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Synchronization of chaotic oscillators in a generalized sense leads to richer behavior than identical chaotic
oscillations in coupled systems. It may imply a more complicated connection between the synchronized
trajectories in the state spaces of coupled systems. We suggest a method here that can be used to detect and
study generalized synchronization in drive-response systems. This techtiiquauxiliary system methpd
utilizes a second, identical response system to monitor the synchronized motions. The method can be imple-
mented both numerically and experimentally and in some cases it leads to analytical results for generalized
synchronization[S1063-651X96)02505-6

PACS numbds): 05.45+b, 84.30.Ng

I. INTRODUCTION it can be implemented directly in an experiment without us-
ing any computational power. This is in contrast to the tools
Synchronization of chaos is a striking behavior of coupleddescribed ir{7, 9]. In addition, as we shall show below, the
nonlinear systems with chaotic uncoupled behavior. This beauxiliary systems method allows one to utilize analytical ap-
havior appears in many physical and biological processeBroaches for studying generalized synchronization.
and it may be responsible for the transition to low- In Sec. Il we give a general description of the auxiliary

dimensional behavior in systems with many degrees of freesystem method for detecting generalized synchronization of
dom[1, 2]. It would seem to play an important role in the chaos. In Sec. Il we demonstrate the implementation of this

@pproach in our theoretical analysis of synchronized chaos

using the example of synchronization of the chaos in a Lo-

fenz system with a chaotic drive signal taken from ‘a$ter

in which two coupled chaotic systems exhibit identical, butSYStem' In Se'c. I.V we presen't the rgsults of an exp('enm'ent
with synchronization of chaos in nonlinear electrical circuits

ft'" C?%O.t'c’ OSC'"atlonE{A:G]' Inththe case offs_)(;nc?rorluza-_lwith different parameters. The auxiliary system method is
lon of drive-response systems this regime ot [dentical 05Clly,sey for detection of chaotic synchronization between the
lations only occurs at a certain point in the parameter spac

Eircuits. We exhibit experimental results for both the syn-
of a response system and thus represents a rather degenei@igynized and unsynchronized motions of the circuits.
case. This fact may pose a problem for using the results of

theoretical analyses in practical applications of synchronized
chaos. It was shown ifb, 7—9 that when the parameters of
the coupled systems are detuned from the point where oscil-

lations are identical, the coupled systems can still remain \ye work with nonlinear systems composed ofaarnono-
synchronized in a generalized sense; namely, the projectiongoys drivesystem with the dynamical variablesn a phase
of synchronized trajectories onto partial state spaces of th§pacex coupled into aesponsesystem with dynamical vari-

coupled systems are connected by a continuous transformgmesy in the state spac&. The dynamics of the drive
tion. In our earlier pap€dr7] we introduced a class of chaotic x(t) and responsg(t) system are

synchronized motions in drive-response systems, which we

called “generalized synchronization of chaos.” Since the dx(t)

transformation between drive and response dynamical vari- TzF(x(t)), (1)
ables that embodies the generalized synchronization can be

very complicated, one needs special methods to detect the

ability of complex nonlinear oscillators, such as neurons, t
cooperatively act in the performance of various functi8is
Synchronization of chaos is often understood as a regim

II. THE AUXILIARY SYSTEM APPROACH
FOR GENERALIZED SYNCHRONIZATION

existence of the transformation and study this kind of syn- dy(t) _

chronous behavior. Some numerical tools for the detection of dt Gly(1),g.x(1). @
generalized synchronization in systems with unidirectional

coupling were developed and used[if 9. The coupling of the response system to the drive is char-

In this paper we present another method that in someacterized by the set of parametgrsWe assume that when
cases can be used for detection and characterization of forcgg=0, G(y,0,x) is independent of the drive variablgsand
generalized synchronization. This technique, which we calboth the drive and response systems evolve on separate cha-
the auxiliary system approagls particularly appealing since otic attractors. The chaotic dynamics of the drive system
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does not depend on the parameters of the response system gter some transients die out, we will certainly haye) and

the connection between the systems is unidirectional. y(t) moving around the same geometrical object in phase
In the spirit of our earlier papd7] we use the following  space.
definition of generalized synchronization for the systéf)s Under special circumstances, it could be taéf) and

and(2). Wheng#0, we say that the chaotic oscillations in y(t) will not only lie on the same attractor, but they could
the two systems are synchronized in a generalized Senset-ﬁemsewes be identical, nameiy(t) =z(t). In general, this
there is a transformatiosh: X—Y that takes the trajectories will not be the case, for two orbits on the same chaotic at-
of the attractor inX space into the trajectories of the attractor tractor move apart exponentially rapidly until they are of
in the'Y space, so that(t) = ¢(x(t)), and if this transforma-  order the size of the attractor apart and then they remain
tion does not depend upon the initial conditions of the re-uncorrelated as they continue to develop. However, if the
sponse systery(0) in the basin of attraction of the synchro- systems are each synchronized to the drive variables
nized attractor. We emphasize that in this definition Ofx(t) through the generalized synchronization relation
generalized synchronizatighe existence of transformation y(t)= ¢(x(t)) andz(t) = ¢(x(t)), then it is clear that a so-

¢ is required only for the trajectories on the attractdfhe  |ution exists in the forny(t)=z(t). The stability of the syn-
transformation is not required to exist for the transient trachronization manifold wherg(t)=¢(x(t)) ensures us that
jectories. z(t) is able to tracky(t) asz(t) =y(t) in a stable manner too.

In this paper we consider a class of generalized synchro- |n general, then, the auxiliary system is just another re-
nized motions for which the transformatiogp(-) has the sponse system and in the absence of generalized synchro-
following properties. nized motion of the response to the drive, the orbits of the
response system and the auxiliary system will share the same
) ) complicated attractor but will be otherwise unrelated. In the

Property 2.0n th? sync_:hronlzed attractor it traqsforms case of generalized synchronization, there is a stable regime
points in theX space intgoints(not continuous domainsn ¢ ycillations where the orbits of the response system and
the Y space. The transformation is not required to preserve,q orhits of the auxiliary system become identical after tran-
the number of points operated upon. Thus the transformatioBients die out and we observe the simple identity relationship
is allowed tc_>_has finite number of branches with a defmeq/(t)zz(t)_ The stable regime of these identical oscillations
rule of transition from one branch to anotti@0]. guarantees the possibility of prediction of the current state of

P_roperty 3.0n each branch the transformation is locally (o response system, given the history of evolution of the
continuous11]. drive system, and therefore indicates the presence of the gen-
eralized synchronization. The identiyt) =2z(t) is a much
simpler relationship to test for than the unknown, generically
complicated generalized synchronization relationship

Property 1.¢(-) has no explicit time dependence.

The transformation associated wakinchronizednotions
on the overall chaotic attractor in the todp Y phase space
is y(t)= &(x(t)). The existence of a transformatiof(-)
guarantees the ability to predict the state of the respons\é(t):.d’(x(t))' . . .
system from measurementsxdt) alone,once transients die Itis casy to s_how that the I_mear stab_|I.|ty of the mamfold
out Again we emphasize that this relation between the drivez(t) =Y(1) |s_equwale_nt to Fhe linear S’.tab'.“ty of the 'mamfold
and response dynamical variables need not hold everywhe synchror!lzed _mot|ons '%@Y' which is determlned.by
in the system phase space, but need hold only on the attra )(-). The I!qear|zed equations that govern the evolution of
tor. The predictability of the chaotic behavior of the responsdl€ _guantities £,(t)=y(t)— ¢(x(t)) and  &(t)=2(t)
system from time series generated by the drive system was $(x(1)) are
used in[7] for detecting of the presence of generalized syn-
chronization of chaos. In this paper we propose an alternative d&,(t)
method to test the predictability of the response system from T DG((x(1)),9,X(1)) - (1), (4)
knowledge ofx(t) and, in so doing, to detect the synchro-
nous chaotic behavior in nontrivial cases.

. o di(t
We consider thawuxiliary system gdi ) — DG(HX().gXD)- D), -
dz(t)
at G(z(1),0,x(1)), (3)  where

which isidenticalto the response system. Clearly, when the
responsé2) and auxiliary(3) systems are driven by the same
signalx(t), then the vector fields in the phase spaces of the
response and auxiliary systems are identical and the systems Since the linearized equations faf(t) and &,(t) are
can evolve on identical attractors. Indeed, one may ask hovdentical, the linearized equations fog,(t)— & (t)=z(t)

the orbitsy(t) andz(t) could fail to be on identical attrac- —y(t) have the same Jacobian matri®G(-,g,x(t)) as in
tors. The answer lies in the possibility that there are severdhe previous equation. Therefore, if the manifold of synchro-
basins of attraction for the driven system with vector fieldnized motions inX@Y@®Z is linearly stable forz(t) —y(t),
G(-,9,x(t)), for if y(0) andz(0) lie in different basins of then it is linearly stable fog (t)=y(t) — @(x(t)) and vice
attraction, one will see quite different orbits. However, if versa. Note that the linearized equation fft) —y(t) is
these initial conditions lie in the same basin of attraction,identical to the equation that defines the conditional

dG(w,g,x(t))
ow )

DG(w,g.x(t))= (6)



4530 ABARBANEL, RULKOV, AND SUSHCHIK 53

Lyapunov exponentg6] for the response system. Thus, 1. AN EXAMPLE OF GENERALIZED
when the manifoldz=y is linearly stable, the conditional SYNCHRONIZATION

Lyapunov exponents for the response system, conditioned on Let us now come down from the general discussion of

the value of the drive(t), are all negative. . detecting synchronization by means of an auxiliary system to
We have thus demonstrated that to study the transition tg gpecific example. We consider the generalized synchroni-

generalized synchronized chaos, the analysis of stability of5tion of chaotic oscillations in a three-dimensional Lorenz
the synchronization manifold in the spaXepY, which in  system when it is driven by a chaotic signal from asBler
general may have a very complicated shgfg = ¢(x(t)),  system. In this case the drive and the response systems are
can be replaced by the analysis of the stability of the quitgjiven by the following equations. For the drive system
simple manifoldz(t) =y(t) in Z&Y space. (Rossle)

The observation of a locally stable regime of identical
oscillations in the response and auxiliary systems guarantees %1() = —[%a(t) +x5(D)],
the existence of the transformatioe(-) satisfying proper-
ties (1)—(3) noted above. Indeed, suppose the transformation

&(-) were time dependent. Since the behavior of the auxil- Xo(t)=Xq (1) +0.2¢(1), (7)
iary system does not depend upon the state of the response
system(and vice verspthe effects of time dependence of X3(t) = 0.24 X3(1)[ X1 (1) — ]

¢(-) would generally be uncorrelated, if the driving corre-

sponds to an attractor of the autonomous system. Thereforand for the response systeiimoren2

the stable regime of identical oscillations in the response and

auxiliary systems would not be observable. At the same time V(1) = ol Vo (1) — va(t)]— ) — x4 (t

if ¢(-) did not satisfy property2), it would be mapping YaO)=al¥a(t) =¥a(D]1=glya(h =xa(0)]
points in the driving phase space onto continuous domains in

the state spaces of the response and auxiliary systems. Once Ya(t)=—ya(1)ys() +ry1 () —ya(1), 8
again, since the response and auxiliary systems are not
coupled, the mappings inside the domains in these spaces Va(t) =y (D)y,(t) —bys(t).

would not generally be correlated and therefore the observa-

tion of the identical oscillations would not be possible. Forin the Rasler system we havge=5.7 and in the Lorenz

the same reason the identity would be disrupted if there wereystem we have chosem=16, b=4, andr=45.92. The

no deterministic law for branch switching. Finally, if the response system is coupled to the drive system only through

transformation were not continuogsroperty(3)), then any  the scalar forcing term, (t). g characterizes the strength of

small uncorrelated perturbations in the response and auxithe unidirectional coupling.

iary systems would generally result in occasional finite scale Obviously, in these coupled systex(g) =y(t) is just not

deviations from the identity. In other words, the regime ofpossible. However, these systems can be synchronized in the

identical oscillations would not be robust. generalized sense. To demonstrate this we introduce the aux-
To summarize, the auxiliary system approach inclu@es iliary system(Loren2

construction of the auxiliary system, which is an exact rep-

Ilca .of the response system and is driven by a signal from the. 2, (1) = 0] zo(t) — 25 (1)]— gl 24(1) — X4 (D) ],

driving system in the same fashion as the response system;

(i) demonstration of the local stability of the manifold of )

identical oscillations in the combined phase space of the re- Zy(t) = —2z1(t)z3(t) +rzy (1) — 25(1),

sponse and auxiliary systems; afiidl) demonstration of ro-

bustness of the identity relationship with respect to small . _

uncorrelated perturbations in response and auxiliary systems. 23(0)=2,(1) (1) ~b2z5(1),

When one can prove the local stability of this manifold andyyhich is a replica of the response systé8 and show that

the robustness of the identical oscillations, the conclusioRne |imit set of synchronized trajectories in the manifold

that follows is that in the combined phase space of the drivs (t)=2(t) can be stable to perturbations transverse to this

ing and response systems there exists an attractor that is thesnifold when the coupling is sufficiently strong.

image of generalized synchronized chaotic oscillations. We consider the linearized equations for perturbations
In our laboratory experiments the local stability of the {ansverse to the manifolg(t) = z(t)

manifold of identical oscillations can be verified by means of

observation of the regime of stable identical oscillations of .

the response and auxiliary systems. The presence of natural &1(1)= o &x(1) —&1(H) ] —géa(t),

noise in any physical experiment ensures that the system

does not stay in an unstable regime. Therefore, if one ob-

serves for long times the identical oscillations of the re-

sponse and auxiliary systems, this indicates the stability of

the synchronization manifold and the continuity of the trans- E5(1) = Zp(1) £4(1) + 2, (1) E£x(1) — DES(1),

formation ¢(-), which follows from the robustness of this

regime. where &, (t) =z4(t) —ya(t), a=1,2,3. The function

Ex(1)=—Zg(D) E1(1) — 23 (V) E5() + T &3 (1) — Ex(),
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s . -8.0 . .
450 | b
8.0 1 FIG. 1. Projections of synchronized attractors
445 | I in the coupled Rssler and Lorenz systems. The
I =100 - 7 coupling parameter ig= 10 and the systems are
= 44.0 - 1.0 _ | coupled as indicated in the text. The $3ter sys-
: tem acts as the drive and the Lorenz system is the
‘435 L 120 L 1 response. The projection of the response system
| ’ onto the §/,,y3) plane is shown in(a). At this
43.0 ‘ , , -13.0 , . \ value ofg the systems are synchronized. We can
-13.0 -11.0 -9.0 -13.0 -11.0 -9.0 see this in the projection of the same attractor
Y, Y, onto the {/,,z;) plane in(b).

1 Lyapunov function(9) one can prove the robustness of the
V= §[4§i(t)+ £+ (D] (9 regime of identical oscillations in the response and auxiliary

systems with respect to small uncorrelated perturbations

can be used as a Lyapunov function for the system if theadded to the driving signals in each of these two systems.

value of the coupling parametgrsatisfies Thus, in the limit of strong coupling the coupled $&ter and
Lorenz systems are synchronized in the generalized sense.
1 2 zg(t) The generalized synchronization of chaos in these

g> Za+r—z3(t) + b7 (10 coupled systems also occurs at finite valuegyoffo dem-

onstrate this we have two approaches. The first requires the

Since the values af,(t) are bounded, this condition is sat- cOmputation of conditional Lyapunov exponef. How-
isfied wheng is large enough. The boundedness of the at€Vver. the negativity of the conditional Lyapunov exponents
tractors in the response and auxiliary systems under th@0€s not always guarantee the stability of synchronized mo-
bounded chaotic drivex;(t) can be easily shown for tions in practical settinggl2—15. Inste_a_ld we use an alter-
g—o. In this case all trajectories of the auxiliary system arenative approach that employs an auxiliary system.

quickly attracted by the manifold of “slow” motions We integrate all three systenidrive, response, and aux-

z,(t)=x,(t) on which their further evolution is governed by iliary), occasionally introducing small random fluctuations
the equations into the values of dynamical variables. The introduction of

small perturbations into the system in numerical simulations
Z,(t) = — X4 (1) Z5(t) + rx () — z,(1), conditions is required to ensure the stability of the synchro-
(11)  hization manifold. The effects of such perturbations on the
Z5(t) =x,(t)Z5(t) — bzs(t). synchronized chaos and robustness issues are discussed in
[16]. The results of the computer simulationsgat 10 are
Now consider the positive function presented in Fig. 1. Figs(d and Xb) show the projections
of the attractor from the nine-dimensional phase space onto
the planes ¥;,y3) and (y1,z;), respectively. One can see
from the plot shown in Fig. (b) that the manifoldy=z is
stable, and therefore the manifold of synchronized motions
The time derivative of this is specified byy= ¢(x) is stable as well, and the chaotic oscil-
lations in the drive and response systems are synchronized.
__ _ _ 2 2 We also studied theyt,z,) and (y3,z3) projections of the
= ~bZ(0) ~[2() ~rxa(D/2)°+ [rxy(D/2)°. attractor. The plots for these projections look identical to the
(13)  one in Fig. 1b).
) ] ) ) Although the numerical implementation of the auxiliary
Itis easy to see from this that in regions of tig ;) plane  gysiem test for systems described by ordinary differential
far from the origin,V(t) is negative. Therefore, far from the equationfODE9 may not seem to be more informative than
origin the distance to ity/z3(t) + Z3(t), decreases in time. computing the conditional Lyapunov exponents for the re-
This means that all trajectories in the,(z3) plane that be- sponse system, there are two categories of problems where
gin far from the origin end up in a bounded domain centeredhis method may be practically the only tool for detection of
at the origin. Therefore, oscillations of the response and auxgeneralized synchronization. One category is the synchroni-
iliary systems after transients die away are bounded and theation of chaos in time delay systems such as the Mackey-
condition given on the coupling can be satisfied. Glass systeml7]. The other category includes synchroniza-
This shows that in the limit of strong coupling the attrac-tion of spatiotemporal chaos in spatially extended systems
tor in the manifoldy(t) = z(t) is linearly stable to transverse [1,2]. In each of these cases the concept of conditional
perturbations and therefore the manifold of synchronized.yapunov exponents is not only not well developed, but also
motions in the total phase space of the coupled Lorenz anthe computation of these exponents is a very cumbersome
Rossler systems is stable as well. Moreover, using therocess. The auxiliary system method may be a big help in

1 2 2
Vp(h)=5[2(0)+ ()], 12

dV,(t)
dt
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 x,(8) i Response Circuit

X — 0yl :
T K0T

X3 (V)

Driving Circuit

..........................

FIG. 2. Circuit diagram of the experiment with driving, re-
sponse, and auxiliary nonlinear electrical circuits. The parameters
values of the drive circuit are set to I =230 nF,C,;~337 nF,
L,~140 mH, r;~334(), andR;~4.21 K). The parameters val-
ues of the response and auxiliary circuits a@~225 nF,
C,~342 nF,L,~145 mH,r,~348(Q, andR,~4.97 K).

Y3 (V)

general when one works with a system having a very large

number of degrees of freedom since the estimation of

Lyapunov exponents in such cases requires substantial com-

putational power and the methods based on time series

analysis[7, 9] may become unreliable. 30 ) ,
However, even for the analysis of generalized synchroni- 2.0 -1.0 0.0 1.0 2.0

zation in low-dimensional ODE systems this method has a yi (V)

certain appeal. Employing it is less complicated than com-

puting conditional Lyapunov exponents and it allows one FIG. 3. Experimentally measured chaotic attractors of (e

to detectgeneralizedsynchronization in a fashion reminis- uncoupled drive andb) response circuits. The parameter in the

cent of the straightforward methods used for detection ofionlinear converterl in the drive isa~22.85 and in the response

identical synchronized chaotic oscillations. Also, as we aldit is @~24.62.(a) is the projection of the drive attractor onto the

ready mentioned, in practice, the synchronization of chao$x:.xs) plane.(b) is the projection of the response attractor onto the

may break down even when all global conditional Lyapunow(Y1.Y3) plane. The attractors in the two systems are not the same,

exponents are negatifé2—15. In this sense the auxiliary s one might expect as the systems are different.

system test for the stability of synchronization manifold is

more reliable.

The attractor is shown in Fig.(8 in a projection onto the
(X1,X3) plane. The parameters of the response and the aux-
iliary circuits were tuned to values that, without coupling,
namely,R.— o, lead these circuits to generate chaotic oscil-
lations corresponding to the attractor shown in Fig)3In

To study the generalized synchronization of chaos in arhe figures the horizontal and vertical axes correspond to the
experiment with electronic circuits we built two almost iden- voltages measured across the capaci@rsndCy, respec-
tical electronic circuits that were driven by a chaotic signaltively. (k = 1 and 2 for the drive and response, respectiyely.
from a third circuit. The circuit diagram of the experimentis ~ Synchronization of the chaotic oscillations was observed
shown in Fig. 2. More details on the design of these chaotifor values of the coupling witlR.<<630 (). It was easily
circuits can be found elsewherg6, 18. We consider one of detected with the analysis of the projections of the synchro-
the driven circuits as the response circuit and the other as th@zation manifold onto the planey{,z;) and (y3,z3). For
auxiliary circuit. The chaotic signal generated by the drivethe synchronized oscillations the manifold is projected onto
circuit was applied to both the response and the auxiliarghe diagonaly,=z; andy;=2z; on these planes. These iden-
circuits through the resistolR.. The strength of the cou- tities guarantee the identity of the currenig(t)=J,(t),
pling was controlled by the values Bf, in each circuit. This which one can see in Fig. 2. Therefore the chaotic behaviors
was adjusted to have the same value for both circuits. of the response and auxiliary circuits are identical. Since this

In the experiment we tuned the parameters of the driveéegime of identical oscillations is observed in the presence of
circuit to correspond to the regime of chaotic oscillations.natural noise, this observation guarantees the stability of the

IV. THE AUXILIARY SYSTEM APPROACH
IN AN EXPERIMENT WITH ELECTRONIC CIRCUITS
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synchronization manifold in the phase space of drive and 3.0 : T . .
response systems. (@)

Synchronized behavior, observed wi.=604 Q, is
shown in Fig. 4. The synchronized chaotic attractor
measured in the response circuit is presented in Fig. 4
The fact of the synchronization is confirmed by the sta-
bility of the “diagonal manifold” in the state space of the
response-auxiliarysystem[see Fig. 4b)], from which the
stability of the manifold of synchronized motions in
the phase space of thiFive-responsesystem follows. Thus
the chaotic oscillations in drive and response circuits are syn-
chronized. Looking at the projections of the synchronized
chaotic attractors onto the plane of the variabbesy;) and
(x3,Y3), it becomes clear that oscillations in the driving and
response circuits are not identical; see Fig) 4Therefore,
these circuits are synchronized only in the generalized sense.

Unsynchronized chaotic oscillations, measured with
R.=731 Q, are shown in Fig. 5. Although the projections
of the measured attractors onto the variables of the drive and
response circuits do not look much different from the previ-
ous case of synchronized behavifcompare Figs. @)
and 4c) with Figs. 5a) and Hc)], the projection of these
chaotic oscillations onto the plang4,z3) clearly indicate
that these oscillations are not synchronized. Comparing dif-
ferent projections of the chaotic attractors in the drive-
response and drive-auxiliary systems, we concluded that two
pairs of systems evolve on the identical attractors. Therefore
Fig. 5(b) can only indicate the loss of the synchronization.

ys (V)

Z3 (V)

V. CONCLUSION

Synchronization of nonlinear oscillators, whether they are
evolving in a chaotic or regular fashion, can take many in-
teresting forms. When the coupled systems are identical, the
dynamical variables of the oscillators may tend toward iden-
tical motion and they may, under other circumstances, tend
toward out of phase, but clearly synchronized, motif8is
Synchronization may well occur when the oscillators are not
identical, and several examples have been given here and in
[7, 9]. In some sense the synchronization of nonlinear sys-
tems that are not identical is critical for the appearance of
synchronized motions in real systems where precise identity
of the systems is unlikely. The form that synchronization
takes in realistic systems is likely to be richer than a precise

X3 (V)

identity between dynamical variables and we have addressed 20 : . . L
here and in earlier work7] a class of generalized synchro- 20 -10 00 1.0 20 3.0
nized motions that enlarges one’s view of this phenomenon. Y3 (V)

In this paper we have worked with coupled systems that FIG. 4. Experimentally measured aspects of the synchronized
do not have mutual feedback but are organized as a drivehaotic attractor in the setup shown in Fig. 2. The coupling resistor
System whose dynam|ca| Va”ablds) are “inherited” by a was set aRC:604 Q (a) is the.pl’o.jection of the attractor onto the
response systep(t) through some communications channel (¥1:Ys) plane, (b) is the projection of the attractor onto the
between them. The appearance of such drive-response sy¥3+2s) Plane, and(c) is the projection of the attractor onto the
tems is widespread in applications to communications. (Y3:X3) plane. Fromb) we conclude that the systems are synchro-

Under general forms of coupling the drive to the responséﬂzed, while from(c) we can see that the oscillations in the drive

system, one expects that the dynamical variables of the rea_nd resp(_)nse_systems are _not identical and thus these systems are
) - . Synchronized in the generalized sense.

sponsey(t), while functionally related to the drive, do not

“track” the drive variablesx(t) in any fashion. Predicting

the response orbits from knowledge of the drive alone woulcralized sense, however, the situation alters in an essential

not be possible in general. fashion. The motion in the combined phase space of the

When the systems become synchronized in the gerdrive and the response collapses in a stable way onto a mani-
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condition of the response system. Precisely how they
traverse the manifold depends, of course, on the initial con-
dition, but their presence there only requires the initial con-
dition to lie in the basin of attraction. This is not different
from familiar properties of orbits coming stably to some at-
tractor.

The motion in eitheX or Y can be chaotic or regular. The
connection between them(t)= ¢(x(t)) is what remains
crucial and implies that one can predict from knowledge of
the drivex(t) alone the dynamics of the response. Unfortu-
nately, the relationship between tké) and they(t) is ge-
nerically complicated and unknown. This paper has noted
that if we drive two identical response systems, one the origi-
nal response system with variablg&) and the other our
auxiliary system with variableg(t), with the same input
x(t) from the autonomous drive system, then we can identify
the presence of the synchronization functif ) by observ-
ing the stable regime of identical oscillations in auxiliary and
response systemgt) =z(t).

We demonstrated the usefulness of the auxiliary
system approach both in a simulation using a Lorenz sys-
tem driven by a Rssler system and more persuasively
in an experiment using coupled non-linear circuits. In each
case we were able to see synchronization of the generalized
sort, y(t) = ¢(x(t)), without the elaborate computation re-
quired[7, 9] without the auxiliary system.

The auxiliary system need not be implemented in actual
circuitry, if circumstances do not allow. If measurements of
the drive signak(t) are well sampled, then using an accurate
simulation of the response would allow one to compare the
simulation, driven by(t), to the measurements of(possi-
bly analog response system. In this way, we anticipate that
the observations we have made may be useful in real time
recognition of synchronization between dynamical systems
and thus lead to further investigation and potential exploita-
tion of their synchrony.

As a final note we recall that if there are multiple
basins of attraction for the coupled drive-response
system, then the auxiliary system approach could fail. The
response and auxiliary systems satisfy precisely the same
differential equations and are driven by precisely the
same drive dynamics(t), so the only way their orbits could
not track the same attractor would be when their initial
conditionsy(0) andz(0) lie in different basins of attrac-
tion. Although we did not encounter this in our numerical
example or in our experiment, it is worth bearing in mind.
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Z3 (V)

X3 (V)

20,530 oo 10 20 30 A check on the problem, since such an occurrence may be
' ' 'y3 (V)' ' ' difficult to distinguish from unsynchronized ~motion,
FIG. 5. Experimentally measured aspects of the unsynchronize ould be to return to some of the numerical tools explored in
chaotic attractor in the setup shown in Fig. 2. The coupling resistok "’ 9.
was set aR.=731 (). () is the projection of the attractor onto the
(y1,y3) plane, (b) is the projection of the attractor onto the
(y3,z3) plane, and(c) is the projection of the attractor onto the ACKNOWLEDGMENTS
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