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Correlations in quantum plasmas. II. Algebraic tails

F. Cornd
Laboratoire de Physique Theque ENSLAPP, Laboratoire associe CNRS, Ecole Normale Sujsire de Lyon,
46 allee d'ltalie, F-69364 Lyon, France
(Received 7 June 1995; revised manuscript received 1 Decembey 1995

For a system of point charges that interact through the three-dimensional electrostatic Coulomb potential
(without any regularizationand obey the laws of nonrelativistic quantum mechanics with Bose or Fermi
statistics, the static correlations between particles are shown to havé til/at least at distances that are
large with respect to the length of exponential screening. After a review of previous work, a term-by-term
diagrammatic proof is given by using the formalism of paper |, where the quantum particle-particle correlations
are expressed in terms of classical-loop distribution functions. The integrable graphs of the resummed Mayer-
like diagrammatics for the loop distributions contain bonds between loops that decay either exponentially or
algebraically, with a ¥# leading term analogous to a dipole-dipole interaction. This reflects the fact that the
charge-charge or multipole-charge interactions between clusters of particles surrounded by their polarization
clouds are exponentially screened, as at a classical level, whereas the multipole-multipole interactions are only
partially screened. The correlation between loops decaysrashitt the spherical symmetry of the quantum
fluctuations makes this power law fall tor%/ and the harmonicity of the Coulomb potential eventually
enforces the correlations between quantum particles to decay only’agié coefficient of the £ tail at low
density is planned to be given in a subsequent paper. Moreover, because of Coulomb screening, the induced
charge density, which describes the response texagrnalinfinitesimal charge, is shown to fall off asr/
while the charge-charge correlation in the medium decreasesdsHéwever, in spite of the departure of the
quantum microscopicorrelations from the classical exponential clustering, tdtal induced charge is still
essentially determined by the exponentially screened charge-charge interactions|assigal macroscopic
electrostatics[ S1063-651X96)05205-1]

PACS numbdps): 05.30—d, 71.45.Gm

[. INTRODUCTION scopic electrostatics do survive in the plasma at a quantum

microscopic level. We notice that, for each announced alge-

The present paper is the second part of a series about theaic tail, we are not able to control the convergence of the

equilibrium static correlations in matter under usual condi-whole diagrammatic series, each diagram of which decays

tions, i.e., when electrons and nuclei can be seen as nonredigebraically with the exponent mentioned above. However,
ativistic quantum point charges. The first point of the papethe calculation of the coefficient of ther$/tail at low den-

is to show that the particle-particle correlation in a multicom-sity [6] strongly suggests that no more cancellation occurs.

ponent plasma does have a®lfail, when the quantum sta- |n the present introduction, the connection between screen-
tistics is taken into account and the interaction is the purgng and the decay of the correlations is reviewsec. | A

Coulomb potentiakwithout any regularization These two  and the insight given by the loop formalism is pointed out
aspects of real matter were approximated in previous workgsec, | B.

about the decay of correlations in multicomponent plasmas
[1-5]. Another aim of the paper is to display clearly how the
harmonicity of the Coulomb potential and the spherical sym- A Historical review about screening and correlations
metry of the quantum-fluctuation distribution for one particle ) o
enforce this power law. As explained in Sec. VI of paper |, AS recalled in paper I, the harmonicity of the Coulomb
the standard perturbation many-body theory is not very helpPotential is responsible for a very special screening that
ful in this respect and we use the |00p formalism devised irﬁnses n bOth d|e|eCtr|C a.nd CondUC“Ve phaseS of Coulomb
paper |. Moreover, this formalism also allows one to obtainPlasmas at a classical as well as at a quantum level. The
the following results: the charge-charge correlation decay§oulomb screening enforces the local neutrality relation be-
only as 1¢*% while the induced charge density and the cor-tween the densities of charges and, at a more microscopic
responding total potential, which measure the linear respondevel, ensures that the net charge of a point charge in the
to a localized infinitesimal external charge, fall off as®1/ medium together with its polarization cloud is zero. Subse-
and 15, respectively. The reason is that screening mechaguently, this net charge creates an effective potential that
nisms that are similar to the usual effects in classical macrodecays at large distances faster than tmeCdulomb poten-
tial. This latter property is linked to the fact that the total
induced charge in the presence of an external static charge is
*Present address: Laboratoire de Physique, Laboratoire associe finite, as stressed in Sec. IV D of paper I. The charge neu-
CNRS, Ecole Normale Sugeure de Lyon, 46 ale d'ltalie, trality of a particle and its polarization cloud also exists if the
F-69364 Lyon, France. potential decays more slow([y] or faster[8] than the Cou-
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lomb interaction, but the harmonicity of the Coulomb poten-only in a finite region and varies slowly over scales larger
tial generates further screening effects. than the mean interparticle distance, the system can be de-

Some properties of the particle-particle correlation can be;c(:)ribed by quasipa_rticle§ with a chemical pote_ntial
investigated by considering the perturbation in the chargeta®e,Vye(r). In the linearized versions of the mean-field

distributions that is induced by aexternal infinitesimal ~ models, at large distances, the approximated induced charge

charge distributior(this fixed charge is assumed to be clas-density=.e.par is proportional to the potential e,

sical). The latter perturbations are related exactly to some 2

charge distribution functions through the linear response > e oM (r)=— L vty (1.2
. . . . . aFPMF,a MF ’ .

theory, but the relation is different in the classical and quan- a ™

tum regimes. For instance, in a conductive phase, the total _ _
induced charge around an infinitesimal charge distributioWhere kg is an inverse length that depends on the self-
8q(r) is exactly opposite the total chargdr Sq(r) [see Eq.  consistent mean-field model. Accord_mg to the I?0|sson equa-
(1.3 of paper ] and, as recalled in Sec. IV D of paper I, this ton (6.7) of paper |, the corresponding mean-field potential
property implies a sum rule for the second moment of theVwr in the presence of a point chargq located ar =0is a
charge-charge correlation function in the classical case anfukawa-like potential
for the second moment of the zero-frequency component of
the time-ordered charge-charge correlation in the quantum
case. More generally, information about the decay of the
truncated distribution functions can be inferred from the
variation in then-body distribution functions between par- and the induced charge density has the same exponential
ticles of the medium when an infinitesimal external charge idalloff. In the quantum case, a more detailed description of
immersed in the plasma. At a classical level, if the variationthe correlations must be used. In the various versions of the
decreases exponentially fast far away from the externaelf-consistent RPA modeEaeap'QgAﬂ(r) and VISh(r) de-
charge, then the classical charge distributions for the pareay faster than any inverse power law and the leading terms
ticles of the medium satisfy the so-called multipole sumin their asymptotic behaviors are similar to the mean-field
rules. The multipole sum rules describe a “perfect” screen-Yukawa potential(1.2). SinceEaeap'JQd(r) andV™®Yr) are re-
ing in which the polarization clouds compensate not only thdated indirectly to the particle-particle correlation by the lin-
total charge but even all the multipoles of any given configu-ear response theory, this result proves to be linked to a fast
ration of charges. In quantum statisti€8], this perfect decay of the corresponding approximated correlation be-
screening would be realized if the distribution functions fortween particleg4,5]. We notice that, in this microscopic
the particles of the medium decreased faster than any inverseodel, an oscillatory algebraic term, known as the Friedel
power law, as is the case in classical statisfitcd0] when  oscillations[19], occurs atzerotemperature because of the
the correlations in the plasma have a fast clustering. Weliscontinuity of the Fermi distribution for independent enti-
notice that, for any other integrable power-law poterjtldl],  ties in the ground state. This phenomenon has been observed
the falloff of the classical correlations is bounded below byas a broadening of nucleon magnetic resonance lines in di-
an inverse power and such a perfect screening cannot exidute alloys(see Ref[18] and references cited thergitdow-

The first descriptions of screening in plasmas dealt withever, atfinite temperature, the Fermi surface is smeared over
the simplest quantities: the charge density that is induced ia thickneskgT in energy(wherekg is the Boltzmann con-
the plasma when an infinitesimal distribution of chadggr) stan} and the oscillations are multiplied by an exponentially
is immersed into it and the total potentMi® in the bulk in  decaying factor.
the presence of the external charge. These two quantities are Though the picture of Debye screening for the particle-
related by the Poisson equatidf.7) (see paper)l Self-  particle correlation is usually taken for granted, very few
consistent models were solved for classical electrolyj@s-  rigorous results are known about it. For a classical multi-
14] (Debye-Hickel theory and for the fermionic one- component plasméwith short-ranged regularization of the
component plasm@dCP in the semiclassical regime at high Coulomb potential in order to avoid collapse the limit of
density [15,16 (Thomas-Fermi theojyas well as in the weak couplinglow-density or high-temperature regiméhe
quantum cas¢17,1§, with the many versions of the so- existence of exponential clustering of the correlation func-
called random-phase approximati@RPA). (For a brief his-  tions was proved first for a lattice Coulomb gagith the
torical review about the RPA theory, see Ref7].) In the  discretized version of &) by Brydges[20] and for the con-
classical and semiclassical regimes, the self-consistent motinuous system by Brydges and Federb(igh]. Next the
els are mean-field approachs in which the correlations beproof was extended to the OCP by Imbf22]. However, in
tween particles are approximated in an indirect way: the clasthe quantum case, strong doubts about an exponential falloff
sical particles or the quantum quasiparticles do not interacivere raised by Brydges and Federbydhi and then by
together, but they move in a mean-field potential. The apBrydges and Seilef2]. In the latter reference, the authors
proximation is reasonable for classical plasmas in a weakast the nonrelativistic quantum Coulomb system into the
coupling regime(low density or high temperatureand for  form of some kind of lattice gauge model and found that an
fermionic quantum plasmas in a semiclassical regime wheinfinite correlation length appears in some Green'’s functions
the density is sufficiently high so that the interaction energyassociated with external charges depending on an imaginary
becomes negligible with respect to the fermionic quantuntime. They conjectured that the electric field of a static ex-
kinetic energy. Indeed, in this regime and under the semiternal source should not be screened exponentially; rather it
classical assumption that the total potential is appreciablshould have a long-ranged tail decaying as an inverse power

— KMET

Vit(r)=4q (1.2
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of the distance. Indeed, in nearly classical regimes, the exguantum regime, the above lower algebraic bounds show that
ponential decay would be very close to the truth for all butthe intrinsic quantum fluctuations destroy even the static per-
extremely large distances. In the language of field theory, thé&ct organization of the polarization cloud around a charge of
interpretation is that vacuum polarization produces dipolethe medium. The quantum nature of the subsequent “dipole-
[23] and dipoles do not scre¢@4]. In other words, though a dipole-like” interaction between two point charges is quite
charge of the medium and its cloud carry no mean chargdifferent from the van der Waals interaction that arises be-
and no mean dipole as a whole, nevertheless, it has a nonvaveen objects with an internal structure, such as atoms or
nishing instantaneous dipole because of fluctuations and imolecules, and that comes from the polarizability of quan-
the quantum case the interactions between dipolar fluctuaum bound states. Indeed, the algebraic falloff appears in the
tions are not screened as efficiently as in the classical regim@CP, where no bound states can be formed, while the large-
Henceforth, the correlation between two particles of the sysdistance correlation between two quantum point charges em-
tem has an algebraic tail that may fall affpriori only as a bedded in a classical plasma proves to be exactlyr& 1/
1/r3 dipole-dipole interaction energy. In fact, smaller upperdecay[4].
bounds on the decay of the correlations were obtained by At this point a natural question to ask was the following:
Alastuey and Martin(3,4] in a regime of high temperature how can one go beyond the RPA and find algebraic tails in
and low density. In this regime, the correlations are assumethe standard many-body perturbation theory at finite tem-
to decrease monotonically with an integer inverse power-lavperature? In this formalism, the Fermi statistics is taken into
expansion starting with i and the hierarchy of equilibrium account, so the results are valid even at low temperatures and
equations for imaginary-time observablésr “evolution  the potential dealt with as a perturbation is the true Coulomb
equations’) is supposed to be valid in the thermodynamic potential. The particle-particle correlation is derived from the
limit. Under those assumptions, the particle-particle correlasum of all chains built with “proper polarization” graphs
tion decreases at least ag®lin a multicomponent plasma linked by Coulomb interaction lines; the Fourier transform of
(and faster than 1f in the very special case of the OCP, in the total potentialV*® in the presence of an infinitesimal
which charge and particle observables are proportional texternal charge distribution is proportional to the zero-
each other In contrast, the corresponding investigation of frequency component of the “effective” potential of the for-
the equilibrium equations in the classical case enables exclumalism, which is defined as the sum of all chains of bare
sion of any monotonic inverse power Iga1]. Coulomb interaction lines linked by proper polarization
The next steps in questioning the nature of the asymptotigraphs. As detailed in Sec. V, the RPA theory consists in
behavior of the quantum correlations were done by perturbaapproximating the proper polarization by its value for non-
tive approachs. First, in the approximation of Maxwell- interacting particles, namely, a loop of fermionic free propa-
Boltzmann statistics for a modified Coulomb potential, alge-gators. The next natural correction to the RPA value for the
braic lower bounds were obtained from &@nexpansion proper polarization is the graph where two loops of fermi-
developed by Alastuey and Martjd] in a path integral for- onic free propagators are linked by two RPA effective po-
malism. The approximation of distinguishable partidieas-  tential lines. It happens that two exact sum rUy2%,17] can
sical Maxwell-Boltzmann statisti¢ss valid only in a regime be deduced for the OCP because in this model the charge
of high temperature and low density and requires a regulardensity is proportional to the particle density. These rules
ization of the potential at short distances in order to prevenallow one to show5] that, when the above correction to the
the macroscopic collapse of the plasteacept in the case of RPA proper polarization is taken into accouviS decays as
the OCP, where there is only one species of point chargesl/r® the induced charge density as®/and the density-
In this semiclassical regime, the exchange effects appear a@ensity correlation as 8°, whereas the corresponding RPA
corrections that vanish exponentially whéngoes to zero quantities decrease faster than any inverse power of the dis-
[25]. In the# expansion of the correlations about their clas-tance.(All the ladder graphs with more than two interaction
sical values, the correction of ord&f has a fast decay, but lines in the proper polarization lead to faster algebraic de-
each term of ordef?", with n=2, decays algebraically as cays) We notice that, even at zero temperature, diagrams
1/r8. In particular, the particle-particle correlation should notanalogous to those exhibited in RES] are expected to gen-
decay faster than 49, while the several point correlations erate a 1/° tail in some density-density response function of
should have even the slower decay®l/when groups of the homogenous electron gi28,29. Moreover, they seem
particles are separated. These bounds are compatible with the play a crucial role in the existence of fine-scale peaks in
upper ones that are deduced from the above nonperturbatitke frequency dependence of the dynamic structure factor for
approach of the equations of motion for a system with quantarge fixed momentum transfers at metallic densit&. As
tum statistics[4]. Moreover, they do not violate the basic a conclusion, the investigation of the standard many-body
sum rules recalled in Eq$l.1)—(1.3) of paper 1[26]. We  theory shows that the exchange effects, which are rather im-
notice that a formally similar analysis can be carried out forportant in short-ranged phenomena, prove not to change
the classical time-displaced particle-particle correlation atrastically the results obtained previouffy for the OCP in
equilibrium; a short-time expansion about the static correlathe semiclassical Maxwell-Boltzmann regime at the ovdfer
tions together with an investigation of the Bogoliubov-Born-  However, these results rely on the assumption that the
Green-Kirkwood-Yvon hierarchy also leads to an algebraidails induced by some particular diagrams are not canceled
decay of the classical time-displaced correlatigBs The by those coming from other proper polarization graphs in the
reason is that collisions tend to destroy the “perfect” orga-perturbation series. The validity of this assumption is not
nization of the clouds, while inertia prevents classical par-obvious because the study of the large-distance behavior of
ticles to follow instantaneously the moving charge. In athe particle-particle correlation is cumbersome in the stan-
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dard perturbation framework. In the latter, the basic objects We stress that the reason why the®Ialloff allowed by
are the frequency components of the proper polarization anthe dimensional analysis proves not to appear lies in the
the smallk behavior of the diagrams can be investigatedharmonicity of the Coulomb potential. Indeed, the rotational
only for isolated and very simple diagrams. Moreover, in theinvariance of interactions and quantum fluctuations of one
absence of general sum rules, as it is the case for multiconparticle is such that some terms with at least two derivatives
ponent plasmas, no conclusion about the particle-particlef the Coulomb potential, which are priori long ranged,
correlation can be drawn from the investigation of the largerove to be short ranged because they involMd/r)=
distance behavior of the proper polarization graphs. At this-473(r) once the integration over the shapes of the loops
point the formalism of paper | proves to be more efficient. has been performed. In the case of a diagram made of one
algebraicF g bond, the shape of each root point is integrated
over with a weight equal to the fast-decaying loop density;
B. New results then, the I7® and 1¢* tails are canceled by rotational invari-
ance, while the square of the Laplacian of i3 generated
from the 1f° tail and the corresponding contribution decays

the collective effects due to the interactions between the tota{?Ster than any INVErse power law, as N the foIIow!ng ex
charges of the loops. Before averaging over the shapes of tifénple' |fQ(|x|) IS |.nvar|ant under rotations ok and is a
loops, the charge-charge and charge-multipole interaction?St'decaymg function of the extent of the loop,

between loops are exponentially screened, while the 1
multipole-multipole interactions are only partially screened f D(X)G(|X|)[X]m[x]ﬂz‘?#mz'wz(F)
because of the difference between the bare loop potential and

the classical electrostatic potential between charged loops. 1\ 1

Subsequently, an algebraically decaying resummed Bond =r7,,lV2A<F) 3 f D(X)G(|X])X? 1.3
appears. According to paper I, the contribution to the

particle-particle correlation arising directly from the ex-

change between particles decays faster than any inversegnqi rangedThe space index of the vector components
power I_aw(except ina phase similar to a Bose condensatlt_)nruns from 1 to 3 andy, denotes a partial derivative with
where _|t tends to a finite constant value plus fast-decaylngespect to the compong[n]M of r.) Eventually, the diagram
corrections. considered decays as some kind of squared tHil. The

In tlhe preslen_t Paper, V\ge shovf\( that the part Or]:.tr;]e Eartider'nechanism for a convolution involving algebraic bonds and
particle correlation given by configurations in which the par-, gepraically decaying subdiagrams is a little more compli-

ticles atr, andry, belong to different exchange loops has an.taq than for a dia ; ;
. : gram with a single bond because the
algebraic falloff induced by the algebrak€; bond, the as-  oonerty exemplified inf1.3) involves only the leading tail of

ymptotic behavior of which can be written as a series of 1/ 6" conyolution and the latter still has an algebraic decay

glgelbraic :]ails,hwithyzg. E?Ch tail of the I\gayer bonBr  getermined by the terms that would have been only sublead-
involves the shapes dioth its arguments because the re- i, without this special property. The basic mechanism is

sidual interactions after resummation of the interactions beéxemplified in the following equation, where a function,

tween the total charges of the loops are essentially multipol&gich gecays as 14 according to rotational invariance argu-
multipole-like. Subsequently, since the interaction bondEents and dimensional analysis, proves to have a faster de-

According to paper I, the virial expansions in the loop
formalism give the following picture, after resummation of

between the loops as well as the measure associated with t Sy because of the appearance of the Laplacian mof It/

shapes of the loops are invariant under global rotation of;y x) is invariant under global rotations ¢f,X) and falls
their arguments, a mere dimensional analysis shows that thg: o+ jaast as 1 whenr goes to infinity

part of the particle-particle correlation where the two par-

ticles are not exchanged within the same cycle decays at least

as 1t°, though the loop correlation decays only as*1This 1
1/r® behavior comes from the ¥ and 1f* terms in the J dr’J D(X)G(f',x)[x]#%u<ﬁ)
algebraic resummed bond and may appear for the diagram et

that can be written as convolution chains involving at least 1\ 1 1
one algebraic bond. The harmonicity of the Coulomb poten- ~ ~ f%A(F) 3 J dr’J D(X)G(r",X)(r"-X)+0O r—g)-
tial enforces in fact a slower tf decay for the latter convo- r—e

lution chains. Eventually, the leading asymptotic behavior of (1.4

the particle-particle correlation originates from a product of

two functions, both of which involve at least one dipole-

dipole-like interaction, and decays as®1MWe notice that the [O(1/r®) denotes a term that decays at least as.]LAs
mechanism is not as simple as in the case of a classicaletailed in Sec. | C, the possibler 1asymptotic behavior of
system of point particles with fundamentat 3dlipole-dipole  the particle-particle correlation allowed by dimensional
interactions, in which the asymptotic behavior of theanalysis arises in convolution chains that involve® bf 1/r*
particle-particle correlation is determined by the fluctuationgails as first and last algebraic terms and>lihtermediate
of interactions and decays #&/r%? because of rotational tails (together with functions decaying at least as &t both
invariance. Besides, in the multicomponent plasma, the sukends and in the middle of the convolutidin Fourier space,
leading tails of the quantum particle-particle correlation arethe singularities coming from the r#/ and 1t* tails of |
148, 1/% and 1r?, with y=10. resummed algebraic bonds in these convolutions are
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| ' total potential as 1f), while the quantum charge-charge
I1 (k. K, ve(K)], K, 1ku12kvva(k)H [k Kyvc(K)]. structure factolC?(r) decays as t/°. On one hand, the dif-
=1 o 1=2 ference between the latter two exponents is mainly a conse-
(1.9 quence of the response relati¢h32 of paper I. Roughly
speaking, the change from ||’ singularity in the Fourier
Since the derivatives of the Coulomb potential are contracte¢tansform ofC°?(k) to a|k|® si_ngularity ins e, p"k) origi-
with one or two space components lodth loop shapesX; nates from the fact that e o' °(k) involves a quantity very
andX; in the 1f% and 1f* tails of the algebraic resummed similar to C2(k) divided by k2. On the other hand, the fall
bondFx(7},7)), rotational invariance arguments show that,from a 1f° decay for the particle-particle correlation
after integration over the shapes of the loops, the singulari;(2TQy) o a 140 |arge-distance behavior for the charge-
ties (1.5 are contracted with the product of the tensorcﬁ;rge correlatiorEaeaEalea/pfz,m(r) is determined by

-1
k_Vlnizléw i1 an_d_the _tensorkﬂl and Oy gy (ESPEC- two mechanisms. The first one is very similar to the mecha-
tively, with a coefficient independent froln Subsequently, nism that ensures that, in the classical regime, the exact
the singularitieg1.5) lead to analytic contributions because charge density of the system made of a particle and its po-
vc(k)<1k? [The corresponding tails in position space in- |arization cloud, as well as its Debye expression, both have
volve derivatives of the Laplacian(1/r), which is short  Equrier transforms that behave & when k| goes to zero.

ranged} Thus the algebraic decay of one of the above cony, gther words, in both cases, the total induced charge
volution chains is due to subleading tails and the convolutiony gyng an infinitesimal external charge distribution is exactly

decreases faster than the inverse power that is associated Qkfposite it[The Debye model amounts to approximating the
dimensional analysis with the derivatives of Iivolved in  |5ssical Ursell functionh® (k) by —Be, e, don(k).]
aaab ﬂ/a Ckb .

its dominant large-distance behavior. . . . . . .
_This macroscopic classical Debye screening still operates in

We point out that, in various formalisms, it can be under h here it is d ‘ved by th q
stood in terms of the chain potentials, which describe thd € quantum system, where it is described by the resumme
charge-charge bonH®". The second mechanism is that the

screening of the monopole-monopole interactieae paper . . . . .
g b P y bap large-distance “diffraction-like” quantum effects described

), how the 1r® dipole-dipole-like interaction between . p cm
charges surrounded by their polarization clouds eventuall y the resummed multipole-charge bo_rl%ig .andF also
artially screen the quantum algebraic tail. Moreover, the

lead not to a P tail of the particle-particle correlation, as . . . .
the sole rotational invariance would imply, but to &®1fail total '”quced charge is completely determined by the dia-
enforced by the harmonicity of the Coulomb potential. In9ram With only one charge-charge resummed bBfid the
particular, in the approximation where only the graph with Screening of macroscopic eIe_ctrostaups is not changed by the
one chain-potential bond is retained, the corresponding a leparture of the quantum microscopic correlations from the
proximated induced charge density and particle-particle Cor(_:lassmal exponential clustering.
relation both decrease faster than any inverse power law of

the distance because the rotational invariance makes the C. Contents

short-ranged Laplacian of the Coulomb potential appear. The discussion of the exponent of the algebraic decay of
More generally, in the exact correlation function, the rota-the part of the quantum particle-particle correlation coming
tional invariance of the quantum fluctuations of the pOlariza'from the |00p correlation is organized as follows. The a_|ge_
tion cloud around a quantum charge and the harmonicity ofyajc tail of theFg bond is equal to exply) —1, whereW is
the Coulomb potential cancel the long-ranged part of they series of algebraic ternW,, (y=3, wherey is an integey,
chain interaction and only products of two convolutions,each of which decays asr2/ In Sec. Il A we stress the
each of which involves the algebraic part of the chain potenparticularity of the discussion that comes from the noninte-
tial, remain in the dominant asymptotic behavior of thegrabmty of the a|gebraic resummed bom and the basic
particle-particle correlation. This is the general mechanisnbecu”ar mechanism due to the harmonicity of the Coulomb
that leads to the 1f power law of the particle-particle- potential is exemplified on the simplest diagram. In Sec. I B
correlation decay. the diagrammatics are reorganized in order to display a con-
Moreover, the loop formalism allows one to discuss theyipution H and convolution chaing® made of bondsw
large-distance behavior of the charge-charge correlation ar]gined directly together or linked by graphé. In Sec. 1l C
induced charge density. Since the nonexchange part of thge give the principles of the technical discussion in Fourier
particle-particle correlatiopfcz,w(r) decays as tf, a mere  space that allow one to determine the exponent of an alge-
dimensional analysis of the linear response relation in théraic decay in position space.
loop formalism[see(4.27) of paper ] shows that the induced The graphH decays as £, (Sec. lll A) and a possible
charge densitg e,0™(r) in the presence of a localized in- slower decay of the particle-particle correlation can arise
finitesimal external charge decays at least a8 ahd, ac- only from the convolutions involving! and bond$V. How-
cording to the Poisson equatigeee(6.7) of paper 1, the ever, the latter convolution chaigsprove to decrease faster
corresponding total potential falls off at least as?1lHow-  than 1t°. Indeed, we show in Sec. Ill B that, after integra-
ever, in a multicomponent plasma, the charge densityion over the shapes of the loops, rotational invariance argu-
>.e.p"r) is expected to decay faster than the correlatiorments determine the order of the first two terms in the
between quantum particl4]. Though there is no exact sum smallk expansion of a chaid and, because of the harmo-
rule for the nonzero moments Efaeap';‘d(r) in multicompo-  nicity of the Coulomb potential, the first term proves to be
nent plasmas, the present loop formalism allows one to showanalytic. This mere dimensional analysis shows thaf i
that> e, p™(r) rather decays asrf (and the corresponding an upper bound for the algebraic large-distance behavior of a
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convolution€. The translation of the discussion in position exhibits the basic mechanisms involved in papers | and II.
space(see Appendix A is that, after averaging over the

shapes of the loops, rotational invariance arguments and di- 1l. ALGEBRAIC DECAY IN THE LOOP FORMALISM
mensional analysis enforce a falloff faster than®fbr all
chains¢, except those with a bond/; or W, at both ends
and onlyW;, intermediate bonds, which may decreaspri- As shown in paper |, the resummed Mayer diagrams for
ori only as 1r°. However, by virtue of the specific forms of the loop-density expansion of the loop correlation involve
W, and W, in terms of the derivatives of the Coulomb po- both exponentially decaying bon&$®, F°™, andF™" and an
tential, they decay at least as 1because\(1/r)=—4m&r). ~ algebraic bondrg. The asymptotic behavior of thég bond
The general diagrammatic structure of the®ltail of the IS given by the expansion of exp) —1 and its leading term
particle-particle correlation is given in Sec. Il C. In Sec, behaves as a7, which is the borderline of integrability.
D (and Appendix B, we give the general tensorial struc- I—{(ze)chf’ortr), 'the asy_mptotlc behavior of the Ioop corre_latlon
ture of the algebraic tails of a diagram kh before integra- # ~ (“+**") is not given by the resullt for a classical fluid of
tion over the shapes of its end points. The allowed exponentdoncharged particles interacting by a potentlalwith an

of the various tails oH and of the convolutiong are dis-  Ntégrable power-law decgl]. In the case of such a one-
cussed in Secs. Il E and Il Eand Appendix G H gener-  cOmponent fluid, the correlation behaves as

ates 1/°,1/r81/r°,... tails, while the convolution& only

A. Basic mechanisms

contribute to w8 1/r1°1/r!l .. tails. Eventually, the alge-
[l [ [} ’ (Z)T cl —~ |
braic tails of the particle-particle correlation are °L/1/5, p (rab)r Hoj drlf drpS7(ra.ro)fadri ra)
1/r” with y any(even or oddlinteger greater than or equal to ap
9 (and there are no logarithmic correctigns ><S°'(r2,rb)

In Sec. IV A we show that, at a classical level, the fact
that the exact total induced charge around an infinitesimal 5
external chargéq(r) is equal to—8q(r) can be linked to the ~ —BO(r )[P_XT
fact that its Debye approximation also satisfies this property. av’l g
The link lies in a suitable reorganization of the classical re-
summed diagrammatics, which exhibits the “dressing” of ) ) )
the particle-particle correlation by the Debye polarizationWhere f,s=—p® is the asymptotic behavior of the Mayer
cloud around a charge of the mediufThis structure im- bolnd f=exp(—,8<I>)—21+ lThe classical structure factor
poses a constraint on the construction of coherent approx™ (T ,r;)=pd(r))+p3T °(r;,rj), which is equal to the
mations in the diagrammatic frameworkn Sec. IVB we classical density-density response function, obeys the
point out the basic mechanisms that operate in the loop sy&§rnstein-Zemicke relation$2.10 and (2.11) of paper I,
tem. In Sec. IV C we introduce integral relations for the loopWhich are valid for either quantum or classical quantities.
Ursell functions, which exhibit the dressing by some kind of However, since the resummed diagrams of the loop-density
“Debye” loop polarization cloud. These relations are used€Xpansion are integrable, the loop correlation is expected to
to reorganize the diagrams of the loop Ursell functigec. decay as P, while the power law of the asymptotic behav-
IVD) and a discussion similar to that performed for theior of the quantum correlation may be greater because of the
particle-particle correlation shows that the charge-chargéhtegration over the internal degrees of freedom of the loops.
correlation decays at least ag f/(see also Appendixes C The first algebraic term in thé expansion of the large-
and D). A slightly different reorganizatiofSec. IV B allows distance quantum correlation in a OCP is given by a formula
one to show that the induced charge density falls off a& 1/ thatis analogous t(2.1) [5], but involves the square of some
In Sec. IV F we give a diagrammatic expression for the seckind of effective potential instead of the bare potential.
ond moment of the charge-charge correlatigvhich in- ~ Moreover, in the special latter case, according(d®) of
volves the diagram with only onE° bond together with ~Paper I, fdr S°(r)=0 and the above term involves in fact
other diagrams However, the=°¢ bond proves to contribute derlv_atlves of the squared effective potential, so that the cor-
by itself to the total induced charge and we mention the'®lation eventually proves to have a f/falloff.
corresponding constraints that are required to build approxi- AS an introduction to the following discussion, we study
mations (in the loop formalisrh that satisfy the screening the asymptotic behavior of thdl diagram with only
sum rule(1.3) of paper I. one Fg bond. The algebraic tail oFgz can be written

As a conclusion(Sec. V), we compare the screening @s the sum ofW and expW)—1-W. It can be readily
mechanisms in various models. In Sec. V A, we investigatshown  that, after integration with the weight
the fast decay of the quantum particle-particle correlatiorP (Xa)D(Xp)pa, p,(X6)Pa, p,(Xp), W gives short-ranged
and induced charge density in the chain approximations andontributions to the asymptotic behavior of the diagram and
particularly in the version of the RPA model written in the the dominant large-distance decay of the latter is in fact
standard perturbation many-body theory. The various screemiiven by the 17® leading term in the algebraic ta(W)>2.
ing lengths defined from the large-distance behavior of théndeed, according to paperd,, ,(X) is a fast-decaying func-
induced charge density are compared in Sec. V B. In order tton of |X|, every moment ofp, ,(X) is finite, and Egs.
see how the algebraic tail of the chain potential eventually5.33—(5.35 of paper | allow to write the Fourier transform
pollutes the correlations in various formalisms, one has taf the contribution from\ to the particle-particle correlation
take into account diagrams with at least two chain potentialas a seriegover p,, p,, m, andn; m=1, n=1), in which
(Sec. V Q. Eventually, we recall a very simple model that each term is proportional to

2
: 2.1

rab—roo
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Pa Pb function independent from the orientationlafSincem’=1,
fo deo dr'{é((7—P(7)]-[7"—P(r"))—-1} the singularity 1¥? is canceled and the ter(2.2) is in fact
analytic. In position space, this means that powers of the
1 Laplacian of 1Ir appear in the asymptotic behavior of
XF(J D(xa)paa,pa(xa)[k-xa(r)]m) ID(X2) [D(Xp)pa, p,(Xb) Pay py(X)W(Za, %) and the
corresponding terms are in fact short ranged. The mechanism
N0 is similar to what happens to the contribution of the analog
j D(Xb)Pa py( Xo)K- Xp(7")] ) @2 ot win thes expansion of the Maxwell-Boltzmann correla-
. . tions in terms of the classical correlatiopd); in this latter
Let X,, be the component oK with space indexu (1 case, all the classical distribution functions are fast-decaying
=1,..,3. Because of the rotational invariance of fynctions and they play the role of the weighy, ,(X).
D(X)pa,p(X), the moment/D(X)p,,p(X)X,, - X, Vvan-  Eventually, the dominant asymptotic behavior of the diagram
ishes if m is odd; if m is even (m=2m’'=2) with one Fr bond is given by the leading term in
ID(X)pq,p(X)(k-X)>™ is proportional to (k)™ times a exp(W)—1—W,3W3, and reads

X

pz paj D(Xa)Paa,pa(Xa)pz pbf D(Xb)Pab,pb(Xb) %[Ws(rabyxaixb;aaapa;abvpb)]z
a b

’Bzeiaeib 1 2 Pa Pb
8 ol [ £ 02w ettt PP

Pa Po , , 1
x | "z, | Mdryt o r,— Pl 1~ L7 P D=1} [ DXpa, p (Ka)3Xal(7) Xol72)]
0 0

X [ DXu)py 5, (X HX(7) X)) 23

B. Topological reorganization of the diagrams F™C, W, or Fre. SinceFg is just the sum ofV andF g, we

Our aim is to analyze the influence of the nonintegrabled®t an identity analogous to E(5.9) of paper |,
algebraic deca¥ 5 on the large-distance behavior of the dia-
grams after integration over the shapes of the loops and to 1 M _
show that the large-distance contributions that involve only — h(%,, %p) =2, =— f IT 77011 F
one W or only one convolution involving at least ond no S s
decay faster than 9. For this purpose, we spli into (2.9

n

For instance, thél diagram with only one bon&g leads to

two II diagrams, as shown in Fig. 1. THé diagrams are
integrable at large distances, as Iheliagramgsee paper)l

The dominant asymptotic behaviorW(r,Xi !XJ) up to Order They may be ﬂot Integl‘able at short distances because of
1/r% is equal toW,+W,+Ws+W; and that ofF pg is 2W3.  Products of theF bond. However, this does not matter be-
We introduce thdl diagrams that have the same topological¢2Use this nonintegrability does not interplay with the large-
definition as thell diagrams, with the only difference that distance behavior of the diagrams and, further, this is an
the bondFR iS now rep|aced by eitherw or an FR6 bond_ artifact that disappeaI’S When tﬂl—é diagl’ams are CO”eCted

TheF bonds in thdT diagrams are equal to eithef¢, Fem,  together properly, as in the caseldfdiagrams 32,33.
The next step of the general discussion is to exhibit the

subclass of the so-callel,,. diagrams defined as thH
diagrams that remain connected when an insef\ors re-
moved. LetH(r,;,x;,x;) denote both the sum of thHyy.
diagrams and the graph associated with it. According to the

FIG. 1. Diagrammatic representation of the decomposit®4) topological definition of thdly,. diagrams,h(Z,,%;) can
of anF bond into two auxiliaryF bonds. TheF g bond is denoted ~ be reexpressed by an exact Dyson equation in terms of con-
by a solid line with a superscrifitgg and thew bond is represented  volution chains involving botlH andW. Let y=(a,p,X) be
by a serrated line. a global notation for the internal degrees of freedom of a

FR:W+ FRG' (24)

o2 o0 = o0 + a0
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) , ) y—3 is even andk|”3(In|k|)" if y—3 is odd.[As discussed
o@++o@%m below, if g,«(r) is a partial derivative of ; S7~3"=%(k) is
Lo~Ly Lg Ly Lq Ly a nonanalytic term of ordejk|”~3 without any logarithm,

even if y—3 is even] The singular terms of greater order

FIG. 2. Diagrammatic representation of the Dyson equationth@n S Bm_(k) are nonanalytic termsS” 3" (k) with
(2.6). The small white disks correspond &, and 7, and the "' <n and singular terms of higher order jk| that all de-
black points to the internal pointg and x'. The big white disk Pend on the subleading terms in the large-distance behavior
stands forH and the hachured disks represént of g(r)—g.(r). More precisely, the dominant behavior
0.4r)=A(nr)"/r? is a purely algebraic function and, in a
position space of dimension 3, this function is not integrable
at the origin if y=3. Thus we have to consider the corre-
sponding distributiorg,g gthat is regularized at short dis-
tances and the Fourier transform of the latter reads

loop, with the associated meaSlerX=225:12;°:1fD(X).
In Fourier space, the relation reads

h(k.xa,xb)=H(k,xa,xb)+|§1fdxl"'d)ndxi“'dx( n
Gasred k)= alQIKI2™+ X a0 [k|2™(In[k)" +A

XK(k’Xale)W(k!lexi)K(kvxi1)(2)”. n'=1
XW(K, x1 X1 YK (K X1 3 Xp)- (2.6) X 3 om,nlK|?M(In[k[)" 2.9
For brevity, we have introduced if y—3=2m, while
K(Rij xi X)) = 8(Ri—R;) 8y, . p(xi) +H(Rij . xi X)), - o :
| (2.7) Gasre§ k) =@ Q|K[ZM 1+ X G0 [k[2™ X(In|k|)" +A
n=1
With 0y, 1= Oy O, .y O X)) aNd p(Xi) =P (X1)- Xm0 K27 (I[K)" 2.9

The representation dR.6) in terms of the grapiH and a
sum of chains made with grapkslinked by, W bonds is  if y—3=2m+1. In these casesS” 3" (k) is equal to the

shown in Fig. 2. greatest term if2.8) and (2.9). The coefficientSaEQQ;) and
o o @) depend on the regularization at short distances,
C. Characterization of an algebraic tail whereascs om n and'Eg,mH,n depend only on the dimension

The analysis of the algebraic decay of the graphs is perof space(here 3 and on the powerg andn. For instance,
formed according to the following principles. First, only a the Fourier transform of1/r®)., is equal to 4 Infk| plus a
finite number of the moments of a function with an algebraicconstant term that depends on the regularization at short dis-
asymptotic decay are well defined and the dominant term ifances. According t¢2.8) and(2.9), if the dominant asymp-
the asymptotic behavior of a functiay(r) decreases asr/  totic behavior ofg(r) at large distances ig.dr)=(Inr)"/r?,
or (In1)"/r”, with y andn nonzero positive integers, if and While [g— s ed(r) decays faster than ] theng,s e4k) is
only if its Fourier transformg(k)=/dr explik-r)g(r) has a  of order zero ink| andAg ;o= /dr[g(r) — Gasre4r)1 is finite
smallk expansion that becomes nonanalytic with respect tdif there is no short-distance nonintegrabilityn this case,
the components of the vectarat the orderk|”3. Thefirst —
nonanalytic termS(”~3"(k) corresponds to the divergent 9(K)=Ag regt asre§ k) + O([K|), (2.10
moment ofg(r) with the lowest order and is given by the
theory of distributions[34]. For instance, first nonanalytic Where O(|k|)=Jdr[expik -r)—1][g—gased(r) starts at the
terms such ak,k,/k? and Ifk| correspond to 17 decays, a order [k|. If g.{r)=(Inr)"/r” with y=4, the Fourier trans-
dominant term(In|k|)? signals a(In r)/r® falloff, while first ~ form of g(r) reads
noganalyti% terms such dk| and |k|? In|k| originate from 4
1/r* and 1f° decays, respectively. Second, the large-distance .
behavior of the convolution of several functions with alge- g(k)zz,o f dr(ik-r)PLg(r) ~ Gasefr)]
braic decays is more conveniently studied in Fourier repre-

sentation than in position space. The reason is that a convo- e r 74 )
lution of various functiongy(r) is changed into a product in +f dr e Qas,re&f)Jrf drje™ "= 20 (ik-r)P
Fourier space and, according to the previous argument, its P

dominant large-distance behavior is merely deduced from the X[9(r) —Gasreg")1- (2.11)
first nonanalytic term in the expansion of the product of the

smallk behaviors of the Fourier transforrggk). These prin-  Wheng andg, qare sufficiently regular at short distances,
ciples are further detailed in the present section. the first term is a sum of analytic terms. Sifge-gas red(r)

In the generic case, according to the theory of distribu-decays at least adnr)" /r”, the second term contains
tions, in a position space of dimension 3, if a function, whichS"” 3" (k) plus terms of order|k|”® times a possible
is regular at short distances, decays algebraically at Iargén|k|)”' (with n"<n—1), while the third term contains only
distances with deadingtermg,J{r)=A(n r)"/r?, with n=0, (nonanalytic and analyticerms that are of order greater than
the smallk expansion of its Fourier transform contains athat of SU73M (k). If n=0, as will be the case in the follow-
leading singular terns” 3" (k) of order |k|* 3(In|k|)"*1 if  ing, (2.11) implies that
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g(k):[g_gas,rea(kzo)

ap[g - gas,rea

Hp &k/"l' .o ak#p

y—4
+p21 K, ook (k=0)

+S7739(k) + O (S 39 (k) (212

whereO(S""~39(k)) denoteganalytic or nonanalyticterms
of order greater than that & %%k).

In the case of the algebraic tails of thk diagrams(see
Secs. Il D and Ill B, there appears n@n r)"/r? with n>0,
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only powers of the Laplacian of Akurvive and the latter is
short ranged. For instance, the Fourier transform of every
purely algebraic ternW,,, defined in(5.33 of paper | and
which involves only derivatives of i/ reduces to one term
S 30(k) of order |k|”"® and without any lItk|, and
Jdr W,(r,xi.x{) is conditionally convergent at short dis-
tances. According to the property.35 of paper I, the Fou-
rier transforms oW, andW,, respectively, read

] !
W3(k'Xi 'Xi,):,Beaie“i’ J'o dTi Opl dTi’

while there proves to be no need of short-distance regular-

ization forg,dr). Indeed, ifg.{r)=d,,(1/r), then the singu-

lar term isk k, times the nonanalytic term in the Fourier

transform of 1/, which reduces to #/k? (without any Ink|);

moreover, the Fourier transform ofrlfloes not need any

X{8(ri—P(m)]—[7 —P(7)])—1}4m
X[xi(Ti)'k][xi’(Ti,)'k]

short-distance regularization, while its derivatives become

integrable after integration over the orientationrdbecause

and
|
! pl p" ! ! !
Wa(K, xi ,xi)=ﬁeaiea{JO dr O'dﬂ{ﬁ([n—P(n)]—[Ti —P(7)D—-1}
() K1 (7)) - KT =TX () - KX (7)) - kT2
><47T[X.( i) KITX{ (7)) - K]=[Xi(7) - KILX (77) - K] (2.14

Since Fr—W decays as[ W(r,xi,x{)]? plus faster tails,
according t0(2.17),

[FrR=WI(K,xi x{)=Alxi ,Xi,)+AELl)(Xi XKy
+A£,L2)(XI 1Xi,)kp.k1/

v

+A(3) (XI 1Xil)k,u,kvko'

MV{T
+f dr e T2 [ Ws(r,xi,x{)1?

+0O(|k|%, (2.19

where
A(XI 1Xi,)Ef dr[FR_W_ %Wg](ri)ﬁ 1Xi,)! (216

ADxix!) =10 dxx, [Fr—W—(L2)W3](x,xi X)), and so
on. k, (x,) is the component of the vectér(x) with space

2k? :

given by(2.12 with g,in place ofg,s e If g(r) decays as
1/r3, wheng,dk) is a pure function ok/|k| with no constant
term, we assume thadt,=[dr[g(r)—g,dr)] is finite [the in-
tegral is absolutelyconditionally) convergent at largéshor)
distance} and wheng,g e4k)=a oyt Ax4mInfk|, we as-
sume that Ay=[dr[g(r)—gasefr) ]+ aisy is finite; then
(2.10 becomes

g(k)=Ag+ S (k) +O(|K]). (2.17)

If g4(r) decays as 1’1 and g,(r) as 1f?2, with
3<y;<v,, then, according td2.12 or (2.17), the first sin-
gular term in gy(K)gyk) is gz(k=0)Sgl_3)(k) [if
g,(k=0)#0] and g,*g, decays as the slowest of the two
functionsg, andg,:

[91*9o](r) ~ +0

r—o

index u. O(|k|”) denotes a function starting at the order
k Y

1
Ak

(2.18

s;j”(r)( J dx g(x)

Subsequently, the large-distance behavior of convolutions
can be determined precisely. The asymptotic behavior of the
convolution [g,*g,] (r) is dominated by the inverse Fourier

91(k)g,(k). We distinguish the cases wheggandg, decay 17 Moreover, ify, +1<7, and the first subleading term in
with different inverse power laws from the cases where theyp,o large-distance behavior gf falls off as 1f 71*2, then the
decrease algtibr‘?'ﬁ?"y, with the ?amegf(eﬁpgnent. l\]{lor:aoveﬁ,rst subleading asymptotic behavior @f*g, is the inverse
we assume the following properties. dfir) decays faster . —ma(r1-2)

than 13, then fdr g(r) is supposed to be finitéhere is no Fourier Ersansform 0fg,(k O)Sgl (k) +Ku(992/7k,) (K
singularity at short distancgsso that its Fourier transform is =O)S(gzl )(k), namely,
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(yo) A. Upper bound for the decay ofK
[91%92](r) =S, (r)( f dx gz(X))

The ﬁWC diagrams, and subsequentty, are shown to
decay at least as 1§, even before integration over the
shapes of the root points, by considering two classes. In the
+ ag[S( m(r)] first class, every diagraidy,. contains no bondV. Since an _

91 integrable diagram cannot decay more slowly than each of its

~ s;jl*“(r)( f dx gz(x)

r—oo

bonds, namelyk°¢, F°™, F™°, andF g, it behaves at least as
% f dx X gz(x)) +0(%)_ (2.19 1/r 8. In the second class, every d|agrdm,c contains at
7 r least onéW bond. If a bondW does contribute to the leading
term in the asymptotic behavior of th&, diagram, its con-
If g,(r) andg,(r) decay with the same power lawrl/ tribution is multiplied by that of other bonds and the product
with >3, sgz)(k) and Sé?(k) are of the same order ifx]  of these two contributions must decrease at lea$lag,)?,
and the asymptotic behzavio)r gl gz Is given by(the)sum of = ,it):(gé?:jr:ﬁg Itrc]) tthheef?;lsg\lll)ng?(.:al definition of thHy,,. dia
= y—3 = y=3 we dla-
the two termsg; (k=0)Sy; (k) andg,(k=0)S;; (k). grams, for each pair of points; and.7 that are linked by a
W bond, there exists a path linking, to %}, that does not
f dx g (x)) contain the bondV(#; ,7}). Thus the integral corresponding
2

to ally, diagram of the second class may be written as

[92%Q21(r) ~ (de gl(x))Sg?(r)wL

91 rY

(3.2

If g; andg, are proportional to 17 at large distances, then, whereG(r,,f'y; Xa\Xp:77 »75) is the value of a subdiagram
with the notations of(2.17, SP%(k)=c;x4m Inlk| and  of the Il diagram after integration over all its internal

g1* g, behaves as the inverse Fourier transform of the zerotRoints except/; and.7 . This subdiagram is connected with
order terms A, SO(k) + A, SC(k) + SO (k) SLO(k), respect to the root point¥, and 4, so that, at large dis-
9175, 92701 9 92 tances, it decreases at least as3}/which is the decay of

namely, the slowestF bond. Then two cases might occur.
(i) If the topology ofllyy. is such that none of the bonds
[91*9a1(r) ~ Agzsé‘?o)(r)+Ang$'O)(r) W contributes to its dominant asymptotic behavior, then the
= latter is at least a 1? falloff, since it is determined by the
+[5(g?;’0)* S;iv‘))](r). (2.21  Other bonds=°¢, F°™, F™, andFgg, as for the diagrams of

the first class. For instance, in the diagriihof Fig. 3(a), the
(3.0). «(3.0) ) . ] bondW(# ,7°;) contributes only to a 17 tail arising partly
[Sgl' * Sy, 1(r) is the inverse Fourier transform of a term ¢om the product of the bondd/(7, ,7;) andFre( a7
(Ink))? and it behaves aén r)/r®. However, in the following  and the leading term in the asymptotic behavior of the dia-
discussion, the singular terms of order zerdkihare of the  gram is a 1¢° tail originating from the bondFrg(7;, %p).
form Sgo'o)(k)zkﬁl' -~kMp/k2, which contains no logarithm, (ii) If the bondW(#; ,7}) contributes to the leading term
so that[S(g3'°)* 353’0)](” decays as tf and not agIn r)/r®, in the asymptotic behaV|or of theHWC diagram, then
! 2 the leading term is given by the Taylor expansion
of W(Rj; , xi,x;) aroundR;;=r,, multiplied by the asymp-
lll. PARTICLE-PARTICLE CORRELATIONS totic behavior Gladrabi: Xa:Xb 75+ 7)) of

According to Sec. V D of paper I, the exchange part of the GlTalyiXarXo+/1.77) WhenTap goes to |nf|n|ty and reads

particle-particle correlation decays faster than any inverse

power law of the distance. The nonexchange part f d%j dZ[Gladlabi Xa: X175 +75)
P12 ab) lnonexcnOF the particle-particle correlation, which
is defined in(4.7) of paper |, is related th(%,,%,) b 1
(4.7) of pap (Zar%p) by X4 W(T ap, Xi 1 Xj) + O rT)] (3.3
ab
P Ar ab)|nonexch:p2 ; PaPb j D(Xa)pa, p,(Xa) The product of these two contributions decays at least as the
a b

product(1/r 3,)%. For instance, the two diagrams of Figéb3
B and 3c) have a 1¢° falloff arising from the product of the
X f D(Xp)Pay .p,(Xp)(Za, Zp). bond W(%,,%,) with respectively, the bondV(7;, %)
[Fig. 3(b)] or the convolutionW( //5,7’1)*W(7’1,/b) [Fig.
@D 30 1 JAASAAIGadlaniXg Xo i/t 7 WEapXi 1 X;)
vanishes, the falloff is at Ieastr]?l For mstance the slowest
Its large-distance behavior is studied by using the Dysormpossible algebraic tail of the diagram of FigldB behaves
equation(2.6). as 1t% but this algebraic contribution does not appear
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FIG. 3. Examples of diagranﬁ discussed in Sec. Il A@)—(c)
decay as 1F, (d) as 1t7, and(e) has an exponential falloff.

because [dRyfdx1p(x1)F ™ (Ry,Xa XD Wa(l aps X1, Xp) =0
(Indeed, W, involves one component of,, so that, after
integration over X;, the latter integral involves only
terms [dx1p(x1)[X1].(X1- Ve )* " [exp(- xR)/Ry] that
vanish after integration over the orientation &%.) If
G(rap;Xa Xb+77+73) has an exponential decay whey,

> @ s 3 [N

Ty MR fply,, Vi1

X ol Mot W41 (K X Xo M (i),

where
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goes to infinity, then3.3) behaves as an exponential times
1/r3. For instance, the leading term in the asymptotic behav-
ior of the Il diagram of Fig. 8) is given by the product of
the bondsW(7%,%,) andF*™(%, ,.%,).

B. Upper bound for the decay of the convolution chains

The large-distance behavior of the chain made withl)
graphsK linked by | bondsW in (2.6) can be analyzed
rigorously in Fourier spacd&The study is far more cumber-
some in position space and, in Appendix A, we sketch the
argument in position space only in the case of simple con-
volution chaing. Moreover, for the simplicity of the discus-
sion, we use the decomposition of the Fourier transform of
W as a series of purely nonanalytic term&™ i,

Wik x)=~ Begey | [Pt (- P

_[TiI_P(TiI)])_l}

o ©

X > 1

mi=1 n;=1 m||n|I

Xwimml(k, X (), X (7)), 34

wherew[™ "l is a singular term of ordelk|™ ™" ~2 given
by (5.33 of paper I,

wimemi (e, X (), X (7))

4
=[Xi(7) KM= X{(7))-K]" 1z (39
A chain in (2.6) with (1+1), K graphs linked byt bondsW
makes a contribution tp{>T2(k) [see(3.1], which can be
written as a series of chains involving purely algebraic terms
wlmi il instead ofw,

1 Pi ’
it JLan [artatn-pe -t P -1

(3.9

g’{ai},{ai’},{pi},{pi’},{ri},{ri’};|(k;Xa,Xb?{mi}y{ni}):f D(X1):--D(X;)D(X3)---D(X|)K(K, xa:x1)

XMk, X (1), X1 (1)K (K, X1 x2) W2 M2)(k, Xo( 72), X5(75))- -

X WMk, X (), X (7)K (K, x| 3 xb)»

(3.7)
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with i=1,...| andm; andn; ranging from 1 tox. For con-
ciseness, we omit the dependence upon the spegidise H(K.x{ Xxi+1) ~ f dx H(X,x{ \xi+1)
sizes p, and the times 7, in the notation [k|—0
Z1(K;Xa X0 : {m;},{n;}) in the following.
The integration over the shapes of the loops, including the + ikMJ’ dx X, H(X, x{ , Xi+1)

root points, is performed with the result

- %k,ukvf dx X/LXVH(XYXi, !Xi+1)

& (k;{mi},{ni}) -
+ STl X xi- 1) +O(K[?).
Ef D(Xa)f D (Xp) Z1(K; Xa: X {mi}.{ni}) (3.12
1 YA : . 3
_ [my] [ny.m,] [Ny, m3] O(k|®) contains analytic terms of ordek|° and terms of
(k2)! Ra1 (k)ﬁle (k)ﬁm (k) higher ordersK has the same large-distance behavioHas

N (] and the smalk expansion oK is equal to that oH plus the
R ITRRR) LK) (3.8 constantp(xi+1) 8y/ i,y The first terms in the smak-ex-

pansion ofﬁg"ll](|k|) at the end of a convolution chain is

Lo A[mg] ] . obtained by inserting the smadl- expansion (3.12 of
The q_uantltyy_fia’l (k).[ﬁ"b (k)] at the end of the chan(_fl K(k,X,,X;) into the definition (3.9). Since the measure
contains the integration over the shape of the root point ang)(xa) andK (r X, ,X,) are invariant under global rotation of
the shapeX, (X)), their argumentsfD(X,)K(r,X,,X,) is invariant under the
simultaneous rotations afand X, and the first two terms in

the smallik| expansion ofa."(|k|) are of ordefk|™ and

ﬁg‘lﬂ(k)ff D(Xa)f D(Xp[k-X1(71)]™K(K, xa,X1), |k|™*2, respectively, ifm, is even and of ordelk|™** and
(3.9 |k|™*3, respectively, ifm; is odd. This result can be sum-

marized by introducing the functiofisuch thatd(n)=0 if n

is an even integer, where#@én)=1 if n is odd,

ﬁf?’li(k)zj D(X|’)J D(Xp)[k- X[ (7)) JMK(K, X[, xb)- R[mll](|k|):A[mll]|k|m1+9(m1)+O(|k|m1+9(m1)+2),
(3.10 : ) (313
(my] whereO(|k|?) denotes a term of ordek|P. Similarly,
Ra1 (k) also depends on,, a;, pa, pP1, and 7.
ﬁi[?]iiv:“rl] involves the integration oveX; and X;,, (and ﬁf?"g(k):Al[r‘t;]lk|n|+6(n|)+o(|k|n|+0(n|)+2)' (3.14
depends also om;, « , p;, p{ , 7, and7]),
In the same way, the dimension of the first two terms in the

smallk expansion ofﬁii[?‘iﬂ”](|k|) is obtained by inserting
ﬁfjijjiﬂ%k)zf D(x{)f D(X;.)[K-X/ (/)™ (3.12 in the definition(3.11),
XLK-Xi g1 (74 20) ]+ 2K K X X4 1)- ﬁi[?iiﬂﬂ](k)ZAE?iiﬂH”k|”i+mi+1”’(”i+mi+1)
(3-11) +O(|klni+mi+1+0(ni+mi+1)+2). (3_13

Since the measurB (X) is invariant under rotations & For instance 81 (k), ﬁ{}’]b(k), and &5 (k) are of order
while the bondsF are unchanged under a simultaneous ro-k|? when|k| goes to zero, and the next term in their sniall-
tation of R;;, X;, and Xj, K(k,x{ ,xi+1) is also invariant expansion is of ordelk|*. According to the structuré3.12
under global rotations ofi( X/ ,X;.;) and thef’s are func-  of the smallk expansion oK(K,x;,x;), the first term in the
tions of|k|. As a consequence, the smilexpansion of &8  smallk expansion of anyR is analytic in the components
contains only even powers ¢| up to the first nonanalytic of k and the possible singularity due to the term
term that characterizes the slowest algebraic tail in the Iargefsﬁ)(k, Xi »Xi+1) may appeafif it is not canceled by integra-
distance behavior af(|r|). tion over the shapeX) only in the next nonzero higher-order

The structure of the first two terms in the smlalexpan-  term[becaused(n,) +2<3 and §(n;+m;, ;) +2<3].
sion of a R can be readily determined from the rotational  According to the previous arguments of both dimensional
invariance ofK and the measur®(X) because the first analysis and rotational invariance, the first term in the
nonanalytic term in the smak-expansion oK is of order  smallk expansion of,(k,{m;},{n;}) defined in(3.8) is pro-
[k|®. Indeed, according to Sec. Il Ai(r,x/ ,xi+1) decays portional to |k|Pe, while the next term isof order
as 1t° at large distances and, according 2012, its Fourier ~ |k|P& "2, where, according t¢3.13—(3.15, the dimension
transform at smalk reads D¢, ({mi}.{n;}) reads




53 CORRELATIONS IN QUANTUM PLASMAS. Il. ALGEBRAIC TAILS 4607

De,({mi}.{ni}) = =21 +[my+6(my) ]+ [n+ 6(ny) ] C. Diagrammatic structure of the 1/r® tail
The 1t° decay of the particle-particle correlations can
only arise from thell diagrams that give at least o
+2’1 [ni+misy+6(ni+miy)]. diagram, whenF is split into the two bondsW and
Fre=Fgr—W. (We recall that dl,y. diagram remains con-
(3.16 nected when one bondV is removed. At each order
p(£)?*N with N=0, diagrams that decrease as®i¢an be

-1

exhibited.
Sincen+6(n) is even,D¢ ({mi},{n;}) can take only even Let first consider convolution diagrams. At the order
values. Moreoverm=1 and n=1 for everyi=1,..], p(¥)% the diagram with only onEg bond is an example and

while n+ 6(n)=2 for n=1,2; n+ 6(n) =4 for n=3,4; and so ilts contribution, ;NhiCh is displayed i12.3), comes from
on. Subsequently, the dimensi@, ({m;},{n;}) given by  2LWa(ap,Xa,Xp)]" becausew leads to a fast decay after
! . . integration over the shapes of the end points. At the order

(3.16 can be equal to 2,4,6,..D¢,({Mi},{ni}) is positive 73" ot consider the diagram of Fig (@, which is the
and even and the first term in the smialexpansion of the  convolution of twoFz bonds. According to the general dis-
chain ¢ (k{m;},{n;}) is analytic, while the first possible cussion of Sec. Ill B, after integration over the shapes of the
nonanalytic term is the next term in the expansion, which isend points, the convolution®ver the variableR) W+ W,
of order |k|P«*2 with D¢, +2=4. In other words, the con- [Fy—W]*W, and Wx[Fg—W] fall off faster than 1v°.
volution chains(3.8) decay at least asr/ and, eventually, Thus the leading asymptotic behavior of the diagild y IS
the part(3.1) of the particle-particle correlation behaves asgiven by the convolutionffg—W]*[Fg—W]. The 1f° tail
/e, of the convolution of two ¥P-decaying functions is deter-

At this point, we make a comment on the origin of the mined by the terms of ordek|* in the smallk expansion
upper bound /. First, before integration over the shapes ofof its Fourier transform. According t€.15, the first sin-
its end points, a convolutiof | (r,x,,xp;{M;},{n;}) decays gular term in Fr—W](K,x;,x;) is TWa(K,x; ,Xj)]z. Subse-
as 1t% because the Coulomb potential decays sufficientlyquently, according td2.20, the 1t° tail of the diagram in
fast for W to be at the borderline of integrability. Moreover, Fig. 4@ originates from the integration with the measure
the fact thaW(#2,7”') involves the components of the shapesD (X,)Pap(xa) D Xp)Ppp(Xp)dx1p(x1) Of
of both>” and % together with the rotational invariance of

1 2
the interactions and of the loop measures have two conse- Z[Wa(raps Xa s X1) 1°A(x1: Xb)
guences, once the integration over the shapes of all loops has 1 2
been performed. First, they ensure that the dimension A x) [ WalTap X1 xp) 1% (318

D¢, ({mi}.{n;}) of the first term in the smak- expansion of whereA(x; ,x;) is given by(2.16. Only the {W,J? part of
¢ (k;{ms}.{ n;}) may take only values that differ by an Fy does contribute to the f91tail of the diagram in Fig. &).
even integer. Second, since they enfoﬁg@ﬂ and ﬁg"] to

start at least at the ordék|?, D¢, ({mi}.{n;})=2. Then, the o—tr o= o
harmonicity of the Coulomb potential implies that the di- L Py Ly
mension of the first nonanalytic term is at least
D¢, ({mi}.{ni}) +2. Indeed, in the case of a potentiabuch (a)
that v (k)=S"2(k) is of order|k|™? but not proportional to
1/k? the first term in the smal- expansion of
¢, (k{m;},{n;}) would be proportional to P1
R4 >
[S2()]' N
-1 @, O
X|k|{ml+ g(my)+ny+6(n)+3; [ +mig g+ e(ni+mi+1)]}_ La Lb
(317 (b)
It would be of orderk|°« with D, =2 given by(3.16, but Py
it would not be analytic and the chai3.8) would decay at
least as IP. To sum up, because of the structureViéfthat gy N
arises from its definition as the difference between the loop F, F,
potential and the electrostatic potential and once the basic Lo P Oﬁb
1

rotational invariance has been taken into account, a mere
dimensional analysis shows that the chains decay at least as
1/r®, Henceforth, the harmonicity of the Coulomb potential is (c)

crucial to ensure that the chains in the Dyson equat®®)

decay faster than d9. These arguments are exemplified in  FIG. 4. Structure of the 1f asymptotic behavior of th#l dia-
position space, in Appendix A. grams, given in Sec. lll C.
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At the orderN=3, thell diagram made with a product of eralWs(k,x;,x;), i-e., from convolutions oW; with subdia-

two convolution chains of bondsg, one chain witm bonds
in it and the other one witiN—n bonds, decays as rf/
because a convolution chain of bonsmay decay as 17
before integration over the shapxg and X,, of each end.
Indeed, the asymptotic ¥ behavior of a convolution is de-
termined by the singular terms of order zerolkj in the
expansion of the product of the sméllbehaviors of the

various functions involved in the convolution. The decompo-,
sition (2.17) allows one to disentangle the singular term'M

Wa(K,xi,x;j) from the constant  A*(x;,x;)
= [dr[Fg(r,xi,x;)—Ws(r,xi,xj)] in the term of order zero
in the smallk expansion oFg(k,x;,x;),

FrOK, i xj)=Ws(K,xi,xj) +A* (xixj) + O([k]).
(3.19

For instance, let us consider the diagram of Fig)4This
diagram leads in particular to thé,,. diagrams of Figs. ®)
and 3c). According to(2.21), the asymptotic behavior of the
diagram in Fig. 4b) reads

W3(ravaa1Xb)f XmP(Xl):A*(leXb)Wa(ravaav)(l)
+A* (Xar X1 Wa(lap s X1:Xb)
+f dk eik'rabW3(k,Xa,Xl)Ws(k,Xl,Xb)]- (3.20

The last term in curly brackets i(8.20 is equal to

Pa Pp ,
WS(rabixav)(b)ﬁeaaeab dr dr
0 0

1
><[xa<r>~vrab][xb<r'>~vrab](r—b)

X

P1 P1
f dle dri{6(7—P(7)]
0 0

—[m=P(r) D= 1H{( 71~ P(7y)]

—[7"=P(r")D— l}f dx147Be’ p(x1)

X%[Xl(ﬁ)-xl(ﬂ)]}- (3.21)

More generally, according t2.21) and(3.19, the 1f3 be-

grams ofll. The asymptotic behavior of such convolutions is
of the form [Xi(Ti)]Mi[Xj(Tj)]uj‘;,uiuj(vc)fdy Imid(y),
where the expression @f,,q is analogous to that d,,4 in
Appendix A, with the&*s in G4 replaced by moments
of subdiagrams of1 calculated with respect to the shapes of
their internal points.

As a final example, let us consider tHd diagram
Fig. 4(c), which leads in particular to thel diagram of
Fig. 3a) through the decomposition (2.4),
Hyy= Jdx1p(x 1) Hap)(Za, ZDFR(Z1, %) Accord-

ing to the general discussion of Sec. Ill B, after integra-
tion over X, and X;, the contribution fromIl,g,*W
decays faster than ¥ and the 1/® tail of
ID(Xa)D (Xo)p(xa) p(xe) o) (Za, %) is given by the
convolution offl, ) with Fg—W. Since both latter functions
behaves as if, even before integration over their root
points, the leading asymptotic behaviorldf ., is the sum of
two contributions given by2.20),

fXmP(Xl)[[H4(b)]as(raba)(ale)A(XlaXb)

+U dx H4(b)(XaXaiX1))%[Ws(rabaXliXb)]Z ;

(3.22

where [l l.s is the asymptotic behavior of the diagram
114y, Which is written in(3.20).

As a conclgsion, if the leading term in the asymptotic
behavior of ally,. diagram(after integration over the root
points is 14, then this tail comes either from the asymp-
totic behavior of a bond-gs=Fg—W, which is equal to
(W,)%2, or from the product of two t# asymptotic behav-
iors, each of which arises from the asymptotic behavigr
of one or sevelaW bonds involved in convolutions with
subdiagrams ofly. If we return toll diagramgbefore the
decomposition2.4) into I1 diagramg, the result is the fol-
lowing: the 1f° tail of a IT diagram comes either from the
term (W5)%/2 in the asymptotic behavior of orfes bond or
from the product of the asymptotic behavior of two convo-
lutions, each of which is built with subdiagramsIdflinked
by at least ond- bond. Henceforth, after integration over
the internal points of the chain, the general structure of the

havior of a convolution can only originate from one or sev-Aaa,ab/r6 tail takes the form

E paf D(Xa)Paa,pa(xa)Z pbj D(X
Pa Pp

b)pab,pb(xb)f Xmf dXzf d)(gf dxa

P1 P2 P3 Pa
XJo dleo deJO d7'3f0 d749(X4,X1,X2;71,72)9(Xp , X3, X473, T4)

1 1
X[Xl(Tl)'Vrab][X3(7'3)'Vrab]<r_)[X2(7'2)'Vrab][x4(74)'vrab]( )

(3.23

ab lab
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D. Structure of algebraic tails in IT diagrams Since both the measurB(Z) and the bondsF are in-

Now, in view of the discussion of Sec. IV, we turn to the V?Qri?m under global rotations of their arguments,
1/r” leading and subleading algebraic tails [dfdiagrams = 9o, o (Xa7§11 -.{1) is a tensor of rank), with respect to

that have any exponent=6. An algebraic tail in the asymp-  gjopal rotatlons of its arguments.

totic behavior of all diagram arises either from a single  According to Appendix B, before integration over the
elementary algebraic chain or from a product of the formershapes of |ts end point® and 7, an elementary algebraic
elementary objects. An “elementary algebraic chain” referstail S((%9'1(» ") has the form of the tensorial product
either to an algebraic bon@ or Fg) or to a convolution

chain with such algebraic bonds at both ends and with sub- 5<~/>[q,q’](r,§,§r):A[q] (Z)A[q 1 (2Z)
diagrams ofIl and algebraic bonds in the middle of the i "o
convolution. The asymptotic behavior of a single elementary sz) (1), (3.26
algebraic chain involves a series of purely “elementary al- Har

gebraic tails”S99'1(»7'), which decays as ¥ and in- whereA[q] 4 (2) and A[q ] (z') are tensors of rank
volvesq components of the shape @f andq’ components , [q] a0

of the shape o’ and q’, respectwely A q(Z)—[Z]Ml---[Z]qu(|Z|),

An algebraic tail T(r p,x2.xp) Of a 7l diagram
that results from a product of (L=1) algebraic terms

sta a7, A) is a term in the series of the algebraic
decays of the function

L

T a7

J el

L
x| 11
=1

}G((%a PP

svlanall( ,f/ﬁ'))G’(f//b R )

(3.29

whereG(%,.7,...7%) is equal to a subdiagram &f inte-
grated over all its points except, ,7,...7,), and so is
G (% 7.
A and llIC.) In the following, we use the notation

{=(a,p,Z) for the internal degrees of freedom of a loop, in

order to avoid confusion with the variablgs=(a,p,X) used

in the convolution chains of Eq2.6). The series of alge-
braic tails of (3.24 are obtained by expanding each
sta a7, 7 ) =Sl al(R =R/ ¢, ¢)) around
(ran.41,¢)) in powers of the components of tH®—R,’s

and R/—Ry’s. Subsequently, every algebraic tail
T(rap:Xa»Xp) Can be written as
L
T(rab.xa,xb>=J (H dg,dg; ) e (XarLu i)
Xy oo oo
1 Q71 Qp
L
X H [SERLT 'q'/](fab,é ,gl’))
i=1
1 ]
where the partial derivativeal...(,Q op ol operates on the
a b

variable r,, and g[Qa]

G(%a 1y
ces Ul,...,(TQa
Rl_Ra1 ,RL_
times) The origin of g

(Xa,gl,...,g,) is a moment of

Z7) with respect to the components with indi-
of Q. vectors chosen among

[Q.b.] (Xb {1,...,¢]) is similar.

7). (Examples have been given in Secs.

. (The same vector may appear several

wheref(|Z|) is a scalar functlon that is invariant by rotation
of Z. In the definition(3.26)
v=P+qg+q’, 3.29

where the allowed values fd? depend on ¢,q’) and are
given in Appendix B. The structuré3.26) arises from the
decomposmon ofW(r,,,{') as a series of purely algebraic
termsw(™ glven by (3.5

(== D)2y [Z(D)],

X[Z'()],, - [Z'(7)],,

wi™[y,z(7),Z

1
X(?Ml...#m,,l.ii,,n(?). (3.28

[Z]Mj is the component of the vectdr with space index; .

The space indiceg; and v;- take the values 1,2,3, whilg
runs from 1 tom (j’ from 1 ton).

The insertion 0of(3.26) into (3.25 shows that the taill
has a tensorial structure analogous to that of the elementary
algebraic tailss(”[9:9'1,

E ’
T(FanoXa o) =43 (X225 X0 ST (),

(3.29
where
L L L
11=Qat Qut 2 %=2, P+ 2, (/) +Qat Qo.
(3.30
A2 %y is  a moment of the function

{1}
NI

of everyZ, (I=

,£1), which is of orderq, in the components
1,...L),

AQatZq]
7’//{ (Xa)_ 0'1 Q. {m 1T ql}l 1

=f(|ljld§|

[Qa]

e,

g (Xaigl!"'gL)v (331)
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where[Z|]M”| is the component of the vectd;j with space s a tensor of rankQ,+3}_,q;, J.D(Xa)«//VE?aJrzlql](Xa)

index g, j, which takes the values 1,2,3, ang runs may be nonzero only ifQ,+=} ,q, is even. The
_ Qo+ 5101 details are given in Appendix C. Eventually, in
from 1 to q. The deflnlmon of "/%{} (X.b) TD (XS DXy (rap X4, Xp), the first three possible tails
= Aol v gom ghor, (Xb) 18 @nalogous t€3.3D, with  are 1f°,1/r® 1/r®, the first two tails correspond only to
y ' L=1,2, while the 1r° tail comes from convolutions such as

1 : ' AQa+Zq)]
% a . . .
Ji running from 1 tog . ) (X5) depends only on Fre* Fre- Any tail 1ir?, with y an integer andy=9, may

Xa=(ag,Pa Xy [In the notation 0f3.31), we write only the

: appear.
argumentX, because only the dependence uponwill be
relevant in the following discussiorjs.The moments F. Algebraic tails in the convolution chains
.///E?a”'q'](xa) and .///[Q"Jrz'q'](xb) are well defined be- Next, we show that the interplay between the structure of

cause the weighip(Z) is expected to decay faster than W and both the rotational invariance and the harmonicity of

any inverse power law, according to paper I. Sincethe Coulomb potential ensures that the convolution chains

gl may decay only as 9, 1/1° or 17, with y=11.

710, The order of the first nonanalytic term in ti®f|k|)’s is
global rotations of its argumentsgj[[?a (X,) is a tensor given by the study of the algebraic tails. thafc surviv_e after
L Q)] ) integration over the shapes of the root points in the diagrams

of rank Qa+21-41q;, while .75 (Xp) is a tensor of ] “that contribute tdH. This study is detailed in Appendix

rank Q,+=_,q; . C and the result is the following. Because of the integration
If L=1, the tailT originates from a convolution of alge- over the shapeX of all loops, the order of the first nonana-

braic bonds and subdiagrams Kf If the convolution con- Iytic term in ﬁg’“ll](|k|) and ﬁi[:i;Ti+l](|k|) proves to be

(xa:{1,---¢L) is a tensor of rank), with respect to
+E|Q|]

tains aW bond, greaterthan or equal tdk|™ "2 and |k|""M+1*3  respec-
, , tively, though the first nonanalytic term in the smill-ex-
yr=P(9,0")+q+q"+Qat+ Qp, (332 pansion ofH is only of order 3. The reasons for this result

are the following. FirstW comes from the difference be-
where P(g,q') may take the value¢B10). The exponent yyeen the loop potential and the electrostatic potential, so
(3.30 of the decay off (r,,,{,{") with L=2 can be written as  nat in everyw!™ nl( ), the derivatives of the Cou-
L lomb potential are associated with the shapesf both ar-
_ / gumentsZ; and % . Second, after integration over the
YT_LJFZ& (@ +a1)+Qa* Qo+ or, (3.33 shapesX, only the tlerms that are not canceled by rotational
invariance arguments remain. For instance, according to
where 6;=(2_,P,)—L does not depend on either Q,, (C29,
or Q,. Since the allowed values fd?, depend ong, and
g, , the allowed values o8; also depend on the values of
a2 and we have to distinguish three cashs me+ 0(me) + ~
EI(I?;,?/\L%%(I:hléféLdetailed in Appendix g ® +Sa,11,m61( . 3(|k|)+o(|k|m1+0<m1>+3), (3.34

ﬁ[afzﬂ(k) :A[afz1]|k|ml+ o(my) 4 Bgﬂl]lklmﬁ 6(my)+2

E. Algebraic tails of K whereO(|k|”~%) denotes an analytic term of ordét” > plus

L= . t f t der. M isely, h in A -
The structure of one of the algebraic tails oflg,. dia- dei)r(msco %:ia Zzn%rulzrr té)rrrispreiglf; g @asafe ng? n:)rdzrpen

gram before integration over the shapes of the root paoifits || OM)+3 [ [mat o) +5 |j|my+o(my) +6 Since

and %, is derived from the topological definition of ldy m,=1, the expansiori3.34 starts at least at the ordék[2

3?agram,ﬁas alreao_iy done forttP:je psrticug;tail.dSince @  and the first nonanalytic term is at least of orfié?. In other
iagram remains connected when ol bond is sup- P

pre%sed ;/nc algebraic tail of the whole diagram may ICt)Je o¥vords, far Rgvnll](“')zo’ the algebraic tails Oﬁr]lﬂ(“')
two kind’s First, it may come from the following single el- are 1feTmTAMY, AfEIMIAM), and 1N with

. . . . [mq] ) .
ementary algebraic chain convoluted with subdiagrams oN=9 and thef,;"(Ir])'s fall off at least as ¥F. Since

Iy, at both ends: either onEgg bond or a convolution n,=1, the same mechanism holds r,"i(k). Similarly, the
involving Fre bonds(but noW bond and subdiagrams of first nonanalytic term in the smak ' nimitq]
Iyyc. In this case, the tail is an algebraic t&il(3.29 with
L=1, g=2, andq’'=2, and its exponent is given bi3.32
and (B11). Second, the algebraic tail may arise from the

-expansion ofﬁi[, "
X (k) is of order|k|”"® with y=n,+m,,,+6 because, ac-
cording to(C39),

product of at least two elementary algebraic chahigla.a’] AT ey AL o)

defined at the beginning of Sec. Ill D. Then, the expongnt ini+1 ini+1

of the ta_iIT (3.29) (with L=2 andP,=1) is given by(3.33. gl '”‘i+1]|k|ni+mi+1+0(ni+mi+1)+2
After integration over the shapes of the end poirtsand ini+1

%y, the algebraic tail(3.29 in a H%\,C diagram is not g gimet e(ni)+9(mi+l)+3(|k|)

canceled only if fD(Xa).,/ZE%+ 'q'](xa)q&o and LML

fD(Xb)k/{fE?bJrz'q'](Xb)#O. since .43* H1(x,) +O([K|MH Mt AmIFAmL1)+3) (3 36
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o(n;) + 6(m;, 1)=6(n;+m;, 1), so that the first two terms in

the smallk expansion ofﬁl[,' Ti+l](k) are indeed analytic. In

4611

where D¢ ({mi}.{nj}) is given by (3.16 and
2A---ABA:---A is a notation for a sum of products involv-

(3.39, the ellipsis represents the possible analytic term of”g | coefficientsA; ;,; and one coefficienB;: ;. (with

order nj+m; ;+6(n;+m;.;)+4 in the case where
a(ni+mi+1)+4<0(ni)+0(ni+l)+3. Since m;=1 and
n;=1, the expansiof3.35 starts at least at the ord|dxr12 and
the first nonanalytic term is at least of ord&t’. The pos-

sible algebraic tails oﬁl[ 'I'+'l*l](r) are given in(C38 and

since the slowest tail is d9+™*Mi+1+ M) *+0(Miv1) it falls
off at least as 1/°.

The first terms in the smal- expansion of a chain
¢ (k;{m;},{n;}) given by (3.8) are derived from(3.34 and
(3.39,

1-1

¢ (k{mih{n}h) = [mﬂ(H

i i7i+1

A[n m,+1]) A[nl] | kl Dcl({mi}v{“i})

+ > A---ABA---A k| Pe(tmikinib) +2

+o(|k|Pe{dmitinih+2) (3.36

i'=a,1,...)" andi+1=1,...],b). SinceD, ({m}{n}) is
positive and even, the flrst two terms in the smakxpan-
sion of ¢,(k,{m;},{n;}) are analytic and at least of order
|k|Pe(mibinih) and |k|Pemibinh 2 respectively. The first
singular term can only appear at the orcﬂkgl({mi},{ni})
+3. SinceD ¢, ({m;},{n;})=2, the first nonanalytic term is at
Ieast of ordeltk|5 namely, the convolutions decay at least as
k8,

More precisely, the dimensioB¢ ({m;}, {n;}) takes its
minimal valueD, ;=2 [namely, the smalk expansion of
¢ (k,{m;},{n;}) starts at the orddk|2] for the convolutions
with nj=m, ;=1 for alli=1,...] -1 and fn;,n,) being
equal to one of the four values

(m=1n,=1), (m=2n,=1), (m=1n,=2),

(ml:2,n|:2). (337)

For these convolutions, according (®.34) and(3.35

1
e.(k,{mi},{ni}>=(p) At Lkl = s b [N

+ S|y + -+

><[AE%,];’“]||<|2+BE%,]E“]|I<|4+S<5L<IkI>+

1,1 1,1
Xi[[ [A[ |]+l|k|2 B[ |1l|k|4

with the same notations as (8.34) and(3.35. In (3.38, we

SUN(IKD +SE(kD+O(k[®)1]

-+8 (kD +S 7 (Ik)+O([k[®)]

ST (KD +SP L (kD +O(K[®)], (3.39

In the second case; = =1foralli=1,...1—1, except

mi 1=

have omitted the analytic terms in order to point out thei,, for which (n; oM +1) is equal to(1,2), (1 3) (2, 1) (3,2),

singular ones and we have simplified the notation of theyr (2,2), while (ml, L) is equal to one of the four values in
singular terms. The first three nonanalytic terms in the exX(3.37). According to(3.35

pansion of(3.39 are of order|k[’, |k|’, and |k|® and the
corresponding chains have algebraic tails decaying &% 1/

1r', 1t A2 ()= A,y KBy KIS+ + ST (K
The caseD ({mi},{n;})=4 corresponds to two kinds of e (0=AinalK "'+1|’|v ek
chains, which prove to decay at least as*d/In the first JrS(g)IJrl [k])+O(|k[®) (3.41a3
casen,=m;,,=1foralli=1,...1 -1 and (n,,n,) is equal
to one of the eight values
while
(3,),(4,1),(3,2,(4,2,(1,3,(1,9,(2,3,(2,9 (3.39
According to(3.34),
ing to(3.34 A2 (K= A1l KI A4 By g K[+ Cir g [K|B+ -
[3]of4] ) = 4 6 7) ~
R 1K) =Ag 1 K|+ Ba g K|°+ SEE: +5|(9)|+1 k|)+O(|K|®). (3.41b
+SP(IKD +SEY (kD +O([KI*),  (3.40

According to (3.38 with one ﬁ[ll+l(k) replaced by a
gihalz2. 0'[13](k) and(3.34 with m;=1,2, the first singular

i7i+1
terms in ¢, (k,{m;},{n;}) are of order|k|7 k[°, [k[*..... In
both cases, in position space, the chain may decay as

where we have omitted the superscripi or [4] and the
analytic terms. Thus, according (8.38 with £.21°1*I(k) in
place of &{°%(k), the first three singular terms in
¢ (k{m;},{n;}) are of orderk|”, [k|°, and|k|*°, respectively.



4612

1/r*9,1/r*21/r ¥ with y=13. As for the chains corresponding

to D¢, =6, since the first two terms of the sméllexpansion

of a chain are analyti¢see(3.36], these chains decay at
least as T2

As a conclusion, the convolution chains of borisand
graphsk have algebraic tails decaying as®/1/r1° 1/
and so on. SincK involves algebraic tails 1f, 1/8 1/r°,
according to(2.6), the algebraic tails 0p@TO(r) are only
1/r®, 18, 1k°, and 1r?, with y=10.

F. CORNU

IV. CHARGE-CHARGE CORRELATION
AND INDUCED CHARGE DENSITY

A. Classical case

First, we investigate the classical screening mechanism
for the induced charge density in the presence of an external
infinitesimal charge. This mechanism is exhibited by a suit-
able reorganization of the resummed Mayer-Meeron dia-
grammatics for the classical system.

As an introduction to next section, we notice that, since As recalled at the end of Sec. V C of paper I, the classical

S8 d7 e kX' (™) (Z)TQ(k X X ") has the same global rota-
tional invariance property a,s )TQ(k x,x') and since they

coincide, up to g factor, atk=0, the same discussion as
that developed for the nonexchange part of the partlcleﬁe i€

particle correlation can be applied to

! p/ !
2 P2 X>f xmpap(k,x,X)J dr
p=1 pr=1 0
Xe—ik-x’(f’)

and the latter term proves to have its first singular term aj
least at the ordejk|®. Subsequently, according to the linear

response relatiod.27) of paper I, the induced charge den-

sity in the presence of an infinitesimal external charge deca
at least as 1f. However, as shown in Sec. IV E, the induced  “a®
charge density has a faster falloff because of Coulomiglassical Ursell functio

YiSnn

prototype diagramdI® are built with two kinds of bonds
FDH(rI]'aI!aJ) :8|]¢DH(r|J) and FRDH(rljvalia])
eXF{ B|]¢DH(r|])] 1+BI]¢DH(rIJ) where [”IJ
. (We recall thaipp has the same form aswith the
mverse Debye screening lengthkp, in place of «,
ki =4mBS e2p,.) Moreover, thel® diagrams must satisfy
the following excluded-convolution rule:; there cannot exist
convolution chaing=g* Fg},. Let us introduce two kinds of
root points. A root point is called a Coulomb root” point if
it is involved in one and only onEg;, bond and it is called
a “‘non-Coulomb-root” point in the other cases, namely, if it
s involved either in oné g py bond or in at least two bonds,
whatever they are. The sum of thE' diagrams whose both
root points are non-Coulomb-root points is denoted by
(r). By definition of the non-Coulomb root points, the

b(r) can be decomposed as the

screening. sum
|
cl _pcc nn
Ny (Ta=To) =Fou(ra=rp, aa,ap) +hy o (ra=Tp)
nn
+2 Pa’ fdr Fon(ra— aa,a;)ha,ab(r;—rb)
a
+ 3 b [ A (rem (RS 1y )
’ a“p
a
b

+2
s

pa;JdFAZ Pal f drpFRH(r
)

Equation(4.1) can be written in a more compact form that where

involves only one convolutiofwhere the convolution oper-
ates on the position variablas

Pa pab[ha ab(r) FC (r aa’ab)]

=paapab§; 2 [Say,a,6(r)

¥a A

P PO aa, @) * G (1)* (84 4, 0(1)

+pat')F(I:3(|:-|(raat,) ’ a’b)]

2 Pa’ po/EDH(r aa|a

aa’ b

R |
;a{)(r)*ECDH(riadal;)*

(4.2

a—r;,aa,a;)hzr,]al,)(ré—rt’,)FcD?_'(r{)—rb ,ap, ap). 4.1
a
|
SBu(ra= Tl @l @l) =84, 01 8(ra= 1) +pa,
XFEu(ra—ri,az,al) (4.3

is the Debye approximation of the densitE°(r,

—r},asa)) of particles of speciesy, in the polarization
cloud around a particle of specieg,, S(r,—r.,a,al)

Eﬁaa,aéé(ra a)+Pa ¢ ;(ra_r;)'

The charge density of the system made by a particle of
species a, and its polarization cloud isS, e, 2%(r,
—r},a,la}) and the Fourier transform of its Debye approxi-
mation reads
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(Z4,85,0a,) 2 —
S | " a_ % “a e p,~t e,.e k
<~ eaaEEH(k,aaMa)—ea; 1_47TB W 2‘ aPa a;;)(b ag abpaaab |exch( )
2
k? K f 2 fpa —ik-X[P(7)]
—a, = + | dxa€s (xa) drfe alPtml—17,
_e"‘a K2DH+|<2. (4.9 4mf Xa apaP Xa 0 [ ]

4.
The Debye approximation satisfies the screening (L@ of “.0

paper I: the net charge of the polarization cloud around @VhereKZZ477,8deaeiap521p(Xa) and the contribution from

charge of the medium exactly compensates this charge. the correlations between particles that are not exchanged un-
Moreover, the charge-charge correlation defined in . parti 9
der the same cyclic permutation,

(430 of paper | can be written asC°(r)
=Eaéeaépaézaaea}c'(r,ag a}) and the Fourier transform
of its Debye approximation is equal to Cnonexci k) = 2 eaaeabp(aZ)JbQ|nonexcr(k)- 4.8
Qg Cp a
2 2
k .
Cey(k) = *DH (45  In Sec. IV.C we will show that the pa®?|,excir) Of the

47B kpytk? charge-charge correlation decays only as’LAhereas the
particle-particle correlation decays as®l/in Fourier space,
this means that the order of the first nonanalytic term in the
smallk expansion ofcQ(k) is increased by 4 with respect to
the corresponding order fo,ﬁ(a?gf(k). The basic mecha-

The smallk expansion ofC8,(k) starts as(1/4mB)k? so
that, according to the classical response relati36 of
paper |, the total Debye induced charngaeadeDH(r) in
the presence of an infinitesimal external chafgdas exactly ) ]
opposite todq. In other words,CZ,(r) also satisfies the Nisms are of two kinds. _ _ _
basic screening rulél.3) of paper I. First, in the loop system as in the classical particle system,
The Fourier transform of the classical charge-charge corthe sumIl+F*p+Il (where the convolution operates on
relation C%(r) can be decomposed as the sum of the contrithe loop-position variable and is the density of the inter-
butions from the Debye correlatiopaapachD%(r,aa,ab) mgdlate point of the' convolutigongives a cqntrlbutlon to
C|nonexcil), the Fourier transform of which is proportional
to k*X [dyafdxveaPap(xa)€a,Pop(Xp) TI(K. X4 xb). IN-
deed, in position space, the contribution reads

and fromp, p,,[hS . (1) —F&i(r aaan)] given by (4.2,

A
After exchange of the order of summations ower and

!

a}, on one hand, and, and «;,, on the other hand, the
contributions(4.4) factor out and

> 2 €,.4,PaPh f D(Xa)p(Xa) f D (Xp)p(Xp)

2 2 A ap
Cl(k) = CBu(k) + P
on X| (Lo, Zp) + f dip(£3)
X 2 ea;ea{)paépa{)hzr’]a’(k)- (46)
g ey nr XLy, LY, .%"b)}
The smallk expansion oh”, ,(|k|) is an analytic function
a'b _ ’ ’
of k? because all thdl® diagrams decay exponentially. _f dXa€a,Pa f dee%pbp(Xb)f dRaJ dXa
h"(k=0) is finite and the smalk expansion of
C%(k)—CY,(k) starts only at the orddk|*. Eventually, the X p(XD)2p(Ra—RAXal XD Zh, %), (4.9

first term in the smalk expansion ofC®(k) is given by the
corresponding term €&, (k), so that, according t¢4.5), where3 5(R,— R}, xal x4) is the loop-cloud density around
both the Debye approximated correlation and the exact clagy loop 7 in some kind of “Debye” approximation where
sical correlation obey the Stillinger-Lovett sum re42 of h(Z,,%) is replaced byF¢%( %, , ;). The loop-cloud den-
paper |, which is the classical version of the general sum rulgjty around a loop”}, is defined by analogy with{4.3),
g;.B) of paper I. We note that aconsequence of t.he previoug (g _ Ré-Xa|Xé)E5X v O(Ra= R+ p(x2)(Za, 20,
iscussion is that any approximated particle-particle correla- ata
tion that is devised by replacing™ by an approximated and
function in the relation(4.1) satisfies the Stillinger-Lovett

sum rule by construction. Sp(Ra—R4 . xalxa) = 8y, x 8(Ra—RY)

aXa

+ FC(%.,20). (4.1
B. Basic mechanisms in the quantum case PXa)F (. 7). (410
In the quantum case, the charge-charge correld®tk)  As in the classical cagsee Eq(4.4)], the total charge of the
can be decomposed into the sum of two terms: the Fouridoop and its Debye polarization cloud is zero and, after av-
transform of a short-ranged contribution given(@y29 and  eraging over the shapes of the loops, the charge density of

(5.19 of paper |, this system satisfies
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47 pe], Pap(Xa) K
Sxiva” T 2rkZ |~ CaiPa zi (4.11)

[ drae pasotkordni=enps [ dxa

The structure of the Fourier transform of the convolutigd.9 is very similar to that of the convolution
Eaaeaazc'(r,aa| al)*T1%r, al| ay,). After exchange of the integrations over and x,, according ta(4.11),

J dXa€a Pap(Xa) j dXb€a, PbP(Xb) f dxaZo(k,xal xa) TI(K, x4, xb)

k2
=72 f dXa€a’Pap(Xa) f dxXb€a, PoP (X6 TT(K, X4 Xb), (4.12

because p(xa)Zp(K,xalxa)=p(xa)2o(K.xalxa). An  gram is a root point that is involved either in one and only
analogous mechanism takes place in the case of the inducetie F°© bond or in one and only one boref™(~,,7}). A
charge density and will be detailed in Sec. IV F. non-Coulomb-root pointZ, is involved either in one bond
The other partial-screening mechanism involved in theFg, or F"%(%,,7}), or in at least two bonds, whatever they
falloff from the exponent 6 to the exponent 10 lies in the factare.
that the diagrams that have the structu#€™p*II and The basic integral relations that are useful for our purpose
FCMo* IT* pF™M¢ decay as 1P and 1f!° respectively. In- involve sums of graphs as follows. The loop Ursell function
deed, the Fourier transforms of these diagrams are propot{.“,, %), which is the sum of thél diagramgas defined
tional to an analytic function ok [namely, ¢(k)] times in (5.10 of paper 1 may be decomposed into
h" (%4, %p)+h®" (Za, %), whereh"™ (Z,, %) is the sum
. of the IT diagrams wheréeZ, is a non-Coulomb root point,
f D(Xa)p(xa)f D(Xo)p(xo)[€" 2= 11TI(K, xa, Xb) whereas¥,, is of any kind(Coulomb-root or non-Coulomb
(4.13 root poiny andh®” is the sum of thdl diagrams, wherez,
is a Coulomb root point and/,, is a root point of any kind.
and With these definitionsh®™ may be written as the sum of four
contributions: the two diagrams with a single bond
ik-Xg_ F°“(¥%a,%,) and FCM(%,,%,), and the sums of the dia-
f D(Xa)P(Xa)f D(Xp)p(xp)[ €™ "a—1] grams[Fccp*H]((,%;i %) and [chP*H](:(//";i %) in which
—ik-Xp_ %, is involved in only one bondF°Y(%,,#]) or
x[e LTIk xa xo), (419 £ie o 41) and where is linked to %, by a subdia-
respectively. As in the case of the particle-particle correlagram that is also &l diagram with respect to the root points
tion, the Dyson equatiori2.6) can be used. According to 7% and %, . According to the excluded-convolution rules, if
Appendix C, rotational invariance arguments and the struc-/, is linked to 2, by a bondF®“(*%,, 23), ; is a non-
ture (3.29 of the algebraic taild of the IT diagrams imply ~ Coulomb root point for the subdiagrabh(#;, #},) and the
that, if I is ally,. diagram, which decays at least as®Lthe  corresponding sum of diagrams linkirig, to %}, is equal to
“dressed” diagramg4.13 and(4.14) fall off at least as ¥f  the convolutionp(x,)F*(.Z,. Z)*h"™ (£, %p). If £, is
and 111 respectively, and the same is true forIf [1is a  linked to %, by a bondF°"(~,,,), #, is a root point of
chain made with +1 diagrams contributing t& linked by| any kind for the subdiagranl( %4}, %), and the corre-
bondsW, the discussion about the large-distance behavior oponding sum of diagrams linking, to £, is equal to the
the chains can be adapted from that given in Sec. lll B forconvolution p(x4)F*™( %, %) *h( 4., %,). Eventually,
the particle-particle correlation and the dressed diagram®e get an integral relation involving andh" ™,
(4.13 and (4.14 also prove to decay at least ag®And
1/r™°, respectively, in the case of the above convolution h(Za, %) =h"" (%5, %p) +F( Ly, %)
chains.
Eventually, a suitable reqrganization' of the diagrams +J dLLp( LFS( La, LN (L, %)
analogous to that performed in the classical das(4.2)]
is introduced in next subsection. It leads to integral relations

0
that allow one to show tha®(r) behaves as 1°. n ch(:%a”%vaf 47 p( 1)
C. Integral relations cm o oot o
XEM( Lo, SO LL L) 4.1

By analogy with the classical case described in Sec. IV A,
we introduce two kinds of root points with the same termi-
nology as above. In the quantum resummed Mayer-like diaThis “left-dressing” relation can be written in a more com-
grams, the excluded-convolution rules lead to the followingpact form by using the short notatiagp*, wherep is the
definitions. A so-called Coulomb-root poirit, in all dia-  density of the intermediate point of the convolution,
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h=F°C+F°M+h"~ +F%px h"~ +FMp* h The diagrams ifh ) involve only exponentially decaying
bonds andh s (£, , %) decays faster than any inverse
=F+FeM+Spxh" +FMpxh, (4.16  power law of e distanci®,—R,|. This result remains valid

after integration over the shapes of the root points and
3p is defined in(4.10 and we use the conventron that Q 8,(r) has a fast falloff.

[2p*F™)(Za, %) = JAdZZp( 47 a),ch( L), According to the screening propert¢.12 of the Debye
while [FE™ 2p](ZLa,%b) = fd—/ ch(r/arya) loop cloudS, the Fourier transform of &(r) reads
X3, i i
L . . . k2 2
relation of(4.16). With the short notationpg, wherepis the  ~q :( f dv’e p o(x'
density of the intermediate point of the convolution, the <B)( ) K2+ k2 Xa aapap()(a)
“right-dressing” relation betweet andh™" reads
h=FC6+FmC+h_n*ED+h*meC. (4.17) Xf ka,)eat’)pk,)P(XtI))hnn(kaXé:Xt,))- (4.27)

By iterating the argument that leads (4.17), we get an According to Sec. IIl, D (X,)[D(Xx)II(7,,7%) decays at
integral relation betweeh™™ andh™, whereh™(7,,%,)is  least as ¥P, 1ir® 1/°,..., so that the first nonanalytic terms
the sum of thdl diagrams where botl¥, and %, are non-  in_[D(Xa)p(xa)SD(Xp)p(xn)h""(K, x4, xp) are of order
Coulomb root points. The right- dressmg relation betweerik|3 k[°, |k[%,... . Henceforth, the first nonanalytic terms in

h"~ andh™ is C(Bb(k) are of order1k|7 Ik, |k|10 , andC &, (r) decays as
N S
h"™ (24, Zp) =h""(La, %) +F"( L8, %p) By the same mechanism of Debye screenidd.2, the
Fourier transform ofC ?C)(r) reads
+ sz’ép(z‘é)h”n(c%é L) FC( Ly, L) 2

k
C<Q<:)(k)=,<sz2 f dXa€a’PaP(Xa) f dXb€aPb
+ f dZop( LN (Lo, ZOF( LY, ). y
Xp(xé)h”’(k,x;,xé)fo bd7

(4.18
: . 2
With short notations(4.18 reads x[e‘k‘xé“}—l] 2K - 429
"~ =FMCrh"sS o+ A s pFMe (419 K
. . L The decompositioif2.6) of h into H and convolution chains
and the symmetri¢left-dressing relation is of graphsK linked by bondsw can be performed fon"~,
h=N=FCM4+ S jx A" FCMpx =N, (4.20 which is a partial sum of the graphs contributinghto

h"™ (K, xa,xp)=H"" (K, xa,
D. Algebraic tails of the charge-charge correlation (kXa xv) (kiXaxo)
The diagrams contributing th(%,,%4,) can be reorga- +Z
nized by applying the right-dressing relati¢f.17) to h in
the termF°®"px h of the left-dressing formulé4.16 and by

Xm"‘XmdXi"‘er

applying the right-dressing relatiorf4.19 to h"" in XK (K, xa X)) W(K, x1,X1)
S5*h"". We get , / /

b g XK(k!XerZ)“'W(kr)ﬂlXI)K(k1X| !Xb)'
with the definitions The functions relative tdh"~ have the same notations as

e eme . mem . e e, Eom, | Eoe, Eom, | Emo those corresponding th, except that they carry an extra
hia)=F**+ FT FE04 F2opx FTE4 O pF =04 F2T pF supercriptn—. According to Appendix DC(C) andC(D)

0 12 13
—ECC4+ S« EMCy ECMy +FCMx pEME 4.2 decay as 1/1 1>, 1k
*o *o p 4.22 The Fourier transform of the contributicIﬁ?E)(r) from
hey=3p*h"*3p, (4.23 h) given by (4.26 reads
hey=3p*h"* ch, 4.2 ’ ’ ’ ’ ’ ’ p;
(@ =P P “.29 C?E>(k)=f anea;pap(Xa)f deeaépbp(Xb)J’o dr
h(D):chP* h*n*zD , (4_25) )
Py, K —ik-X}() _ v
h(E)=chp*h*mec. (4.26) on dr W[e : 11h(k, x5 xp)
In the foIIowmgC L)(r), with L=A,...,E, denotes the con- X! K2
tribution from h(L (Zar%p) to the nonexchange part X[ Xo(m)—1] Pl (4.30
COhonexcT) Of the quantum charge-charge correlation func-

tion Cs(r) given by (4.9). According to Appendix DC &,(r) decays as £/°, 1™,
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E. Algebraic tails of the induced charge

First, we notice that, according 1@.27) of paper I, the

Fourier transform of the induced charge density in the pres*

ence of an infinitesimal external charge distributiég(r)
can be decomposed as

2(k)

Ee |nd

+ 2 eapmd| nonexct K),
(4.31)

5Q(k)

with the function<?(k) defined as

K?(K)
473

p .
= [ ax oo [[arerxn asn

and k¥’(k=0)=«% The nonexchange part is
E eapud|nonexcl(k)=_ﬁvc(k)f dxa€, pap(Xa)

X f dxb€a,P(Xb)

p .
X J de e'k'xb(f)h(k,)(a,)(b).
0

(4.33

The value obtained by replacirtg by a single bond=°° in
(4.33 s £ 4eupy nonexcrn (K) = k*k*(K)/[K*(k*+K?)], so
that

Kk?(k)
- _2_+2 eapa |nonexchD(k)

K%(K)

— _ — _ 2

(4.39
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The contribution from the convolutioR*X to the Fou-
rier transform of the charge-charge correlatidR(k) starts
at the ordetk|? and its contribution to the nonexchange part
of the induced charge densiBe,p" onexciK) Starts at the
order zero. Indeed, this contribution reads

—477
Jane Dap(xa)f dxpeq PP (Xp) LK, Xa 1 Xb)

1 (e ik- X/ (7) x*(k)
X{p—éjo dr e b _W .

The term in curly brackets it4.35 can be written as the
sum of (1pt’,)f8bdr exdik-X{(7)—1] and 1-[&*(K)/
(k¥*+k?)]. Thus the contributiori4.39 is finite when|k| goes
to zero, whereas the screening r(e3d) of paper | is already
ensured by thé°¢ part of h. In fact, this constant term is
compensated by the contribution from the diagHapF™°
and we rather consider the convolutioll+II*pF°©©
+TI* pF™=TI*3 5, with

(4.395

EB(Rb_ Rl’) 1Xb|Xl,))E 5(Rb_ R{)) 5X )
+p(x)F(7,, %)

+p(xp)F™( %y, %p). (4.36

3.5 has a property similar t¢4.11)

Pb i * ’
j deeabL dr e e E 5k, x| xp)

K%(K)

=ea{)fopbd ek Xp(n] 1 — prardl

(4.39

The diagramF°¢ ensures that the induced charge densityAccording to(4.32), the function(4.37) starts at the ordek?
exactly screens the infinitesimal external charge, though ivhen |k| goes to zero. After exchange of the order of the

does not contribute alone to the term of orééin C°(k), as
discussed in Sec. IV F.

—477

ampl KK
k2 [T k2+K2

because (xu) X5 (K, xplx6) = P(x) 25 (K. Xl Xb)-

! ! p’ —ik-X! T !
f aneaapap(Xa)f dxhea;P(Xb) fo "dr e” " (II(K, xa . Xp),

summations oveg, and y;,, the contribution fromlI*>* to
b eapmd|nonexc}(k) reads

a

f dxa€, pap(xa)f deeabP(Xb)f dr e ™M ITI(K, xa, x5) 25 (K, Xbl xb)

(4.39

h, then we use it again fdm* pF™¢ in (4.17), and we get

In order to study both the first term and the first nonana-

ind

lytic term in = e 0" onexcitk) DY using the property4.38),

we introduce a decomposition bfthat is different from that

exhibited in(4.21) for the contribution taC®(k). In a recur-
rence scheme, we write the right-dressing relatii?) for

h=FCC4 3 p* FMC4 FMe pEMey =M 3%

+h™ " pFC pFMC+ h* pFM% pF™MC (4.39
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Then we apply the left-dressing relatiof.20 to_h_“*EB, When |k| goes to zero, 27" (k, x4, xp) and <5 "(k, x4, xb)
h™"x pF% pF™C andh* pF™% pF™¢ in (4.39 with the re- are proportional to k?> times h"™(k, Xa,)({)) and

sult [explk-Xp)—11h~"(k,x4.xp). respectively, because of
the dressing by X5 and pF®%*pF™" Moreover,

h=F+hae +hege +hicr) (4.40  JD(Xa)JD(Xp)h"(k,x4.xp) falls off at least as 1f,

while  [D(Xa)/D(Xp)[exp(=ik-Xg)—1Th~"(K, x5, xp)

with decreases at least as r¥%/ according to

(4.13. Thus ID(XQ)ID(Xp) L1"(K, xa:Xp) and
_ R m c . m m ID(X)ID(Xy) %, "(k,x4.xi) decay at least as rff and
Many=Zp* {F75F F5 pFG + B S p - p P pFT 1/r'°, respectively, and the same is true for their contribu-
+FC™ pFCo pFME (4.42) tions to(4.44).
The Fourier transform of the contribution to
S .pm%(K)/5q(k) from hc.y reads
higs)=Zp*{h"™[3 5+ pF* pFM]+h ™" pFM% pF™,
(4.42
A7 B R ) i [ Pa
e f dxaeaépap(xa)f deeal’)p(Xb)J’O dr
hicey= F™ {h M [ S5 + pFo% pF™Me] + hx pF Mo pF™Mey.
(443 X[ X~ 1127 (K, xa X6+ Za(k, xa X)),

3p and j have the propertiegt.12 and(4.38), respec- (4.47
tively, while, if g(k,X) andg(k,X},X{) are invariant under o B B o
global rotations of their argument$D (X)FS™(k,X)g(k,X) wherer ;he def|n|t|on$ of¢7" and e%”z.are similar to those
and [D(X}) D (XL)Fe™(k,X)g(k, X, XL)F™(k,X,) start Oof 21" and .7;",  respectively. [exp(k-Xy)
at least agk|?, when|k| goes to zero. Henceforth the contri- —11%7 "(K.xa.xp)  and  [exp(k-X3) —1155(K, x4, xp)

buton  from hpe+hey+hey to Sephdk)y  are proportional tok? times [exp(k-X.)—1]h™" and
47Buv(k)sq(k) is of order|k|4 and the constant term in [expk-X})—1][exp(—ik-Xp)—1]h"", respectively. Ac-
S.e.pMk)/5q(k) is determined byFCC. cording to(4.13 and (4.14), after integration oveX, and

The diagrams it »+) decay faster than any inverse power X;,, the inverse Fourier transforms of the latter functlons
law and so do their contrlbutlons m,e,0"(k). The discus- decay as ¥P and 1+'° respectively, and4.47) has similar
sion of the algebraic tails of the contributions frdm.) and  algebraic tails.
h(c+ is very similar to that ohg,, on one hand, antlc,
andhp), on the other hand. F. Second moments

According to(4.12), the Fourier transform of the contri-

bution to > e,p"(k)/8q(k) from h(g+) reads

o

We make a comment about the first term in the srkall-
expansion o£9(k). Let us call the “Debye” contribution to
g K2 COonexck) the sum

ar
- k2 2+k2 f ane pap(Xa)f dee ’p(Xb)

onn ., o ., C8|nonexcl(k)5f aneaapap(Xa)J deeabpbp(Xb)
x{'{nl (k5Xa!Xb)+'(§2 (kiXai)(b)}! (444)

. XFCC(k!Xa1Xb)
where, according to(4.389 and to the property that

Jdx' e, p p(x')FEM(k,x,x') = —pe k2(K) — 2J(K*+K?), <« (4.49
4mB K2+k? ’
onn Kz(k) P —k-X{(7) According to(4.7) and (4.8
COK, X = = d e ccording to(4.7) al 8,
2 k2
K2<k>[K2<k>— ] . CO(k)= —
(K21 K22 }hnn(kvXa,Xb) (k)= 47 K2+K2
Pa ;
(4.45 + f dxa€% Pap(Xa) f drfe XdP(l—1]
a 0
and
+ f dXa€a,Pap(Xa) f dXb€a, PbP(Xb)
&N roo (k)[K k) K2] pb CC,
72" (KX Xb) =~z , a7 X[h(k,xa:xp) = F(K,xa.xb) ], (4.49
K[ K XKD — 1Th~"(K ! .y where the first term on the rlght -hand side is equal to
[ 1h7"(k, xaxp) a[pa+p(2)TQ|ex5h(k 0)]+CD|n0neXa() the second

(446  term is merelyS,e’[p @10, (K)—p @19, (k=0)], and
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the third term comes from the interactions between particleinclude the diagrani°¢, which ensures this property by it-
that are not exchanged under the same cyclic permutation.self, and if we take a diagrafi into account, we must add
According to the previous discussion, only the partother “dressing” diagrams, so that any spurious contribution
FCC+ FC™ pFMC+ FCMpx hx pF™C in the integral relation to 3 e p™(k=0) should not appear. If we include a diagram
(4.21) contributes at the ordee in the third term of(4.49. I1"", the root points of which are non-Coulomb root points,
Indeed, after integration over the shapes of the root pointghen we must take the whole set of graphs< I1""+ 3, § into
[2p*F™ (k) and [F*™ 3 5] (k) are proportional td? times ~ account. If we consider a diagramFMp*I1"",
ID(X) p(xL)explk-X.)—1]4(k), while the structures of FMp*I1™"*F°¢, or F*Mp*I1~"+F™, we must in fact con-
CQ), C&) or C®,, andCg, are given by(4.27, (4.28,  sider the whole seF"p*I1" "+ 5. If we add a diagram
and(4.30), respectively. Rotational invariance arguments im-II""* pF™¢, we must add the whole sBip* I1" " * pF™°. We
ply that all these contributions, excc—_meE), start at the order notice that, in all cases, every diagram of the dressed set has
[k|*, when[k| goes to zero, whil€ &, starts only at the order the same order in(*/) becausefdx p(x)F““(k,x,x") and
[k|>. In fact, after applying the left-dressing relatith16 to  Jdx p(x)F°™(k,x.x") are of order zero ip(¥).
h in the termF®Mp*h* pF™° of (4.49 and then the right-
dressing relation4.19 to h"~ in FMp*h""*pF™C after
taking into account rotational invariances, only
FSMpx h""x pF™C contributes at the orde#kL2 to C@). Thus
the only terms that survive at the ordit® in the integral A. Correlation in the chain approximation
relation (4.49 are

V. COMPARISON WITH SCREENING
IN OTHER FORMALISMS

A more microscopic approach than that of the mean-field
K2 Pa tmhodlgls can be investtri]gated py meﬁns olf fgrmglisms in Whhigh
Q ~ —  4k2|_1 2 —v.)2 e linear response theory gives the relation between the in-
¢ (k)\k\ﬁo AmpB tk [ ° f dx e”pp(X)zz (=) duced charge density and some kind of charge-charge corre-
lation function. As recalled in paper I, in classical statistics,
L ) P P , it is the charge-charge correlatiad.30 itself that is in-
+§f dx €.p(x) fo deo d7'[X(7)-X(7")] volved [see (4.36]. In guantum mechanics, the linear re-
sponse theory4.34) relates the static induced charge density
N Pa to the zero-frequency component of the time-ordered charge-
+5f aneaapap(Xa)f dXb€a, PP (Xb) fo dr charge correlation function in imaginary tin@(r,s). In the
classical case, when the static structure factor is approxi-

Po s nn mated by
<, d7'[Xa(7)- Xp(7")Jh"(k=0,xa,xb)-

(4.50

Equation(4.5®, which originates from t_he .Maye_r—like dia- where gp(r)=exp(— kouf)If and kpy is the Debye-Hakel
grammatics, and Ed4.40 of paper |, which is derived from  gcreening length, the corresponding approximated induced
the external screening equatigh3) and the linear response charge density given by the classical linear respgAsgs) is
(4.32), are different expressions of the second moment of thene same as in the linearized mean-field Debyekel
charge-charge co_rrelation. T_he second con;ribution in curlynodel. From the diagrammatic point of view, this means that
brackegs on the right-hand side @£.50 contains a term of he Debye-Huakel theory can be retrieved by approximating
orders” (pa=p,=1), aterm of ordef exp((—G1/) (Pa=1  the Ursell function by one graph, namely, the graph that
andp,=2), a term of order ex(tZ}Gg/h) (Pa=Pp=2), and  contains only one resummed bond obtained by chain sum-
SO on. Eventually,zaTt the ordgd|”, gT (k) involves contribu-  mation (without any exponentiationMore generally, after a
tions from bothpZ)] Y excn and p{?7 U nonexcnand the only  systematic resummation of the Coulomb divergencies has
terms inh that contribute to the term of ordék|? in C9(k) been performed and has introduced a chain potetggkx-
areF°C, F*™ pF™C andF™ ph""p* F™C, plained in Sec. VI of papen,we call a “chain approxima-
However, as shown in Sec. IV ¢ contributes alone to tion” an approximation in which the basic object of the dia-
the constant term in3,ep"(k), while FC™3 % and grammaticgUrsell function or effective potential associated
FS™ ph"™ 3 & contribute at the greater ordéd?. In other  with the proper polarizationis calculated by retaining only
words, the contributions t& e, p"%(k=0) from F™ pF™¢  the diagram with one “linearized” bond equal to the chain
and FS™ ph™p* F™, both of which contribute t€®(k) at  potential.
the order |k|>, are compensated by the contributions to In the loop formalism, if we do not make any hypothesis
S L.pn%k=0) from F™ 3 and F°™ ph"™ 3, respec- aboutp, ,(X) (which contributes to the part of the correla-
tively, both of which contribute t€C?(k) only at the order tion function due to the exchange chain approximation for
[k|*. FS™ pFMC and F*™+ 3, are both contained im sy, the loop Ursell functiorisee(3.1)] is to retain only the sum
while F¢™ ph""xF™¢ appears inh, when the left- and of the four properly dressed diagrams that are built from the
right-dressing relations(4.16) and (4.19 are used and four linearized bond$°¢, F™¢, F°™ or F™™ [see the com-
F¢™ ph""+ 3 arises inh p) when the left-dressing relation ment before(6.16) in paper 1. According to Sec. IV F, the
(4.20 is inserted into it. dressed diagrams are, respectivél§, 3 p*F™¢, FC™ 3§,
Subsequently, in order to devise an approximationtfor and>p*F™™ X . The corresponding chain structure factor
that satisfies the screening rulg.3) of paper |, we must  Sjnearized chaiZ-Z') is given by (6.10 of paper |, where,

SDH,aa’ = 5a,a’pa5(r) +papa’( _Beaea’)d)DH(r)v(
5.1
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according to (5.28 and (6.1 of paper |, - , € KRPA!
() P(L Minearized chaik Z»%') may be written as fast- > eappoaall) ~ — SGKRPA (5.6
decaying terms plus the convolution “ r—e
L and that ofVREAT) (5.5, which is given by(6.13 in paper I,
dx1p(x1) | dx2p(x2)Zp( %, Z1)* is a Yukawa potential with a screening length equal to
[Zreparreal ™ . ) o
X[ = Beq,Ca, Pinearized chaid (L1, L) * 2 5( L0, £, The structure factors in the chain approximations are also

short ranged. In the loop formalism, the mechanism for
(5.2 fD(X)ID(X/)Pa,p(x)pa’,p’(x,)hlinearized chai(rzyrzﬂ,) has
been displayed if2.2). A similar phenomenon takes place in

with the linearized chain potential the RPA theory, where, according (6.2) and(6.5) of paper
I, Sgpa(r) decays faster than any inverse power law, though
— Be,.e,. binearized chair= F S+ FMC+ FCM4 Emm the nonzero frequency components of the effective potential
e UEt, are pur%ly Coulombic. The mechanism can be viewed

= — e, €q, beiect™ W. as follows. JI(k,s) is an analytic function ok and the

small{k| behavior ofJ1%(k,n+#0) starts ak®. Subsequently,
the 1k? singularity of the nonzero-frequency components of
drpa(k,s) is canceled in5.3 by the same mechanism as in
(2.2). In position space, the argument is the following.
J1%(r,s) decays faster than any inverse power law, so that all
the moments off1%(r,s) in the components of are well
defined. Moreover{dr JI1%(r,s) is independent frons and

In the RPA, the proper polarizatioi* of the standard
perturbation formalism is approximated by its simplest
value, namely, its value for an ideal gaF. The effective
potential Ugf;AM,(r,n) proves to be equal to
Be,e. drpar,n) [see(6.3) and (6.12 of paper | and the
correlation function is derived from the latter objects throughﬂg(rys) is invariant under rotations af for every times.

the relation(6.9) of paper I, Subsequently, the possibly long-ranged contributions from
+oo too h(s;—s,)/r 10 Sppaqe/(r) [s€€(6.9 and (6.19 of paper |
Srraae (K) =8, o 2 Hg(k,n)+ z ﬂg(k,n) are terms proportional to
n=—w=

n=—o

0
X (= Bealar) drralkin) I, (kin). (5.3 fldle'ldSzh(Sl_Sz)f dl’lﬂg (I’l,Sl)f drzﬂg (rz,s2)
o 0 1 2

Though algebraic tails appear in the chain potentials,
these tails give a short-ranged contribution to the induced om om
charge density in the chain approximation. In the loop for- X(ry VR)TM(ra- V) ™2 —
malism, the fast decay of the induced charge density corre-
sponding tohnearized chaik 22 ) (5.2) through the linear re- 1\ (1 1
sponsg4.27) of paper | is enforced by the same mechanism “Aml+m2(r) fo d51JO ds;h(s;—s)
as that shown iri2.2). In the RPA, the induced charge den-
sity [see(6.6) of paper ) is

X

fdnhﬂmﬂ;ubaﬁ

ZoCapRoadK) _ AmBZIL(kn=0) -
sq(k)  kP—4mBZ,e’J10(k,n=0) ®49 X

J drz[rg]mZng(r2,32)>, (5.7

and the corresponding total potential created by a point
tot

chargesq, VIS A(r)=(5q/Be e, )UELA(r,n=0), is equal to

with m;=1 andm,=1. Only powers of the Laplacian ofrl/
the RPA chain potential ! 2 y P P

appear and the corresponding approximated correlations
prove to be short ranged.

Vigpa(1) = 80 rpa(r,n=0). (5.5
At zero temperature the first derivative 8°(k,n=0) is in- B. Macroscopic screening in the chain approximation
finite at |k|=2kg, because of the sharpness of the Fermi The RPA theory is not so bad for the description of mac-
surface for noninteracting particles, and the so-called Friedaioscopic screening in one-component and multicomponent
algebraic oscillations appear: at large distances the inducgulasmas, as is the case for the mean-field theories, because,
charge density is proportional to co&/r>. At finite tem-  in all those theories, the smadl-expansion of the induced
perature, JI%k,n) is an analytic function ofk, J1°%k=0, charge density has the same structure as the exact behavior.
n=0)#0, and these algebraic oscillations are exponentiallfindeed, since the mean-field theories can be valid only on
damJaed. Thus, according to Ed$.6) and (6.8) of paper I, large-distance scales, they can only mimic the first terms in
eppoa(r) andVissA(r) decrease faster than any inverse powerthe smallk expansion of the exact induced charge density
of the distance. The leading term in the asymptotic behavioaround an external point chardeg: only the smallk expan-
of the RPA induced charge density is sion of the mean-field value derived frofh.1) and (1.2),
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Eaeapk}‘é LK) KfAF k2 The similarity betweer{5.10 and(5.12 might be linked to
S =————>=—1+ T+o(|k|2), the fact that the density fluctuations of the OCP in the ther-
aq(k) K+ ki KMF

5.9 modynamic limit obey the same rufedr p@T(r)=—p (see
' Sec. Il of paper) as those of an ideal gas with faite
is to be considered. In the same way, in the RPA theorynumber of particles in the canonical ensemble, before the

sincell%pp(k=0,n=0)+0, Eq. (5.4 implies that thermodynamic limit is taken. _
Moreover, in the weak coupling limithigh-density re-
Eaeap‘F'QgAa(k) k2 gime in the semiclassical fermionic case and low-density or
W=—1+T+o(|k|2)_ (5.9  high-temperature regimes in the classical gasee RPA
RPA

value of the screening length tends to the corresponding
The first term—1 ensures that the total charge of the Mean-field valuesThomas-Fermi_and Debye-ldkel, re-

polarization cloud exactly compensates the external chargaP€ctively. Indeed, according to E1.1) and the assump-
9. In the classical case, this property is equivalent to thd!On that the quasiparticles do not interact together, the
fact that the exact charge-charge correlation, as well as itshomas-Fermi inverse lengityg is given by
Debye-Hickel approximation, obeys the classical Stillinger 0, ~
sum rule[see(4.42 of paper |, as recalled in Sec. IV A. In 2 =47T,32 o2 apa(ﬁi:“a)
the quantum OCP, there exists the second-moment sum rule F ¢ d(Bure) B
(4.43 of paper |, which is not equivalent to the above
screening property, but comes from the fact that there is only _ 2r 0/ p~ 72,0 ~
one species of moving charges in a uniform background. It _4772, CulPalBikta) I Xar(Bitta) - (513
happens that, in the RPA theory, the second moment of the
charge-charge correlatiofwhich is proportional to the at zero as well as at finite temperature, W'ﬁﬂ(ﬁ,ﬁa)
particle-particle correlatiorsatisfies the above quantum sum =pa(BAPar}ar=1. .n—1)- (The mean interparticle distance
rule, but only with the ideal-gas densip)(8,u) in place of 4 s far smaller than the Thomas-Fermi lengthr<1 and
the plzsma densityg determined by the density of the back- 1o Thomas-Fermi model is coherenin the case of the
ground. Orp~ \_

The second terms on the right-hand sid¢%8) and(5.9) OCP.pu(B:1a) = pg and
are not exact becausedepends on the model, but the struc-
ture is correct in a one-component as well as in a multicom-

ponent plasma. Indeed, in multicomponent plasmas, . has nearly the same expression as the Thomas-Fermi
S,e.p0°(r) decays only as 1%, as shown in Sec. IVE, and jpyerse lengthere, with p%(B.u,) in place of p2(B,%z,). In

the first singular term in the sm%tl-expansion_ of the in-  the strict high-density limit, p%(B,x,) coincides with
duced charge density is of ordf - (A mere dimensional pa(BApartar=1. 1), While #p%(du,)? tends to zero:
analysis would have implied the existence of a term propor- becom S It while Zepa [s€€(6.14) of ;
tional to k|, but the latter in fact vanishes, as explained in®PA D€COMES €qUA! tare, WIIIE Zrpa LSEEL0. 14 OF pape

. i I] tends to 1 and the asymptotic behavior of
Sec. IV E) On the other hand, in the very special case of the A(1)= droa(r) coincides withVIeX(r). In fact, the struc-

OCP, where the density of charge is proportional to the denqu:g of the Thomas-Fermi model is retrieved by replacing
sity of particles, the structure of the first two terms in theJIO(k n=0) by JI%k=0,n=0) in Egs.(6.6) and (6.8) of pa-
exact smalk expansion of2 e_p™(k) originates from the ' y L as. (6. ) P
exact “compressibility” sum rulg6.19 of paper | and al- per 1. In the classical limitjp, /‘9('8““)|P2°'=Pa becomes

lows one to define an inverse screening length as the squagglual top,, and x&p, leads to the Debye-Hikel value
root of the coefficient ok?. The various screening lengths
that are derived from the approximated sniakxpansions
(5.8 and (5.9 are comparable to the exact inverse screening
length kocp given by (6.19

2 0
Kocp, T 4me? pg] 2XT-

Kkoy=47B>, €p,. (5.1

In the loop formalism, the screening length associated
(5.10 with the induced charge densitpy means of the smak-
' expansion otZaeap'Qd in the chain approximatigndoes not
coincide with the screening length of the charge-charge in-
where u* is defined in(2.1) of paper I. The RPA inverse teraction because the structure of the linear resp¢hgs)
length kzpa has a similar expression given (6.13 of paper  of paper | is not similar t@6.6). The total induced charge is
l, equal to— &g in the chain approximation, but the mean-field
0 equation(5.8) is not valid: the smalk expansion of the cor-
2o dmpS e IPalBstra) . (5.17  responding induced charge starts-ab+k%/ k%, wherex’ is
RPA = Y (B p not equal tox. Even if one chooses for the Ursell function
the graph with one bondF¢¢, «'?=«%(1—-A) with
In the case of the OCP, A=1[dy p(x)e®pSBdr[X(D]°>. However, we recall that,
5098, p) for fermions in a regime of high densityn which the inter-
,op(p,u) 5 0 2.0 actions become negligible with respect to the quantum ki-
p p=amelp (B.m) I x7(B1)- netic energy, the valuex given by (5.14) and(4.9) of paper
(5.12 | tends toxgpa,

p
Kocp=4me’pgxr=4me? o

2 _
Kocprpa=4me
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ap(B,y) particle-particle correlation. First, we stress that the absence
2_ 2| OP\P Ko (2)TQ : : : > e
K*=47mp> & Bmy) | dr paa “lnonexck)]- of exponential screening for ther#/dipole-dipole-like inter-
* Y] action between the charges surrounded by their polarization

cloud, before the average is taken over the quantum fluctua-
tions, is due to the fact that the corresponding classical loops
do not interact via the electrostatic potential: only curve el-
In the quantum case, the algebraic tails of the chain poements with the same parameter P(7) interact together
tential induce algebraic tails in the particle-particle correla-and the resummed bonds involve an algebraic part
tion, as soon as the next corrections to the chain approxima&/=— Be e,/ [v(Z£,. 2" ) —veed-Z,Z")]. In a regime of
tion are considered. For instance, in the linearized loogMaxwell-Boltzmann statistics with quantum dynamics, only
formalism, the next correction to the chain approximationloops with sizep=1, i.e., closed filaments’** with shapes
(5.2 of p(A)p(£Hh(%,%") is to consider the diagrams & contribute to the grand partition function aMl [see
where the two root points are linked by two linearized bonds(5.25 of paper ] becomes
According to the dressing rules displayed at the end of Sec.
IV F, this correction involves a tern®p* 2[F™M %3 . L
When there is no summation ovéw,p) and (o’,p’), the cail caly _ / ey
leading asymptotic behavior of this c%rrection ispgiveré by WS 25970 =By fo dsfo dslots=s)=dlvclry
[W3(%,2")]? and its contribution to the particle-particle cor-
relation decays as therf/tail of the diagramSp*Fg*3 } A &i(8) =Ny §(S)]- (5.19
with one nonlinearizedr; bond[which is similar to(2.3)].
This particular correction is an example of the more general
structure of the diagrams that are responsible for thetall ~ This potential already appeared in the model of two quantum
of the correlation, as shown in Sec. Ill D. charges embedded in a classical plasma, which is solved in
In the standard perturbation many-body theory, the nexRef. [4]. In this case the energy of the two corresponding
natural correction to the RPA for the proper polarization is tofilaments interacting with a given configuration of particles
include the graphT} made with two free-propagator loops of a classical bath can be split into the pure electrostatic
linked by two interaction lines-Be e, ¢rpa. In the case of energy plus a quantum “correctionW(~**, #*'1), which
the OCP, all the frequency components/of have an alge- does not involve the bath. Second, the correlation between
braic falloff [5]: JI¥ (r,n=0) decays as if and JI%(r,n the two quantum charges of the previous model decays alge-
+#0) as 1/*° Moreover, the exact sum rulegd.43 and braically and its inverse-power asymptotic expansion exactly
(6.19 of paper |, which are specific to the OCP, allow one toStarts with a ternB/r® (8>0). This term involvesW? be-
derive two sum rules about the smallbehavior oflI(k,n).  cause of the rotational invariance of the quantum fluctuations
Thus, under the assumption that every frequency compone@fd the short-range of the Laplacian of the Coulomb poten-
JI*(k,n) is invariant under rotations df, it can be shown tial. Inthe present paper, the mechanism is generalized to the
(see Sec. VI of pape khat, if the exact proper polarization €xchange loops: there is no exponential screening at non-
JI* decays asT? , thenS(r) decays as 1%, p™(r) as 118, equal(imaginary times for an interaction between open fila-
andV°(r) as 1%. (We notice that the so-called ladder dia- ments that take_s place at equal times an_d the leading large-
grams with more than two RPA interaction lines do not con-distance behavior of the_ guantum correlgtlon comes from the
tribute to the leading asymptotic behavior, as is the case fgproduct of two convolutions, each of which involves at least
the tailsT with L=2 in the loop formalism). oneW bond.
The mechanism can be exemplified in the Maxwell-
Boltzmann approximation of the RPA theory that is given in
Ref. [5]. As recalled in Sec. VI of paper I, the effective ACKNOWLEDGMENT

potential(6.17) between two filaments is a dipole-dipole-like | o1 indebted to Ph. A. Martin for introducing me to the

intergction(plus a Debye-Hckel term) bgfore the_z shapes of question of algebraic tails in quantum plasmas.
the filaments are averaged over. After integration over those

internal degrees of freedom, the potential decays faster than
any inverse power law. However, the graph where two fila- APPENDIX A
ments interact through two effective potential lines decays as
1/r®. The mechanism is the same as in the more general loop In this appendix we sketch the direct study of the large-
formalism. In the case of the OCP, it can be shown exacthdistance behavior of the convolutiof.6) in position space
that, at the ordefi®, the correlation function decays in fact in the two simplest cases, in order to exhibit the mechanisms
not as 1v° but as 1/'°, because of the classical Stillinger- in position space. The roles played, on one hand, by the
Lovett sum rulg4,5,35. According to Ref[5], the quantum rotational invariance of the quantum fluctuations and the in-
second-moment sum rulgt.43 implies that this result is teractions and, on the other hand, by the harmonicity of the
expected to be true at any orderfinThe underlying reason Coulomb potential are clearly disentangléthough this
is that the particle-particle correlation coincides with themakes the discussion a little longer
charge-charge correlation in the one-component plasma. The chain made with+1 graphsK linked byl bondsW

As a conclusion, we mention a very simple mofithat  in (2.6) can be decomposed as a series of chains involving
exhibits the basic mechanisms involved in the present serigsurely algebraic termsV,, [defined in(5.33 of paper | in-
of papers and are responsible for the®lflecay of the stead ofW. Such a chain reads

C. Beyond the chain approximations
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|
J anpap(Xa)J depbP(Xb)f iﬂl [dxip(xi)dxi p(xi ) IK(T, xa, x2)* W, (1 x1, x1)* K(T X1, x2)

xR X X)) * W, (1 X XD * KX X+ 1) KO x - x)* Wo, (g x )X K(n x| xe), (A

where the convolution operates on the loop-position variabifter integration over the shapes of the loofs]) becomes

a sum of terms, each of which is a convolution of derivati&r/@isl...ﬂi O (1/r) of the Coulomb potential and functions

%{V”‘ m}*l] (r), which are the moments of the functiokqr,x; ,x;+1) that are of ordem; [m;,] in the
Vit M am

components oK/ (7/) [Xi;1(7i+1)]. These moments depend only on(a; ,p/ ,7), and (@i 1,pi+1,7i+1); they are well
defined because the weightiX) is expected to decay faster than any inverse power law, according to paper |. Because of the
invariance of both the measurd®(X) and the bondsF under global rotations of their arguments, the

%{Vn' ',r_“_iy*_l] o (r) are tensors of rank; +m; ;. For instance, the chain with,=---=vy,=3 is proportional to
i1 i+l R am

1] S 11,1] 1,1 1.1 {1,1] o11]
%M*aﬂlyl(vc)*]évlﬂz* x N PRSP #i"i(UC)*'%wM* *ijl P MI,,I(UC)*.%,,I (A2)
with
T aa,pasar,p1, 1) = f D(Xa) f D(X)[X1(71)], KT xaX1) (A3)
and
/7/{,,1,}]”( ;ai',pi’,Ti';ai+1,pi+1,7'i+1)5f D(Xi,)f D(Xi+l)[xi,(7-i,)]1/i[xi+l(Ti+l)]/.Li+1K(r1Xi, Xi+1)- (A4)
The summation over the space indices is implicit(A&®2). In the same way, the chain with;=4 andy,=---=y,=3 is
proportional to the sum of two terms
712] gl g% 1 11 {1.1] o1]
%ﬂl,lﬂl,z*&Ml,lﬂl,z"l(v(:)*'%’/lﬂz* *'%”i—lﬂi*&Mivi(UC)*'%”iMiu* *;{/"I i “|V|(UC)*'%"| ' (A5)
where
T iy ATi@a,Pa; 1,1, 1) = f D(Xa) f D(XD[X1(71) ], [X2(70)], K (P Xa s X1), (A6)
plus the term
1] 2,1] 1,1 1.1] 1.1 1]
"75#1*(9#1”1,1”1,2(1)(3)* 7/{"11"12“2* *Z/u 1M 0 l“iVi(vC) 7/{VM 1* - /{ 1:“|* 'U“IVI(UC)*L7K{VI ’ (A7)
|
where the definition of7Zt? 1112# is similar to(A4). In Fou- ﬁ is proportlonal tow>4, W, to witd+ w21 andw!tY,
rier space, the convolutions such(aéZ) (A5), and(A?) are , andw! appear only |nVV3 andW,. The discussion
of Sec Il B in Fourier space shows that rotational invari-
products of singular termk, ~k, -k, /k% and L . X
mia ""mi i1 in; ance together with dimensional analysis ensure that any con-
tensors]/[”lr_“'*l]M PR (92 volution KxW, «K*W, ---*W, «K+«W, *K decays at
At this point, we put the results of Sec. Ill A in terms of least as ¥7, e|ther if y= =5 or 7|>5 or if any of they; with
the decomposition oV into pure algebraic term#/,, each i=2,...1—-1 is greater than 3becaus4e the corresponding
of which behaves as Y. TheW,,, defined in(5.33 of paper small-k expansion starts at the ordg®). Only the convo-
|, are related to thev[™" defined in(3.5) by lutions with W, =---=W, =W (nj=m;,;=1 for all
, i=1,...1—1) and y;, and y equal to 3 or 4 may decay as
W.(K, xi 1Xi')=—ﬁeavea!f IdTi pidq-i’ 1/r® (because their smak- expansions start at the order
' tJo 0 k[?). (W,,=Ws corresponds tan;=1, and in the case
x{8( 71— P(m)]—[ 7 —P(+H])—1} W, =W,, according to the dimensional analysis, only the
term in (2.14) corresponding tan;=2 andn;=1, [ X1(71)
« 1 k][ X1(71)-k], may give a tail decreasing more slowly
(m; npimn=y—1 Mitn;! than 1f’.) In fact, rotational invariance arguments and the

—_— o harmonicity of the Coulomb potential enforce the latter con-
X WK, X (7)), X (77)). (A8)  volutions to decrease at least as’1lnamely, the first two



53 CORRELATIONS IN QUANTUM PLASMAS. Il. ALGEBRAIC TAILS 4623

terms in the smalk expansion of the convolution8.8) with The harmonicity of the Coulomb potential implies that
m,;=n;=1,i=1,...1—-1 and fn;,n,) equal to one of the aviﬂi+1[UC*"%ViMi+l](r) does not decay as theri/law

four cases in(3.37) are analytic and of ordefk|* and [k|*,  given by dimensional analysis, but, in fact, falls off at least

respectively. o 3 _ as 1t°. Indeed, the invariance df under global rotations
The gene.ral dISC'USSIon in posmqn space is more Cumbe'implies that [dx W{Vlﬂl] (X) is proportional t04, ,

some than in Fourier space, but it can be summed up as , %+l RN

follows in the special case of the convolutions with the slow-iMes @ term independent from, and fdx X755,/ (X)

est possible decay. The derivatives and the convolutions-0. Therefore, the asymptotic behavior of the term

commute according to the propery,f+d,g=—d,,(f*g) aviﬂiﬂ(uc*.%{v?l’}i]ﬂ) starts as

and, after integration over the shapes of the loops, the con-

volution chain(A2) with all the y,’s equal to 3 appears as the 11 1

convolution Iy [UC(P)] fdx Tl (0)+0 5

1 {1,1]

=Afve(n]g | dx 00 +0

T% 3, (0e)* Gigr L, (A9) 1
Fa o n ! =1 (A14)

whereG,,4 is a scalar function that depends only |oh

Hence G,,4(|r|) (A10) decays in fact at least asrl/
and the leading terms in the asymptotic behavior

of [aﬂlvva*Gmid](r) is &Mlvlvc(r)xfdy Gm|d(|y|)

1,1 o711
Grial[r]) = Iy LU C* ']“/{Vlﬂ]z]* R ey %[Vi#i]ﬂ]

... o{11] . . ;
* *avlfll’“l[vc*'%{'ﬂflm]' (A10) +0(1/r%. An algebraic tail of the convolutiotA9) that
) would be slower than 1/, according to dimensional analy-
The convolution(A.5) reads sis, can only arise from the asymptotic behavior

72 . (
TR aM1 2 T H1,1M2Y)

ve)*Gmigt 4,1 (ALD)

3(,0/M1yl[vc(r)](fdx x(,.%gtll](x))(fdx’xé,%ﬂ(x’))
A mere dimensional analysis implies that each term
d,, MM[UC*.%{V?}}?H] decays at least as r#/ Henceforth, 1

Gpig @and ‘7#1V|vc(r) fall off as 13, whereas the’’s decay r_7)

as 1t°. Moreover, because of rotational invariance, only the

odd-order moments ofzL)(r) and.7Z(r) at the ends of =AA(£) ( f dx = > x ,%A”(x))

the chain do not vanish. Consequently, according to the gen- r 3w M

eral analysis recalled in Sec. Il C, the slowest nonzero alge-
braic tail of the convolutiofA9) reads X

X +0

J dy Gmig(lyl)

1
folx'§ > x;l.%g}](x'))
|

X +0

) 1]
‘700’[(9#1V|UC*Gm'd](r)(Jdx Xo- 7y (X) fdy Grmia(ly])

1
r—7) . (A15)

X( f dx’x;,.%gf](x’)), (A12)  An analogous mechanism arises f&11). As a conclusion,
in the diagrammatic decompositio2.6), all the convolu-
with o=u, ando’ =, . Because of rotational invariance, the tions decay faster thanrf/and onlyK falls off as 1t°.
even-order moments 0%{:1]1ﬂ1 () do not vanish and the

slowest possible tail ofA11) is APPENDIX B
In this appendix, we study the structure of the “elemen-
A5r[ D) yuy U C* Gmid](r)( f dx .%Efl]lﬂl 2( )) tary” algebraic tails defined at the beginning of Sec. Il D,

before integration over the shapes of their end points.

It is readily shown that the structuf&.26) holds for the
, (A13)  elementary algebraic tails that come from a single algebraic

bond (W or Fge). Indeed, a bondN(r,£,{") is a series of

with o’ =, . The tails(A12) and(A13) behave as 7. termsw(™"[r.Z(),Z'(7')] [given by(3.28], which have the

In Fourier space, the singular terms corresponding to thétructure(3.26 with g=m, q’=n, andP=1. According to
1/r® tails are canceled because, on one hangk)x1/k?  the expression of given in(5.30 of paper |, a bondrgg,
and, on the other handz\™  (k=0)=A[{}5, . ac- Elef:;edﬁ in ¢(2.31), . is (\/\% I:sgcm chf . two tﬁrrT]s:

. oo ’ i exp(— Be, e, Peiec) — LlEXp(W) — FC— —F™  whic
cording to (3.19, while '%{m](k) starts aSAg'%k'“'l and decays faster ?ﬁ;n any inverse power law, and ¥Rp{ 1
L (k=0)=AZls, . , according to(3.13. The  —w, which is a series of algebraic terms, each of which is
mechanism is more intricate to write in position space tharproportional to the product of at least twel™"(r,2,2")
in Fourier space, but the argument that has been develop#&dth various values of r),n) but with the same argument
for the previous simple convolutions can be pursued as foltr.,¢,¢’). Such an algebraic  term reads
lows. HEV:"lw[mp'”p](r,g,g’) (up to counting factops with P,,=>2,

><( J dx’x(’r,k%{yf](x’)
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and, according t03.28, has the structuré3.26) with P, wheref (2]} is a function ofiz’|. The tensoA[ql ”](Z ) of

PW

eq“";" 0 th? numberp,, of w, q_zpzlmp’ and q rank g;+n is nonzero only ifq;+n is even The inverse
=X Y n,. Since then's andn’s are greater than or equal to . (y1+n-3) N

p=1"P Fourier transform ofS (k,¢,¢") is of the form
1,q=P=2 andq’=P=2. Subsequently, an elementary al- (OF
gebraic tail that originates from one algebrédicor Fr bond quﬂ(Z)A[C|1 n](Z’) times an algebraic term decaying as
has the structur€3.26), whereP takes the following values. 17 with y=v,+n=P;+q;+(q;+n). Thus we retrieve
If (q,9") is equal either t¢1,1), (1,2), or (2,1), the algebraic  the structureg3.26
tail originates from one bondlv and cannot arise from an
Fre bond andP=1. On the contrary, ifj=2 andq’'=2, the
structure (3.26 may originate from the product of two
wi™(r 7,7} in an Frg bond andP may take the values 1
and 2. (yp+mag a5 +n]

Now we turn to the structure of the algebraic tails of the XS g, (B3
convolutions of algebraic bonddV or Fge) with subdia-
grams of a giverd] diagram and that have algebraic bonds atWith g=d;=P; andq’ =q;+n=P,. When the number of
both ends. The structure is given before integration over th@nalytic terms increases, a discussion by recurrence shows
root points. The discussion is decomposed into two steps. that this structure is still preserved after integration over the

In the first step, every purely algebraic tSig{;,(r,g,g’) is  shapes of thd internal points of the convolution. For in-
the inverse Fourier transform of one nonanalytic term arisingtance, ifl =2, there appear terms such as
from one algebraic bon@W or Fgg) times a product of
analytic terms originating from the smallexpansions of the (y1+n1+ny—3) "—
other terms in the Fourier transform of the convolution. We (12 (k.d.8 )_f Xmp(Xl)f dxzp(x2)
proceed by recurrence. If=1, the analytic term is of the

+n]

1*”)(r g g ) A[ql](Z)A[ql (Z/)

form [dx(ik-X)"G4(X,x1,¢") and, according to the structure ><A[q1]( )827}1}3)[ql % k)
(3.26 of the nonanalytic terng(”1~ 391 qi](k ¢, x1) arising
from an algebraic bond, witly,=P,+q,+q}, P;=<q;, and XA[ql](Xl)f dx(ik-x)"
P1=<q;,
XG1(X,X1:X2)
3 '
SHACTS: )=f (A, (2) xf dy(ik-Y)"2Gy(y,x2,¢)-
w gl ql](k) (B4)

X3
" By using (B2) twice, we get
xAVql MESVORL

(7'1 n

3 '
S )

xfdx Xg, Xe G1(X,x1,{"),

f dx2p(x)A1(2)
(B1)
(y1+n1—-3)[a1.0;+n1]
XSt (k)
wherek,, (x,,) is the component with indee of the vectork

[a;+nq] : '
(x) and Siy}i}s)[ql “k) is a short notation for A{q}l (X 2)de(lk'Y)n2Gz(Y-X2-§)

g3, qu (k) Because of the rotational invariance of

My g V1 _A[ql](z)s(71+nl+n2 3)[ay, q1+n1+ng](k)

both the bond§(/ 7”") and the weight®(#?), G1(X,x1,{")is t

a function invariant by global rotation of its arguments. As a XA[q1+n1+an(Z,) (B5)

consequence, after integration oxeaindX,, we get a tensor ) '

A[ql*”](z ) of rank g} +n, S, " "(r,g,¢) still has the structure(3.26, with
y=ntn+n,=P;+q+q" with q=q;=P; and q'=q;
+n;+n,=Py.

, In the second step, the algebraic tSﬂJ),(r L) is the
f XmP(Xl)A[,,qﬂ.,, ,(xl)f dx XUl”'XUnGl(Xv\/l!g,) inverse Fourier transform of a product #f(J=2) nonana-
P lytic terms S(7LYj 'qj'](k,gj_l,gj), which arise fromJ) bonds
=[2'1,.--[2'1,.[2',.--[Z2'], £(|1Z2'] W or Fgg, timesl| analytic terms. According to the previous
' e ! " discussion, the product by analytic terms does not change the
[a)+n], -, structure(3.26. Thus, after integration over the intermediate
A{} (z', (B2) points of every product made of &” (coming from an
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algebraic bongwith a product of analytlc term§§ ((r, 2,2

comes from a product afs7i e 9] (K. xj-1:X))

(€31

J-1

;Hl dx;p(x;) |7y 2t Ak, x0)

(1)1,

(72— 3)[dz.05]
XS(l)I

J
vy-3[9;,4;1)
- s, J(k)>

S( Y~

3).[a;.9'] '
(1)1 4 (kvXJ—llg )

(K, x1:x2)""

H

f dxip AT (X, )A“*J“%xj)}. (B6)

Sby))u(r,é,g’) is of order|k|?3, with
J
=-3J+> P;+q+q’
=1

J
=2 (7,-3)
j=1
J-1
+j§1 (0] +0j+1), (B7)

(We have used the notation

=0 and qj=0") [dx;p(x) A" (XA (X)) does
not vanish only Iqu+qj+l is even. SmcequPj and
dj+1=Pj.1, the even values thaqj’+qj+1 can take are
P;+Pj;1+0(Pj+Pj,1)+2N, whereN is a positive inte-
ger, andg(n)=0 if n is even, whileg(n)=1 if n is odd. As
a consequence, when the values of ¢fis (with j=2,....J)
and those of the|j’s (with j=1,... J—1) vary, the powery
given by (B7) may take the values

y({P;}.0,9")=P({P;},0,9")+q+q’,

whereP({Pj},q,q’):5({Pj},q,q’)+2N, with N any posi-
tive integer, and

where q;=P; and q;=P;.

(B8)

J J-1
E({Pi}*q’q’)ze’_e"”,zl P]-Jrlz1 [P+Pji1

+0(P;+Pj1)], (B9)
with g=P, andq’'=P;. Since the allowed values f&, and
P, depend org andq’, so do the allowed values fét. The
minimal valuePy, for P({P;},q,q") corresponds td;=1
for all j=1,...J (namely, all the nonanalytic terms come
from Wy's). In this caseP;+P;,,+ 6(Pj+P;,;)=2 and
P.in(d,q")=1 for any values of] andq’. If g=q'=1, then
P,=1 and P;=1, so that the next value for
P({P;},a=1,4"=1) is given byP;=1 for all j except one
jo. which is different from both 1 and, and for whichP;
=2. WhenP; is increased from 1 to 2, then boty _,
+Pjo+ Q(Pjo—1+P]0) and PJ;O+PJO+1+6(PjO+PjO_1)
jump from 2 to 4 and P({P;},1,1) jumps from

Pmin(9,9')=1 to the value 6. Subsequently, according to

(B8), when ther’s vary, P(1,1)=1,3,5,6,... . On the con-
trary, if q'=2, while q takes any valugl included, then
1<P;=<2 and the smallest allowed value f&({P;},q,q")
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that is greater tha®,,(q,q") is given byP,=2 andP;=1
for j #J because onlyp;_, + P;+ 6(P;_;+ P;) jumps from

2 to 4 andP({P;},q,q") jumps from 1 to 4. Subsequently,
P(g,q') may take the value®(q,q’)=1,3,4,... as soon as
q'=2 orq=2.

We notice that, if the convolutiofwith J=2) does not
contain anyW bond, thenP;=2 for all j=1,...,J, while
g=2 andq’=2 as well. The minimal value fdP({P;},q,9")
corresponds toP;=2 for all j=1,..J. In this case
P;+Pj; 1+ 0(Pj+Pj,1)=4 and P=3J-1=5, so that
P(qg,q’) takes the value®(q,q’)=5,7,8,... whenl=2.

As a conclusion, the algebraic tails of a convolution/éf
or Fre bonds with subdiagrams @t that have either &V
or anFgg bond at both ends have the struct(®e26) where
P(g,q') may take the values 1,3,5,6,..gfq’' =1, while P
may take the values 1,3,4,...&2 or q'=2. Moreover, we
notice that, if the convolution does not contain anybond
(except in the subdiagranik, ), theng=2 andq’=2, while
P(g,q') may take only the values 5,7,8,... .

Eventually, the allowed values fé*(q,q’) in (3.27) are

13,56..., if g=q'=1
P(q,q9')=4 1.34..., if (q,9")=(1,2) or (2,1
1,2,..., if g=2, q'=2.

(B10)

Moreover, we notice tha®=1 only in the case of & bond
or in the case of a convolution involving at least debond.
If there is noW bond in the convolution, theg=2 and
gq'=2 and the allowed values fd?*(q,q’) are only

PwdQ,9')=2,5,7.8... .

For instance,Frs decays as tf, while the convolu-
ion Frs(r.xi Xi+1)*Fre(r.Xi+1,Xi+2) involves a /9 tail
originating  from  [W(r,xi,xi+1)]** [Wa(r xi+1.xi+ 2T
whose Fourier transform involves
SPK,xi 2 xi+1) SPK X+ 1 Xi 4 2)-

(B11)

a

APPENDIX C

In this appendix we determine the exponents of the alge-
braic tails of various functions involving the algebraic tdils
of a Il diagrams, before and after integration over the
shapes of both their root points and their internal points. An
algebraic tailT has the structur€3.29 before integration
over the shapes of its end points. We cdilthe values ofy;
that survive after integration oveX, and X, for a given
(L,Q.,Qp) andy* denotes the values thaf takes whert,

Qa, andQ, vary, namely, the/*’s are the allowed values for
any Il diagram.

Since the allowed values af; in (3.33 depend on the
values of {(q;,q/)}i=1,..., we have to distinguish four
caseql)—(IVv) for allyy diagram. In casél), q,=q/ =1 for
all I=1,... L, so that, according tB10), = |_,P, may take

only the valued.,L+2L+4L+5,..., namely,
S1n=0,2,4,5... (C1)
and
ro({a=1}{a/ =1},L)=3L+Qa+ Qp+ 1) - (C2
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In case(ll), there exists at least one indéy such that
(a1,,0/)=(1,2) or (2,1, while (g;,q/) is equal to(1,D),
(2,1, or (1,2 for all I #1,. Then, according t¢B10), =P,
may take only the valuel,L+2L +3,...,
oran=0,23..., (Cy
while =F_,(q,+9/)=2L+1. In case(lll), there exists at

least ond such thaiy;=2 andq| =2; then= kP, may take
any integer value greater than or equalto

otan=0.1,..., (Co
while ={_,q,=L+1 and=[_,q/ =L+ 1. If the convolution
contams now bond[case(IV)] theng=2 andq’=2, while,
according to(B11),
Yrav)=2+d+d" +Qat Qp+ (v, (CYH

where oty =Pwdd,9") —2 may take the values 0,3,5,6,..
according to(B11). _

First, we study the decay ofD (X,)D (Xp)IL(r,X4,Xp)-
After integration over the shapes of the end poifitg and

“,, the algebraic tail(3.29 is not canceled only if
FD(X). AT ¥ WX, #0 and [D(Xy). AT HH](x,)
#0. Slncez/[Qa+E'q'](Xa) is a tensor of ranIQa+E| 19
fD(X)z{’[Qa alex,) only if

may be nonzero

Qa+2, 1q, is even and the same property also holds for

Qo+t =10y -
caseq)—(IV).

In case(), Qu+X f1q/=Qa+L and Qu+={_ 10/ =Qp
+L. According to (C2), yr(y=3L+Qa+Qp+ dr and
IDX)SD(Xp)T(rap,Xa.xp) does not vanish only iQ,,
Qyp ., andL have the same parity. @, andQ,, are everjcase
(la)], the only values ol that contribute ard.=2,4,6,...;

Now, we have to distinguish the previous

then  y7y— Srq) takes the values €Q,
+Qp,12+Q,+Qy,..., SO that, according t¢C1), whenL
varies,

=6+Q,+tQp, 8+Qa+Qp, 10+Q,+Qyp,

11+ Q,+Qp ..., (C6)
with Q,+Q,=0,2,4,... . Theny};,,=6,8,10,11,... . IQ, and
Qy, are odd[case(I8)], the only values of. that contribute
are L=357,.. and yf,—drg takes the values
9+ Q.+ Qp, 15+ Q.+ Qy ..., SO that, according tqCl),
whenL varies,

Y1p =91 QatQp, 11+Q,+Qp, 13+Q,+Qp, 14
+QatQp,..., (C7)
with Q,+Q,=1,3,5,... . Thenyj;=10,12,14,15,... . Even-

tually, in the casdil), yz‘,) takes the values 6,8,10,11,... .
In case(ll), either Q,+=_,q,=Q,+L+1 while Q,
+2,0/=Qp+L [subcasellla)] or Qu+ = [;0=>Q,+L
while Qp+3=_,q/=Q,+L+1 [subcase(ll B)]. We recall
that [D(X,)/D(Xp)T(rap,Xa:xp) does not vanish only if
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Q.+t ,q, and Qy+3=_,q/ are even. In subcasgl @),
Q,+=1_,q, takes the even values

Q.+L+1+6(Q,+L+1)+2N (C8)

while Qu+3|_,q/ takes the even valuesQ,+L
+6(Qp+L)+2N’, with the notationd(n)=0 if n is even
and §(n)=1 if n is odd.(N andN’ are integersN=0, and
N’=0.) Thus, according t¢3.33, when the §,,q,)’s vary,
after integration oveX, and X,, 71*'(|Ia)_5T(||) may take
only the values

V1w~ Oran=3L+1+Qat+Qu+ #(Qa+L+1)

+60(Qp+L)+2N. (C9)

According t0(C3), ¥¥(11a)= Yl aymins V(i ayminT 25 YT (11 aymin
+3,...,with

=3L+1+Q,+Qp+t0(Qa+tL+1)+6(Qp+L)
(C10

and Qa>0 as well a@b 0. 7T(I|a)m|n(L 2) 7—"Qa—+_Qb
+6Qat 1)+ 6(Qy)=8, Yimin(L=3)=10+Qa+Qy
+0(Qa) +0(Qp+1)=11, and  ¥¥(ymin(L+1.Qa.Qb)
> YT (1aymin(L:Qa,Qp)- In subcasell B), the roles ofQ, and
Q,, are exchanged and

Yrgmin(L) =3L+1+Qa+ Qp+ 8(Qa+L)

yT(II a)min—

+6(Q,+L+1). (C1)
Eventually,y7, takes the values
YIaH= Yraomins YiaminT 25 YianminT 3 (C12
with
Yanmin=IN[7+Qa+ Qp+ 6(Qa+ 1)+ 6(Qyp), 7+Qq

+Qpt+6(Qy) +0(Qp+1)]=8

because), =0 ande>0 ThUS’y(“) 8,10,11,..

In case(lll), Qu+=}.,9=>Q,+L+1 andeJrEI .a
=Qp+L+1, so that/D(X,)fD(Xp)T(rap.Xa»Xp) does not
vanish only ifQ,+ X |_,q, takes the even values

(C13

Q.+L+1+6(Q,+L+1)+2N (C14

and if Qp+3}_,q takes the even values
Qpt+L+1+6(Q,+L+1)+2N'. Then, according t¢3.33
and(C4), yr, takes any integer value that is greater than or
equal to Q,+Qp+3L+2+60(Q,+L+1)+6(Q,+L+1).
The smallest value correspondslie-2,

Yran(L=2)= 81y =8+ Qat Qp+ 0(Qa+ 1)+ 6(Qp+1)
=10, (C19

because),=0 andQ,=0. Eventually,yz*,,,) takes any inte-
ger value greater than or equal to 10.

In the case of a single convolution without awWy bond
[case(lV)], L=1, g=2, andqg’=2, the even values taken by
Q.,+9=Q,+2 are
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Q.+ 2+ 6(Qy) +2N (C19 [na+y]{,=6+na+6(ny), 8+n,+6(n,),
and those taken by Q,+q'=Q,+2 are Q,+2 10+n,+6(ny), 11+n,+6(ny),... . (C22
+6(Qp) +2N’. So the allowed values oﬂ(w) given by

In case(ll) we have to consider two subcases, according
to whetherQ,+ = |- 19> L+1 whileQ,+3 ,L=&q’> L [sub-
*x _ case(lla)] or Q,+2>-,9,=L while Q,+>_-,9'=L+1
Yrov)~ O1v) =6+ Qat Qp+ Q(Qa)+9(Qb)+2N(_Cl7) [subcase (IT,B)].I 14 n subbcaslel iy
Na+Q,+=t,q=n,+Q,+L+1 takes the even values
given by (C8), with n,+Q, in place ofQ,, and in subcase
(I1B) the roles ofQ, and Q, are exchanged. According to
(C12, [na+ y7]{yy takes the values

(C5) are

SinceQ,=0 andQ,=0, ¥{,=6,8,9,... .

As a conclusionfD(Xa)fD(Xb)H\,\,C(r,Xg X,) decays
only as 1r®1/r81/r°1/r'° ... The tails ° corresponds
only to case(l) with L=2 agd to the cas€@V), both with
Q.= Q,=0, while the tail 1/° is given only by casef), (Il) x _ * *
and(1V). The 1t° tail comes from convolutions of casy/), [Nat yrlon=[Nat ¥rlinmins [Nat Y110mint 2,

2 2 :
such as W3] “*[Wj3] . We notice that, fron{3.32 and from [Nat Y118 mint 30ee- s (C23
the conclusion in the paragraph befdi10), we can also
retrieve the results of Sec. 11l B about the convolution chainsyith
with possibleW bonds: according to dimensional analysis, _
such a single convolution chain decreases at least adNa+t ¥rl(iymin=INf[7+Na+QatQp+t #(n+Q,a+1)
e,

Second, we turn to the possible algebraic tails of the in- +0(Qp), 7+ Nt Qat Qut 6(Nat Qa)
verse  Fourier transform of_ fD(Xa)fD(Xb)(k. +0(Qu+1)]. (C24)
-Xa)"aT(k,X,,X,). The inverse Fourier transform of the in-
tegrand decays as r¥f*"a  Howerver, [D(X,)(k Eventually, wherQ, andQ, vary,
~Xa)”a.,//;ﬁaﬁ'q'](xa)#O only if n,2+Q,+3}_,q, is even
and, after integration over the shapésandX,, some tails
disappear. The discussion is similar to that performed for
ID(X)fD(Xp)T(k, X, ,Xp) With n+Q, in place ofQ, . =7+n,+6(na+1) (€29

In case(l), only then,+Q,’'s and theQ,’s that have the

[Nat Y10 min=INf[7+na+ 6(na+1),8+ ny+ 6(ny) ]

same parity contribute. In cagky), bothn,+Q, andQ, are and

even and fi,+ y7]* takes the values given b§Cé) with [Nat ¥15,=7+Na+ 6(Ng+1), 9+n,+6(Ng+1),

n,+ Q, in place ofQ,. The even values taken by, +Q,,

with Q,=0, are 10+ n,+ 6(n,+1),... . (C26)
n,+ 6(n,) + 2N, (C18 In case (lll), the discussion is the same as for

JD(X)SD(Xp)T(r, X, ,Xy), with n,+Q, in place ofn, . Ac-
while Q, takes the even valug3,=0,2,4,... . Thus the pos- cording to (C15), the allowed values forr,+ y{]* are

sible values fofn,+ y]Z‘la) are 8+n,+Q,+ (N +Q,+1)+Qp+ 8(Qp+1)+N. Since
N+ Q,+0(n,+Q,+1)=n,+6(n,+1) and Q,+6(Q,

[Nat Y]l =6+nat6(ny), 8+n,+6(ny), 10+n, +1)=1,
+6(ny), 11+n,+6(ny),... . (C19 [nat ¥yl =9+na+6(n,+1)+N=10. (C27)
In case(Ip), bothn,+Q, and Q, are odd and i+ y7]* In case(IV), [ny+ ] * takes the values given bC17)

takes the values given H{7) with n,+Q, in place ofQ,.  With n;+Q, in place ofQ, and, sinceQ,=0 andQ,=0,
The odd values taken +Q.,, with Q,=0, are
bya Qa Qa [na+ ﬂy]~(k|V)26+na+ e(na): 8+na+ e(na)a

Na+ 6(Na+1)+2N, (C20 9+n,+6(n,) (C28

while Q, takes th*e odd values 1,3,5,.... Thus the possible As a conclusion, by inspection ofC22 and (C26)
values for[na+ v] 4 are —(C28 in the cases wheren, is either even or odd,
. we find that the inverse Fourier transform of
[Nat ¥l(p =9+ Nat 6(Nat1), 11+n,+6(na+1), ID(X2) SD(Xp) (K- Xo) ellyyo(r, Xa,X,) may decay as

1rtnat 2" with
13+n,+6(ny+1), 14+n,+6(n,+1),... . (C2)

Eventually, in casél), by inspection offC19 and(C21) in [ng+yl*=6+n,+6(ny), 8+ny+8(ny,),
the cases whera, is either even or odd, we find than,
+v]{) takes the values 9+n,+6(ny),... . (C29
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Sincen,+ 6(n,) =2, this falloff behaves at least ag4/The
1/r8na* M) tajl comes from the cased) and (IV). For
instance, in the case,=1 or 2, the allowed algebraic tails
are 1r81/r%1/r” with y=11. In the case,=3 or 4, they
are 11°1/r'21/r” with y=13.

Subsequently, since  [D(X,)JD(Xp)lexpik-X,)
—1Jwd(rap.Xa,Xp) Mmay be seen as a series of terms
ID(X) T D(Xp) (k- X ) "allyy(rap, X2, Xp), With n =1, its
algebraic tails are £#,1/r1/r11 ...

Third, the inverse Fourier transform of the nonanalytic
term (k- Xg)"a(k- Xp)™T(K,Xq,Xp) decays as Eventually, in casdl), after inspection ofC30) and (C31)
1r7mMa™ ™ but after integration over the shapes of for n,’s andmy’s with various parities, fi,+m,+y]* can
the root points, the only algebraic tails that survive arebe written as

[na+my+ y]{, —Na— 6(ng) —my— 6(m,)=6,8,10,11.... .
(C30

If n,+Q, andm,+Q, are odd, then, according {€21), the
values taken byn,+m,+ v, are

[Nat+mp+ y]1fi5—Na— 8(Ng+ 1) —my— 6(my+ 1)

=9,11,13,14... . (C3))

such that n,+Q,+>F,q, and m,+Qy+3/_,q/ are

even. The discussion is similar to that carried out for[NatMp+ 1§ =[NatMy+ Y1 mint 81y (Ma, M),

JD(Xa) JD(Xp) (k- Xa)"T(k,Xa,Xp),
place ofQy.

In case(l), only then,+Q,’s and them,+ Q,’s that have
the same parity contribute. if,+ Q, andm,+ Q,, are even,
then, according to(C19, the values taken byn,+mj
+7]{ia) @re such that

with m,+Q, in

0245...
8y(Na,my)=10,2,3...
0.1,...

For instance, the algebraic tails may have the expohent
+my+y](y=10,11 ... in the casen,=my=1, [n,+m,
+ y]z*,)=10,12,13. .. if (ny,my) is equal to(1,2) or (2,1),
and [ng+mp+v],=10,12,1415... in the case
na=m,=2.

In case(ll), by replacingQy, by m,+Q,, in (C24), we get
a result similar ta(C26),

[na+mb+7]ﬁ|):[”a+mb+7]?n)min7 [”a+mb+7m|)min
+2, [Natmy+ yipmint3s ..., (C34

with,  since  inf[7+ny+ 6(ny;+1)+my+ 6(my,),7+n,
+6(ny)+m, +0(my+1)]=7+n,+my+6(n,+my+1),

[na+ mb+ 7](Il)min: 7+ na+ mb+ 0(na+ mb+ 1)? 10.
(C39H

Moreover, in casegll) the 14 tail may appear only if
In case(lll), [nyg+my+ yT]z*,,,) takes any integer value

(C32

with

[ny+my+ y]z*,) =6+n,+ 6(ny)+my+ #(m,)=10

min

(C32)

and

if n, and m, are even
if n, and my, do not have the same parity
if n, and m, are odd.

(C33

[Natmy+ ¥ =8+na+ 68(ng+ 1)+ my+ 6(mp+1)+N

=10. (C36)

In case(lll), the 1£1° tail may appear only if,=m,=1.

In case(lV) of convolutions with now bond, the even
values taken by n,+Q,+q, with Q,+q=2, are
ny,+2+6(n,)+2N, while the even values taken by
mp+Qp+q’, with Q,+q'=2, are m,+2+6(m,)+2N".
So, according tqC5),

[na+my+ y]fy)—Na—My— 6(ny) — 6(mM,)=6,8,9... .
(C37

Eventually, after inspection ofC32), (C34), (C36), and
(C37),  JD(Xa)JD(Xp)(K-Xa)" (K- Xp) ellyc(K,Xa,Xp)
decays at least asr?/with
[Na+mp+ y]* =[Ng+mp+ y]rint+ 8(mg,my), (C38

where

greater than or equal to L3t+2+n,+Q,+my Nt Mo+ Y15 =64 N+ 6(N2) + M+ 8(m.)= 10
+Qp+ 0(nNy+Qu+L+1) +6(my+Qy,+L+1) and, when [Na* Mo+ i at 0(na) + My + O(my) (C39
L varies, the lowest value is obtained far=2. Since
N+ Q,+6(n,+Q,+1)=n_+6(n,+1), and
|
s _]0,2,3... if n, and m, are even or do not have the same parity a0
(Na,My) = 0,1,... ifn, and m, are odd, (C40
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If (ng,my)=(1,1), the allowed tails are i1°1/r*1..., and if ~ According to rotational invariance arguments, the srkall-

(na.mp)=(1,2), (2,1) or (2,2, tails Lk*°1/r'%1/r"3. ap-  expansion of [D(X])SD(X{)IK-X,(r)I"K(K, x| . x0)

pear. x{exdik-X;(7)]—1} starts at the orddk|™™*%1+M) and
Subsequently, D (Xa)/D(Xp)(k-Xa)"[exp(k-Xs)  involves even powers dk| up to the first nonanalytic term,

—1lllwdk,Xa,Xp) has a series of algebraic tails which is of order|k|>*™* %™ according to(C.42)]. (The

1rtna*71" given by (C39), with m,=1,2, ..., corresponding inverse Fourier transform decays at least as
1/r'%) The structure of the smak-expansion ot -™* and
[Nyt y]* =8+n,+ 6(n,) + 8(ny,) (C41 omal . all
ﬁi,'i;'l*l is given in(3.34) and(3.35 (because the fact that
with 1 is a non-Coulomb-root point does not change the struc-
ture). The dimension of the first term in the sméllexpan-
5 _10,2,3... if ny is even 5 sion of (D1) is
(N2)=| 0,1,... ifn, is odd. (C42
If n,=1, the allowed tails are a1°1/r'%, ..., and ifn,=2, =2 — 2] +[m. +
tails 1410 1/r221/r13 appear. ! Dejreg j({mi {nih)=2=21+[my+6(my)]
Eventually the allowed tails for
: . \ Lt +[14+n,+6(1+n
D (Xg) D (X exXplik-Xq) ~ 11X K- Xo)~LTT ek X Xo) L]
are 1r1°%1/rt, L. -1
+i21 [ni+m;q
APPENDIX D N

In this appendix we study the asymptotic behavior +o(ni+mi.q)]=4. (D2)

of the contributions t0C®| gnexckr) from hys hpy,

and hg defined in (4.21). We insert the decomposition . . .
(4.29 into the expression(4.28 of C(r). Accord- The order of the first singular term s
ing to Appendix C, the inverse Fourier transform of |k|™*" M3 in ﬁz gmﬂ(k), according to (3.3,
JD(XDID(Xp) (K, x4, xp)[explk-Xp) —1] decays at |k|“i+mi+l+9(”i)+9(mi+1)+éin ﬁ_[ni_’m”l], according ta3.35,
least as ¥f, 1/r*°, 1/*% ... and thdirst nonanalytic terms N 1 PR U

in [D(X.)SD(X)H" (k,x. xt)[exptk-X.)—1] are of and |k|M+¥MIFS n &, ',(k), according to(C42). Thus the

order k%, k|, |k|3, ... .Subsequently, according t¢.29, firsttermsin(D1) are analytic up to the order k| that is the

the first nonanalytic terms in the contribution fra#i~ (k) to  infimum of the three values obtained frai2) by replacing
C?c)(k) are of orderk|’, [k[°, |k|*°, ... and thetails of the ©One (and only ong of the terms in square brackets by the
contribution fromH"™(r) to Co(r) fall off as 1410 1412 order of the first singular term in the correspondifigIn
13 other words, the three values to be considered are given by

On the other hand, in a very similar way to what has beertD2) with either m;+6(m;)+3 in place of m;+ 6(my),
done for the particle-particle correlation in Sec. Il B, the >tm+6(n) in  place of Hn+6(1+n), or
contribution toC ¢, (k) from a chain ofi +1 graph linked M+ M1+ 6(n)+6(m;,1)+3 in - place of nj+m;;,
by | bondsW, where #, is a non-Coulomb-root poirfsee T #(ni+m;;1). We notice that
(4.29], can be written as a series of contributions from a
chain of | +1 graphsK linked by | bondsw!™ "il, Before

summation over the speciesand the sizep of the loops (2,7 if n=1
and before integration over the timeseach of these contri- (4,7) if n=2
butions is proportional to [1+n,+6(1+n)),5+n+6(n)]= (4’9) if n|—3
3 | —
(6,9 if n=4.
2
Q _ n—[mq] D3
eCHI0 =z Gy fara - () (b3

Henceforth, 5-n,+6(n,)=[1+n,+6(1+n,)]+3 and the
first singular term in (D1) is of order
DecQ 1+3=7: C&, falls off at least as 12°. According
t (li:z(fl))] th tt ('I) t#, 1nt? Inoth d
[nj_1.m] ' ' 0 , the next tails are t#, 1'% ... . Inother words,
X (k)f DX, )f D(Xe) the sum of the convolution chains in the decomposition of
h"~xF™¢ decays at least asr#/(1/r®, . . .) and their convo-

Xy "0 855 )

X[k X0 () TMK (K, x| x0) lution with 2 on the left, which determines their contribu-
o XX tion (4.28 to C{, decays at least asrif (1™, .. .).
, 2 The slowest algebraic tail corresponds to the case where
y jpde[eiKX{)(r)_l] 2" . D01 M=m=1foralli=1,.../-1 and (n;,n)=(11) or
0 Ktk (my,n,)=(2,2). Then the smalk expansion ofD1) reads
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k2 1 ~
GLCE (0= ez gy LA IKI24 B k|4 -4 SRk -+ ST (D) + ST kD +O(KI)]

<AL KPP+ B K|+ ST KD+ 87 KD+ O K[

-1
x T LA K2 BEL Kl ST (KD + ST+ (KDO(KI®) . (D4)
|
The first singular terms are of ordéd’, |k|°, [k|*°.... Ac- X [explik-X[)—1]

cording to(C42), in the case wherenf; ,n,)=(1,2) or (2,2,

the structure OEI[C?C}_] (k) is the same as ifD4), with the ~ decays at least asrif, 1r,... and the first nonanalytic
only difference thalAl[,’b=0. Then, the first singular terms €rmMs in

are of orderk|®, [k|"°,.... The case o€, is derived from

the case ofC (QC) by exchanging the roles o, and.%#, and f D(X;)f D(Xp)[exp(ik-X)—1IH(K, x4 xp)
the results are the sam@, andC ,, decay as 1/°, 1/r*?,
U3 X [explik-Xp)—1]

Now, we turn to the contributio@ ?E)(r) given by(4.30.
According to Appendix B, the inverse Fourier transform of are of orderk|’, [k[%,... . Subsequently, the contribution from
H to C(g(r) falls off as 1+*°, 1/r™,.... The contribution to
C?E)(k) from a chain ofl +1 graphsK linked by| bondsw
where both” and }, are non-Coulomb-root points can be

, , . , ~ . analyzed along the same lines as the contributio@ fg (k).
f D(Xa)f D(Xp)[explik-Xa) = 1]Hwd(K, xa:xp) We é]let a formgula analogous {®1) ®

2 ’
-8 ™o [Prar [ D0 [ Doxprern-1y

0 1 K
Q:I[C(E)](k):m P

X[k'Xl(Tl)]len_(kvX;;aXl)Jopl;dT,f D(X()f D(Xp)Ik-Xp(r)IMe™ KXo~ 1]K (K, x{ xh).-
(D5)

The dimension of the first term in the smallexpansion ofC ?E) is
1-1
DQI[C(QE)]({mi},{ni}F —21+[1+my+0(1+my)]+[1+n,+6(1+ n,)]Jr;1 [(ni+mi ,+60(ni+mj.)]=2. (D6)

As in the discussion abo@ ?C), the first terms in the smak-expansion of D5) are analytic up to the order k| that is the
infimum of the three value®6) with either 5+m,+ #(m;)=7 in place of m;+ 6(1+m,;)=2, 5+n,+ #(n,)=7 in place of
1+n+6(1+n)=2, orn;+m;,+ 6(n;) + 6(m;, 1) +3=7 in place ofn;+ m;,; + 6(n;+m,, 1) =2. So the first singular term
in (D5) is at least of order Jthe next term is of order 8 according {©42)] and the contribution t€ ?E) from the convolution
chains falls off as 1/°, 1r*,... .

The slowest algebraic tail correspondsite=m; ;=1 for alli=1,...| and reads

1 -
GLC 1K) = rpar [AGHIKIZ+ B[+ -+ ST(IK]) + 3k + O(Ik|)]

XA K2+ Bl K4+ -+ 7 (KD + S P (IkD +O( k)]
1-1
x LT TA KP4 BE L oIk + 8 (KD + 875 1 (1KD +O(IKI®)]. (D7)

The first singular terms are of ordf’,

k... andC, decays as 1%, 1r™,....
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