#(r ) decays as 1/r 3 and not as~ln r !/r 3.

III. PARTICLE-PARTICLE CORRELATIONS

According to Sec. V D of paper I, the exchange part of the
particle-particle correlation decays faster than any inverse
power law of the distance. The nonexchange part
raaab
(2)TQ(r ab)unonexchof the particle-particle correlation, which

is defined in~4.7! of paper I, is related toh~La ,Lb! by

raaab
~2!TQ~r ab!unonexch5(

pa
(
pb

papbE D~Xa!raa ,pa
~Xa!

3E D~Xb!rab ,pb
~Xb!h~La ,Lb!.

~3.1!

Its large-distance behavior is studied by using the Dyson
equation~2.6!.

A. Upper bound for the decay ofK

The P̃Wc diagrams, and subsequentlyH, are shown to
decay at least as 1/r ab

6 , even before integration over the
shapes of the root points, by considering two classes. In the
first class, every diagramP̃Wc contains no bondW. Since an
integrable diagram cannot decay more slowly than each of its
bonds, namely,Fcc, Fcm, Fmc, andFR6, it behaves at least as
1/r ab

6 . In the second class, every diagramP̃Wc contains at
least oneW bond. If a bondW does contribute to the leading
term in the asymptotic behavior of theP̃Wc diagram, its con-
tribution is multiplied by that of other bonds and the product
of these two contributions must decrease at least as~1/r ab

3 !2,
as explained in the following.

According to the topological definition of theP̃Wc dia-
grams, for each pair of pointsP i andP j that are linked by a
W bond, there exists a path linkingLa to Lb that does not
contain the bondW~P i ,P j !. Thus the integral corresponding
to a P̃Wc diagram of the second class may be written as

E dP iE dP jG~ra ,rb ;xa ,xb ;P i ,P j !W~P i ,P j !,

~3.2!

whereG~ra ,rb ;xa ,xb ;P i ,P j ! is the value of a subdiagram
of the P̃Wc diagram after integration over all its internal
points exceptP i andP j . This subdiagram is connected with
respect to the root pointsLa andLb , so that, at large dis-
tances, it decreases at least as 1/r ab

3 , which is the decay of
the slowestF̃ bond. Then two cases might occur.

~i! If the topology ofP̃Wc is such that none of the bonds
W contributes to its dominant asymptotic behavior, then the
latter is at least a 1/r 6 falloff, since it is determined by the
other bondsFcc, Fcm, Fmc, andFR6, as for the diagrams of
the first class. For instance, in the diagramP̃ of Fig. 3~a!, the
bondW(P 18 ,P 1) contributes only to a 1/r

9 tail arising partly
from the product of the bondsW(P 18 ,P 1) andFR6~La ,P 1!
and the leading term in the asymptotic behavior of the dia-
gram is a 1/r 6 tail originating from the bondFR6~P 1,Lb!.

~ii ! If the bondW~P i ,P j ! contributes to the leading term
in the asymptotic behavior of theP̃Wc diagram, then
the leading term is given by the Taylor expansion
of W~Ri j ,x i ,x j ! aroundRi j5rab multiplied by the asymp-
totic behavior [G] as~rab ;xa ,xb ;P i ,P j ! of
G~ra ,rb ;xa ,xb ,P i ,P j ! when r ab goes to infinity and reads

E dP iE dP j@G#as~rab ;xa ,xb ;P i ,P j !

3HW~rab ,x i ,x j !1OS 1

r ab
4 D J . ~3.3!

The product of these two contributions decays at least as the
product~1/r ab

3 !2. For instance, the two diagrams of Figs. 3~b!
and 3~c! have a 1/r 6 falloff arising from the product of the
bond W~La ,Lb! with respectively, the bondW~P 1,Lb!
@Fig. 3~b!# or the convolutionW~La ,P 1!*W~P 1,Lb! @Fig.
3~c!#. If *dP i*dP j [G] as~rab ;xa ,xb ;P i ,P j !W~rab ,x i ,x j !
vanishes, the falloff is at least 1/r 7. For instance, the slowest
possible algebraic tail of the diagram of Fig. 3~d! behaves
as 1/r 6, but this algebraic contribution does not appear
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because *dR1*dx1r(x1)F
cm~R1,xa ,x1!W3~rab ,x1 ,xb!50.

„Indeed,W3 involves one component ofX1, so that, after
integration over X1, the latter integral involves only
terms *dx1r(x1)@X1#m(X1•“R1

)2q11@exp(2kR1)/R1# that
vanish after integration over the orientation ofR1.… If
G~rab ;xa ,xb ;P i ,P j ! has an exponential decay whenr ab

goes to infinity, then~3.3! behaves as an exponential times
1/r 3. For instance, the leading term in the asymptotic behav-
ior of the P̃ diagram of Fig. 3~e! is given by the product of
the bondsW~P 1,Lb! andF

cm~La ,Lb!.

B. Upper bound for the decay of the convolution chains

The large-distance behavior of the chain made with~I11!
graphsK linked by I bondsW in ~2.6! can be analyzed
rigorously in Fourier space.~The study is far more cumber-
some in position space and, in Appendix A, we sketch the
argument in position space only in the case of simple con-
volution chains.! Moreover, for the simplicity of the discus-
sion, we use the decomposition of the Fourier transform of
W as a series of purely nonanalytic termsw@mi ,ni #,

W~k,x i ,x i8!52bea i
ea

i8E0
pi
dt iE

0

pi8dt i8$d„@t i2P~t i !#

2@t i82P~t i8!#…21%

3 (
mi51

`

(
ni51

`
1

mi !ni !

3w@mi ,ni #
„k,X i~t i !,X i8~t i8!…, ~3.4!

wherew@mi ,ni # is a singular term of orderukumi1ni22 given
by ~5.33! of paper I,

w@mi ,ni #
„k,X i~t i !,X i8~t i8!…

[@X i~t i !•k#mi@2X i8~t i8!•k#ni
4p

k2
. ~3.5!

A chain in ~2.6! with ~I11!, K graphs linked byI bondsW
makes a contribution toraa ,ab

(2)TQ(k) @see~3.1!#, which can be

written as a series of chains involving purely algebraic terms
w@mi ,ni # instead ofW,

~2b! I (
$a i % i51,...,I

ea i
2 (

$a i8% i51,...,I

ea
i8

2 (
$pi % i51,...,I

(
$pi8% i51,...,I

S )
i51

I
1

mi !ni !
E
0

pi
dt iE

0

pi8dt i8$d„@t i2P~t i !#2@t i82P~t i8!#…21% D
3C $a i %,$a i8%,$pi %,$pi8%,$t i %,$t i8%;I~k;xa ,xb ;$mi%,$ni%!, ~3.6!

where

C $a i %,$a i8%,$pi %,$pi8%,$t i %,$t i8%;I~k;xa ,xb ;$mi%,$ni%!5E D~X1!•••D~XI !D~X18!•••D~XI8!K~k,xa ,x1!

3w@m1 ,n1#
„k,X1~t1!,X18~t18!…K~k,x18 ,x2!w

@m2 ,n2#
„k,X2~t2!,X28~t28!…•••

3w@mI ,nI #
„k,XI~t I !,XI8~t I8!…K~k,x I8 ,xb!, ~3.7!

FIG. 3. Examples of diagramsP̃ discussed in Sec. III A.~a!–~c!
decay as 1/r 6, ~d! as 1/r 7, and~e! has an exponential falloff.
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with i51,...,I andmi andni ranging from 1 tò . For con-
ciseness, we omit the dependence upon the speciesa, the
sizes p, and the times t, in the notation
C I~k;xa ,xb ;$mi%,$ni%! in the following.

The integration over the shapes of the loops, including the
root points, is performed with the result

CI~k;$mi%,$ni%!

[E D~Xa!E D~Xb!C I~k;xa ,xb ;$mi%,$ni%!

5
1

~k2! I
Ka,1

@m1#
~k!K1,2

@n1 ,m2#
~k!K2,3

@n2 ,m3#
~k!

•••KI21,I
@nI21 ,mI #~k!K

I 8,b
@nI # ~k!. ~3.8!

The quantityKa,1
@m1#(k)@KI ,b

@nI #(k)# at the end of the chainCI

contains the integration over the shape of the root point and
the shapeX1 (XI8),

Ka,1
@m1#

~k![E D~Xa!E D~X1!@k•X1~t1!#
m1K~k,xa ,x1!,

~3.9!

K
I 8,b
@nI # ~k![E D~XI8!E D~Xb!@k•XI8~t I8!#nIK~k,x I8 ,xb!.

~3.10!

Ka,1
@m1#(k) also depends onaa , a1, pa , p1, and t1.

K
i 8,i11

@ni ,mi11#
involves the integration overX i8 and X i11 ~and

depends also onai , a i8 , pi , pi8 , ti , andt i8!,

Ki ,i11
@ni ,mi11#

~k![E D~X i8!E D~X i11!@k•X i8~t i8!#ni

3@k•X i11~t i11!#
mi11K~k,x i8 ,x i11!.

~3.11!

Since the measureD~X! is invariant under rotations ofX
while the bondsF are unchanged under a simultaneous ro-
tation of Ri j , X i , andX j , K(k,x i8 ,x i11) is also invariant
under global rotations of (k,X i8 ,X i11) and theK’s are func-
tions of uku. As a consequence, the small-k expansion of aK
contains only even powers ofuku up to the first nonanalytic
term that characterizes the slowest algebraic tail in the large-
distance behavior ofK~ur u!.

The structure of the first two terms in the small-k expan-
sion of aK can be readily determined from the rotational
invariance ofK and the measureD~X! because the first
nonanalytic term in the small-k expansion ofK is of order
uku3. Indeed, according to Sec. III A,H(r ,x i8 ,x i11) decays
as 1/r 6 at large distances and, according to~2.12!, its Fourier
transform at smallk reads

H~k,x i8 ,x i11! ;
uku→0

E dx H~x,x i8 ,x i11!

1 ikmE dx xmH~x,x i8 ,x i11!

2 1
2kmknE dx xmxnH~x,x i8 ,x i11!

1SH
~3!~ uku,x i8 ,x i11!1Õ~ uku3!.

~3.12!

Õ~uku3! contains analytic terms of orderuku3 and terms of
higher orders.K has the same large-distance behavior asH
and the small-k expansion ofK is equal to that ofH plus the
constantr(x i11)dx

i8 ,x i11
. The first terms in the small-k ex-

pansion ofKa,1
@m1#(uku) at the end of a convolution chain is

obtained by inserting the small-k expansion ~3.12! of
K~k,Xa ,X1! into the definition ~3.9!. Since the measure
D~Xa! andK~r ,Xa ,X1! are invariant under global rotation of
their arguments,*D~Xa!K~r ,Xa ,X1! is invariant under the
simultaneous rotations ofr andX1 and the first two terms in
the small-uku expansion ofKa,1

@m1#(uku) are of orderukum1 and
ukum112, respectively, ifm1 is even and of orderukum111 and
ukum113, respectively, ifm1 is odd. This result can be sum-
marized by introducing the functionu such thatu(n)50 if n
is an even integer, whereasu(n)51 if n is odd,

Ka,1
@m1#

~ uku!5Aa,1
@m1#ukum11u~m1!1O~ ukum11u~m1!12!,

~3.13!

whereO~ukup! denotes a term of orderukup. Similarly,

K
I 8,b
@nI # ~k!5AI ,b

@nI #ukunI1u~nI !1O~ ukunI1u~nI !12!. ~3.14!

In the same way, the dimension of the first two terms in the

small-k expansion ofK
i 8,i11

@ni ,mi11#
(uku) is obtained by inserting

~3.12! in the definition~3.11!,

K
i 8,i11

@ni ,mi11#
~k!5A

i 8,i11

@ni ,mi11#ukuni1mi111u~ni1mi11!

1O~ ukuni1mi111u~ni1mi11!12!. ~3.15!

For instance,K a,1
[1] ~k!, KI 8,b

@1# ~k!, andK i ,i11
[1,1] ~k! are of order

uku2 when uku goes to zero, and the next term in their small-k
expansion is of orderuku4. According to the structure~3.12!
of the small-k expansion ofK~k,x i ,x j !, the first term in the
small-k expansion of anyK is analytic in the components
of k and the possible singularity due to the term
SH
(3)(k,x i8 ,x i11) may appear~if it is not canceled by integra-
tion over the shapesX! only in the next nonzero higher-order
term @becauseu(nI)12<3 andu(ni1mi11)12<3#.

According to the previous arguments of both dimensional
analysis and rotational invariance, the first term in the
small-k expansion ofCI~k,$mi%,$ni%! defined in~3.8! is pro-
portional to ukuDCI, while the next term isof order
ukuDCI

12, where, according to~3.13!–~3.15!, the dimension
DCI

($mi%,$ni%) reads
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DCI
~$mi%,$ni%!522I1@m11u~m1!#1@nI1u~nI !#

1(
i51

I21

@ni1mi111u~ni1mi11!#.

~3.16!

Sincen1u(n) is even,DCI
($mi%,$ni%) can take only even

values. Moreover,mi>1 and ni>1 for every i51,...,I ,
while n1u(n)52 for n51,2;n1u(n)54 for n53,4; and so
on. Subsequently, the dimensionDCI

($mi%,$ni%) given by

~3.16! can be equal to 2,4,6,... .DCI
($mi%,$ni%) is positive

and even and the first term in the small-k expansion of the
chain CI~k,$mi%,$ni%! is analytic, while the first possible
nonanalytic term is the next term in the expansion, which is
of order ukuDCI

12 with DCI
12>4. In other words, the con-

volution chains~3.8! decay at least as 1/r 7 and, eventually,
the part~3.1! of the particle-particle correlation behaves as
1/r 6.

At this point, we make a comment on the origin of the
upper bound 1/r 7. First, before integration over the shapes of
its end points, a convolutionC I~r ,xa ,xb ;$mi%,$ni%! decays
as 1/r 3 because the Coulomb potential decays sufficiently
fast forW to be at the borderline of integrability. Moreover,
the fact thatW~P ,P 8! involves the components of the shapes
of bothP andP 8 together with the rotational invariance of
the interactions and of the loop measures have two conse-
quences, once the integration over the shapes of all loops has
been performed. First, they ensure that the dimension
DCI

($mi%,$ni%) of the first term in the small-k expansion of
CI~k;{m1} ,{ n1} ! may take only values that differ by an
even integer. Second, since they enforceKa

@m1# andKb
@nI # to

start at least at the orderuku2, DCI
($mi%,$ni%)>2. Then, the

harmonicity of the Coulomb potential implies that the di-
mension of the first nonanalytic term is at least
DCI

($mi%,$ni%)12. Indeed, in the case of a potentialv such
that v~k!5S~22!~k! is of order uku22 but not proportional to
1/k2, the first term in the small-k expansion of
CI~k,$mi%,$ni%! would be proportional to

@S~22!~k!# I

3uku$m11u~m1!1nI1u~nI !1( i51
I21

@ni1mi111u~ni1mi11!#%.

~3.17!

It would be of orderukuDCI with DCI
>2 given by~3.16!, but

it would not be analytic and the chains~3.8! would decay at
least as 1/r 5. To sum up, because of the structure ofW that
arises from its definition as the difference between the loop
potential and the electrostatic potential and once the basic
rotational invariance has been taken into account, a mere
dimensional analysis shows that the chains decay at least as
1/r 5. Henceforth, the harmonicity of the Coulomb potential is
crucial to ensure that the chains in the Dyson equation~2.6!
decay faster than 1/r 6. These arguments are exemplified in
position space, in Appendix A.

C. Diagrammatic structure of the 1/r 6 tail

The 1/r 6 decay of the particle-particle correlations can
only arise from theP diagrams that give at least oneP̃Wc
diagram, whenF is split into the two bondsW and
FR65FR2W. ~We recall that aP̃Wc diagram remains con-
nected when one bondW is removed.! At each order
r~L!21N, with N>0, diagrams that decrease as 1/r 6 can be
exhibited.

Let first consider convolution diagrams. At the order
r~L!2, the diagram with only oneFR bond is an example and
its contribution, which is displayed in~2.3!, comes from
1
2@W3~rab ,xa ,xb!#

2 becauseW leads to a fast decay after
integration over the shapes of the end points. At the order
r~L!3, let consider the diagram of Fig. 4~a!, which is the
convolution of twoFR bonds. According to the general dis-
cussion of Sec. III B, after integration over the shapes of the
end points, the convolutions~over the variablesR! W*W,
[FR2W] *W, and W* [FR2W] fall off faster than 1/r 6.
Thus the leading asymptotic behavior of the diagramP4(a) is
given by the convolution [FR2W] * [FR2W]. The 1/r 6 tail
of the convolution of two 1/r 6-decaying functions is deter-
mined by the terms of orderuku3 in the small-k expansion
of its Fourier transform. According to~2.15!, the first sin-
gular term in [FR2W] ~k,x i ,x j ! is

1
2@W3~k,x i ,x j !#

2. Subse-
quently, according to~2.20!, the 1/r 6 tail of the diagram in
Fig. 4~a! originates from the integration with the measure
D~Xa!par(xa)D~Xb!pbr(xb)dx1r(x1) of

1
2 @W3~rab ,xa ,x1!#

2A~x1 ,xb!

1A~xa ,x1!
1
2 @W3~rab ,x1 ,xb!#

2, ~3.18!

whereA(x i ,x j ) is given by~2.16!. Only the 1
2@W3#

2 part of
FR does contribute to the 1/r

6 tail of the diagram in Fig. 4~a!.

FIG. 4. Structure of the 1/r 6 asymptotic behavior of theP dia-
grams, given in Sec. III C.

53 4607CORRELATIONS IN QUANTUM PLASMAS. II. ALGEBRAIC TAILS



At the orderN>3, theP diagram made with a product of
two convolution chains of bondsFR , one chain withn bonds
in it and the other one withN2n bonds, decays as 1/r 6

because a convolution chain of bondsF may decay as 1/r 3

before integration over the shapesXa andXb of each end.
Indeed, the asymptotic 1/r 3 behavior of a convolution is de-
termined by the singular terms of order zero inuku in the
expansion of the product of the small-k behaviors of the
various functions involved in the convolution. The decompo-
sition ~2.17! allows one to disentangle the singular term
W3~k,x i ,x j ! from the constant A* (x i ,x j )
5*dr @FR~r ,x i ,x j !2W3~r ,x i ,x j !# in the term of order zero
in the small-k expansion ofFR~k,x i ,x j !,

FR~k,x i ,x j !5W3~k,x i ,x j !1A* ~x i ,x j !1O~ uku!.
~3.19!

For instance, let us consider the diagram of Fig. 4~b!. This
diagram leads in particular to theP̃Wc diagrams of Figs. 3~b!
and 3~c!. According to~2.21!, the asymptotic behavior of the
diagram in Fig. 4~b! reads

W3~rab ,xa ,xb!E dx1r~x1!HA* ~x1 ,xb!W3~rab ,xa ,x1!

1A* ~xa ,x1!W3~rab ,x1 ,xb!

1E dk e2 ik•rabW3~k,xa ,x1!W3~k,x1 ,xb!J . ~3.20!

The last term in curly brackets in~3.20! is equal to

W3~rab ,xa ,xb!beaa
eabE0

pa
dtE

0

pb
dt8

3@Xa~t!•“ rab
#@Xb~t8!•“ rab

#S 1

r ab
D

3H E
0

p1
dt1E

0

p1
dt18$d„@t2P~t!#

2@t12P~t1!#…21%$d„@t182P~t18!#

2@t82P~t8!#…21%E dx14pbea1
2 r~x1!

3 1
3 @X1~t1!•X1~t18!#J . ~3.21!

More generally, according to~2.21! and ~3.19!, the 1/r 3 be-
havior of a convolution can only originate from one or sev-

eralW3~k,x i ,x j !, i.e., from convolutions ofW3 with subdia-
grams ofP. The asymptotic behavior of such convolutions is
of the form @X i(t i)#m i

@X j (t j )#n j
]m in j

(vC)*dy gmid(y),
where the expression ofgmid is analogous to that ofGmid in
Appendix A, with theK@1,1#’s in Gmid replaced by moments
of subdiagrams ofP calculated with respect to the shapes of
their internal points.

As a final example, let us consider theP diagram
in Fig. 4~c!, which leads in particular to theP̃ diagram of
Fig. 3~a! through the decomposition ~2.4!,
P4(c)5*dx1r(x1)P4(b)~La ,L1!FR~L1,Lb!. Accord-
ing to the general discussion of Sec. III B, after integra-
tion over Xa and Xb , the contribution fromP4(b)*W
decays faster than 1/r 6 and the 1/r 6 tail of
*D~Xa!D~Xb!r(xa)r(xb)P4(c)~La ,Lb! is given by the
convolution ofP4(b) with FR2W. Since both latter functions
behaves as 1/r 6, even before integration over their root
points, the leading asymptotic behavior ofP4(c) is the sum of
two contributions given by~2.20!,

E dx1r~x1!H @P4~b!#as~rab ,xa ,x1!A~x1 ,xb!

1S E dx P4~b!~x,xa ,x1! D 1
2 @W3~rab ,x1 ,xb!#

2J ,
~3.22!

where @P4(b)#as is the asymptotic behavior of the diagram
P4(b), which is written in~3.20!.

As a conclusion, if the leading term in the asymptotic
behavior of aP̃Wc diagram~after integration over the root
points! is 1/r 6, then this tail comes either from the asymp-
totic behavior of a bondFR65FR2W, which is equal to
~W3!

2/2, or from the product of two 1/r 3 asymptotic behav-
iors, each of which arises from the asymptotic behaviorW3
of one or severalW bonds involved in convolutions with
subdiagrams ofP̃Wc . If we return toP diagrams@before the
decomposition~2.4! into P̃ diagrams#, the result is the fol-
lowing: the 1/r 6 tail of a P diagram comes either from the
term ~W3!

2/2 in the asymptotic behavior of oneFR bond or
from the product of the asymptotic behavior of two convo-
lutions, each of which is built with subdiagrams ofP linked
by at least oneFR bond. Henceforth, after integration over
the internal points of the chain, the general structure of the
Aaa ,ab

/r 6 tail takes the form

(
pa

paE D~Xa!raa ,pa
~Xa!(

pb
pbE D~Xb!rab ,pb

~Xb!E dx1E dx2E dx3E dx4

3E
0

p1
dt1E

0

p2
dt2E

0

p3
dt3E

0

p4
dt4g~Xa ,X1 ,X2 ;t1 ,t2!g~Xb ,X3 ,X4 ;t3 ,t4!

3@X1~t1!•“ rab
#@X3~t3!•“ rab

#S 1

r ab
D @X2~t2!•“ rab

#@X4~t4!•“ rab
#S 1

r ab
D . ~3.23!

4608 53F. CORNU



D. Structure of algebraic tails in P̃ diagrams

Now, in view of the discussion of Sec. IV, we turn to the
1/r g leading and subleading algebraic tails ofP̃ diagrams
that have any exponentg>6. An algebraic tail in the asymp-
totic behavior of aP̃ diagram arises either from a single
elementary algebraic chain or from a product of the former
elementary objects. An ‘‘elementary algebraic chain’’ refers
either to an algebraic bond~W or FR6! or to a convolution
chain with such algebraic bonds at both ends and with sub-
diagrams ofP̃ and algebraic bonds in the middle of the
convolution. The asymptotic behavior of a single elementary
algebraic chain involves a series of purely ‘‘elementary al-
gebraic tails’’S(g)@q,q8]~P ,P 8!, which decays as 1/r g and in-
volvesq components of the shape ofP andq8 components
of the shape ofP 8.

An algebraic tail T~rab ,xa ,xb! of a P̃ diagram
that results from a product ofL ~L>1! algebraic terms

S(g l )@ql ,ql8#(P l ,P l8) is a term in the series of the algebraic
decays of the function

E F)
l51

L

dP l G E F)
l51

L

dP l8GG~La ,P 1 ,...,P L!

3S )
l51

L

S~g1!@ql ,ql8#~P l ,P l8!DG8~Lb ,P 18 ,...,P L8 !,

~3.24!

whereG~La ,P 1,...,P L! is equal to a subdiagram ofP̃ inte-
grated over all its points except~La ,P 1,...,P L!, and so is
G8(Lb ,P 18 ,...,P L8). ~Examples have been given in Secs.
III A and III C.! In the following, we use the notation
z[~a,p,Z! for the internal degrees of freedom of a loop, in
order to avoid confusion with the variablesx5~a,p,X! used
in the convolution chains of Eq.~2.6!. The series of alge-
braic tails of ~3.24! are obtained by expanding each

S(g l )@ql ,ql8#(P l ,P l8)5S(g l )@ql ,ql8#(Rl2Rl8 ,z l ,z l8) around
(rab ,z l ,z l8) in powers of the components of theRl2Ra’s
and Rl82Rb’s. Subsequently, every algebraic tail
T~rab ,xa ,xb! can be written as

T~rab ,xa ,xb!5E S )
l51

L

dz ldz l8D gs1•••sQa

@Qa#
~xa ,z1 ,...,z l !

3]s1•••sQa
s
18•••s

Qb
8

3S )
l51

L

S~g l !@ql ,ql8#~rab ,z l ,z l8!D
3g

s
18•••s

Qb
8

8@Qb#
~xb ,z18 ,...,zL8 !, ~3.25!

where the partial derivative]s1•••sQa
s
18•••s

Qb
8 operates on the

variable rab and gs1•••sQa

@Qa# (xa ,z1 ,...,z l) is a moment of

G~La ,P 1,...,P L! with respect to the components with indi-
ces s1,...,sQa

of Qa vectors chosen among
R12Ra ,...,RL2Ra . ~The same vector may appear several

times.! The origin of g
s
18•••s

Qb
8

8@Qb#
(xb ,z18 ,...,zL8) is similar.

Since both the measureD~Z! and the bondsF are in-
variant under global rotations of their arguments,
gs1•••sQa

@Qa# (xa ,z1 ,...,z l) is a tensor of rankQa with respect to

global rotations of its arguments.
According to Appendix B, before integration over the

shapes of its end pointsP andP 8, an elementary algebraic
tail S(g)[q,q8]~P ,P 8! has the form of the tensorial product

S~g!@q,q8#~r ,z,z8!5Am1•••mq

@q# ~Z!An1•••nq8

@q8# ~Z8!

3Sm1•••mqn1•••nq8

~g! ~r !, ~3.26!

whereAm1•••mq

@q# (Z) and An1•••nq8

@q8# (Z8) are tensors of rankq

and q8, respectively: Am1•••mq

@q# (Z)5@Z#m1
•••@Z#mq

f (uZu),
where f ~uZu! is a scalar function that is invariant by rotation
of Z. In the definition~3.26!

g5P1q1q8, ~3.27!

where the allowed values forP depend on (q,q8) and are
given in Appendix B. The structure~3.26! arises from the
decomposition ofW~r ,z,z8! as a series of purely algebraic
termsw[m,n] given by ~3.5!

w@m,n#@r ,Z~t!,Z8~t8!#[(21)n@Z~t!#m1
•••@Z~t!#mm

3@Z8~t8!#n1
•••@Z8~t8!#nn

3]m1•••mmn1•••nnS 1r D . ~3.28!

@Z#m j
is the component of the vectorZ with space indexmj .

The space indicesmj andnj 8 take the values 1,2,3, whilej
runs from 1 tom ~j 8 from 1 ton!.

The insertion of~3.26! into ~3.25! shows that the tailT
has a tensorial structure analogous to that of the elementary
algebraic tailsS(g)[q,q8] ,

T~rab ,xa ,xb!5A
$ %
@Qa1( l ql #~Xa!A$ %

@Qb1( l ql8#
~Xb!S$ %$ %

~gT!
~rab!,
~3.29!

where

gT5Qa1Qb1(
l51

L

g l5(
l51

L

Pl1(
l51

L

~ql1ql8!1Qa1Qb .

~3.30!

A
$ %
@Qa1( l ql #(Xa) is a moment of the function

g
$ %
@Qa#

(xa ,z1 ,...,z l), which is of orderql in the components
of everyZ l ( l51,...,L),

A
$ %
@Qa1( l ql #~Xa![As1•••sQa

$m l ,1•••m l ,ql
% l51,...,L

~Xa!

5E S )
l51

L

dz l D S )
l51

L

)
j l51

ql

@Z l #m l , j l
D

3gs1•••sQa

@Qa#
~xa ,z1 ,...zL!, ~3.31!
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where@Z l #m l , j l
is the component of the vectorZ l with space

index m l , j l
, which takes the values 1,2,3, andj l runs

from 1 to ql . The definition of A
$ %

@Qb1( l ql8#
(Xb)

[As
18•••s

Qb
8 $n l ,1•••n l ,ql8

% l51,...,L
(Xb) is analogous to~3.31!, with

j l8 running from 1 toql8 . A
$ %
@Qa1( l ql #(Xa) depends only on

xa5~aa ,pa ,Xa!. @In the notation of~3.31!, we write only the
argumentXa because only the dependence uponXa will be
relevant in the following discussions.# The moments

A
$ %
@Qa1( l ql #(Xa) andA

$ %

@Qb1( l ql8#
(Xb) are well defined be-

cause the weightr~Z! is expected to decay faster than
any inverse power law, according to paper I. Since
gs1•••sQa

@Qa# (xa ,z1 ,...zL) is a tensor of rankQa with respect to

global rotations of its arguments,A
$ %
@Qa1( l ql #(Xa) is a tensor

of rankQa1( l51
L ql , while A$ %

@Qb1( l ql8#
(Xb) is a tensor of

rankQb1( l51
L ql8 .

If L51, the tailT originates from a convolution of alge-
braic bonds and subdiagrams ofP̃. If the convolution con-
tains aW bond,

gT5P~q,q8!1q1q81Qa1Qb , ~3.32!

where P(q,q8) may take the values~B10!. The exponent
~3.30! of the decay ofT~rab ,z,z8! with L>2 can be written as

gT5L1(
l51

L

~ql1ql8!1Qa1Qb1dT , ~3.33!

wheredT[(( l51
L Pl)2L does not depend on eitherL, Qa ,

or Qb . Since the allowed values forPl depend onql and
ql8 , the allowed values ofdT also depend on the values of
$(ql ,ql8)% l51,...,L and we have to distinguish three cases~I!–
~III !, which are detailed in Appendix C.

E. Algebraic tails of K

The structure of one of the algebraic tails of aP̃Wc dia-
gram before integration over the shapes of the root pointsLa

andLb is derived from the topological definition of aP̃Wc
diagram, as already done for the particular 1/r 6 tail. Since a
diagramP̃Wc remains connected when oneW bond is sup-
pressed, an algebraic tail of the whole diagram may be of
two kinds. First, it may come from the following single el-
ementary algebraic chain convoluted with subdiagrams of
P̃Wc at both ends: either oneFR6 bond or a convolution
involving FR6 bonds~but noW bond! and subdiagrams of
P̃Wc . In this case, the tail is an algebraic tailT ~3.29! with
L51, q>2, andq8>2, and its exponent is given by~3.32!
and ~B11!. Second, the algebraic tail may arise from the
product of at least two elementary algebraic chainsS(g)[q,q8]

defined at the beginning of Sec. III D. Then, the exponentgT
of the tailT ~3.29! ~with L>2 andPl>1! is given by~3.33!.

After integration over the shapes of the end pointsLa and
Lb , the algebraic tail~3.29! in a P̃Wc diagram is not
canceled only if *D(Xa)A$ %

@Qa1( l ql #(Xa)Þ0 and

*D(Xb)A$ %

@Qb1( l ql8#
(Xb)Þ0. Since A

$ %
@Qa1( l ql #(Xa)

is a tensor of rankQa1( l51
L ql , *D(Xa)A$ %

@Qa1( l ql #(Xa)
may be nonzero only ifQa1( l51

L ql is even. The
details are given in Appendix C. Eventually, in
*D~Xa!*D~Xb!P̃Wc ~rab ,Xa ,Xb!, the first three possible tails
are 1/r 6,1/r 8,1/r 9, the first two tails correspond only to
L51,2, while the 1/r 9 tail comes from convolutions such as
FR6*FR6. Any tail 1/r g, with g an integer andg>9, may
appear.

F. Algebraic tails in the convolution chains

Next, we show that the interplay between the structure of
W and both the rotational invariance and the harmonicity of
the Coulomb potential ensures that the convolution chains
may decay only as 1/r 8, 1/r 10, or 1/r g, with g>11.

The order of the first nonanalytic term in theK~uku!’s is
given by the study of the algebraic tails that survive after
integration over the shapes of the root points in the diagrams
P̃Wc that contribute toH. This study is detailed in Appendix
C and the result is the following. Because of the integration
over the shapesX of all loops, the order of the first nonana-
lytic term in Ka,1

@m1#(uku) and Ki ,i11
@ni ,mi11#(uku) proves to be

greater than or equal toukum113 and ukuni1mi1113, respec-
tively, though the first nonanalytic term in the small-uku ex-
pansion ofH is only of order 3. The reasons for this result
are the following. First,W comes from the difference be-
tween the loop potential and the electrostatic potential, so
that in everyw@mi ,ni #(P i ,P i8), the derivatives of the Cou-
lomb potential are associated with the shapesX of both ar-
gumentsP i and P i8 . Second, after integration over the
shapesX, only the terms that are not canceled by rotational
invariance arguments remain. For instance, according to
~C29!,

Ka,1
@m1#

~k!5Aa,1
@m1#ukum11u~m1!1Ba,1

@m1#ukum11u~m1!12

1Sa,1,m1

m11u~m1!13
~ uku!1Õ~ ukum11u~m1!13!, ~3.34!

whereÕ~ukug23! denotes an analytic term of orderukug23 plus
terms of greater order. More precisely, as shown in Appen-
dix C, the singular terms in ~3.34! are of order
ukum11u(m1)13, ukum11u(m1)15, ukum11u(m1)16,... . Since
m1>1, the expansion~3.34! starts at least at the orderuku2
and the first nonanalytic term is at least of orderuku5. In other
words, *dr Ka,1

@m1#(ur u)50, the algebraic tails ofKa,1
@m1#(ur u)

are 1/r 61m11u(m1), 1/r 81m11u(m1), and 1/r N1m11u(m1) with
N>9 and theKa,1

@m1#(ur u)’s fall off at least as 1/r 8. Since

nI>1, the same mechanism holds forK
I 8,b
@nI # (k). Similarly, the

first nonanalytic term in the small-k expansion ofK
i 8,i11

@ni ,mi11#

3(k) is of order ukug23 with g>ni1mi1116 because, ac-
cording to~C39!,

K
i 8,i11

@ni ,mi11#
~k!5A

i 8,i11

@ni ,mi11#ukuni1mi111u~ni1mi11!

1B
i 8,i11

@ni ,mi11#ukuni1mi111u~ni1mi11!12

1•••1S
i 8,i11,ni ,mi11

ni1mi111u~ni !1u~mi11!13
~ uku!

1Õ~ ukuni1mi111u~ni !1u~mi11!13!. ~3.35!
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u(ni)1u(mi11)>u(ni1mi11), so that the first two terms in

the small-k expansion ofK
i 8,i11

@ni ,mi11#
(k) are indeed analytic. In

~3.35!, the ellipsis represents the possible analytic term of
order ni1mi111u(ni1mi11)14 in the case where
u(ni1mi11)14,u(ni)1u(ni11)13. Since mi>1 and
ni>1, the expansion~3.35! starts at least at the orderuku2 and
the first nonanalytic term is at least of orderuku7. The pos-

sible algebraic tails ofK
i 8,i11

@ni ,mi11#
(r ) are given in~C38! and

since the slowest tail is 1/r 61ni1mi111u(ni )1u(mi11), it falls
off at least as 1/r 10.

The first terms in the small-k expansion of a chain
CI~k;$mi%,$ni%! given by ~3.8! are derived from~3.34! and
~3.35!,

CI~k,$mi%,$ni%!5Aa,1
@m1#S )

i51

I21

A
i 8,i11

@ni ,mi11#DAI 8,b
@nI # ukuDCI

~$mi %,$ni %!

1S ( A•••ABA•••AD ukuDCI
~$mi %,$ni %!12

1o~ ukuDCI
~$mi %,$ni %!12! ~3.36!

where DCI
($mi%,$ni%) is given by ~3.16! and

(A•••ABA•••A is a notation for a sum of products involv-
ing I coefficientsAi 8,i11 and one coefficientBi 8,i11 ~with
i 85a,1,...,I 8 and i1151,...,I ,b!. SinceDCI

($mi%,$ni%) is
positive and even, the first two terms in the small-k expan-
sion of CI~k,$mi%,$ni%! are analytic and at least of order
ukuDCI

($mi %,$ni %) and ukuDCI
($mi %,$ni %)12, respectively. The first

singular term can only appear at the orderDCI
($mi%,$ni%)

13. SinceDCI
($mi%,$ni%)>2, the first nonanalytic term is at

least of orderuku5, namely, the convolutions decay at least as
1/r 8.

More precisely, the dimensionDCI
($mi%,$ni%) takes its

minimal valueDI ,min52 @namely, the small-k expansion of
CI~k,$mi%,$ni%! starts at the orderuku2# for the convolutions
with ni5mi1151 for all i51,...,I21 and (m1 ,nI) being
equal to one of the four values

~m151,nI51!, ~m152,nI51!, ~m151,nI52!,

~m152,nI52!. ~3.37!

For these convolutions, according to~3.34! and ~3.35!

CI~k,$mi%,$ni%!5S 1k2D
I

@Aa,1
@1#or@2#uku21Ba,1

@1#or@2#uku4

1Sa,1
~5!~ uku!1•••1Sa,1

~7!~ uku!1Sa,1
~8!~ uku!1Õ~ uku8!#

3@AI 8,b
@1#or@2#uku21BI 8,b

@1#or@2#uku41SI 8,b
~5!

~ uku!1•••1SI 8,b
~7!

~ uku!1SI 8,b
~8!

~ uku!1Õ~ uku8!#

3)
i51

I21

@Ai 8,i11
@1,1# uku21Bi 8,i11

@1,1# uku41•••1Si 8,i11
~7!

~ uku!1Si 8,i11
~8!

~ uku!1Õ~ uku8!#, ~3.38!

with the same notations as in~3.34! and~3.35!. In ~3.38!, we
have omitted the analytic terms in order to point out the
singular ones and we have simplified the notation of the
singular terms. The first three nonanalytic terms in the ex-
pansion of ~3.38! are of orderuku5, uku7, and uku8 and the
corresponding chains have algebraic tails decaying as 1/r 8,
1/r 10, 1/r 11,... .

The caseDCI
($mi%,$ni%)54 corresponds to two kinds of

chains, which prove to decay at least as 1/r 10. In the first
case,ni5mi1151 for all i51,...,I21 and (m1 ,nI) is equal
to one of the eight values

~3,1!,~4,1!,~3,2!,~4,2!,~1,3!,~1,4!,~2,3!,~2,4! ~3.39!

According to~3.34!,

Ka,1
@3#or@4#~k!5Aa,1uku41Ba,1uku61•••1Sa,1

~7!~ uku!1•••

1Sa,1
~9!~ uku!1Sa,1

~10!~ uku!1Õ~ uku10!, ~3.40!

where we have omitted the superscript@3# or @4# and the
analytic terms. Thus, according to~3.38! with Ka,1

@3#or@4#(k) in
place of Ka,1

@1#or@2#(k), the first three singular terms in
CI~k,$mi%,$ni%! are of orderuku7, uku9, anduku10, respectively.

In the second case,ni5mi1151 for all i51,...,I21, except
i 0, for which (ni0,mi011) is equal to~1,2!, ~1,3!, ~2,1!, ~3,1!,
or ~2,2!, while (m1 ,nL) is equal to one of the four values in
~3.37!. According to~3.35!

Ki 8,i11
@1,2#or@2,2#

~k!5Ai 8,i11uku41Bi 8,i11uku61•••1Si 8,i11
~7!

~ uku!

1•••1Si 8,i11
~9!

~ uku!1Õ~ uku9!, ~3.41a!

while

Ki 8,i11
@1,3#

~k!5Ai 8,i11uku41Bi 8,i11uku61•••1Ci 8,i11uku81•••

1Si 8,i11
~9!

~ uku!1Õ~ uku9!. ~3.41b!

According to ~3.38! with one Ki 8,i11
@1,1# (k) replaced by a

Ki 8,i11
@1,2#,@2,2#,or@1,3#(k) and~3.34! with m151,2, the first singular

terms inCI~k,$mi%,$ni%! are of orderuku7, uku9, uku10,... . In
both cases, in position space, the chain may decay as
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1/r 10,1/r 12,1/r g with g>13. As for the chains corresponding
to DCI

56, since the first two terms of the small-k expansion
of a chain are analytic@see ~3.36!#, these chains decay at
least as 1/r 12.

As a conclusion, the convolution chains of bondsW and
graphsK have algebraic tails decaying as 1/r 8, 1/r 10, 1/r 11,
and so on. SinceK involves algebraic tails 1/r 6, 1/r 8, 1/r 9,...,
according to~2.6!, the algebraic tails ofr (2)TQ(r ) are only
1/r 6, 1/r 8, 1/r 9, and 1/r g, with g>10.

As an introduction to next section, we notice that, since

*0
p8dt8e2 ik•X8(t8)ra,a8

(2)TQ(k,x,x8) has the same global rota-

tional invariance property asra,a8
(2)TQ(k,x,x8) and since they

coincide, up to ap factor, atk50, the same discussion as
that developed for the nonexchange part of the particle-
particle correlation can be applied to

(
p51

`

p (
p851

` E D~X!E D~X8!ra,p;a,p8
~2!T

~k,X,X8!E
0

p8
dt8

3e2 ik•X8~t8!

and the latter term proves to have its first singular term at
least at the orderuku3. Subsequently, according to the linear
response relation~4.27! of paper I, the induced charge den-
sity in the presence of an infinitesimal external charge decays
at least as 1/r 4. However, as shown in Sec. IV E, the induced
charge density has a faster falloff because of Coulomb
screening.

IV. CHARGE-CHARGE CORRELATION
AND INDUCED CHARGE DENSITY

A. Classical case

First, we investigate the classical screening mechanism
for the induced charge density in the presence of an external
infinitesimal charge. This mechanism is exhibited by a suit-
able reorganization of the resummed Mayer-Meeron dia-
grammatics for the classical system.

As recalled at the end of Sec. V C of paper I, the classical
prototype diagramsPcl are built with two kinds of bonds
FDH
cc (r i j ,a i ,a j )52b i jfDH(r i j ) and FR,DH(r i j ,a i ,a j )

5exp@2bijfDH(r i j )#211b i jfDH(r i j ), where b i j[
bea i

ea j
. ~We recall thatfDH has the same form asf with the

inverse Debye screening lengthkDH in place of k,
kDH
2 54pb(aea

2ra .! Moreover, theP
cl diagrams must satisfy

the following excluded-convolution rule: there cannot exist
convolution chainsFDH

cc
*FDH

cc . Let us introduce two kinds of
root points. A root point is called a ‘‘Coulomb-root’’ point if
it is involved in one and only oneFDH

cc bond and it is called
a ‘‘non-Coulomb-root’’ point in the other cases, namely, if it
is involved either in oneFR,DH bond or in at least two bonds,
whatever they are. The sum of thePcl diagrams whose both
root points are non-Coulomb-root points is denoted by
haaab
nn (r ). By definition of the non-Coulomb root points, the

classical Ursell functionhaaab
cl (r ) can be decomposed as the

sum

haaab
cl ~ra2rb!5FDH

cc ~ra2rb ,aa ,ab!1haaab
nn ~ra2rb!

1(
aa8

ra
a8 E dra8FDH

cc ~ra2ra8 ,aa ,aa8!ha
a8ab

nn
~ra82rb!

1(
ab8

ra
b8 E drb8haaa

b8
nn

~ra2rb8!FDH
cc ~rb82rb ,ab8 ,ab!

1(
aa8

ra
a8 E dra8(

ab8
ra

b8 E drb8FDH
cc ~ra2ra8 ,aa ,aa8!ha

a8a
b8

nn
~ra82rb8!FDH

cc ~rb82rb ,ab8 ,ab!. ~4.1!

Equation~4.1! can be written in a more compact form that
involves only one convolution~where the convolution oper-
ates on the position variable! as
raa

rab
@haaab

cl ~r !2FDH
cc ~r ,aa ,ab!#

5raa
rab(

aa8
(
ab8

@daa ,aa8
d~r !

1ra
a8
FDH
cc ~r ,aa ,aa8!#* ha

a8a
b8

nn
~r !* @da

b8 ,ab
d~r !

1ra
b8
FDH
cc ~r ,ab8 ,ab!#

5 (
aa8 ,ab8

ra
a8
ra

b8
SDH
cl ~r ,aauaa8!* ha

a8a
b8

nn
~r !*SDH

cl ~r ,abuab8!,

~4.2!

where

SDH
cl ~ra2ra8 ,aauaa8![daa ,aa8

d~ra2ra8!1raa

3FDH
cc ~ra2ra8 ,aa ,aa8! ~4.3!

is the Debye approximation of the densityScl(ra
2ra8 ,aauaa8) of particles of speciesaa in the polarization
cloud around a particle of speciesaa8 , Scl(ra2ra8 ,aauaa8)
[daa ,aa8

d(ra2ra8)1raa
haaa

a8
cl

(ra2ra8).

The charge density of the system made by a particle of
species aa8 and its polarization cloud is(aa

eaa
Scl(ra

2ra8 ,aauaa8) and the Fourier transform of its Debye approxi-
mation reads
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(
aa

eaa
SDH
cl ~k,aauaa8!5ea

a8F124pb
~(aa

eaa
2 raa

!

kDH
2 1k2

G
5ea

a8
k2

kDH
2 1k2

. ~4.4!

The Debye approximation satisfies the screening rule~1.2! of
paper I: the net charge of the polarization cloud around a
charge of the medium exactly compensates this charge.

Moreover, the charge-charge correlation defined in
~4.30! of paper I can be written as Ccl(r )
5(a

a8
ea

a8
ra

a8
(aa

eaa
Scl(r ,aauaa8) and the Fourier transform

of its Debye approximation is equal to

CDH
cl ~k!5

kDH
2

4pb

k2

kDH
2 1k2

. ~4.5!

The small-k expansion ofCDH
cl ~k! starts as~1/4pb!k2, so

that, according to the classical response relation~4.36! of
paper I, the total Debye induced charge*dr(aeara,DH

ind ~r ! in
the presence of an infinitesimal external chargedq is exactly
opposite todq. In other words,CDH

cl (r ) also satisfies the
basic screening rule~1.3! of paper I.

The Fourier transform of the classical charge-charge cor-
relationCcl~r ! can be decomposed as the sum of the contri-
butions from the Debye correlationraa

rab
FDH
cc (r ,aa ,ab)

and from raa
rab

@haaab
cl (r )2FDH

cc (r ,aaab)# given by ~4.2!.

After exchange of the order of summations overaa and
aa8 , on one hand, andab and ab8 , on the other hand, the
contributions~4.4! factor out and

Ccl~k!5CDH
cl ~k!1S k2

kDH
2 1k2D 2

3 (
aa8 ,ab8

ea
a8
ea

b8
ra

a8
ra

b8
ha

a8a
b8

nn
~k!. ~4.6!

The small-k expansion ofha
a8a

b8
nn

(uku) is an analytic function

of k2 because all thePcl diagrams decay exponentially.
hnn~k50! is finite and the small-k expansion of
Ccl~k!2CDH

cl ~k! starts only at the orderuku4. Eventually, the
first term in the small-k expansion ofCcl~k! is given by the
corresponding term inCDH

cl ~k!, so that, according to~4.5!,
both the Debye approximated correlation and the exact clas-
sical correlation obey the Stillinger-Lovett sum rule~4.42! of
paper I, which is the classical version of the general sum rule
~1.3! of paper I. We note that a consequence of the previous
discussion is that any approximated particle-particle correla-
tion that is devised by replacinghnn by an approximated
function in the relation~4.1! satisfies the Stillinger-Lovett
sum rule by construction.

B. Basic mechanisms in the quantum case

In the quantum case, the charge-charge correlationCQ~k!
can be decomposed into the sum of two terms: the Fourier
transform of a short-ranged contribution given by~4.29! and
~5.14! of paper I,

(
a

ea
2ra1 (

aa ,ab
eaa

eab
raaab

~2!TQuexch~k!

5
k2

4pb
1E dxaeaa

2 par~xa!E
0

pa
dt@e2 ik•Xa@P~t!#21#,

~4.7!

wherek254pb*dxaeaa
2 pa

2r(xa) and the contribution from

the correlations between particles that are not exchanged un-
der the same cyclic permutation,

CQunonexch~k![ (
aa ,ab

eaa
eab

raaab
~2!TQunonexch~k!. ~4.8!

In Sec. IV C we will show that the partCQunonexch~r ! of the
charge-charge correlation decays only as 1/r 10, whereas the
particle-particle correlation decays as 1/r 6. In Fourier space,
this means that the order of the first nonanalytic term in the
small-k expansion ofCQ~k! is increased by 4 with respect to
the corresponding order forraaab

(2)TQ(k). The basic mecha-

nisms are of two kinds.
First, in the loop system as in the classical particle system,

the sumP1Fccr*P ~where the convolution operates on
the loop-position variable andr is the density of the inter-
mediate point of the convolution! gives a contribution to
CQunonexch~r !, the Fourier transform of which is proportional
to k23*dxa8*dxbea

a8
pa8r(xa8)eab

pbr(xb)P(k,xa8 ,xb). In-

deed, in position space, the contribution reads

(
aa

(
ab

eaa
eab

papbE D~Xa!r~Xa!E D~Xb!r~Xb!

3FP~La ,Lb!1E dLa8r~La8!

3Fcc~La ,La8!P~La8 ,Lb!G
5E dxaeaa

pa E dxbeab
pbr~xb!E dRa8E dxa8

3r~xa8!SD~Ra2Ra8 ,xauxa8!P~La8 ,Lb!, ~4.9!

whereSD(Ra2Ra8 ,xauxa8) is the loop-cloud density around
a loopLa8 in some kind of ‘‘Debye’’ approximation where
h~La ,Lb! is replaced byF

cc~La ,Lb!. The loop-cloud den-
sity around a loopLa8 is defined by analogy with~4.3!,
S(Ra2Ra8 ,xauxa8)[dxa ,xa8

d(Ra2Ra8)1r(xa)h(La ,La8),

and

SD~Ra2Ra8 ,xauxa8!5dxa ,xa8
d~Ra2Ra8!

1r~xa!F
cc~La ,La8!. ~4.10!

As in the classical case@see Eq.~4.4!#, the total charge of the
loop and its Debye polarization cloud is zero and, after av-
eraging over the shapes of the loops, the charge density of
this system satisfies
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E dxaeaa
paSD~k,xauxa8!5ea

a8
pa8E dxaFdx

a8 ,xa
2
4pbeaa

2 pa
2r~xa!

k21k2
G5ea

a8
pa8

k2

k21k2
. ~4.11!

The structure of the Fourier transform of the convolution~4.9! is very similar to that of the convolution
(aa

eaa
Scl(r ,aauaa8)*Pcl(r ,aa8uab). After exchange of the integrations overxa andxa8 , according to~4.11!,

E dxaeaa
par~xa!E dxbeab

pbr~xb!E dxa8SD~k,xa8uxa!P~k,xa8 ,xb!

5
k2

k21k2
3E dxa8ea

a8
pa8r~xa8!E dxbeab

pbr~xb!P~k,xa8 ,xb!, ~4.12!

because r(xa)SD(k,xa8uxa)5r(xa8)SD(k,xauxa8). An
analogous mechanism takes place in the case of the induced
charge density and will be detailed in Sec. IV F.

The other partial-screening mechanism involved in the
falloff from the exponent 6 to the exponent 10 lies in the fact
that the diagrams that have the structureFcmr*P and
Fcmr*P* rFmc decay as 1/r 8 and 1/r 10, respectively. In-
deed, the Fourier transforms of these diagrams are propor-
tional to an analytic function ofk @namely,f~k!# times

E D~Xa!r~xa!E D~Xb!r~xb!@e
ik•Xa21#P~k,xa ,xb!

~4.13!

and

E D~Xa!r~xa!E D~Xb!r~xb!@e
ik•Xa21#

3@e2 ik•Xb21#P~k,xa ,xb!, ~4.14!

respectively. As in the case of the particle-particle correla-
tion, the Dyson equation~2.6! can be used. According to
Appendix C, rotational invariance arguments and the struc-
ture ~3.29! of the algebraic tailsT of the P̃ diagrams imply
that, if P̃ is aP̃Wc diagram, which decays at least as 1/r 6, the
‘‘dressed’’ diagrams~4.13! and~4.14! fall off at least as 1/r 8

and 1/r 10, respectively, and the same is true forH. If P̃ is a
chain made withI11 diagrams contributing toK linked by I
bondsW, the discussion about the large-distance behavior of
the chains can be adapted from that given in Sec. III B for
the particle-particle correlation and the dressed diagrams
~4.13! and ~4.14! also prove to decay at least as 1/r 8 and
1/r 10, respectively, in the case of the above convolution
chains.

Eventually, a suitable reorganization of the diagrams
analogous to that performed in the classical case@see~4.2!#
is introduced in next subsection. It leads to integral relations
that allow one to show thatCQ(r ) behaves as 1/r 10.

C. Integral relations

By analogy with the classical case described in Sec. IV A,
we introduce two kinds of root points with the same termi-
nology as above. In the quantum resummed Mayer-like dia-
grams, the excluded-convolution rules lead to the following
definitions. A so-called Coulomb-root pointLa in a P dia-

gram is a root point that is involved either in one and only
oneFcc bond or in one and only one bondFcm~La ,P i!. A
non-Coulomb-root pointLa is involved either in one bond
FR , or F

mc~La ,P i!, or in at least two bonds, whatever they
are.

The basic integral relations that are useful for our purpose
involve sums of graphs as follows. The loop Ursell function
h~La ,Lb!, which is the sum of theP diagrams@as defined
in ~5.10! of paper I# may be decomposed into
hn2~La ,Lb!1hc2~La ,Lb!, whereh

n2~La ,Lb! is the sum
of theP diagrams whereLa is a non-Coulomb root point,
whereasLb is of any kind~Coulomb-root or non-Coulomb
root point! andhc2 is the sum of theP diagrams, whereLa
is a Coulomb root point andLb is a root point of any kind.
With these definitions,hc2 may be written as the sum of four
contributions: the two diagrams with a single bond
Fcc~La ,Lb! and Fcm~La ,Lb!, and the sums of the dia-
grams@Fccr*P#~La ,Lb! and @Fcmr*P#~La ,Lb! in which
La is involved in only one bondFcc(La ,La8) or
Fmc(La ,La8) and whereLa8 is linked toLb by a subdia-
gram that is also aP diagram with respect to the root points
La8 andLb . According to the excluded-convolution rules, if
La8 is linked toLa by a bondFcc(La ,La8), La8 is a non-
Coulomb root point for the subdiagramP(La8 ,Lb) and the
corresponding sum of diagrams linkingLa toLb is equal to
the convolutionr(xa8)F

cc(La ,La8)* h
n2(La8 ,Lb). If La8 is

linked toLa by a bondF
cm(La ,La8), La8 is a root point of

any kind for the subdiagramP(La8 ,Lb), and the corre-
sponding sum of diagrams linkingLa to Lb is equal to the
convolution r(xa8)F

cm(La ,La8)* h(La8 ,Lb). Eventually,
we get an integral relation involvingh andhn2,

h~La ,Lb!5hn2~La ,Lb!1Fcc~La ,Lb!

1E dLa8r~La8!Fcc~La ,La8!hn2~La8 ,Lb!

1Fcm~La ,Lb!1E dLa8r~La8!

3Fcm~La ,La8!h~La8 ,Lb!. ~4.15!

This ‘‘left-dressing’’ relation can be written in a more com-
pact form by using the short notationgr* , wherer is the
density of the intermediate point of the convolution,
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h5Fcc1Fcm1hn21Fccr* hn21Fcmr* h

5Fcc1Fcm1SD* h
n21Fcmr* h. ~4.16!

SD is defined in ~4.10! and we use the convention that
@SD*F

mc#(La ,Lb) 5 *dLa8SD(La8uLa)F
mc(La8 ,Lb),

while @Fcm*SD#(La ,Lb)5*dLa8F
cm(La ,La8)

3SD(La8uLb). Of course, there also exists the symmetric
relation of~4.16!. With the short notation*rg, wherer is the
density of the intermediate point of the convolution, the
‘‘right-dressing’’ relation betweenh andh2n reads

h5Fcc1Fmc1h2n*SD1h* rFmc. ~4.17!

By iterating the argument that leads to~4.17!, we get an
integral relation betweenhn2 andhnn, wherehnn~La ,Lb! is
the sum of theP diagrams where bothLa andLb are non-
Coulomb root points. The right-dressing relation between
hn2 andhnn is

hn2~La ,Lb!5hnn~La ,Lb!1Fmc~La ,Lb!

1EdLb8r~Lb8!hnn~La ,Lb8!Fcc~Lb8 ,Lb!

1EdLb8r~Lb8!hn2~La ,Lb8!Fmc~Lb8 ,Lb!.

~4.18!

With short notations,~4.18! reads

hn25Fmc1hnn*SD1hn2* rFmc ~4.19!

and the symmetric~left-dressing! relation is

h2n5Fcm1SD* h
nn1Fcmr* h2n. ~4.20!

D. Algebraic tails of the charge-charge correlation

The diagrams contributing toh~La ,Lb! can be reorga-
nized by applying the right-dressing relation~4.17! to h in
the termFcmr* h of the left-dressing formula~4.16! and by
applying the right-dressing relation~4.19! to hn2 in
SD* h

n2. We get

h5h~A!1h~B!1h~C!1h~D !1h~E! , ~4.21!

with the definitions

h~A!5Fcc1Fmc1Fcm1Fccr*Fmc1Fcm* rFcc1Fcm* rFmc

5Fcc1SD*F
mc1Fcm*SD1Fcm* rFmc, ~4.22!

h~B!5SD* h
nn*SD , ~4.23!

h~C!5SD* h
n2* rFmc, ~4.24!

h~D !5Fcmr* h2n*SD , ~4.25!

h~E!5Fcmr* h* rFmc. ~4.26!

In the followingC (L)
Q (r ), with L5A,...,E, denotes the con-

tribution from h(L)~La ,Lb! to the nonexchange part
CQunonexch(r ) of the quantum charge-charge correlation func-
tion CQ(r ) given by ~4.8!.

The diagrams inh(A) involve only exponentially decaying
bonds andh(A)~La ,Lb! decays faster than any inverse
power law of the distanceuRa2Rbu. This result remains valid
after integration over the shapes of the root points and
C (A)

Q (r ) has a fast falloff.
According to the screening property~4.12! of the Debye

loop cloudSD , the Fourier transform ofC (B)
Q (r ) reads

C~B!
Q ~k!5S k2

k21k2D
2E dxa8ea

a8
pa8r~xa8!

3E dxb8ea
b8
pb8r~xb8!hnn~k,xa8 ,xb8!. ~4.27!

According to Sec. III,*D~X1!*D~X2!P~P 1,P 2! decays at
least as 1/r 6, 1/r 8, 1/r 9,..., so that the first nonanalytic terms
in *D(Xa)r(xa)*D(Xb)r(xb)h

nn(k,xa8 ,xb8) are of order
uku3, uku5, uku6,... . Henceforth, the first nonanalytic terms in
C (B)

Q ~k! are of orderuku7, uku9, uku10,..., andC (B)
Q (r ) decays as

1/r 10, 1/r 12, 1/r 13,... .
By the same mechanism of Debye screening~4.12!, the

Fourier transform ofC (C)
Q (r ) reads

C~C!
Q ~k!5

k2

k21k2
E dxa8ea

a8
pa8r~xa8!E dxb8ea

b8
pb8

3r~xb8!hn2~k,xa8 ,xb8!E
0

pb8dt

3@eik•Xb8~t!21#
k2

k21k2
. ~4.28!

The decomposition~2.6! of h into H and convolution chains
of graphsK linked by bondsW can be performed forhn2,
which is a partial sum of the graphs contributing toh,

hn2~k,xa ,xb!5Hn2~k,xa ,xb!

1(
I51

` E dx1•••dx Idx18•••dx I8

3Kn2~k,xa ,x1!W~k,x1 ,x18!

3K~k,x18 ,x2!•••W~k,x I ,x I8!K~k,x I8 ,xb!.

~4.29!

The functions relative tohn2 have the same notations as
those corresponding toh, except that they carry an extra
supercriptn2. According to Appendix D,C (C)

Q and C (D)
Q

decay as 1/r 10, 1/r 12, 1/r 13,... .
The Fourier transform of the contributionC (E)

Q (r ) from
h(E) given by ~4.26! reads

C~E!
Q ~k!5E dxa8ea

a8
pa8r~xa8!E dxb8ea

b8
pb8r~xb8!E

0

pa8dt

3E
0

pb8dt8
k2

k21k2
@e2 ik•Xa8~t!21#h~k,xa8 ,xb8!

3@eik•Xb8~t8!21#
k2

k21k2
. ~4.30!

According to Appendix D,C (E)
Q (r ) decays as 1/r 10, 1/r 11,... .
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E. Algebraic tails of the induced charge

First, we notice that, according to~4.27! of paper I, the
Fourier transform of the induced charge density in the pres-
ence of an infinitesimal external charge distributiondq~r !
can be decomposed as

1

dq~k! (
a

eara
ind~k!52

k2~k!

k2
1(

a
eara

indunonexch~k!,

~4.31!

with the functionk2~k! defined as

k2~k!

4pb
[E dx ea

2pr~x!E
0

p

dt eik•X~t! ~4.32!

andk2~k50!5k2. The nonexchange part is

(
a

eara
indunonexch~k![2bvC~k!E dxaeaa

par~xa!

3E dxbeab
r~xb!

3E
0

pb
dt eik•Xb~t!h~k,xa ,xb!.

~4.33!

The value obtained by replacingh by a single bondFcc in
~4.33! is (aeara

indunonexch,D(k)5k2k2(k)/@k2(k21k2)#, so
that

2
k2~k!

k2
1(

a
eara

indunonexch,D~k!

52
k2~k!

k21k2
5211O~ uku2!. ~4.34!

The diagramFcc ensures that the induced charge density
exactly screens the infinitesimal external charge, though it
does not contribute alone to the term of orderk2 in CQ~k!, as
discussed in Sec. IV F.

The contribution from the convolutionP*SD to the Fou-
rier transform of the charge-charge correlationCQ~k! starts
at the orderuku2 and its contribution to the nonexchange part
of the induced charge density(aeara

indunonexch~k! starts at the
order zero. Indeed, this contribution reads

24pb

k2 E dxaeaa
par~xa!E dxb8ea

b8
pb8r~xb8!P~k,xa ,xb8!

3H 1

pb8
E
0

pb8dt eik•Xb8~t!2
k2~k!

k21k2 J . ~4.35!

The term in curly brackets in~4.35! can be written as the

sum of (1/pb8)*0
pb8dt exp@ik•Xb8(t)21# and 12@k2~k!/

~k21k2!#. Thus the contribution~4.35! is finite whenuku goes
to zero, whereas the screening rule~1.3! of paper I is already
ensured by theFcc part of h. In fact, this constant term is
compensated by the contribution from the diagramP*rFmc

and we rather consider the convolutionP1P* rFcc

1P* rFmc5P*S D
! , with

SD
! ~Rb2Rb8 ,xbuxb8![d~Rb2Rb8!dx

b8 ,xb

1r~xb!F
cc~Lb8 ,Lb!

1r~xb!F
mc~Lb8 ,Lb!. ~4.36!

SD
! has a property similar to~4.11!

E dxbeabE0
pb
dt eik•Xb~t!SD

! ~k,xbuxb8!

5ea
b8E0pb8dt eik•Xb8~t!F12

k2~k!

k21k2G . ~4.37!

According to~4.32!, the function~4.37! starts at the orderk2

when uku goes to zero. After exchange of the order of the
summations overxb andxb8 , the contribution fromP*S! to
(aeara

indunonexch~k! reads

24pb

k2 E dxaeaa
par~xa!E dxbeab

r~xb!E
0

pb
dt e2 ik•Xb~t!P~k,xa ,xb8!SD

! ~k,xb8uxb!

52
4pb

k2 F12
k2~k!

k21k2G E dxaeaa
par~xa!E dxb8ea

b8
r~xb8!E

0

pb8dt e2 ik•Xb8~t!P~k,xa ,xb8!, ~4.38!

becauser(xb)SD* (k,xb8uxb)5r(xb8)SD* (k,xbuxb8).
In order to study both the first term and the first nonana-

lytic term in(aeara
indunonexch~k! by using the property~4.38!,

we introduce a decomposition ofh that is different from that
exhibited in~4.21! for the contribution toCQ~k!. In a recur-
rence scheme, we write the right-dressing relation~4.17! for

h, then we use it again forh* rFmc in ~4.17!, and we get

h5Fcc1SD*F
mc1Fmc* rFmc1h2n*SD

!

1h2n* rFcc* rFmc1h* rFmc* rFmc. ~4.39!
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Then we apply the left-dressing relation~4.20! to h2n
*S D

! ,
h2n

* rFcc
* rFmc, andh* rFmc

* rFmc in ~4.39! with the re-
sult

h5Fcc1h~A!!1h~B!!1h~C!! , ~4.40!

with

h~A!!5SD* $Fmc1Fmc* rFmc%1Fcm* $SD
! 1rFmc* rFmc%

1Fcm* rFcc* rFmc, ~4.41!

h~B!!5SD* $hnn* @SD
! 1rFcc* rFmc#1h2n* rFmc* rFmc%,

~4.42!

h~C!!5Fcm* $h2n* @SD
! 1rFcc* rFmc#1h* rFmc* rFmc%.

~4.43!

SD andSD
! have the properties~4.12! and~4.38!, respec-

tively, while, if g~k,X! andg(k,Xa8 ,Xb8) are invariant under
global rotations of their arguments,*D~X!Fcm~k,X!g~k,X!
and *D(Xa8)*D(Xb8)F

cm(k,Xa8)g(k,Xa8 ,Xb8)F
mc(k,Xb) start

at least asuku2, whenuku goes to zero. Henceforth, the contri-
bution from h(A!)1h(B!)1h(C!) to (aeara

ind~k!/
4pbvC~k!dq~k! is of order uku4 and the constant term in
(aeara

ind~k!/dq~k! is determined byFcc.
The diagrams inh(A!) decay faster than any inverse power

law and so do their contributions to(aeara
ind~k!. The discus-

sion of the algebraic tails of the contributions fromh(B!) and
h(C!) is very similar to that ofh(B) , on one hand, andh(C)
andh(D) , on the other hand.

According to~4.12!, the Fourier transform of the contri-
bution to(aeara

ind~k!/dq~k! from h(B!) reads

2
4pb

k2
k2

k21k2 E dxa8ea
a8
pa8r~xa8!E dxb8ea

b8
r~xb8!

3$G 1
nn~k,xa8 ,xb8!1G 2

2n~k,xa8 ,xb8!%, ~4.44!

where, according to~4.38! and to the property that
*dx8ea8p8r(x8)Fcm~k,x,x8!52pea@k2~k!2k2#/~k21k2!,

G 1
nn~k,xa8 ,xb8!5H F12

k2~k!

k21k2G E0pb8dt e2k•Xb8~t!

1
k2~k!@k2~k!2k2#

~k21k2!2 J hnn~k,xa8 ,xb8!

~4.45!

and

G 2
2n~k,xa8 ,xb8!5

k2~k!@k2~k!2k2#

~k21k2!2 E
0

pb8dt

3@e2 ik•Xb8~t!21#h2n~k,xa8 ,xb8!.

~4.46!

When uku goes to zero,G 1
nn(k,xa8 ,xb8) and G 2

2n(k,xa8 ,xb8)
are proportional to k2 times hnn(k,xa8 ,xb8) and
@exp(ik•Xb8)21#h2n(k,xa8 ,xb8), respectively, because of
the dressing by SD

! and rFcc
* rFmc. Moreover,

*D(Xa)*D(Xb)h
nn(k,xa8 ,xb8) falls off at least as 1/r 6,

while *D(Xa)*D(Xb)@exp(2ik•Xb8)21#h2n(k,xa8 ,xb8)
decreases at least as 1/r 8, according to
~4.13!. Thus *D(Xa)*D(Xb)G 1

nn(k,xa8 ,xb8) and
*D(Xa)*D(Xb)G 2

2n(k,xa8 ,xb8) decay at least as 1/r 8 and
1/r 10, respectively, and the same is true for their contribu-
tions to ~4.44!.

The Fourier transform of the contribution to
(aeara

ind~k!/dq~k! from h(C!) reads

2
4pb

k2 E dxa8ea
a8
pa8r~xa8!E dxb8ea

b8
r~xb8!E

0

pa8dt

3@eik•Xa8~t!21#$G 1
2n~k,xa8 ,xb8!1G 2~k,xa8 ,xb8!%,

~4.47!

where the definitions ofG 1
2n and G 2 are similar to those

of G 1
nn and G 2

2n, respectively. @exp(ik•Xa8)
21#G 1

2n(k,xa8 ,xb8) and @exp(ik•Xa8)21#G 2(k,xa8 ,xb8)
are proportional tok2 times @exp(ik•Xa8)21#h2n and
@exp(ik•Xa8)21#@exp(2ik•Xb8)21#hnn, respectively. Ac-
cording to ~4.13! and ~4.14!, after integration overXa and
Xb , the inverse Fourier transforms of the latter functions
decay as 1/r 8 and 1/r 10, respectively, and~4.47! has similar
algebraic tails.

F. Second moments

We make a comment about the first term in the small-k
expansion ofCQ~k!. Let us call the ‘‘Debye’’ contribution to
CQunonexch~k! the sum

CD
Qunonexch~k![E dxaeaa

par~xa!E dxbeab
pbr~xb!

3Fcc~k,xa ,xb!

52
k2

4pb

k2

k21k2
. ~4.48!

According to~4.7! and ~4.8!,

CQ~k!5
k2

4pb

k2

k21k2

1E dxaeaa
2 par~xa!E

0

pa
dt@e2 ik•Xa@P~t!#21#

1E dxaeaa
par~xa!E dxbeab

pbr~xb!

3@h~k,xa ,xb!2Fcc~k,xa ,xb!#, ~4.49!

where the first term on the right-hand side is equal to
(aea

2[ra1r aa
(2)TQuexch~k50!#1CD

Qunonexch~k!, the second
term is merely(aea

2[r aa
(2)TQuexch~k!2r aa

(2)TQuexch~k50!#, and
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the third term comes from the interactions between particles
that are not exchanged under the same cyclic permutation.

According to the previous discussion, only the part
Fcc1Fcm

* rFmc1Fcmr* h* rFmc in the integral relation
~4.21! contributes at the orderk2 in the third term of~4.49!.
Indeed, after integration over the shapes of the root points,
[SD*F

mc] ~k! and [Fcm
*SD] ~k! are proportional tok2 times

*D(Xa8)r(xa8)@exp(ik•Xa8)21#f(k), while the structures of
C (B)

Q , C (C)
Q or C (D)

Q , andC (E)
Q are given by~4.27!, ~4.28!,

and~4.30!, respectively. Rotational invariance arguments im-
ply that all these contributions, exceptC (E)

Q , start at the order
uku4, whenuku goes to zero, whileC (E)

Q starts only at the order
uku2. In fact, after applying the left-dressing relation~4.16! to
h in the termFcmr* h* rFmc of ~4.49! and then the right-
dressing relation~4.19! to hn2 in Fcmr* h

n2
* rFmc, after

taking into account rotational invariances, only
Fcmr* h

nn
* rFmc contributes at the orderuku2 to C (E)

Q . Thus
the only terms that survive at the orderuku2 in the integral
relation ~4.49! are

CQ~k! ;
uku→0

k2

4pb
1k2H 2 1

6 E dx ea
2pr~x!(

l52

pa

~xl2x1!
2

1 1
3 E dx ea

2r~x!E
0

p

dtE
0

p

dt8@X~t!•X~t8!#J
1 1

3 E dxaeaa
par~xa!E dxbeab

pbr~xb!E
0

pa
dt

3E
0

pb
dt8@Xa~t!•Xb~t8!#hnn~k50,xa ,xb!.

~4.50!

Equation~4.50!, which originates from the Mayer-like dia-
grammatics, and Eq.~4.40! of paper I, which is derived from
the external screening equation~1.3! and the linear response
~4.32!, are different expressions of the second moment of the
charge-charge correlation. The second contribution in curly
brackets on the right-hand side of~4.50! contains a term of
order\2 (pa5pb51), a term of order\ exp~2G12/\! ~pa51
andpb52!, a term of order exp~2G22/\! (pa5pb52), and
so on. Eventually, at the orderuku2, CQ~k! involves contribu-
tions from bothraaaa

(2)TQuexch and raaab
(2)TQunonexch and the only

terms inh that contribute to the term of orderuku2 in CQ~k!
areFcc, Fcm

* rFmc, andFcm
* rhnnr*F

mc.
However, as shown in Sec. IV E,Fcc contributes alone to

the constant term in(aeara
ind~k!, while Fcm

*S D
! and

Fcm
* rhnn*S D

! contribute at the greater orderuku2. In other
words, the contributions to(aeara

ind~k50! from Fcm
* rFmc

andFcm
* rhnnr*F

mc, both of which contribute toCQ~k! at
the order uku2, are compensated by the contributions to
(aeara

ind~k50! from Fcm
*SD and Fcm

* rhnn*SD , respec-
tively, both of which contribute toCQ~k! only at the order
uku4. Fcm

* rFmc and Fcm
*SD are both contained inh(A) ,

while Fcm
* rhnn*F

mc appears inh(E) when the left- and
right-dressing relations~4.16! and ~4.19! are used and
Fcm

* rhnn*SD arises inh(D) when the left-dressing relation
~4.20! is inserted into it.

Subsequently, in order to devise an approximation forh
that satisfies the screening rule~1.3! of paper I, we must

include the diagramFcc, which ensures this property by it-
self, and if we take a diagramP into account, we must add
other ‘‘dressing’’ diagrams, so that any spurious contribution
to (aeara

ind~k50! should not appear. If we include a diagram
Pnn, the root points of which are non-Coulomb root points,
then we must take the whole set of graphsSD*Pnn

*S D
! into

account. If we consider a diagramFcmr*P2n,
Fcmr*P2n

*F
cc, or Fcmr*P2n

*F
mc, we must in fact con-

sider the whole setFcmr*P2n
*S D

! . If we add a diagram
Pn2

* rFmc, we must add the whole setSD*Pn2
* rFmc. We

notice that, in all cases, every diagram of the dressed set has
the same order inr~L! because*dx r(x)Fcc~k,x,x8! and
*dx r~x!Fcm~k,x,x8! are of order zero inr~L!.

V. COMPARISON WITH SCREENING
IN OTHER FORMALISMS

A. Correlation in the chain approximation

A more microscopic approach than that of the mean-field
models can be investigated by means of formalisms in which
the linear response theory gives the relation between the in-
duced charge density and some kind of charge-charge corre-
lation function. As recalled in paper I, in classical statistics,
it is the charge-charge correlation~4.30! itself that is in-
volved @see ~4.36!#. In quantum mechanics, the linear re-
sponse theory~4.34! relates the static induced charge density
to the zero-frequency component of the time-ordered charge-
charge correlation function in imaginary timeCT~r ,s!. In the
classical case, when the static structure factor is approxi-
mated by

SDH,aa85da,a8rad~r !1rara8~2beaea8!fDH~r !,
~5.1!

wherefDH~r !5exp~2 kDHr !/r andkDH is the Debye-Hu¨ckel
screening length, the corresponding approximated induced
charge density given by the classical linear response~4.36! is
the same as in the linearized mean-field Debye-Hu¨ckel
model. From the diagrammatic point of view, this means that
the Debye-Hu¨ckel theory can be retrieved by approximating
the Ursell function by one graph, namely, the graph that
contains only one resummed bond obtained by chain sum-
mation~without any exponentiation!. More generally, after a
systematic resummation of the Coulomb divergencies has
been performed and has introduced a chain potential~as ex-
plained in Sec. VI of paper I!, we call a ‘‘chain approxima-
tion’’ an approximation in which the basic object of the dia-
grammatics~Ursell function or effective potential associated
with the proper polarization! is calculated by retaining only
the diagram with one ‘‘linearized’’ bond equal to the chain
potential.

In the loop formalism, if we do not make any hypothesis
aboutra,p~X! ~which contributes to the part of the correla-
tion function due to the exchange!, a chain approximation for
the loop Ursell function@see~3.1!# is to retain only the sum
of the four properly dressed diagrams that are built from the
four linearized bondsFcc, Fmc, Fcm, or Fmm @see the com-
ment before~6.16! in paper I#. According to Sec. IV F, the
dressed diagrams are, respectively,Fcc, SD*F

mc, Fcm
*S D

! ,
and(D*F

mm
*( D

! . The corresponding chain structure factor
Slinearized chain~L,L8! is given by ~6.10! of paper I, where,
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according to ~5.28! and ~6.16! of paper I,
r~L!r~L8!hlinearized chain~L,L8! may be written as fast-
decaying terms plus the convolution

E dx1r~x1!E dx2r~x2!(D~L,L1!*

3@2bea1
ea2

f linearized chain#~L1 ,L2!*SD
! ~L2 ,L8!,

~5.2!

with the linearized chain potential

2bea1
ea2

f linearized chain5Fcc1Fmc1Fcm1Fmm

52bea1
ea2

felect1W.

In the RPA, the proper polarizationL* of the standard
perturbation formalism is approximated by its simplest
value, namely, its value for an ideal gasL0. The effective
potential URPA,aa8

eff (r ,n) proves to be equal to
beaea8fRPA~r ,n! @see~6.3! and ~6.12! of paper I# and the
correlation function is derived from the latter objects through
the relation~6.9! of paper I,

SRPA,aa8~k!5da,a8 (
n52`

1`

La
0~k,n!1 (

n52`

1`

La
0~k,n!

3~2beaea8!fRPA~k,n!La8
0

~k,n!. ~5.3!

Though algebraic tails appear in the chain potentials,
these tails give a short-ranged contribution to the induced
charge density in the chain approximation. In the loop for-
malism, the fast decay of the induced charge density corre-
sponding tohlinearized chain~L,L8! ~5.2! through the linear re-
sponse~4.27! of paper I is enforced by the same mechanism
as that shown in~2.2!. In the RPA, the induced charge den-
sity @see~6.6! of paper I! is

(aearRPA,a
ind ~k!

dq~k!
5

4pb(aea
2La

0~k,n50!

k224pb(aea
2La

0~k,n50!
~5.4!

and the corresponding total potential created by a point
chargedq, VRPA

tot ~r !5(dq/beaea8)URPA
eff ~r ,n50!, is equal to

the RPA chain potential

VRPA
tot ~r !5dqfRPA~r ,n50!. ~5.5!

At zero temperature the first derivative ofL0~k,n50! is in-
finite at uku52kF , because of the sharpness of the Fermi
surface for noninteracting particles, and the so-called Friedel
algebraic oscillations appear: at large distances the induced
charge density is proportional to cos(2kF)/r

3. At finite tem-
perature,L0~k,n! is an analytic function ofk, L0~k50,
n50!Þ0, and these algebraic oscillations are exponentially
damped. Thus, according to Eqs.~6.6! and ~6.8! of paper I,
erRPA

ind ~r ! andVRPA
tot ~r ! decrease faster than any inverse power

of the distance. The leading term in the asymptotic behavior
of the RPA induced charge density is

(
a

earRPA,a
ind ~r ! ;

r→`

2dqkRPA
2 e2kRPAr

r
~5.6!

and that ofVRPA
tot ~r ! ~5.5!, which is given by~6.13! in paper I,

is a Yukawa potential with a screening length equal to
@ZRPAkRPA#

21.
The structure factors in the chain approximations are also

short ranged. In the loop formalism, the mechanism for
*D~X!*D~X8!ra,p~X!ra8,p8~X8!hlinearized chain~L,L8! has
been displayed in~2.2!. A similar phenomenon takes place in
the RPA theory, where, according to~6.2! and~6.5! of paper
I, SRPA~r ! decays faster than any inverse power law, though
the nonzero frequency components of the effective potential
URPA

eff are purely Coulombic. The mechanism can be viewed
as follows.La

0~k,s! is an analytic function ofk and the
small-uku behavior ofLa

0~k,nÞ0! starts ask2. Subsequently,
the 1/k2 singularity of the nonzero-frequency components of
fRPA~k,s! is canceled in~5.3! by the same mechanism as in
~2.2!. In position space, the argument is the following.
La

0~r ,s! decays faster than any inverse power law, so that all
the moments ofLa

0~r ,s! in the components ofr are well
defined. Moreover,*dr La

0~r ,s! is independent froms and
La

0~r ,s! is invariant under rotations ofr for every times.
Subsequently, the possibly long-ranged contributions from
h(s12s2)/r to SRPA,aa8~r ! @see~6.9! and ~6.15! of paper I#
are terms proportional to

E
0

1

ds1E
0

1

ds2h~s12s2!E dr1La1
0 ~r1 ,s1!E dr2La2

0 ~r2 ,s2!

3~r1•“R!2m1~r2•“R!2m2S 1r D
}Dm11m2S 1r D E01ds1E01ds2h~s12s2!

3S E dr1@r1
2#m1La1

0 ~r1 ,s1! D
3S E dr2@r2

2#m2La2
0 ~r2 ,s2! D , ~5.7!

with m1>1 andm2>1. Only powers of the Laplacian of 1/r
appear and the corresponding approximated correlations
prove to be short ranged.

B. Macroscopic screening in the chain approximation

The RPA theory is not so bad for the description of mac-
roscopic screening in one-component and multicomponent
plasmas, as is the case for the mean-field theories, because,
in all those theories, the small-k expansion of the induced
charge density has the same structure as the exact behavior.
Indeed, since the mean-field theories can be valid only on
large-distance scales, they can only mimic the first terms in
the small-k expansion of the exact induced charge density
around an external point chargedq: only the small-k expan-
sion of the mean-field value derived from~1.1! and ~1.2!,
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(aearMF,a
ind ~k!

dq~k!
52

kMF
2

k21kMF
2 5211

k2

kMF
2 1o~ uku2!,

~5.8!

is to be considered. In the same way, in the RPA theory,
sincePRPA* (k50,n50)Þ0, Eq. ~5.4! implies that

(aearRPA,a
ind ~k!

dq~k!
5211

k2

kRPA
2 1o~ uku2!. ~5.9!

The first term21 ensures that the total charge of the
polarization cloud exactly compensates the external charge
dq. In the classical case, this property is equivalent to the
fact that the exact charge-charge correlation, as well as its
Debye-Hückel approximation, obeys the classical Stillinger
sum rule@see~4.42! of paper I#, as recalled in Sec. IV A. In
the quantum OCP, there exists the second-moment sum rule
~4.43! of paper I, which is not equivalent to the above
screening property, but comes from the fact that there is only
one species of moving charges in a uniform background. It
happens that, in the RPA theory, the second moment of the
charge-charge correlation~which is proportional to the
particle-particle correlation! satisfies the above quantum sum
rule, but only with the ideal-gas densityr0~b,m! in place of
the plasma densityrB determined by the density of the back-
ground.

The second terms on the right-hand side of~5.8! and~5.9!
are not exact becausek depends on the model, but the struc-
ture is correct in a one-component as well as in a multicom-
ponent plasma. Indeed, in multicomponent plasmas,
(aeara

ind~r ! decays only as 1/r 8, as shown in Sec. IV E, and
the first singular term in the small-k expansion of the in-
duced charge density is of orderuku5. ~A mere dimensional
analysis would have implied the existence of a term propor-
tional to uku, but the latter in fact vanishes, as explained in
Sec. IV E.! On the other hand, in the very special case of the
OCP, where the density of charge is proportional to the den-
sity of particles, the structure of the first two terms in the
exact small-k expansion of(aeara

ind~k! originates from the
exact ‘‘compressibility’’ sum rule~6.19! of paper I and al-
lows one to define an inverse screening length as the square
root of the coefficient ofk2. The various screening lengths
that are derived from the approximated small-k expansions
~5.8! and~5.9! are comparable to the exact inverse screening
lengthkOCP given by ~6.19!

kOCP
2 54pe2rB

2xT54pe2
]r

]m*
, ~5.10!

wherem* is defined in~2.11! of paper I. The RPA inverse
lengthkRPA has a similar expression given in~6.13! of paper
I,

kRPA
2 54pb(

a
ea
2

]ra
0~b,ma!

]~bma!
U

b

. ~5.11!

In the case of the OCP,

kOCP,RPA
2 54pe2

]r0~b,m!

]m
b54pe2@r0~b,m!#2xT

0~b,m!.

~5.12!

The similarity between~5.10! and ~5.12! might be linked to
the fact that the density fluctuations of the OCP in the ther-
modynamic limit obey the same rule*dr r(2)T~r !52r ~see
Sec. II of paper I! as those of an ideal gas with afinite
number of particles in the canonical ensemble, before the
thermodynamic limit is taken.

Moreover, in the weak coupling limit~high-density re-
gime in the semiclassical fermionic case and low-density or
high-temperature regimes in the classical case!, the RPA
value of the screening length tends to the corresponding
mean-field values~Thomas-Fermi and Debye-Hu¨ckel, re-
spectively!. Indeed, according to Eq.~1.1! and the assump-
tion that the quasiparticles do not interact together, the
Thomas-Fermi inverse lengthkTF is given by

kTF
2 54pb(

a
ea
2

]ra
0~b,m̃a!

]~bm̃a!
U

b

54p(
a

ea
2@ra

0~b,m̃a!#2xa,T
0 ~b,m̃a! ~5.13!

at zero as well as at finite temperature, withra
0(b,m̃a)

5ra(b,$ra8%a851,...,ns21). ~The mean interparticle distance
a is far smaller than the Thomas-Fermi lengthakTF!1 and
the Thomas-Fermi model is coherent!. In the case of the
OCP,ra

0(b,m̃a)5rB and

kOCP,TF
2 54pe2@rB#2xT

0.

kRPA has nearly the same expression as the Thomas-Fermi
inverse lengthkTF , with ra

0~b,ma! in place ofra
0~b,m̃a!. In

the strict high-density limit, ra
0~b,ma! coincides with

ra(b,$ra8%a851,...,ns21), while ]2ra
0/~]ma!2 tends to zero:

kRPA becomes equal tokTF , while ZRPA @see~6.14! of paper
I# tends to 1 and the asymptotic behavior of
VRPA
tot ~r !5fRPA~r ! coincides withVTF

tot~r !. In fact, the struc-
ture of the Thomas-Fermi model is retrieved by replacing
L0~k,n50! by L0~k50,n50! in Eqs.~6.6! and ~6.8! of pa-
per I. In the classical limit,]ra

0 cl/](bma)ur
a
0 cl5ra

becomes

equal tora , andkRPA
2 leads to the Debye-Hu¨ckel value

kDH
2 54pb(

a
ea
2ra . ~5.14!

In the loop formalism, the screening length associated
with the induced charge density~by means of the small-k
expansion of(aeara

ind in the chain approximation! does not
coincide with the screening length of the charge-charge in-
teraction because the structure of the linear response~4.27!
of paper I is not similar to~6.6!. The total induced charge is
equal to2dq in the chain approximation, but the mean-field
equation~5.8! is not valid: the small-k expansion of the cor-
responding induced charge starts as211k2/k82, wherek8 is
not equal tok. Even if one chooses for the Ursell function
the graph with one bondFcc, k825k2/~12A! with
A5 1

6 *dx r(x)e2p* 0
pdt@X~t!#2. However, we recall that,

for fermions in a regime of high density~in which the inter-
actions become negligible with respect to the quantum ki-
netic energy!, the valuek given by~5.14! and~4.9! of paper
I tends tokRPA,
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k254pb(
a

ea
2F]r~b,ma!

]~bma!
U

b

2E dr raa
~2!TQunonexch~r !].

C. Beyond the chain approximations

In the quantum case, the algebraic tails of the chain po-
tential induce algebraic tails in the particle-particle correla-
tion, as soon as the next corrections to the chain approxima-
tion are considered. For instance, in the linearized loop
formalism, the next correction to the chain approximation
~5.2! of r~L!r~L8!h~L,L8! is to consider the diagrams
where the two root points are linked by two linearized bonds.
According to the dressing rules displayed at the end of Sec.
IV F, this correction involves a termSD*

1
2 [F

mm] 2*S D
! .

When there is no summation over~a,p! and ~a8,p8!, the
leading asymptotic behavior of this correction is given by1

2

@W3~L,L8!#2 and its contribution to the particle-particle cor-
relation decays as the 1/r 6 tail of the diagramSD*FR*S D

!

with one nonlinearizedFR bond @which is similar to~2.3!#.
This particular correction is an example of the more general
structure of the diagrams that are responsible for the 1/r 6 tail
of the correlation, as shown in Sec. III D.

In the standard perturbation many-body theory, the next
natural correction to the RPA for the proper polarization is to
include the graphL1* made with two free-propagator loops
linked by two interaction lines2beaea8fRPA. In the case of
the OCP, all the frequency components ofL1* have an alge-
braic falloff @5#: L1* (r ,n50) decays as 1/r 6 andL1* (r ,n
Þ0) as 1/r 10. Moreover, the exact sum rules~4.43! and
~6.19! of paper I, which are specific to the OCP, allow one to
derive two sum rules about the small-k behavior ofP~k,n!.
Thus, under the assumption that every frequency component
L* ~k,n! is invariant under rotations ofk, it can be shown
~see Sec. VI of paper I! that, if the exact proper polarization
L* decays asL1* , thenS~r ! decays as 1/r 10, rind~r ! as 1/r 8,
andVtot~r ! as 1/r 6. ~We notice that the so-called ladder dia-
grams with more than two RPA interaction lines do not con-
tribute to the leading asymptotic behavior, as is the case for
the tailsT with L>2 in the loop formalism.!

The mechanism can be exemplified in the Maxwell-
Boltzmann approximation of the RPA theory that is given in
Ref. @5#. As recalled in Sec. VI of paper I, the effective
potential~6.17! between two filaments is a dipole-dipole-like
interaction~plus a Debye-Hu¨ckel term! before the shapes of
the filaments are averaged over. After integration over those
internal degrees of freedom, the potential decays faster than
any inverse power law. However, the graph where two fila-
ments interact through two effective potential lines decays as
1/r 6. The mechanism is the same as in the more general loop
formalism. In the case of the OCP, it can be shown exactly
that, at the order\4, the correlation function decays in fact
not as 1/r 6 but as 1/r 10, because of the classical Stillinger-
Lovett sum rule@4,5,35#. According to Ref.@5#, the quantum
second-moment sum rule~4.43! implies that this result is
expected to be true at any order in\. The underlying reason
is that the particle-particle correlation coincides with the
charge-charge correlation in the one-component plasma.

As a conclusion, we mention a very simple model@4# that
exhibits the basic mechanisms involved in the present series
of papers and are responsible for the 1/r 6 decay of the

particle-particle correlation. First, we stress that the absence
of exponential screening for the 1/r 3 dipole-dipole-like inter-
action between the charges surrounded by their polarization
cloud, before the average is taken over the quantum fluctua-
tions, is due to the fact that the corresponding classical loops
do not interact via the electrostatic potential: only curve el-
ements with the same parametert2P~t! interact together
and the resummed bonds involve an algebraic part
W52beaea8@v~L,L8!2velect~L,L8!#. In a regime of
Maxwell-Boltzmann statistics with quantum dynamics, only
loops with sizep51, i.e., closed filamentsLa,1 with shapes
j, contribute to the grand partition function andW @see
~5.25! of paper I# becomes

W~La i ,1,La j ,1!5b i j E
0

1

dsE
0

1

ds8@d~s2s8!21#vC@r i j

1la i
ji~s!2la j

jj~s8!#. ~5.15!

This potential already appeared in the model of two quantum
charges embedded in a classical plasma, which is solved in
Ref. @4#. In this case the energy of the two corresponding
filaments interacting with a given configuration of particles
of a classical bath can be split into the pure electrostatic
energy plus a quantum ‘‘correction’’W~La1,La81), which
does not involve the bath. Second, the correlation between
the two quantum charges of the previous model decays alge-
braically and its inverse-power asymptotic expansion exactly
starts with a termB/r 6 ~B.0!. This term involvesW2 be-
cause of the rotational invariance of the quantum fluctuations
and the short-range of the Laplacian of the Coulomb poten-
tial. In the present paper, the mechanism is generalized to the
exchange loops: there is no exponential screening at non-
equal~imaginary! times for an interaction between open fila-
ments that takes place at equal times and the leading large-
distance behavior of the quantum correlation comes from the
product of two convolutions, each of which involves at least
oneW bond.
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APPENDIX A

In this appendix we sketch the direct study of the large-
distance behavior of the convolutions~2.6! in position space
in the two simplest cases, in order to exhibit the mechanisms
in position space. The roles played, on one hand, by the
rotational invariance of the quantum fluctuations and the in-
teractions and, on the other hand, by the harmonicity of the
Coulomb potential are clearly disentangled~though this
makes the discussion a little longer!.

The chain made withI11 graphsK linked by I bondsW
in ~2.6! can be decomposed as a series of chains involving
purely algebraic termsWg @defined in~5.33! of paper I# in-
stead ofW. Such a chain reads
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E dxapar~xa!E dxbpbr~xb!E )
i51

I

@dx ir~x i !dx i8r~x i8!#K~r ,xa ,x1!*Wg1
~r ,x1 ,x18!*K~r ,x18 ,x2!

* •••*K~r ,x i218 ,x i !*Wg i
~r ,x i ,x i8!*K~r ,x i8 ,x i11!* •••*K~r ,x I218 ,x I !*Wg I

~r ,x I ,x I8!*K~r ,x I8 ,xb!, ~A1!

where the convolution operates on the loop-position variabler . After integration over the shapes of the loops,~A1! becomes
a sum of terms, each of which is a convolution of derivatives]m i ,1•••m i ,mi

]n i ,1•••n i ,ni
(1/r ) of the Coulomb potential and functions

K n i ,1•••n i ,ni
m i11,1•••m i11,mi11

@ni ,mi11# (r ), which are the moments of the functionsK(r ,x i8 ,x i11) that are of orderni [mi11] in the

components ofX i8(t i8) @X i11(t i11)#. These moments depend only onr , (a i8 ,pi8 ,t i8), and (a i11,pi11,t i11); they are well
defined because the weightr~X! is expected to decay faster than any inverse power law, according to paper I. Because of the
invariance of both the measureD~X! and the bonds F under global rotations of their arguments, the
K n i ,1•••n i ,ni

m i11,1•••m i11,mi11

@ni ,mi11# (r ) are tensors of rankni1mi11. For instance, the chain withg15•••5g I53 is proportional to

Km1

@1#
* ]m1n1

~vC!*K n1m2

@1,1#
* •••*K n i21m i

@1,1#
* ]m in i

~vC!*K n im i11

@1,1#
* •••*K n I21m I

@1,1#
* ]m In I

~vC!*K n I
@1# ~A2!

with

Km1

@1#~r ;aa ,pa ;a1 ,p1 ,t1![E D~Xa!E D~X1!@X1~t1!#m1
K~r ,xa ,x1! ~A3!

and

K n im i11

@1,1# ~r ;a i8 ,pi8 ,t i8 ;a i11 ,pi11 ,t i11![E D~X i8!E D~X i11!@X i8~t i8!#n i
@X i11~t i11!#m i11

K~r ,x i8 ,x i11!. ~A4!

The summation over the space indices is implicit in~A2!. In the same way, the chain withg154 andg25•••5g I53 is
proportional to the sum of two terms

Km1,1m1,2

@2#
* ]m1,1m1,2n1

~vC!*K n1m2

@1,1#
* •••*K n i21m i

@1,1#
* ]m in i

~vC!*K n im i11

@1,1#
* •••*K n I21m I

@1,1#
* ]m In I

~vC!*K n I
@1# , ~A5!

where

Km1,1m1,2

@2# ~r ;aa ,pa ;a1 ,p1 ,t1!5E D~Xa!E D~X1!@X1~t1!#m1,1
@X1~t1!#m1,2

K~r ,xa ,x1!, ~A6!

plus the term

Km1

@1#
* ]m1n1,1n1,2

~vC!*K n1,1,n1,2m2

@2,1#
* •••*K n i21m i

@1,1#
* ]m in i

~vC!*K n im i11

@1,1#
* •••*K n I21m I

@1,1#
* ]m In I

~vC!*K n I
@1# , ~A7!

where the definition ofK n1,1n1,2m2

@2,1# is similar to~A4!. In Fou-

rier space, the convolutions such as~A2!, ~A5!, and~A7! are
products of singular termskm i ,1

•••km i ,mi
kn i ,1

•••kn i ,ni
/k2 and

tensorsK n i ,1•••n i ,ni
m i11,1•••m i11,mi11

@ni ,mi11# (k).

At this point, we put the results of Sec. III A in terms of
the decomposition ofW into pure algebraic termsWg , each
of which behaves as 1/r g. TheWg , defined in~5.33! of paper
I, are related to thew[m,n] defined in~3.5! by

Wg~k,x i ,x i8!52bea i
ea

i8E0
pi
dt iE

0

pi8dt i8

3$d„@t i2P~t i !#2@t i82P~t i8!#…21%

3 (
~mi ,ni !/mi1ni5g21

1

mi !ni !

3w@mini #
„k,X i~t i !,X i8~t i8!…. ~A8!

W3 is proportional tow
@1,1#, W4 to w

[1,2]1w[2,1], andw@1,1#,
w@1,2#, andw@2,1# appear only inW3 andW4. The discussion
of Sec. III B in Fourier space shows that rotational invari-
ance together with dimensional analysis ensure that any con-
volution K*Wg1*K*Wg2

•••*Wg I21*K*Wg I*K decays at
least as 1/r 7, either if g1>5 or gI>5 or if any of thegi with
i52,...,I21 is greater than 3~because the corresponding
small-k expansion starts at the orderuku4!. Only the convo-
lutions with Wg2

5•••5Wg I21
5W3 ~ni5mi1151 for all

i51,...,I21! and g1 and gI equal to 3 or 4 may decay as
1/r 5 ~because their small-k expansions start at the order
uku2!. „Wg1

5W3 corresponds tom151, and in the case

Wg1
5W4, according to the dimensional analysis, only the

term in ~2.14! corresponding tom152 andn151, @X1(t1)
•k#2@X18(t18)•k#, may give a tail decreasing more slowly
than 1/r 7.… In fact, rotational invariance arguments and the
harmonicity of the Coulomb potential enforce the latter con-
volutions to decrease at least as 1/r 7 @namely, the first two
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terms in the small-k expansion of the convolutions~3.8! with
mi115ni51, i51,...,I21 and (m1 ,nI) equal to one of the
four cases in~3.37! are analytic and of orderuku2 and uku4,
respectively#.

The general discussion in position space is more cumber-
some than in Fourier space, but it can be summed up as
follows in the special case of the convolutions with the slow-
est possible decay. The derivatives and the convolutions
commute according to the property]m f * ]ng52]mn( f * g)
and, after integration over the shapes of the loops, the con-
volution chain~A2! with all theg i ’s equal to 3 appears as the
convolution

Km1

@1#
* ]m1n I

~vC!*Gmid*K n1
@1# , ~A9!

whereGmid is a scalar function that depends only onur u,

Gmid~ ur u!5]n1m2
@vC*K n1m2

@1,1# #* •••* ]n im i11
@vC*K n im i11

@1,1# #

* •••* ]n I21m I
@vC*K n I21m I

@1,1# #. ~A10!

The convolution~A.5! reads

Km1,1m1,2

@2#
* ]m1,1m1,2n I

~vC!*Gmid*K n I
@1# . ~A11!

A mere dimensional analysis implies that each term
]n im i11

@vC*K n im i11

@1,1# # decays at least as 1/r 3. Henceforth,

Gmid and]m1n IvC
(r ) fall off as 1/r 3, whereas theK ’s decay

as 1/r 6. Moreover, because of rotational invariance, only the
odd-order moments ofKm1

@1#(r ) andK n I
@1#(r ) at the ends of

the chain do not vanish. Consequently, according to the gen-
eral analysis recalled in Sec. II C, the slowest nonzero alge-
braic tail of the convolution~A9! reads

]ss8@]m1n I
vC*Gmid#~r !S E dx xsKm1

@1#~x! D
3S E dx8xs8

8 K n I
@1#~x8! D , ~A12!

with s5m1 ands85nI . Because of rotational invariance, the
even-order moments ofKm1,1m1,2

@2# (x) do not vanish and the

slowest possible tail of~A11! is

]s8@]m1,1m1,2n I
vC*Gmid#~r !S E dx Km1,1m1,2

@2# ~x! D
3S E dx8xs8

8 K n I
@1#~x8! D , ~A13!

with s85nI . The tails~A12! and ~A13! behave as 1/r 5.
In Fourier space, the singular terms corresponding to the

1/r 5 tails are canceled because, on one hand,vC~k!}1/k2

and, on the other hand,K n i ,m i11

@1,1# (k50)5Ai ,i11
@1,1# dn i ,m i11

ac-

cording to ~3.15!, while Km1

@1#(k) starts asAa,1
@1#km1

and

Km1,1m1,2

@2# (k50)5Aa,1
@2# dm1,1,m1,2

according to ~3.13!. The

mechanism is more intricate to write in position space than
in Fourier space, but the argument that has been developed
for the previous simple convolutions can be pursued as fol-
lows.

The harmonicity of the Coulomb potential implies that
]n im i11

@vC*K n im i11
#(r ) does not decay as the 1/r 3 law

given by dimensional analysis, but, in fact, falls off at least
as 1/r 5. Indeed, the invariance ofK under global rotations
implies that *dx K n im i11

@1,1# (x) is proportional to dn i ,m i11

times a term independent fromni , and *dx xsK n im i11

@1,1# (x)

50. Therefore, the asymptotic behavior of the term
]n im i11

(vC*K n im i11

@1,1# ) starts as

]n im i11
@vC~r !# E dx K n im i11

@1,1# ~x!1OS 1r 5D
5D@vC~r !#

1

3 E dx(
n
K nn

@1,1#~x!1OS 1r 5D . ~A14!

Hence Gmid~ur u! ~A10! decays in fact at least as 1/r 5

and the leading terms in the asymptotic behavior
of @]m1n I

vC*Gmid#(r ) is ]m1n I
vC(r )3*dy Gmid(uyu)

1O(1/r 5). An algebraic tail of the convolution~A9! that
would be slower than 1/r 7, according to dimensional analy-
sis, can only arise from the asymptotic behavior

]ss8m1n I
@vC~r !#S E dx xsKm1

@1#~x! D S E dx8xs8
8 K n I

@1#~x8! D
3S E dy Gmid~ uyu! D 1OS 1r 7D

5DDS 1r D S E dx
1

3 (
m1

xm1
Km1

@1#~x! D
3S E dx8

1

3 (
n I

xn I
8 K n I

@1#~x8! D
3S E dy Gmid~ uyu! D 1OS 1r 7D . ~A15!

An analogous mechanism arises for~A11!. As a conclusion,
in the diagrammatic decomposition~2.6!, all the convolu-
tions decay faster than 1/r 6 and onlyK falls off as 1/r 6.

APPENDIX B

In this appendix, we study the structure of the ‘‘elemen-
tary’’ algebraic tails defined at the beginning of Sec. III D,
before integration over the shapes of their end points.

It is readily shown that the structure~3.26! holds for the
elementary algebraic tails that come from a single algebraic
bond ~W or FR6!. Indeed, a bondW~r ,z,z8! is a series of
termsw[m,n]@r ,Z~t!,Z8~t8!# @given by~3.28!#, which have the
structure~3.26! with q5m, q85n, andP51. According to
the expression ofFR given in ~5.30! of paper I, a bondFR6,
defined in ~2.4!, is a sum of two terms:
@exp~2beaea8felect!21#exp(W)2Fcc2Fcm2Fmc, which
decays faster than any inverse power law, and exp(W)21
2W, which is a series of algebraic terms, each of which is
proportional to the product of at least twow[m,n]~r ,Z,Z8!
with various values of (m,n) but with the same argument
~r ,z,z8!. Such an algebraic term reads
Pp51

Pw w@mp ,np] (r ,z,z8) ~up to counting factors!, with Pw>2,
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and, according to~3.28!, has the structure~3.26! with P
equal to the numberPw of w, q5(p51

Pw mp , and q8

5(p51
Pw np . Since them’s andn’s are greater than or equal to

1, q>P>2 andq8>P>2. Subsequently, an elementary al-
gebraic tail that originates from one algebraicW or FR6 bond
has the structure~3.26!, whereP takes the following values.
If ( q,q8) is equal either to~1,1!, ~1,2!, or ~2,1!, the algebraic
tail originates from one bondW and cannot arise from an
FR6 bond andP51. On the contrary, ifq>2 andq8>2, the
structure ~3.26! may originate from the product of two
w[m,n]~r ,z,z8! in an FR6 bond andP may take the values 1
and 2.

Now we turn to the structure of the algebraic tails of the
convolutions of algebraic bonds~W or FR6! with subdia-
grams of a givenP̃ diagram and that have algebraic bonds at
both ends. The structure is given before integration over the
root points. The discussion is decomposed into two steps.

In the first step, every purely algebraic tailS(1)I
(g) ~r ,z,z8! is

the inverse Fourier transform of one nonanalytic term arising
from one algebraic bond~W or FR6! times a product ofI
analytic terms originating from the small-k expansions of the
other terms in the Fourier transform of the convolution. We
proceed by recurrence. IfI51, the analytic term is of the
form *dx~ik•x!nG1~x,x1,z8! and, according to the structure

~3.26! of the nonanalytic termS(g123)@q1 ,q18#(k,z,x1) arising
from an algebraic bond, withg15P11q11q18 , P1<q1 , and
P1<q18 ,

S
~1!1
~g11n23!

~k,z,z8!5E dx1r~x1!Am1•••mq1

@q1#
~Z!

3S
$ %$ %

~g123!@q1 ,q18#
~k!

3A
n1•••nq18

@q18#
~X1!~ i !

nks1
•••ksn

3E dx xs1
•••xsn

G1~x,x1 ,z8!,

~B1!

whereks ~xs! is the component with indexs of the vectork

~x! and S
$ %$ %

(g123)@q1 ,q18#
(k) is a short notation for

S
m1•••mq1

n1•••nq18

(g123)@q1 ,q18#
(k). Because of the rotational invariance of

both the bondsF~P ,P 8! and the weightsr~P !, G1~x,x1,z8!is
a function invariant by global rotation of its arguments. As a
consequence, after integration overx andX1, we get a tensor

A
$ %

@q181n#
(Z8) of rank q181n,

E dx1r~x1!An1•••nq18

@q18#
~X1!E dx xs1

•••xsn
G1~x,x1 ,z8!

5@Z8#n1
•••@Z8#nq18

@Z8#s1
•••@Z8#sn

f ~ uZ8u!

[A
$ %

@q181n#
~Z8!, ~B2!

wheref ~uZ8u! is a function ofuZ8u. The tensorA
$ %

@q181n#
(Z8) of

rank q181n is nonzero only ifq181n is even. The inverse
Fourier transform ofS(1)1

(g11n23)(k,z,z8) is of the form

A
$ %
@q1#

(Z)A
$ %

@q181n#
(Z8) times an algebraic term decaying as

1/r g with g5g11n5P11q11(q181n). Thus we retrieve
the structure~3.26!

S
~1!1
~g11n!

~r ,z,z8!5A
$ %
@q1#

~Z!A
$ %

@q181n#
~Z8!

3S
$ %$ %

~g11n!@q1 ,q181n#
~r ,z,z8!, ~B3!

with q5q1>P1 andq85q181n>P1. When the numberI of
analytic terms increases, a discussion by recurrence shows
that this structure is still preserved after integration over the
shapes of theI internal points of the convolution. For in-
stance, ifI52, there appear terms such as

S
~1!2
~g11n11n223!

~k,z,z8!5E dx1r~x1!E dx2r~x2!

3A
$ %
@q1#

~Z!S
$ %$ %

~g123!@q1 ,q18#
~k!

3A
$ %

@q18#
~X1!E dx~ ik•x!n1

3G1~x,x1 ,x2!

3E dy~ ik•y!n2G2~y,x2 ,z8!.

~B4!

By using ~B2! twice, we get

S
~1!2
~g11n11n223!

~k,z,z8!

5E dx2r~x2!A$ %
@q1#

~Z!

3S
$ %$ %

~g11n123!@q1 ,q181n1#
~k!

3A
$ %

@q181n1#
~X2!E dy~ ik•y!n2G2~y,x2 ,z8!

5A
$ %
@q1#

~Z!S
$ %$ %

~g11n11n223!@q1 ,q181n11n2#
~k!

3A
$ %

@q181n11n2#
~Z8!. ~B5!

S(1)2
(g11n11n2)(r ,z,z8) still has the structure~3.26!, with

g5g11n11n25P11q1q8 with q5q1>P1 and q85q18
1n11n2>P1.

In the second step, the algebraic tailS(J)I
(g) ~r ,z,z8! is the

inverse Fourier transform of a product ofJ ~J>2! nonana-

lytic termsS(g j )@qj ,qj8#(k,z j21 ,z j ), which arise fromJ bonds
W or FR6, timesI analytic terms. According to the previous
discussion, the product by analytic terms does not change the
structure~3.26!. Thus, after integration over the intermediate
points of every product made of aS~g! ~coming from an
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algebraic bond! with a product of analytic terms,S(J)I
(g) ~r ,z,z8!

comes from a product ofJS
(1)I j

(g j23)@qj ,qj8#
(k,x j21 ,x j ),

E F )
j51

J21

dx jr~x j !GS~1!I1

~g123!@q,q18#
~k,z,x1!

3S
~1!I2

~g223!@q2 ,q28#
~k,x1 ,x2!•••S~1!I J

~gJ23!,@qJ ,q8#
~k,xJ21 ,z8!

5S )
j51

J

S
$ %$ %

~gJ23@qj ,qj8# !
~k!D

3F )
j51

J21 E dx jr~x j !A$ %

@qj8#
~X j !A$ %

@qj11#
~X j !G . ~B6!

S(J)I
(g) ~r ,z,z8! is of orderukug23, with

g235(
j51

J

~g j23!523J1(
j51

J

Pj1q1q8

1 (
j51

J21

~qj81qj11!, ~B7!

where qj>Pj and qj8>Pj . ~We have used the notation

q1[q and qJ8[q8.! *dx jr(x j )A{ }

@qj8#
(X j )A{ }

@qj11#
(X j ) does

not vanish only if qj81qj11 is even. Sinceqj8>Pj and
qj11>Pj11, the even values thatqj81qj11 can take are
Pj1Pj111u(Pj1Pj11)12N, whereN is a positive inte-
ger, andu(n)50 if n is even, whileu(n)51 if n is odd. As
a consequence, when the values of theqj ’s ~with j52,...,J!
and those of theqj8’s ~with j51,...,J21! vary, the powerg
given by ~B7! may take the values

g~$Pj%,q,q8!5P~$Pj%,q,q8!1q1q8, ~B8!

whereP($Pj%,q,q8)5 P̃($Pj%,q,q8)12N, with N any posi-
tive integer, and

P̃~$Pj%,q,q8!5323J1(
j51

J

Pj1 (
j51

J21

@Pj1Pj11

1u~Pj1Pj11!#, ~B9!

with q>P1 andq8>PJ . Since the allowed values forP1 and
PJ depend onq andq8, so do the allowed values forP̃. The
minimal valueP̃min for P̃($Pj%,q,q8) corresponds toPj51
for all j51,...,J ~namely, all the nonanalytic terms come
from W3’s!. In this casePj1Pj111u(Pj1Pj11)52 and
P̃min~q,q8!51 for any values ofq andq8. If q5q851, then
P151 and PJ51, so that the next value for
P̃($Pj%,q51,q851) is given byPj51 for all j except one
j 0, which is different from both 1 andJ, and for whichPj 0
52. WhenPj 0

is increased from 1 to 2, then bothPj 021

1Pj 0
1u(Pj 0211Pj 0

) and Pj 0
1Pj 0111u(Pj 0

1Pj 021)
jump from 2 to 4 and P̃($Pj%,1,1) jumps from
P̃min(q,q8)51 to the value 6. Subsequently, according to
~B8!, when thePj ’s vary, P~1,1!51,3,5,6,... . On the con-
trary, if q8>2, while q takes any value~1 included!, then
1<Pj<2 and the smallest allowed value forP̃($Pj%,q,q8)

that is greater thanP̃min(q,q8) is given byPJ52 andPj51
for jÞJ because onlyPJ211PJ1u(PJ211PJ) jumps from
2 to 4 andP̃($Pj%,q,q8) jumps from 1 to 4. Subsequently,
P(q,q8) may take the valuesP(q,q8)51,3,4,... as soon as
q8>2 or q>2.

We notice that, if the convolution~with J>2! does not
contain anyW bond, thenPj>2 for all j51,...,J, while
q>2 andq8>2 as well. The minimal value forP̃($Pj%,q,q8)
corresponds toPj52 for all j51,...,J. In this case
Pj1Pj111u(Pj1Pj11)54 and P̃53J21>5, so that
P(q,q8) takes the valuesP(q,q8)55,7,8,... whenJ>2.

As a conclusion, the algebraic tails of a convolution ofW
or FR6 bonds with subdiagrams ofP̃Wc that have either aW
or anFR6 bond at both ends have the structure~3.26! where
P(q,q8) may take the values 1,3,5,6,... ifq5q851, whileP
may take the values 1,3,4,... ifq>2 or q8>2. Moreover, we
notice that, if the convolution does not contain anyW bond
~except in the subdiagramsP̃Wc), thenq>2 andq8>2, while
P(q,q8) may take only the values 5,7,8,... .

Eventually, the allowed values forP(q,q8) in ~3.27! are

P~q,q8!5H 1,3,5,6,...,1,3,4,...,
1,2,...,

if q5q851
if ~q,q8!5~1,2! or ~2,1!
if q>2, q8>2.

~B10!

Moreover, we notice thatP51 only in the case of aW bond
or in the case of a convolution involving at least oneW bond.
If there is noW bond in the convolution, thenq>2 and
q8>2 and the allowed values forP(q,q8) are only

PWc~q,q8!52,5,7,8,... . ~B11!

For instance,FR6 decays as 1/r 6, while the convolu-
ion FR6~r ,xi ,x i11)*FR6~r ,xi11,x i12! involves a 1/r 9 tail
originating from @W3~r ,xi ,x i11)]

2
* [W3~r ,xi11,x i12!#

2,
whose Fourier transform involves a
S~3!~k,xi ,x i11)S

~3!~k,xi11,x i12!.

APPENDIX C

In this appendix we determine the exponents of the alge-
braic tails of various functions involving the algebraic tailsT
of a P̃Wc diagrams, before and after integration over the
shapes of both their root points and their internal points. An
algebraic tailT has the structure~3.29! before integration
over the shapes of its end points. We callgT* the values ofgT
that survive after integration overXa and Xb for a given
(L,Qa ,Qb) andg* denotes the values thatgT* takes whenL,
Qa , andQb vary, namely, theg* ’s are the allowed values for
any P̃Wc diagram.

Since the allowed values ofdT in ~3.33! depend on the
values of $(ql ,ql8)% l51,...,L , we have to distinguish four
cases~I!–~IV ! for a P̃Wc diagram. In case~I!, ql5ql851 for
all l51,...,L, so that, according to~B10!, ( l51

L Pl may take
only the valuesL,L12,L14,L15,..., namely,

dT~ I!50,2,4,5,... ~C1!

and

gT~ I!~$ql51%,$ql851%,L !53L1Qa1Qb1dT~ I! . ~C2!
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In case ~II !, there exists at least one indexl 0 such that
(ql0,ql08 )5(1,2) or ~2,1!, while (ql ,ql8) is equal to ~1,1!,

~2,1!, or ~1,2! for all lÞ l 0. Then, according to~B10!, ( lPl
may take only the valuesL,L12,L13,...,

dT~ II !50,2,3,..., ~C3!

while ( l51
L (ql1ql8)>2L11. In case~III !, there exists at

least onel such thatql>2 andql8>2; then( l51
L Pl may take

any integer value greater than or equal toL,

dT~ III !50,1,..., ~C4!

while ( l51
L ql>L11 and( l51

L ql8>L11. If the convolution
contains noW bond@case~IV !#, thenq>2 andq8>2, while,
according to~B11!,

gT~ IV !521q1q81Qa1Qb1dT~ IV ! , ~C5!

wheredT(IV)[PWc(q,q8)22 may take the values 0,3,5,6,...,
according to~B11!.

First, we study the decay of*D~Xa!D~Xb!P̃~r ,Xa ,Xb!.
After integration over the shapes of the end pointsLa and
Lb , the algebraic tail ~3.29! is not canceled only if

*D(Xa)A$ %
@Qa1( l ql #(Xa)Þ0 and *D(Xb)A$ %

@Qb1( l ql8#
(Xb)

Þ0. SinceA
$ %
@Qa1( l ql #(Xa) is a tensor of rankQa1( l51

L ql ,

*D(Xa)A$ %
@Qa1( l ql #(Xa) may be nonzero only if

Qa1( l51
L ql is even and the same property also holds for

Qb1( l51
L ql8 . Now, we have to distinguish the previous

cases~I!–~IV !.
In case~I!, Qa1( l51

L ql5Qa1L andQb1( l51
L ql85Qb

1L. According to ~C2!, gT(I)53L1Qa1Qb1dT(I) and
*D~Xa!*D~Xb!T~rab ,xa ,xb! does not vanish only ifQa ,
Qb , andL have the same parity. IfQa andQb are even@case
~Ia!#, the only values ofL that contribute areL52,4,6,...;
then gT(I)* 2dT(I) takes the values 61Qa

1Qb,121Qa1Qb ,..., so that, according to~C1!, when L
varies,

gT~ Ia!
* 561Qa1Qb , 81Qa1Qb , 101Qa1Qb ,

111Qa1Qb ,..., ~C6!

with Qa1Qb50,2,4,... . Theng (Ia)* 56,8,10,11,... . IfQa and
Qb are odd@case~Ib!#, the only values ofL that contribute
are L53,5,7,... and gT(I)* 2dT(I) takes the values
91Qa1Qb,151Qa1Qb ,..., so that, according to~C1!,
whenL varies,

gT~ Ib!
* 591Qa1Qb , 111Qa1Qb , 131Qa1Qb , 14

1Qa1Qb ,..., ~C7!

with Qa1Qb51,3,5,... . Theng (Ib)* 510,12,14,15,... . Even-
tually, in the case~I!, g (I)* takes the values 6,8,10,11,... .

In case ~II !, either Qa1( l51
L ql>Qa1L11 while Qb

1( l51
L ql8>Qb1L @subcase~IIa!# or Qa1( l51

L ql>Qa1L
while Qb1( l51

L ql8>Qb1L11 @subcase~IIb!#. We recall
that *D~Xa!*D~Xb!T~rab ,xa ,xb! does not vanish only if

Qa1( l51
L ql and Qb1( l51

L ql8 are even. In subcase~IIa!,
Qa1( l51

L ql takes the even values

Qa1L111u~Qa1L11!12N ~C8!

while Qb1( l51
L ql8 takes the even valuesQb1L

1u(Qb1L)12N8, with the notationu (n)50 if n is even
andu(n)51 if n is odd. ~N andN8 are integers,N>0, and
N8>0.! Thus, according to~3.33!, when the (ql ,ql8)’s vary,
after integration overXa and Xb , gT(IIa)* 2dT(II) may take
only the values

gT~ IIa!
* 2dT~ II !53L111Qa1Qb1u~Qa1L11!

1u~Qb1L !12N. ~C9!

According to~C3!, gT(IIa)* 5gT(IIa)min* ,gT(IIa)min* 12,gT(IIa)min*
13, . . . ,with

gT~ IIa!min* 53L111Qa1Qb1u~Qa1L11!1u~Qb1L !
~C10!

andQa>0 as well asQb>0. gT(IIa)min* (L52)571Qa1Qb

1u(Qa11)1u(Qb)>8, gT(IIa)min* (L53)5101Qa1Qb

1u(Qa)1u(Qb11)>11, and gT(IIa)min* (L11,Qa ,Qb)
.gT(IIa)min* (L,Qa ,Qb). In subcase~IIb!, the roles ofQa and
Qb are exchanged and

gT~ IIb!min* ~L !53L111Qa1Qb1u~Qa1L !

1u~Qb1L11!. ~C11!

Eventually,gT(II)* takes the values

gT~ II !* 5gT~ II !min* , gT~ II !min* 12, gT~ II !min* 13,..., ~C12!

with

gT~ II !min* 5 inf@71Qa1Qb1u~Qa11!1u~Qb!, 71Qa

1Qb1u~Qa!1u~Qb11!#>8 ~C13!

becauseQa>0 andQb>0. Thusg (II)* 58,10,11,... .
In case~III !, Qa1( l51

L ql>Qa1L11 andQb1( l51
L ql8

>Qb1L11, so that*D~Xa!*D~Xb!T~rab ,xa ,xb! does not
vanish only ifQa1( l51

L ql takes the even values

Qa1L111u~Qa1L11!12N ~C14!

and if Qb1( l51
L ql8 takes the even values

Qb1L111u(Qb1L11)12N8. Then, according to~3.33!
and~C4!, gT(III)* takes any integer value that is greater than or
equal to Qa1Qb13L121u(Qa1L11)1u(Qb1L11).
The smallest value corresponds toL52,

gT~ III !* ~L52!2dT~ III !581Qa1Qb1u~Qa11!1u~Qb11!

>10, ~C15!

becauseQa>0 andQb>0. Eventually,g (III)* takes any inte-
ger value greater than or equal to 10.

In the case of a single convolution without anyW bond
@case~IV !#, L51, q>2, andq8>2, the even values taken by
Qa1q>Qa12 are
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Qa121u~Qa!12N ~C16!

and those taken by Qb1q8>Qb12 are Qb12
1u(Qb)12N8. So the allowed values ofgT(IV)* given by
~C5! are

gT~ IV !
* 2dT~ IV !561Qa1Qb1u~Qa!1u~Qb!12N.

~C17!

SinceQa>0 andQb>0, g (IV)* 56,8,9,... .
As a conclusion*D~Xa!*D~Xb!P̃Wc~r ,Xa ,Xb! decays

only as 1/r 6,1/r 8,1/r 9,1/r 10,... . The tails 1/r 6 corresponds
only to case~I! with L52 and to the case~IV !, both with
Qa5Qb50, while the tail 1/r 8 is given only by cases~I!, ~II !
and~IV !. The 1/r 9 tail comes from convolutions of case~IV !,
such as [W3]

2
* [W3]

2. We notice that, from~3.32! and from
the conclusion in the paragraph before~B.10!, we can also
retrieve the results of Sec. III B about the convolution chains
with possibleW bonds: according to dimensional analysis,
such a single convolution chain decreases at least as
1/r 5,1/r 7.

Second, we turn to the possible algebraic tails of the in-
verse Fourier transform of *D(Xa)*D(Xb)(k
•Xa)

naT(k,Xa ,Xb). The inverse Fourier transform of the in-
tegrand decays as 1/r gT1na. Howerver, *D(Xa)(k
•Xa)

naA
$ %
@Qa1( l ql #(Xa)Þ0 only if na1Qa1( l51

L ql is even
and, after integration over the shapesXa andXb , some tails
disappear. The discussion is similar to that performed for
*D~Xa!*D~Xb!T~k,Xa ,Xb! with na1Qa in place ofQa .

In case~I!, only thena1Qa’s and theQb’s that have the
same parity contribute. In case~Ia!, bothna1Qa andQb are
even and [na1gT] * takes the values given by~C6! with
na1Qa in place ofQa . The even values taken byna1Qa ,
with Qa>0, are

na1u~na!12N, ~C18!

while Qb takes the even valuesQb50,2,4,... . Thus the pos-
sible values for@na1g# (Ia)* are

@na1g#~ Ia!
* 561na1u~na!, 81na1u~na!, 101na

1u~na!, 111na1u~na!,... . ~C19!

In case~Ib!, both na1Qa andQb are odd and [na1gT] *
takes the values given by~C7! with na1Qa in place ofQa .
The odd values taken byna1Qa , with Qa>0, are

na1u~na11!12N, ~C20!

while Qb takes the odd values 1,3,5,... . Thus the possible
values for@na1g# (Ib)* are

@na1g#~ Ib!
* 591na1u~na11!, 111na1u~na11!,

131na1u~na11!, 141na1u~na11!,... . ~C21!

Eventually, in case~I!, by inspection of~C19! and ~C21! in
the cases wherena is either even or odd, we find that@na
1g# (I)* takes the values

@na1g#~ I!* 561na1u~na!, 81na1u~na!,

101na1u~na!, 111na1u~na!,... . ~C22!

In case~II ! we have to consider two subcases, according
to whetherQa1( l51

L ql>L11 whileQb1( l51
L q8>L @sub-

case ~IIa!# or Qa1( l51
L ql>L while Qb1( l51

L q8>L11
@subcase ~IIb!#. In subcase ~IIa!,
na1Qa1( l51

L ql>na1Qa1L11 takes the even values
given by ~C8!, with na1Qa in place ofQa , and in subcase
~IIb! the roles ofQa andQb are exchanged. According to
~C12!, @na1gT# (II)* takes the values

@na1gT#~ II !* 5@na1gT#~ II !min* , @na1gT#~ II !min* 12,

@na1gT#~ II !min* 13,... , ~C23!

with

@na1gT#~ II !min* 5 inf@71na1Qa1Qb1u~na1Qa11!

1u~Qb!, 71na1Qa1Qb1u~na1Qa!

1u~Qb11!#. ~C24!

Eventually, whenQa andQb vary,

@na1g#~ II !min* 5 inf@71na1u~na11!,81na1u~na!#

571na1u~na11! ~C25!

and

@na1g#~ II !* 571na1u~na11!, 91na1u~na11!,

101na1u~na11!,... . ~C26!

In case ~III !, the discussion is the same as for
*D~Xa!*D~Xb!T~r ,Xa ,Xb!, with na1Qa in place ofna . Ac-
cording to ~C15!, the allowed values for [na1gT] * are
81na1Qa1u(na1Qa11)1Qb1u(Qb11)1N. Since
na1Qa1u(na1Qa11)>na1u(na11) and Qb1u(Qb
11!>1,

@na1g#~ III !* 591na1u~na11!1N>10. ~C27!

In case~IV !, [na1gT] * takes the values given by~C17!
with na1Qa in place ofQa and, sinceQa>0 andQb>0,

@na1g#~ IV !
* 561na1u~na!, 81na1u~na!,

91na1u~na!,... . ~C28!

As a conclusion, by inspection of~C22! and ~C26!
–~C28! in the cases wherena is either even or odd,
we find that the inverse Fourier transform of
*D(Xa)*D(Xb)(k•Xa)

naP̃Wc(r ,Xa ,Xb) may decay as
1/r @na1g#* with

@na1g#*561na1u~na!, 81na1u~na!,

91na1u~na!,... . ~C29!
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Sincena1u(na)>2, this falloff behaves at least as 1/r 8. The
1/r 61na1u(na) tail comes from the cases~I! and ~IV !. For
instance, in the casena51 or 2, the allowed algebraic tails
are 1/r 8,1/r 10,1/r g with g>11. In the casena53 or 4, they
are 1/r 10,1/r 12,1/r g with g>13.

Subsequently, since *D~Xa!*D~Xb!@exp~ik•Xa!
21#P̃Wc~rab ,Xa ,Xb! may be seen as a series of terms
*D(Xa)*D(Xb)(k•Xa)

naP̃Wc(rab ,Xa ,Xb), with na>1, its
algebraic tails are 1/r 8,1/r 10,1/r 11,... .

Third, the inverse Fourier transform of the nonanalytic
term (k•Xa)

na(k•Xb)
mbT(k,Xa ,Xb) decays as

1/r gT1na1mb, but after integration over the shapes of
the root points, the only algebraic tails that survive are
such that na1Qa1( l51

L ql and mb1Qb1( l51
L ql8 are

even. The discussion is similar to that carried out for
*D(Xa)*D(Xb)(k•Xa)

naT(k,Xa ,Xb), with mb1Qb in
place ofQb .

In case~I!, only thena1Qa’s and themb1Qb’s that have
the same parity contribute. Ifna1Qa andmb1Qb are even,
then, according to~C19!, the values taken by@na1mb

1g# (Ia)* are such that

@na1mb1g#~ Ia!
* 2na2u~na!2mb2u~mb!56,8,10,11,... .

~C30!

If na1Qa andmb1Qb are odd, then, according to~C21!, the
values taken by@na1mb1g# (Ib)* are

@na1mb1g#~ Ib!
* 2na2u~na11!2mb2u~mb11!

59,11,13,14,... . ~C31!

Eventually, in case~I!, after inspection of~C30! and ~C31!
for na’s andmb’s with various parities, [na1mb1g] * can
be written as

@na1mb1g#~ I!* 5@na1mb1g#~ I!min* 1d~ I!~ma ,mb!, ~C32!

with

@na1mb1g#~ I!min* 561na1u~na!1mb1u~mb!>10
~C328!

and

d~ I!~na ,mb!5H 0,2,4,5,... if na and mb are even
0,2,3,... if na and mb do not have the same parity
0,1,... if na and mb are odd.

~C33!

For instance, the algebraic tails may have the exponent@na
1mb1g# (I)* 510,11, . . . in the casena5mb51, @na1mb

1g# (I)* 510,12,13, . . . if (na ,mb) is equal to~1,2! or ~2,1!,
and @na1mb1g# (I)* 510,12,14,15, . . . in the case
na5mb52.

In case~II !, by replacingQb bymb1Qb in ~C24!, we get
a result similar to~C26!,

@na1mb1g#~ II !* 5@na1mb1g#~ II !min* , @na1mb1g#~ II !min*

12, @na1mb1g#~ II !min* 13, . . . , ~C34!

with, since inf[71na1u(na11)1mb1u(mb),71na
1u(na)1mb 1u(mb11)]571na1mb1u(na1mb11),

@na1mb1g#~ II !min571na1mb1u~na1mb11!>10.
~C35!

Moreover, in case~II ! the 1/r 10 tail may appear only if
(na ,mb)5~1,1! or ~1,2! or ~2,1!.

In case~III !, @na1mb1gT# (III)* takes any integer value
greater than or equal to 3L121na1Qa1mb
1Qb1u(na1Qa1L11) 1u(mb1Qb1L11) and, when
L varies, the lowest value is obtained forL52. Since
na1Qa1u(na1Qa11)>na1u(na11),

@na1mb1g#~ III !* 581na1u~na11!1mb1u~mb11!1N

>10. ~C36!

In case~III !, the 1/r 10 tail may appear only ifna5mb51.
In case~IV ! of convolutions with noW bond, the even

values taken by na1Qa1q, with Qa1q>2, are
na121u(na)12N, while the even values taken by
mb1Qb1q8, with Qb1q8>2, are mb121u(mb)12N8.
So, according to~C5!,

@na1mb1g#~ IV !
* 2na2mb2u~na!2u~mb!56,8,9,... .

~C37!

Eventually, after inspection of~C32!, ~C34!, ~C36!, and
~C37!, *D(Xa)*D(Xb)(k•Xa)

na(k•Xb)
mbP̃Wc(k,Xa ,Xb)

decays at least as 1/r g with

@na1mb1g#*5@na1mb1g#min* 1d~ma ,mb!, ~C38!

where

@na1mb1g#min* 561na1u~na!1mb1u~mb!>10
~C39!

and

d~na ,mb!5 H0,2,3,... if na and mb are even or do not have the same parity
0,1,... if na and mb are odd, ~C40!
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If ( na ,mb)5~1,1!, the allowed tails are 1/r 10,1/r 11,..., and if
(na ,mb)5~1,2!, ~2,1! or ~2,2!, tails 1/r 10,1/r 12,1/r 13,... ap-
pear.

Subsequently, *D(Xa)*D(Xb)(k•Xa)
na@exp(ik•Xb)

21#P̃Wc(k,Xa ,Xb) has a series of algebraic tails
1/r @na1g#* given by ~C39!, with mb51,2, . . . ,

@na1g#*581na1u~na!1d~na! ~C41!

with

d~na!5 H0,2,3,... if na is even
0,1,... if na is odd. ~C42!

If na51, the allowed tails are 1/r 10,1/r 11, . . . , and ifna52,
tails 1/r 10,1/r 12,1/r 13, . . . appear.

Eventually, the allowed tails for
*D~Xa!*D~Xb!@exp~ik•Xa!21#@exp~ik•Xb!21#P̃Wc~k,Xa ,Xb!
are 1/r 10,1/r 11, . . . .

APPENDIX D

In this appendix we study the asymptotic behavior
of the contributions toCQunonexch(r ) from h(C) , h(D) ,
and h(E) defined in ~4.21!. We insert the decomposition
~4.29! into the expression~4.28! of C(C)(r ). Accord-
ing to Appendix C, the inverse Fourier transform of
*D(Xa8)*D(Xb8)P̃Wc(k,xa8 ,xb8)@exp(ik•Xb8)21# decays at
least as 1/r 8, 1/r 10, 1/r 11, . . . and thefirst nonanalytic terms
in *D(Xa8)*D(Xb8)H

n2(k,xa8 ,xb8)@exp(ik•Xb8)21# are of
order uku5, uku7, uku9, . . . . Subsequently, according to~4.28!,
the first nonanalytic terms in the contribution fromHn2~k! to
C (C)

Q ~k! are of orderuku7, uku9, uku10, . . . and thetails of the
contribution fromHn2~r ! to C(C)(r ) fall off as 1/r

10, 1/r 12,
1/r 13,... .

On the other hand, in a very similar way to what has been
done for the particle-particle correlation in Sec. III B, the
contribution toC(C)~k! from a chain ofI11 graphsK linked
by I bondsW, whereLa8 is a non-Coulomb-root point@see
~4.29!#, can be written as a series of contributions from a
chain of I11 graphsK linked by I bondsw@mi ,ni #. Before
summation over the speciesa and the sizesp of the loops
and before integration over the timest, each of these contri-
butions is proportional to

CI@C~C!
Q #~k!5

k2

k21k2

1

~k2! I
K
a8,1
n2@m1#

~k!

3K1,2
@n1 ,m2#

~k!K2,3
@n2 ,m3#

~k!•••

3KI21,I
@nI21 ,mI #~k!E D~XI8!E D~Xb8!

3@k•Xb8~t I8!#nIK~k,x I8 ,xb8!

3E
0

pb8dt@eik•Xb8~t!21#
k2

k21k2
. ~D1!

According to rotational invariance arguments, the small-k
expansion of *D(XI8)*D(Xb8)@k•Xb8(t I8)#

nIK(k,x I8 ,xb8)
3$exp@ik•Xb8(t)#21% starts at the orderuku11nI1u(11nI ) and
involves even powers ofuku up to the first nonanalytic term,
which is of orderuku51nI1u(nI ) according to~C.42!#. ~The
corresponding inverse Fourier transform decays at least as

1/r 10.! The structure of the small-k expansion ofK
a8,1
n2@m1#

and

K
i 8,i11

@ni ,mi11#
is given in~3.34! and~3.35! ~because the fact that

La8 is a non-Coulomb-root point does not change the struc-
ture!. The dimension of the first term in the small-k expan-
sion of ~D1! is

DCI @C~C!
Q #~$mi%,$ni%!5222I1@m11u~m1!#

1@11nI1u~11nI !#

1(
i51

I21

@ni1mi11

1u~ni1mi11!#>4. ~D2!

The order of the first singular term is

ukum11u(m1)13 in K
a8,1
n2@m1#

(k), according to ~3.34!,

ukuni1mi111u(ni )1u(mi11)13 in K
i 8,i11

@ni ,mi11#
, according to~3.35!,

and ukunI1u(nI )15 in K
I 8,b
@nI # (k), according to~C42!. Thus the

first terms in~D1! are analytic up to the order inuku that is the
infimum of the three values obtained from~D2! by replacing
one ~and only one! of the terms in square brackets by the
order of the first singular term in the correspondingK. In
other words, the three values to be considered are given by
~D2! with either m11u(m1)13 in place ofm11u(m1),
51nI1u(nI) in place of 11nI1u(11nI), or
ni1mi111u(ni)1u(mi11)13 in place of ni1mi11
1u(ni1mi11). We notice that

@11nI1u~11nI !,51nI1u~nI !#5H ~2,7! if nI51
~4,7! if nI52
~4,9! if nI53
~6,9! if nI54.

~D3!

Henceforth, 51nI1u(nI)>[11nI1u(11nI)]13 and the
first singular term in ~D1! is of order
DCI @C(C)

Q #13>7: C (C)
Q falls off at least as 1/r 10. According

to ~C41!, the next tails are 1/r 11, 1/r 12, . . . . In other words,
the sum of the convolution chains in the decomposition of
hn2

*F
mc decays at least as 1/r 8 ~1/r 9, . . . ! and their convo-

lution with SD on the left, which determines their contribu-
tion ~4.28! to C (C)

Q decays at least as 1/r 10 ~1/r 11, . . . !.
The slowest algebraic tail corresponds to the case where

ni5mi1151 for all i51, . . . ,I21 and (m1 ,nI)5~1,1! or
(m1 ,nI)5~2,1!. Then the small-k expansion of~D1! reads
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CI@C~C!
Q #~k!5

k2

k21k2
1

~k2! I
@Aa,1

@1#or@2#uku21Ba,1
@1#or@2#uku41•••1Sa,1

~5!~ uku!1•••1Sa,1
~7!~ uku!1Sa,1

~8!~ uku!1Õ~ uku8!#

3@AI 8,b
@1# uku21BI 8,b

@1# uku41•••1SI 8,b
~7!

~ uku!1SI 8,b
~8!

~ uku!1Õ~ uku8!#

3)
i51

I21

@Ai 8,i11
@1,1# uku21Bi 8,i11

@1,1# uku41•••1Si 8,i11
~7!

~ uku!1Si 8,i11
~8!

1~ uku!Õ~ uku8!#. ~D4!

The first singular terms are of orderuku7, uku9, uku10,... . Ac-
cording to~C42!, in the case where (m1 ,nI)5~1,2! or ~2,2!,
the structure ofCI [C (C)

Q ] ~k! is the same as in~D4!, with the
only difference thatAI 8,b

@1#
50. Then, the first singular terms

are of orderuku9, uku10,... . The case ofC (D)
Q is derived from

the case ofC (C)
Q by exchanging the roles ofLa andLb and

the results are the same:C (C)
Q andC (D)

Q decay as 1/r 10, 1/r 12,
1/r 13,... .

Now, we turn to the contributionC (E)
Q (r ) given by~4.30!.

According to Appendix B, the inverse Fourier transform of

E D~Xa8!E D~Xb8!@exp~ ik•Xa8!21#P̃Wc~k,xa8 ,xb8!

3@exp~ ik•Xb8!21#

decays at least as 1/r 10, 1/r 11,... and the first nonanalytic
terms in

E D~Xa8!E D~Xb8!@exp~ ik•Xa8!21#H~k,xa8 ,xb8!

3@exp~ ik•Xb8!21#

are of orderuku7, uku8,... . Subsequently, the contribution from
H to C(E)(r ) falls off as 1/r

10, 1/r 11,... . The contribution to
C (E)

Q ~k! from a chain ofI11 graphsK linked by I bondsW
where bothLa8 andLb8 are non-Coulomb-root points can be
analyzed along the same lines as the contribution toC (C)

Q ~k!.
We get a formula analogous to~D1!

CI@C~E!
Q #~k!5

1

~k2! I S k2

k21k2D
2

K1,2
@n1 ,m2#

~k!•••KI21,I
@nI21 ,mI #~k!E

0

pa8dtE D~Xa8!E D~X1!@e
ik•Xa8~t!21#

3@k•X1~t1!#
m1Kn2~k,xa8 ,x1!E

0

pb8dt8E D~XI8!E D~Xb8!@k•Xb8~t I8!#nI@e2 ik•Xb8~t8!21#K~k,x I8 ,xb8!.

~D5!

The dimension of the first term in the small-k expansion ofC (E)
Q is

DCI @C~E!
Q #~$mi%,$ni%!522I1@11m11u~11m1!#1@11nI1u~11nI !#1(

i51

I21

@ni1mi111u~ni1mi11!#>2. ~D6!

As in the discussion aboutC (C)
Q , the first terms in the small-k expansion of~D5! are analytic up to the order inuku that is the

infimum of the three values~D6! with either 51m11u(m1)>7 in place of 11m11u(11m1)>2, 51nI1u(nI)>7 in place of
11nI1u(11nI)>2, orni1mi111u(ni)1u(mi11)13>7 in place ofni1mi11 1u(ni1mi11)>2. So the first singular term
in ~D5! is at least of order 7@the next term is of order 8 according to~C42!# and the contribution toC (E)

Q from the convolution
chains falls off as 1/r 10, 1/r 11,... .

The slowest algebraic tail corresponds toni5mi1151 for all i51,...,I and reads

CI@C~E!
Q #~k!5

1

uku2I @Aa,1
@1#uku21Ba,1

@1#uku41•••1Sa,1
~7!~ uku!1Sa,1

~8!~ uku!1Õ~ uku8!#

3@AI 8,b
@1# uku21BI 8,b

@1# uku41•••1SI 8,b
~7!

~ uku!1SI 8,b
~8!

~ uku!1Õ~ uku8!#

3)
i51

I21

@Ai 8,i11
@1,1# uku21Bi 8,i11

@1,1# uku41•••1Si 8,i11
~7!

~ uku!1Si 8,i11
~8!

~ uku!1Õ~ uku8!#. ~D7!

The first singular terms are of orderuku7, uku8,... andC (E)
Q decays as 1/r 10, 1/r 11,... .
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