
Generalized synchronization of chaos: The auxiliary system approach

Henry D. I. Abarbanel,1,2 Nikolai F. Rulkov,2 and Mikhail M. Sushchik3
1Department of Physics and Marine Physical Laboratory, Scripps Institution of Oceanography, University of California,

San Diego, La Jolla, California 92093-0402
2Institute for Nonlinear Science, University of California, San Diego, La Jolla, California 92093-0402

3Department of Physics and Institute for Nonlinear Science, University of California, San Diego, La Jolla, California 92093-0402
~Received 10 October 1995!

Synchronization of chaotic oscillators in a generalized sense leads to richer behavior than identical chaotic
oscillations in coupled systems. It may imply a more complicated connection between the synchronized
trajectories in the state spaces of coupled systems. We suggest a method here that can be used to detect and
study generalized synchronization in drive-response systems. This technique,the auxiliary system method,
utilizes a second, identical response system to monitor the synchronized motions. The method can be imple-
mented both numerically and experimentally and in some cases it leads to analytical results for generalized
synchronization.@S1063-651X~96!02505-6#

PACS number~s!: 05.45.1b, 84.30.Ng

I. INTRODUCTION

Synchronization of chaos is a striking behavior of coupled
nonlinear systems with chaotic uncoupled behavior. This be-
havior appears in many physical and biological processes
and it may be responsible for the transition to low-
dimensional behavior in systems with many degrees of free-
dom @1, 2#. It would seem to play an important role in the
ability of complex nonlinear oscillators, such as neurons, to
cooperatively act in the performance of various functions@3#.

Synchronization of chaos is often understood as a regime
in which two coupled chaotic systems exhibit identical, but
still chaotic, oscillations@4–6#. In the case of synchroniza-
tion of drive-response systems this regime of identical oscil-
lations only occurs at a certain point in the parameter space
of a response system and thus represents a rather degenerate
case. This fact may pose a problem for using the results of
theoretical analyses in practical applications of synchronized
chaos. It was shown in@5, 7–9# that when the parameters of
the coupled systems are detuned from the point where oscil-
lations are identical, the coupled systems can still remain
synchronized in a generalized sense; namely, the projections
of synchronized trajectories onto partial state spaces of the
coupled systems are connected by a continuous transforma-
tion. In our earlier paper@7# we introduced a class of chaotic
synchronized motions in drive-response systems, which we
called ‘‘generalized synchronization of chaos.’’ Since the
transformation between drive and response dynamical vari-
ables that embodies the generalized synchronization can be
very complicated, one needs special methods to detect the
existence of the transformation and study this kind of syn-
chronous behavior. Some numerical tools for the detection of
generalized synchronization in systems with unidirectional
coupling were developed and used in@7, 9#.

In this paper we present another method that in some
cases can be used for detection and characterization of forced
generalized synchronization. This technique, which we call
the auxiliary system approach, is particularly appealing since

it can be implemented directly in an experiment without us-
ing any computational power. This is in contrast to the tools
described in@7, 9#. In addition, as we shall show below, the
auxiliary systems method allows one to utilize analytical ap-
proaches for studying generalized synchronization.

In Sec. II we give a general description of the auxiliary
system method for detecting generalized synchronization of
chaos. In Sec. III we demonstrate the implementation of this
approach in our theoretical analysis of synchronized chaos
using the example of synchronization of the chaos in a Lo-
renz system with a chaotic drive signal taken from a Ro¨ssler
system. In Sec. IV we present the results of an experiment
with synchronization of chaos in nonlinear electrical circuits
with different parameters. The auxiliary system method is
used for detection of chaotic synchronization between the
circuits. We exhibit experimental results for both the syn-
chronized and unsynchronized motions of the circuits.

II. THE AUXILIARY SYSTEM APPROACH
FOR GENERALIZED SYNCHRONIZATION

We work with nonlinear systems composed of anautono-
mous drivesystem with the dynamical variablesx in a phase
spaceX coupled into aresponsesystem with dynamical vari-
ables y in the state spaceY. The dynamics of the drive
x(t) and responsey(t) system are

dx~ t !

dt
5F„x~ t !…, ~1!

dy~ t !

dt
5 G„y~ t !,g,x~ t !…. ~2!

The coupling of the response system to the drive is char-
acterized by the set of parametersg. We assume that when
g50, G(y,0,x) is independent of the drive variablesx and
both the drive and response systems evolve on separate cha-
otic attractors. The chaotic dynamics of the drive system
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does not depend on the parameters of the response system, so
the connection between the systems is unidirectional.

In the spirit of our earlier paper@7# we use the following
definition of generalized synchronization for the systems~1!
and ~2!. WhengÞ0, we say that the chaotic oscillations in
the two systems are synchronized in a generalized sense if
there is a transformationf: X→Y that takes the trajectories
of the attractor inX space into the trajectories of the attractor
in theY space, so thaty(t)5f„x(t)…, and if this transforma-
tion does not depend upon the initial conditions of the re-
sponse systemy(0) in the basin of attraction of the synchro-
nized attractor. We emphasize that in this definition of
generalized synchronizationthe existence of transformation
f is required only for the trajectories on the attractor. The
transformation is not required to exist for the transient tra-
jectories.

In this paper we consider a class of generalized synchro-
nized motions for which the transformationf(•) has the
following properties.

Property 1.f(•) has no explicit time dependence.
Property 2.On the synchronized attractor it transforms

points in theX space intopoints~not continuous domains! in
the Y space. The transformation is not required to preserve
the number of points operated upon. Thus the transformation
is allowed to has finite number of branches with a defined
rule of transition from one branch to another@10#.

Property 3.On each branch the transformation is locally
continuous@11#.

The transformation associated withsynchronizedmotions
on the overall chaotic attractor in the totalX%Y phase space
is y(t)5f„x(t)…. The existence of a transformationf(•)
guarantees the ability to predict the state of the response
system from measurements ofx(t) alone,once transients die
out. Again we emphasize that this relation between the drive
and response dynamical variables need not hold everywhere
in the system phase space, but need hold only on the attrac-
tor. The predictability of the chaotic behavior of the response
system from time series generated by the drive system was
used in@7# for detecting of the presence of generalized syn-
chronization of chaos. In this paper we propose an alternative
method to test the predictability of the response system from
knowledge ofx(t) and, in so doing, to detect the synchro-
nous chaotic behavior in nontrivial cases.

We consider theauxiliary system

dz~ t !

dt
5 G„z~ t !,g,x~ t !…, ~3!

which is identical to the response system. Clearly, when the
response~2! and auxiliary~3! systems are driven by the same
signalx(t), then the vector fields in the phase spaces of the
response and auxiliary systems are identical and the systems
can evolve on identical attractors. Indeed, one may ask how
the orbitsy(t) andz(t) could fail to be on identical attrac-
tors. The answer lies in the possibility that there are several
basins of attraction for the driven system with vector field
G„•,g,x(t)…, for if y(0) andz(0) lie in different basins of
attraction, one will see quite different orbits. However, if
these initial conditions lie in the same basin of attraction,

after some transients die out, we will certainly havez(t) and
y(t) moving around the same geometrical object in phase
space.

Under special circumstances, it could be thatz(t) and
y(t) will not only lie on the same attractor, but they could
themselves be identical, namely,y(t)5z(t). In general, this
will not be the case, for two orbits on the same chaotic at-
tractor move apart exponentially rapidly until they are of
order the size of the attractor apart and then they remain
uncorrelated as they continue to develop. However, if the
systems are each synchronized to the drive variables
x(t) through the generalized synchronization relation
y(t)5f„x(t)… andz(t)5f„x(t)…, then it is clear that a so-
lution exists in the formy(t)5z(t). The stability of the syn-
chronization manifold wherey(t)5f„x(t)… ensures us that
z(t) is able to tracky(t) asz(t)5y(t) in a stable manner too.

In general, then, the auxiliary system is just another re-
sponse system and in the absence of generalized synchro-
nized motion of the response to the drive, the orbits of the
response system and the auxiliary system will share the same
complicated attractor but will be otherwise unrelated. In the
case of generalized synchronization, there is a stable regime
of oscillations where the orbits of the response system and
the orbits of the auxiliary system become identical after tran-
sients die out and we observe the simple identity relationship
y(t)5z(t). The stable regime of these identical oscillations
guarantees the possibility of prediction of the current state of
the response system, given the history of evolution of the
drive system, and therefore indicates the presence of the gen-
eralized synchronization. The identityy(t)5z(t) is a much
simpler relationship to test for than the unknown, generically
complicated generalized synchronization relationship
y(t)5f„x(t)….

It is easy to show that the linear stability of the manifold
z(t)5y(t) is equivalent to the linear stability of the manifold
of synchronized motions inX%Y, which is determined by
f(•). The linearized equations that govern the evolution of
the quantities jy(t)5y(t)2f„x(t)… and jz(t)5z(t)
2f„x(t)… are

djy~ t !

dt
5 DG~f„x~ t !…,g,x~ t !!•jy~ t !, ~4!

djz~ t !

dt
5 DG~f„x~ t !…,g,x~ t !!•jz~ t !, ~5!

where

DG„w,g,x~ t !…5
]G„w,g,x~ t !…

]w
. ~6!

Since the linearized equations forjy(t) and jz(t) are
identical, the linearized equations forjz(t)2jy(t)5z(t)
2y(t) have the same Jacobian matrixDG„•,g,x(t)… as in
the previous equation. Therefore, if the manifold of synchro-
nized motions inX%Y%Z is linearly stable forz(t)2y(t),
then it is linearly stable forjy(t)5y(t)2 f„x(t)… and vice
versa. Note that the linearized equation forz(t)2y(t) is
identical to the equation that defines the conditional
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Lyapunov exponents@6# for the response system. Thus,
when the manifoldz5y is linearly stable, the conditional
Lyapunov exponents for the response system, conditioned on
the value of the drivex(t), are all negative.

We have thus demonstrated that to study the transition to
generalized synchronized chaos, the analysis of stability of
the synchronization manifold in the spaceX%Y, which in
general may have a very complicated shapey(t)5f„x(t)…,
can be replaced by the analysis of the stability of the quite
simple manifoldz(t)5y(t) in Z%Y space.

The observation of a locally stable regime of identical
oscillations in the response and auxiliary systems guarantees
the existence of the transformationf(•) satisfying proper-
ties ~1!–~3! noted above. Indeed, suppose the transformation
f(•) were time dependent. Since the behavior of the auxil-
iary system does not depend upon the state of the response
system~and vice versa! the effects of time dependence of
f(•) would generally be uncorrelated, if the driving corre-
sponds to an attractor of the autonomous system. Therefore,
the stable regime of identical oscillations in the response and
auxiliary systems would not be observable. At the same time
if f(•) did not satisfy property~2!, it would be mapping
points in the driving phase space onto continuous domains in
the state spaces of the response and auxiliary systems. Once
again, since the response and auxiliary systems are not
coupled, the mappings inside the domains in these spaces
would not generally be correlated and therefore the observa-
tion of the identical oscillations would not be possible. For
the same reason the identity would be disrupted if there were
no deterministic law for branch switching. Finally, if the
transformation were not continuous~property~3!!, then any
small uncorrelated perturbations in the response and auxil-
iary systems would generally result in occasional finite scale
deviations from the identity. In other words, the regime of
identical oscillations would not be robust.

To summarize, the auxiliary system approach includes~i!
construction of the auxiliary system, which is an exact rep-
lica of the response system and is driven by a signal from the
driving system in the same fashion as the response system;
~ii ! demonstration of the local stability of the manifold of
identical oscillations in the combined phase space of the re-
sponse and auxiliary systems; and~iii ! demonstration of ro-
bustness of the identity relationship with respect to small
uncorrelated perturbations in response and auxiliary systems.
When one can prove the local stability of this manifold and
the robustness of the identical oscillations, the conclusion
that follows is that in the combined phase space of the driv-
ing and response systems there exists an attractor that is the
image of generalized synchronized chaotic oscillations.

In our laboratory experiments the local stability of the
manifold of identical oscillations can be verified by means of
observation of the regime of stable identical oscillations of
the response and auxiliary systems. The presence of natural
noise in any physical experiment ensures that the system
does not stay in an unstable regime. Therefore, if one ob-
serves for long times the identical oscillations of the re-
sponse and auxiliary systems, this indicates the stability of
the synchronization manifold and the continuity of the trans-
formation f(•), which follows from the robustness of this
regime.

III. AN EXAMPLE OF GENERALIZED
SYNCHRONIZATION

Let us now come down from the general discussion of
detecting synchronization by means of an auxiliary system to
a specific example. We consider the generalized synchroni-
zation of chaotic oscillations in a three-dimensional Lorenz
system when it is driven by a chaotic signal from a Ro¨ssler
system. In this case the drive and the response systems are
given by the following equations. For the drive system
~Rössler!

ẋ1~ t !52@x2~ t !1x3~ t !#,

ẋ2~ t !5x1~ t !10.2x2~ t !, ~7!

ẋ3~ t !50.21x3~ t !@x1~ t !2m#

and for the response system~Lorenz!

ẏ1~ t !5s@y2~ t !2y1~ t !#2g@y1~ t !2x1~ t !#,

ẏ2~ t !52y1~ t !y3~ t !1ry1~ t !2y2~ t !, ~8!

ẏ3~ t !5y1~ t !y2~ t !2by3~ t !.

In the Rössler system we havem55.7 and in the Lorenz
system we have chosens516, b54, and r545.92. The
response system is coupled to the drive system only through
the scalar forcing termx1(t). g characterizes the strength of
the unidirectional coupling.

Obviously, in these coupled systemsx(t)5y(t) is just not
possible. However, these systems can be synchronized in the
generalized sense. To demonstrate this we introduce the aux-
iliary system~Lorenz!

ż1~ t !5s@z2~ t !2z1~ t !#2g@z1~ t !2x1~ t !#,

ż2~ t !52z1~ t !z3~ t !1rz1~ t !2z2~ t !,

ż3~ t !5z1~ t !z2~ t !2bz3~ t !,

which is a replica of the response system~8!, and show that
the limit set of synchronized trajectories in the manifold
y(t)5z(t) can be stable to perturbations transverse to this
manifold when the coupling is sufficiently strong.

We consider the linearized equations for perturbations
transverse to the manifoldy(t)5z(t)

j̇1~ t !5s@j2~ t !2j1~ t !#2gj1~ t !,

j̇2~ t !52z3~ t !j1~ t !2z1~ t !j3~ t !1r j1~ t !2j2~ t !,

j̇3~ t !5z2~ t !j1~ t !1z1~ t !j2~ t !2bj3~ t !,

whereja(t)5za(t)2ya(t), a51,2,3. The function
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V5
1

2
@4j1

2~ t !1j2
2~ t !1j3

2~ t !# ~9!

can be used as a Lyapunov function for the system if the
value of the coupling parameterg satisfies

g.S 14s1r2z3~ t ! D 21 z2
2~ t !

b
2s. ~10!

Since the values ofza(t) are bounded, this condition is sat-
isfied wheng is large enough. The boundedness of the at-
tractors in the response and auxiliary systems under the
bounded chaotic drivex1(t) can be easily shown for
g→`. In this case all trajectories of the auxiliary system are
quickly attracted by the manifold of ‘‘slow’’ motions
z1(t)'x1(t) on which their further evolution is governed by
the equations

ż2~ t !52x1~ t !z3~ t !1rx1~ t !2z2~ t !,
~11!

ż3~ t !5x1~ t !z2~ t !2bz3~ t !.

Now consider the positive function

Vp~ t !5
1

2
@z2

2~ t !1z3
2~ t !#. ~12!

The time derivative of this is

dVp~ t !

dt
52bz3

2~ t !2@z2~ t !2rx1~ t !/2#21@rx1~ t !/2#2.

~13!

It is easy to see from this that in regions of the (z2 ,z3) plane
far from the origin,V̇p(t) is negative. Therefore, far from the
origin the distance to it,Az22(t)1z3

2(t), decreases in time.
This means that all trajectories in the (z2 ,z3) plane that be-
gin far from the origin end up in a bounded domain centered
at the origin. Therefore, oscillations of the response and aux-
iliary systems after transients die away are bounded and the
condition given on the couplingg can be satisfied.

This shows that in the limit of strong coupling the attrac-
tor in the manifoldy(t)5z(t) is linearly stable to transverse
perturbations and therefore the manifold of synchronized
motions in the total phase space of the coupled Lorenz and
Rössler systems is stable as well. Moreover, using the

Lyapunov function~9! one can prove the robustness of the
regime of identical oscillations in the response and auxiliary
systems with respect to small uncorrelated perturbations
added to the driving signals in each of these two systems.
Thus, in the limit of strong coupling the coupled Ro¨ssler and
Lorenz systems are synchronized in the generalized sense.

The generalized synchronization of chaos in these
coupled systems also occurs at finite values ofg. To dem-
onstrate this we have two approaches. The first requires the
computation of conditional Lyapunov exponents@6#. How-
ever, the negativity of the conditional Lyapunov exponents
does not always guarantee the stability of synchronized mo-
tions in practical settings@12–15#. Instead we use an alter-
native approach that employs an auxiliary system.

We integrate all three systems~drive, response, and aux-
iliary!, occasionally introducing small random fluctuations
into the values of dynamical variables. The introduction of
small perturbations into the system in numerical simulations
conditions is required to ensure the stability of the synchro-
nization manifold. The effects of such perturbations on the
synchronized chaos and robustness issues are discussed in
@16#. The results of the computer simulations atg510 are
presented in Fig. 1. Figs. 1~a! and 1~b! show the projections
of the attractor from the nine-dimensional phase space onto
the planes (y1 ,y3) and (y1 ,z1), respectively. One can see
from the plot shown in Fig. 1~b! that the manifoldy5z is
stable, and therefore the manifold of synchronized motions
specified byy5f(x) is stable as well, and the chaotic oscil-
lations in the drive and response systems are synchronized.
We also studied the (y2 ,z2) and (y3 ,z3) projections of the
attractor. The plots for these projections look identical to the
one in Fig. 1~b!.

Although the numerical implementation of the auxiliary
system test for systems described by ordinary differential
equations~ODEs! may not seem to be more informative than
computing the conditional Lyapunov exponents for the re-
sponse system, there are two categories of problems where
this method may be practically the only tool for detection of
generalized synchronization. One category is the synchroni-
zation of chaos in time delay systems such as the Mackey-
Glass system@17#. The other category includes synchroniza-
tion of spatiotemporal chaos in spatially extended systems
@1,2#. In each of these cases the concept of conditional
Lyapunov exponents is not only not well developed, but also
the computation of these exponents is a very cumbersome
process. The auxiliary system method may be a big help in

FIG. 1. Projections of synchronized attractors
in the coupled Ro¨ssler and Lorenz systems. The
coupling parameter isg510 and the systems are
coupled as indicated in the text. The Ro¨ssler sys-
tem acts as the drive and the Lorenz system is the
response. The projection of the response system
onto the (y1 ,y3) plane is shown in~a!. At this
value ofg the systems are synchronized. We can
see this in the projection of the same attractor
onto the (y1 ,z1) plane in~b!.
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general when one works with a system having a very large
number of degrees of freedom since the estimation of
Lyapunov exponents in such cases requires substantial com-
putational power and the methods based on time series
analysis@7, 9# may become unreliable.

However, even for the analysis of generalized synchroni-
zation in low-dimensional ODE systems this method has a
certain appeal. Employing it is less complicated than com-
puting conditional Lyapunov exponents and it allows one
to detectgeneralizedsynchronization in a fashion reminis-
cent of the straightforward methods used for detection of
identical synchronized chaotic oscillations. Also, as we al-
ready mentioned, in practice, the synchronization of chaos
may break down even when all global conditional Lyapunov
exponents are negative@12–15#. In this sense the auxiliary
system test for the stability of synchronization manifold is
more reliable.

IV. THE AUXILIARY SYSTEM APPROACH
IN AN EXPERIMENT WITH ELECTRONIC CIRCUITS

To study the generalized synchronization of chaos in an
experiment with electronic circuits we built two almost iden-
tical electronic circuits that were driven by a chaotic signal
from a third circuit. The circuit diagram of the experiment is
shown in Fig. 2. More details on the design of these chaotic
circuits can be found elsewhere@16, 18#. We consider one of
the driven circuits as the response circuit and the other as the
auxiliary circuit. The chaotic signal generated by the drive
circuit was applied to both the response and the auxiliary
circuits through the resistorsRc . The strength of the cou-
pling was controlled by the values ofRc in each circuit. This
was adjusted to have the same value for both circuits.

In the experiment we tuned the parameters of the drive
circuit to correspond to the regime of chaotic oscillations.

The attractor is shown in Fig. 3~a! in a projection onto the
(x1 ,x3) plane. The parameters of the response and the aux-
iliary circuits were tuned to values that, without coupling,
namely,Rc→`, lead these circuits to generate chaotic oscil-
lations corresponding to the attractor shown in Fig. 3~b!. In
the figures the horizontal and vertical axes correspond to the
voltages measured across the capacitorsCk andCk8 , respec-
tively. (k 5 1 and 2 for the drive and response, respectively.!

Synchronization of the chaotic oscillations was observed
for values of the coupling withRc,630 V. It was easily
detected with the analysis of the projections of the synchro-
nization manifold onto the planes (y1 ,z1) and (y3 ,z3). For
the synchronized oscillations the manifold is projected onto
the diagonalsy15z1 andy35z3 on these planes. These iden-
tities guarantee the identity of the currentsJy(t)5Jz(t),
which one can see in Fig. 2. Therefore the chaotic behaviors
of the response and auxiliary circuits are identical. Since this
regime of identical oscillations is observed in the presence of
natural noise, this observation guarantees the stability of the

FIG. 2. Circuit diagram of the experiment with driving, re-
sponse, and auxiliary nonlinear electrical circuits. The parameters
values of the drive circuit are set to beC185230 nF,C1'337 nF,
L1'140 mH, r 1'334V, andR1'4.21 kV. The parameters val-
ues of the response and auxiliary circuits areC28'225 nF,
C2'342 nF,L2'145 mH, r 2'348V, andR2'4.97 kV.

FIG. 3. Experimentally measured chaotic attractors of the~a!
uncoupled drive and~b! response circuits. The parameter in the
nonlinear convertersN in the drive isa'22.85 and in the response
it is a'24.62. ~a! is the projection of the drive attractor onto the
(x1 ,x3) plane.~b! is the projection of the response attractor onto the
(y1 ,y3) plane. The attractors in the two systems are not the same,
as one might expect as the systems are different.
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synchronization manifold in the phase space of drive and
response systems.

Synchronized behavior, observed withRc5604 V, is
shown in Fig. 4. The synchronized chaotic attractor
measured in the response circuit is presented in Fig. 4~a!.
The fact of the synchronization is confirmed by the sta-
bility of the ‘‘diagonal manifold’’ in the state space of the
response-auxiliarysystem@see Fig. 4~b!#, from which the
stability of the manifold of synchronized motions in
the phase space of thedrive-responsesystem follows. Thus
the chaotic oscillations in drive and response circuits are syn-
chronized. Looking at the projections of the synchronized
chaotic attractors onto the plane of the variables (x1 ,y1) and
(x3 ,y3), it becomes clear that oscillations in the driving and
response circuits are not identical; see Fig. 4~c!. Therefore,
these circuits are synchronized only in the generalized sense.

Unsynchronized chaotic oscillations, measured with
Rc5731 V, are shown in Fig. 5. Although the projections
of the measured attractors onto the variables of the drive and
response circuits do not look much different from the previ-
ous case of synchronized behavior@compare Figs. 4~a!
and 4~c! with Figs. 5~a! and 5~c!#, the projection of these
chaotic oscillations onto the plane (y3 ,z3) clearly indicate
that these oscillations are not synchronized. Comparing dif-
ferent projections of the chaotic attractors in the drive-
response and drive-auxiliary systems, we concluded that two
pairs of systems evolve on the identical attractors. Therefore
Fig. 5~b! can only indicate the loss of the synchronization.

V. CONCLUSION

Synchronization of nonlinear oscillators, whether they are
evolving in a chaotic or regular fashion, can take many in-
teresting forms. When the coupled systems are identical, the
dynamical variables of the oscillators may tend toward iden-
tical motion and they may, under other circumstances, tend
toward out of phase, but clearly synchronized, motions@3#.
Synchronization may well occur when the oscillators are not
identical, and several examples have been given here and in
@7, 9#. In some sense the synchronization of nonlinear sys-
tems that are not identical is critical for the appearance of
synchronized motions in real systems where precise identity
of the systems is unlikely. The form that synchronization
takes in realistic systems is likely to be richer than a precise
identity between dynamical variables and we have addressed
here and in earlier work@7# a class of generalized synchro-
nized motions that enlarges one’s view of this phenomenon.

In this paper we have worked with coupled systems that
do not have mutual feedback but are organized as a drive
system whose dynamical variablesx(t) are ‘‘inherited’’ by a
response systemy(t) through some communications channel
between them. The appearance of such drive-response sys-
tems is widespread in applications to communications.

Under general forms of coupling the drive to the response
system, one expects that the dynamical variables of the re-
sponsey(t), while functionally related to the drive, do not
‘‘track’’ the drive variablesx(t) in any fashion. Predicting
the response orbits from knowledge of the drive alone would
not be possible in general.

When the systems become synchronized in the gen-

eralized sense, however, the situation alters in an essential
fashion. The motion in the combined phase space of the
drive and the response collapses in a stable way onto a mani-

FIG. 4. Experimentally measured aspects of the synchronized
chaotic attractor in the setup shown in Fig. 2. The coupling resistor
was set atRc5604 V. ~a! is the projection of the attractor onto the
(y1 ,y3) plane, ~b! is the projection of the attractor onto the
(y3 ,z3) plane, and~c! is the projection of the attractor onto the
(y3 ,x3) plane. From~b! we conclude that the systems are synchro-
nized, while from~c! we can see that the oscillations in the drive
and response systems are not identical and thus these systems are
synchronized in the generalized sense.
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fold dictated by the synchronization relationship
y(t)5 f„x(t)…, and when orbits reach this synchronization
manifold they remain there. When one has a finite basin of
attraction within the joint phase space, orbits move on the
stable synchronization manifold independently of the initial

condition of the response system. Precisely how they
traverse the manifold depends, of course, on the initial con-
dition, but their presence there only requires the initial con-
dition to lie in the basin of attraction. This is not different
from familiar properties of orbits coming stably to some at-
tractor.

The motion in eitherX orY can be chaotic or regular. The
connection between themy(t)5 f„x(t)… is what remains
crucial and implies that one can predict from knowledge of
the drivex(t) alone the dynamics of the response. Unfortu-
nately, the relationship between thex(t) and they(t) is ge-
nerically complicated and unknown. This paper has noted
that if we drive two identical response systems, one the origi-
nal response system with variablesy(t) and the other our
auxiliary system with variablesz(t), with the same input
x(t) from the autonomous drive system, then we can identify
the presence of the synchronization functionf(•) by observ-
ing the stable regime of identical oscillations in auxiliary and
response systemsy(t)5z(t).

We demonstrated the usefulness of the auxiliary
system approach both in a simulation using a Lorenz sys-
tem driven by a Ro¨ssler system and more persuasively
in an experiment using coupled non-linear circuits. In each
case we were able to see synchronization of the generalized
sort, y(t)5f„x(t)…, without the elaborate computation re-
quired @7, 9# without the auxiliary system.

The auxiliary system need not be implemented in actual
circuitry, if circumstances do not allow. If measurements of
the drive signalx(t) are well sampled, then using an accurate
simulation of the response would allow one to compare the
simulation, driven byx(t), to the measurements of a~possi-
bly analog! response system. In this way, we anticipate that
the observations we have made may be useful in real time
recognition of synchronization between dynamical systems
and thus lead to further investigation and potential exploita-
tion of their synchrony.

As a final note we recall that if there are multiple
basins of attraction for the coupled drive-response
system, then the auxiliary system approach could fail. The
response and auxiliary systems satisfy precisely the same
differential equations and are driven by precisely the
same drive dynamicsx(t), so the only way their orbits could
not track the same attractor would be when their initial
conditionsy(0) and z(0) lie in different basins of attrac-
tion. Although we did not encounter this in our numerical
example or in our experiment, it is worth bearing in mind.
A check on the problem, since such an occurrence may be
difficult to distinguish from unsynchronized motion,
would be to return to some of the numerical tools explored in
@7, 9#.
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FIG. 5. Experimentally measured aspects of the unsynchronized
chaotic attractor in the setup shown in Fig. 2. The coupling resistor
was set atRc5731 V. ~a! is the projection of the attractor onto the
(y1 ,y3) plane, ~b! is the projection of the attractor onto the
(y3 ,z3) plane, and~c! is the projection of the attractor onto the
(y3 ,x3) plane. From~b! we conclude that the systems are not syn-
chronized.
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