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For distinguishable particles it is well known that Brownian motion and a Feynman-Kac functional can be
used to calculate the path integral~for imaginary times! for a general class of scalar potentials. In order to treat
identical particles, we exploit the fact that this method separates the problem of the potential, dealt with by the
Feynman-Kac functional, from the process which gives sample paths of a noninteracting system. For motion in
one dimension, we emphasize that the permutation symmetry of the identical particles completely determines
the domain of Brownian motion and the appropriate boundary conditions: absorption for fermions, reflection
for bosons. Further analysis of the sample paths for motion in three dimensions allows us to decompose these
paths into a superposition of one-dimensional sample paths. This reduction expresses the propagator~and
consequently the energy and other thermodynamical quantities! in terms of well-behaved one-dimensional
fermion and boson diffusion processes and the Feynman-Kac functional.

PACS number~s!: 05.30.Fk, 03.65.Ca, 02.50.Ga, 02.70.Lq

I. INTRODUCTION

In the present paper we introduce a process that combines
multidimensional Brownian motion on domains with appro-
priate boundary conditions to solve the many-body problem
of fermions or bosons interacting through a general class of
scalar potentials. This process is a superposition of orthogo-
nal and independent fermion and boson diffusion processes
combined in a precise and prescribed way. In combination
with the Feynman-Kac functional this approach allows us to
write the propagator of the many-body Schro¨dinger equation
as an expectation over the functional along the sample paths
generated by this process. Our method extends the well
known techniques for quantum models with distinguishable
particles@1–6# to quantum models with identical particles, in
such a way that the so-called ‘‘sign problem’’@7–10# for
fermions is solved, and that for bosons and fermions sample
paths over configurations@11–15,8# generated by the permu-
tation symmetry are avoided. This opens the perspective that
with the proper algorithms this process would improve the
standard approach@16–22# used in path integral Monte
Carlo for fermions as well as for bosons.

Fermion diffusion and boson diffusion are~multidimen-
sional! Brownian motions on ann-dimensional domain
Dn . If x1 ,x2 , . . . ,xn denote the possible components of the
positions of the particles on a line, the domainDn is defined
by the conditionx1>x2>•••>xn @23#. Brownian motion
with reflection at the boundary ofDn has been studied in the
context of traffic flow models@24,25# and will be identified
below with the boson diffusion process, because it leads in-
deed to the propagator ofn noninteracting bosons on a line.
Brownian motion with absorption at the boundary ofDn has
been identified by the present authors@26,27# as the process

which leads to the propagator ofn noninteracting fermions
on a line. We have argued that a three-dimensional~3D!
extension of this process consisting of fermion diffusion in
one direction and standard Brownian motion in the two other
directions is sufficient to obtain the ground state energy of an
interacting 3D fermion system. The present analysis strongly
supports our previous arguments. It should be mentioned that
our investigation was originated by Korzeniowskiet al. @28#
and the subsequent discussions on this work@29–31#.

Because of the fact that for 1D problems the stochastic
approach to the many-body problem for identical particles
could be formulated in terms of a fermion or a boson diffu-
sion process, we concentrated our attention on the reduction
of the sample paths of a 3D process to three one-dimensional
processes. For the multidimensional Brownian motion of dis-
tinguishable particles this reduction is trivial. Indeed, on the
level of the process each 3D sample path is made up by 1D
Brownian motions of the components of the process vector.
For identical particles, such a reduction is not obvious. But
by realizing that the knowledge of the propagator of a non-
interacting many-body system of identical particles suffices
to study how this reduction to independent 1D processes can
be performed, the character of the many-body diffusion
could be revealed. The analysis of this reduction is post-
poned until Sec. IV and constitutes the main result of the
present paper. Before studying this reduction, we first sum-
marize in Sec. II the basic underlying concepts, borrowed
from the stochastic approach to the quantum theory of dis-
tinguishable particles. In Sec. III the fermion and boson dif-
fusion processes are derived and discussed in some detail.

II. THE FEYNMAN-KAC FUNCTIONAL FOR
DISTINGUISHABLE PARTICLES

In this section we briefly describe how the Feynman-Kac
functional and multidimensional Brownian motion can be
used to solve the Schro¨dinger equation or to obtain the par-
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tition function of a many-body problem with distinguishable
particles. The basic equations and the mathematical notations
are presented.

A. The 3D configuration space

For a free particle moving in a 3D space it is well known
that the Schro¨dinger equation becomes a diffusion equation
if the real time variable is transformed into an imaginary
time variable. This means that the motion of the particle can
be represented@4# by a process$XW (t);t>0% which can take
the realizationxW (t). The probability density relating the po-
sition xW (t) to a previous positionxW8(t0) is Gaussian and
given by

r~xW ,t;xW8,t0!5S m

2p\~ t2t0!
D 3/2expS 2

m~xW2xW8!2

2\~ t2t0!
D .

~2.1!

The process$XW (t);t>0% is related to standard Brownian mo-
tion $BW (t);t>0% in 3D with infinitesimal variance
s25\/m,

dXW ~ t !5A\

m
dBW ~ t !. ~2.2!

If the particle moves in a potentialV(xW ), the solution of
the Schro¨dinger equation can be obtained as an average over
a Feynman-Kac functional. This average is the expectation
over the process~2.2!. For an arbitrary functionf @XW (t)# of
the process, the expectation is defined as@32#

ExW$ f @XW ~s!#%5E dxW8r~xW ,t1s;xW8,t ! f ~xW8!. ~2.3!

Thus the expectation is the average off @XW # over all paths
that end in the positionxW at timet1s, starting at all possible
positionsxW8 at time t. If the function to be averaged is de-
fined by an integral over time, the process is constructed in
such a way that

ExWH E
0

t

g@XW ~s!#dsJ 5E
0

t

ExW$g@XW ~s!#%ds. ~2.4!

From the properties of the expectation and the process it is
easy to show that for a large class of potentialsV(xW ) the
solution of the ‘‘Schro¨dinger equation’’~in imaginary time!

\
]

]t
C~xW ,t !5

\2

2m
¹2C~xW ,t !2V~xW !C~xW ,t ! ~2.5!

is given by

C~xW ,t !5ExWH f @XW ~ t !#expF2
1

\E0
t

V„XW ~s!…dsG J , ~2.6!

wheref @XW (t)# ensures the initial condition onC(xW ,t). If one
wants to calculate the propagator of~2.5!, this initial condi-
tion is

lim
t↓0

C~xW ,t !5d~xW2xW8!, ~2.7!

and hence replacingf @XW (t)# by a d function ~2.7!, one ob-
tains the propagator

K~xW ,tuxW8!5ExWH f @XW ~ t !#expF2
1

\E0
t

V„XW ~s!…dsG J ,
~2.8!

which solves the Schro¨dinger equation~2.5! and satisfies the
initial condition ~2.7!.

The Brownian motion~2.2! has independent increments in
thex, y, andz direction. This means that at the level of this
process there is no difference between the sample paths of
one particle moving in three dimensions, and three particles
moving each in one dimension. At the level of the potential
the difference between three 1D potentials and one 3D po-
tential is obvious. The 3D character of the potential and
hence of the problem can~at least partly! be transferred to
the process by introducing a local drift vectormW @XW (t)# in the
process

dXW ~ t !5mW @XW ~ t !#dt1A\

m
dBW ~ t ! ~2.9!

and the corresponding modification in the Feynman-Kac
functional @33,34#. But it is clear that changing the process
according to~ 2.9! only relabels the state space.

B. The 3n-dimensional configuration space

The generalization of the preceding stochastic description
of the evolution in the imaginary time domain of a quantum
system with three degrees of freedom to a system with 3n
degrees of freedom is straightforward. A point of the con-
figuration space given by a 3n-dimensional vectorx̄ repre-
sents now a state of the process. For convenience in the
treatment below, we use the following labeling~for brevity
writing down the row vectorx̄T):

x T̄5~x1 ,y1 ,z1 ,x2 ,y2 ,z2 , . . . ,xn ,yn ,zn!. ~2.10!

The process$X̄(t);t>0% with realizationx̄(t) at time t is a
configuration obtained according to a straightforward exten-
sion of ~2.2!:

dX̄~ t !5A\

m
dB̄~ t !, ~2.11!

where$B̄(t);t>0% is the 3n-dimensional Brownian motion.
The transition probability density for an increment (x̄2 x̄8)
in a time lapses for this process is given by

r~ x̄,t1s; x̄8,t !5S m

2p\sD
3n/2

expS 2
m@ x̄2 x̄8#T@ x̄2 x̄8#

2\s D .
~2.12!

The matrix product in~2.12! can equally well be written
as a dot product:
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@ x̄2 x̄8#T@ x̄2 x̄8#5~ x̄2 x̄8!•~ x̄2 x̄8!5~ x̄2 x̄8!2,
~2.13!

but the matrix notation will be more advantageous for our
purposes.

For the multidimensional process$X̄(t);t>0% the propa-
gator solution of

\
]

]t
C~ x̄,t !5S \2

2m (
i51

3n
]2

]xi
2 2V~ x̄!DC~ x̄,t ! ~2.14!

can again be written as a Feynman-Kac functional:

K~ x̄,tux̄8!5Ex̄ H f @X̄~ t !#expF2
1

\E0
t

V„X̄~s!…dsG J
~2.15!

if for f @X̄(t)# a dfunction is taken to impose the initial con-
dition limt↓0K( x̄,tux̄8)5d( x̄2 x̄8).

It is clear that a straightforward extension of~2.9! with a
drift vector m̄„X̄(t)… can facilitate the actual calculations, but
the formulation of the problem with or without drift is
equivalent. Therefore also in the case of 3n degrees of free-
dom, the process~2.11! that realizes the sample paths for the
Feynman-Kac functional does not distinguish betweenn par-
ticles moving in 3D or 3n particles moving in 1D. This
situation will be different in the case of identical particles
which will be considered below.

III. PERMUTATIONS AND PROCESSES

A striking example of how permutation symmetry can be
used to simplify joint probability distributions can be found
in order statistics@35#. The basic idea is that for most
samples the order in which the values are measured is irrel-
evant, which means that any permutation of the observed
values should have the same probability. This constraint
makes the joint probability distribution symmetrically depen-
dent. The dependence can be lifted by reducing the sample
space to ordered sample points: thus for an observation
x1 ,x2 , . . . ,xn the sample pointx(1) ,x(2) , . . . ,x(n) is consid-
ered where the observed values are ordered in such a way
that x(1)>x(2)>•••>x(n) .

The idea of lifting the dependence implied by the permu-
tation symmetry through a reduction of the domain has been
put forward before. The basic ingredient of the Bethe ansatz
@37# is precisely the restriction of the positions on a line in
such a way that the positions remain ordered. This observa-
tion has also been used to solve the nodal plane problem for
fermions in one dimension@9#. In particle physics the
spatial-temporal distribution of bosons and fermions in
beams has been obtained using this reduction scheme applied
on point processes@38–41#. For a diffusion process we ap-
plied an analogous construction to obtain the propagator of
interacting fermions@26#. The process used to realize the
sample paths was called the ‘‘fermion diffusion process’’ by
the present authors. It is ann-dimensional diffusion with the
appropriate~absorption! boundary conditions.

We first illustrate the technique for two particles, and
summarize the properties of the fermion diffusion process.
Subsequently it will be shown how this reduction scheme

can also be used to construct then-dimensional boson diffu-
sion process.

A. Two particles on a line

Let x1 andx2 be the coordinates of the first and the sec-
ond particle, respectively. The configuration space is two
dimensional: (x1 ,x2)PR2. If the particles are identical the
configuration (x1 ,x2) and the configuration (x2 ,x1) should
indicate the same state. For fermions with parallel spin, the
antisymmetry under the interchange of the two particles is
taken into account by the propagator

^x1 ,x2ue2tH/\ux18 ,x28&5r~x1 ,t;x18,0!r~x2 ,t;x28,0!

2r~x1 ,t;x28,0!r~x1 ,t;x28,0!.

~3.1!

We consider this formula forx1>x2 andx18>x28 , thus for the
position elements of the state space being (x1 ,x2)PD2 and
(x18 ,x28)PD2 . The boundary ofD2 is defined byx15x2 and
denoted by]D2 .

It should be noted that the usual factor 1/2! in front of the
propagator defined over the configuration space does not oc-
cur if the motion is restricted to the domainD2 . Moreover,
the propagator onD2 has all the properties of a transition
probability density of a diffusion process with absorbing
boundary conditions:~i! it is positive onD2 , ~ii ! it conserves
the probability flux if the boundary state is explicitly intro-
duced@42–44#, and~iii ! it has the semigroup property. These
requirements can be checked by direct calculation. The posi-
tivity of the propagator can also be understood on the basis
of a simple geometrical argument: the distance between
(x1 ,x2) and (x18 ,x28) both inD2 is always smaller than the
distance between (x1 ,x2) and (x28 ,x18) except at the bound-
ary ]D2 where both distances are equal. For a Brownian
motion this relation between the distances implies that the
probability density to go from a point (x1 ,x2) in D2 to an-
other point (x18 ,x28) in D2 in a fixed time lapset is always
larger than the probability density to go from the same point
(x1 ,x2) to the reflected point (x28 ,x18) outsideD2 in the same
time lapse.

Having found the diffusion process for two fermions as a
two-dimensional diffusion process onD2 with absorption on
the boundary—the so-called fermion diffusion process—it is
easy to show that similar considerations hold for two bosons,
starting from the propagator

^x1 ,x2ue2tH/\ux18 ,x28&5r~x1 ,t;x18,0!r~x2 ,t;x28,0!

1r~x1 ,t;x28,0!r~x1 ,t;x28,0!.

~3.2!

Again the propagator~3.2! is a transition probability density
of a two-dimensional diffusion process onD2 , but now with
reflecting boundary conditions on]D2 . Similarly as for fer-
mions, the required conditions for such a transition probabil-
ity density are easily verified. A nice consequence of the
restriction of the state space to the domainD2 is that ~for
both fermions and bosons! the propagator inD2 satisfies the
initial condition
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lim
t↓0

^x1 ,x2ue2tH/\ux18 ,x28&5d~x12x18!d~x22x28!

if H ~x1 ,x2!PD2

~x18 ,x28!PD2 .
~3.3!

It is clear that~3.1! and~3.2! can be written, respectively,
as a determinant and a permanent

^x1 ,x2ue2tH/\ux18 ,x28&5Ur~x1 ,t;x18,0! r~x1 ,t;x28,0!

r~x1 ,t;x28,0! r~x2 ,t;x28,0!
U

j

,

~3.4!

where j511 refers to a permanent~bosons! and j521
means a determinant~fermions!. This observation allows us
to generalize the process for two identical particles to a pro-
cess forn identical particles moving in one dimension, be-
cause the form of the transition probability density will au-
tomatically take the boundary conditions into account. The
fact that the transition probability density has to be zero at
the boundary implies absorption at the boundary for the
fermion problem@42–44#. For the boson problem the transi-
tion probability density has to be an extremum at the bound-
ary; this implies that its normal derivative at the boundary is
zero and as a consequence the boundary condition is a re-
flection @24,43,45#. ~Strictly speaking, the boundary]D2
does not belong to the state spaceD2 for fermions. But since
the propagator is zero on this boundary, there is no point in
making the distinction between the state space of fermions
and bosons as long as the conditions are properly taken into
account.!

B. The fermion diffusion process

In the preceding subsection it was found that the state
spaceD2 for two indistinguishable particles is found by im-
posing an ordering on the configuration space, which intro-
duces an additional boundary. The boundary condition deter-
mines the boson or fermion character of the particles because
reflection at the boundary leads to a symmetric propagator in
configuration space, whereas absorption implies an antisym-
metric propagator in configuration space. If one considersn
particles, moving freely on a line, one obtains (n21) extra
boundary conditions according to the rule

x1>x2>•••>xn⇔ ~x1 ,x2 , . . . ,xn!PDn . ~3.5!

Defining a diffusion process onDn with the appropriate
boundary condition, we ensure that the Feynman-Kac func-
tional can be used to incorporate interactions between the
particles@4#. Once this is realized, all attention can be given
to the process. This means that one has to define the transi-
tion probability density to go from an element ofDn to an-
other element ofDn in one time lapse. This transition prob-
ability density of course has to satisfy the conditions for a
diffusion process in order to take advantage of the theory
developed for multidimensional diffusion on a domain@45#.
Knowing the transition probability density, one can construct
the sample paths using stationary and independent incre-
ments.

For the fermion diffusion process, this transition probabil-
ity density is a Slater determinant, the elements of which are

the single-particle propagators@36#. The transition probabil-
ity density to go fromx̄8PDn to x̄PDn in a time intervalt is

rF~ x̄,t; x̄8,0!5detur~xi ,t;xj8,0!u, ~3.6!

where r(xi ,t;xj8,0) is the one-dimensional version of the
three-dimensional propagator~2.1!. In @26# it was shown that
rF is a transition probability density for a Markov process on
Dn . This process$X̃(t);t>0% can be obtained from the
n-dimensional process$X̄(t);t>0% given by ~2.11! as fol-
lows:

X˜~ t !5H X̄~ t ! for t<t]Dn

X̄~t]Dn
! for t.t]Dn

.
~3.7!

The Markov timet]Dn
is the first exit time of the domain

Dn . It should be emphasized that the algorithm described in
@26# to realize the sample paths is based on the present for-
mulation of the process. Another realization of this process
can be obtained with the rejection technique@27#.

The semigroup property of the transition probability den-
sity rF follows by using the resolution of the unity operator
15*Dn

ux̄&^x̄udx̄, whereas the initial condition

lim
t↓0

rF~ x̄,t; x̄8,0!5d~ x̄2 x̄8! ~3.8!

follows from the corresponding property for the one-
dimensional propagators.

C. The boson diffusion process

Like in the case of fermions on a line, the indistinguish-
ability of bosons leads to a state spaceDn defined in~3.5!.
This means that (n21) boundary conditions have to be
given to find a process for bosons analogous to fermions.
The idea that permutation symmetry can imply an ordering
for bosons identical to that for fermions was recently put
forward @46# as a consequence of the arbitrariness of the
connection between the statistics of the particles and the al-
gebraic properties of the second-quantization operators. Ac-
cepting the state spaceDn , the analysis ofD2 for bosons
suggests that reflection at the boundary]Dn of Dn leads to a
diffusion process that reflects the Bose-Einstein statistics.

Let x̄ and ȳ be two elements ofDn , and construct the
following permanent:

rB~ x̄,t; ȳ,0!5permur~xi ,t;yj ,0!u. ~3.9!

It is clear thatrB is positive for all (x̄,ȳ) pairs, and that it
also satisfies the required initial condition

lim
t↓0

rB~ x̄,t; ȳ,0!5d~ x̄2 ȳ!. ~3.10!

Furthermore, in order thatrB can be used as a transition
probability density it has to satisfy the conservation of prob-
ability and the semigroup property

E
Dn

rB~ x̄,t; ȳ,0!dȳ51, ~3.11!
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E
Dn

rB~ x̄,t; ȳ,0!rB~ ȳ,s; z̄,0!dȳ5rB~ x̄,t1s; z̄,0!.

~3.12!

The conservation of probability can be derived using the
property that a permanent is invariant under an interchange
of two rows or columns. Hence

E
Dn

rB~ x̄,t; ȳ,0!dȳ5E
Dn

1

n!(p rB~ x̄,t; ȳp,0!dȳ

5
1

n! ERnpermur~xi ,t;yj ,0!udȳ51,

~3.13!

where use has been made of the fact thatr(xi ,t;yj ,0) con-
serves probability.

The semigroup property follows with an analogous proce-
dure by extending the integration domainDn to R

n using the
permutation symmetry and subsequently using the semi-
group property of the single-particle propagators

E
Dn

rB~ x̄,t; ȳ,s!rB~ ȳ,s; z̄,0!dȳ

5
1

n! EDn
(
p

rB~ x̄,t; ȳp ,s!rB~ ȳp ,s; z̄,0!dȳ

5
1

n! ERnpermurB~xi ,t;yj ,s!u3permurB~yj ,s;zk,0!udȳ

5permurB~xi ,t;zk,0!u. ~3.14!

In the last step, the semigroup property of the one-particle
propagators gives rise ton! identical contributions.

In order to see how the integration over two permanents
leads again to a permanent, the following argument might be
useful. Denote byu ȳ& a fully symmetrized solution of the
Schrödinger equation for free bosons, properly normalized
@3#. The resolution of unity is then given by

15
1

n! ERnu ȳ&^ ȳudȳ. ~3.15!

Denoting byHi
0 the Hamiltonian for thei th free particle, and

by H05( i51
n Hi

0 the Hamiltonian forn free noninteracting
bosons, a diffusion fromz̄PDn to x̄PDn is given by

rB~ x̄,t; z̄,0!5^x̄ue2H0t/\uz̄&

5
1

n! ERn^x̄ue2H0~ t2s!/\u ȳ&^ ȳue2H0s/\uz̄&dȳ.

~3.16!

Reduction of all identical contributions to the preceding in-
tegral by permutation symmetry then leads to

rB~ x̄,t1s; z̄,0!5E
Dn

^x̄ue2H0t/\u ȳ&^ ȳue2H0s/\uz̄&dȳ

5E
Dn

rB~ x̄,t; ȳ,0!rB~ ȳ,s; z̄,0!dȳ. ~3.17!

ThereforerB( x̄,t; ȳ,0) is a transition probability density to
go from ȳ to x̄ in a time lapset for a system of noninteract-
ing identical particles with Bose-Einstein statistics. The
boundary conditions for this process are determined by the
behavior of rB( x̄,t; ȳ,0) at the boundary]Dn . Because
¹̄rB( x̄,t; ȳ,0) is zero for x̄P]Dn , rB satisfies Neumann
boundary conditions, leading to reflection for the process at
the boundary@4,24,25,42–44#.

In the mathematical literature the relation between the bo-
son diffusion process and Brownian motion is referred to as
the Skohorod equations@24,25#. An account on the relation
between Brownian motion and diffusion on a domain with
reflecting boundary conditions can be found in@24#.

IV. MANY BODY DIFFUSION: A PROCESS FOR
IDENTICAL PARTICLES MOVING IN 3D

In this section we will use the known free-particle density
matrix of n fermions and n bosons moving in a
3n-dimensional configuration space to analyze its reduction
to propagators on a state space in such a way that these
propagators are transition probability densities for the pro-
cesses discussed in the preceding section. The starting point
of our analysis is the projection of the density matrix of
distinguishable particles on a density matrix which has the
correct symmetry properties under permutation of the par-
ticle positions:

r I~ x̄,t; x̄8,0!5
1

n!(p jpr~ x̄p ,t; x̄8,0!. ~4.1!

The projection operator is a weighted average over all ele-
mentsp of the permutation group. The weight is the charac-
ter jp of the representation; i.e.,jp51 for bosons, whereas
for fermions jp151 for even permutationsp1 and
jp2521 for odd permutationsp2 .

The free-particle density matrix isnot a transition prob-
ability density: it does not meet the criterion that the process
is in a single state in the limitt↓0, i.e., limt↓0r I( x̄,t; x̄8,0)
does not satisfy the required initial conditiond( x̄2 x̄8). For
fermions there is the additional complication of the sign
problem becauser I( x̄,t; x̄8,0) is negative in certain regions
of the configuration space. These objections against the in-
terpretation ofr I( x̄,t; x̄8,0) as a transition probability density
in the configuration space also apply for motions in one di-
mension. We removed them in the preceding section by re-
stricting the motion to the state spaceDn with the appropri-
ate boundary conditions.

The questions we have to answer for 3D motion are then
what is the appropriate state space and which boundary con-
ditions have to be applied? These questions require a further
analysis ofr I( x̄,t; x̄8,0).
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A. The permutation symmetry

Consider a vectorx̄ in the configuration spaceR3n, rep-
resented as in~2.10! with the x, y, andz component of the
j th particle as the (3j )th, (3j11)th, and (3j12)th compo-
nent of x̄. Its permutationsx̄p can be represented as

x p̄5@p# x̄, ~4.2!

where @p# is a 3n33n dimensional matrix with one 333
identity matrix on each block row and block column, corre-
sponding to each particle. For instance, for 2 particles@p#
can take one of both forms@ s

I
I
s# or @ I

s
s
I # with

I5F 1 0 0

0 1 0

0 0 1
G and s5F 0 0 0

0 0 0

0 0 0
G .

The density matrix for the noninteracting identical par-
ticles takes the form

r I~ x̄,t; x̄8,0!5S m

2p\t D
3n/2 1

n!(p jpexpS 2
m

2\t
@@p# x̄

2 x̄8#T@@p# x̄2 x̄8# D ~4.3!

which can readily be rewritten as

r I~ x̄,t; x̄8,0!5S m

2p\t D 3n/2expS 2
m

2\t
~ x̄• x̄1 x̄8• x̄8! D

3S 1n!(p jpexpS m\t @p# x̄• x̄8D D . ~4.4!

B. Projection on even permutations

We now separate the even permutations$p1% from the
odd permutations $p2%, which can be written as
$p2%5$rp1%, where r is an element of the permutation
group which interchanges two particles. Without loss of gen-
erality we take the first and the second particle.~The same
elementr has to be used for all elements$p2%). Using the
fact thatjp151 for both fermions and bosons, one obtains

(
p

jpexpS m\t
@p# x̄• x̄8D

5(
p1
S expS m\t

@p1# x̄• x̄8D
1j rexpS m\t

@r #@p1# x̄• x̄8D D , ~4.5!

where @r # is a 3n33n matrix whose operation is to inter-
change the coordinates of the first and the second particle.
Hence@r # only differs from the identity matrix in the block
column and the block row corresponding to these particles:

@r #5F s I s ••• s

I s s ••• s

s s I ••• s

A A A � A

s s s ••• I

G . ~4.6!

Note that j r521 for fermions andj r51 for bosons.
Elementary algebra then gives

(
p

jpexpS m\t
@p# x̄• x̄8D

5(
p1

expS 12 m

\t
@ Ĩ1r #@p1# x̄• x̄8D

3S expS 12 m

\t
@ Ĩ2r #@p1# x̄• x̄8D

1j rexpS 2
1

2

m

\t
@ Ĩ2r #@p1# x̄• x̄8D D ,

~4.7!

where Ĩ denotes the 3n33n identity matrix ~not to be con-
fused with the 333 identity matrix I ). Since@ Ĩ1r # is in-
variant if any two particles are interchanged, the permutation
symmetry properties of the density matrix are determined by
those of

H cosh
1

2

m

\t
@ Ĩ2r #@p1# x̄• x̄8 for bosons,

sinh
1

2

m

\t
@ Ĩ2r #@p1# x̄• x̄8 for fermions.

Because

@ Ĩ2r #5F I 2I s ••• s

I I s ••• s

s s s ••• s

A A A � A

s s s ••• s

G ~4.8!

one readily obtains

@ Ĩ2r #@p1# x̄• x̄85~jW12jW2!•~xW182xW28!, ~4.9!

wherejW1 and jW2 are the coordinates of the first and second
particle in @p1# x̄:

@p1# x̄5S jW1

jW2

A
D 5S xW p1,1

xW p1,2

A
D .

The vectorxW j indicates the usual three-dimensional posi-
tion vector, in contrast tox̄, which is a vector of dimension
3n, as described above.
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C. The parity of r I „ x̄,t; x̄8,0… and of its components

The density matrix ofn three-dimensional noninteracting
identical particles is given by

r I~ x̄,t; x̄8,0!5S m

2p\t D
3n/2

e„2m/2\t~ x̄ • x̄1 x̄ 8• x̄8!…
1

n!

3(
p1

em/2\t@ Ĩ 1r #@p1# x̄• x̄8

35
2coshX1

2

m

\t
~jW12jW2!•~xW182xW28!C

for bosons,

2sinhX1
2

m

\t
~jW12jW2!•~xW182xW28!C

for fermions,

~4.10!

which is the key result of the present analysis, which allows
us to answer the questions above on the state space and its
boundary conditions. Indeed, the decompositions

coshaW •bW 5coshaxbxcoshaybycoshazbz

1coshaxbxsinhaybysinhazbz

1sinhaxbxcoshaybysinhazbz

1sinhaxbxsinhaybycoshazbz, ~4.11!

sinhaW •bW 5sinhaxbxsinhaybysinhazbz

1sinhaxbxcoshaybycoshazbz

1coshaxbxsinhaybycoshazbz

1coshaxbxcoshaybysinhazbz ~4.12!

allow us to rewrite the density matrix as a sum of four terms
r I( x̄,t; x̄8,0;l 50...3),

r I~ x̄,t; x̄8,0!5(
l50

3

r I~ x̄,t; x̄8,0;l !, ~4.13!

in which by convention we associate the summation indices
l as follows with the combinations of given parity with
respect to the reflection plane orthogonal to the indicated
direction:

Parity of r I( x̄,t; x̄8,0;l ) for bosons

index l 50 l 51 l 52 l 53
reflection plane

'x even even odd odd
'y even odd even odd
'z even odd odd even

~4.14!

Parity of r I( x̄,t; x̄8,0;l ) for fermions

index l 50 l 51 l 52 l 53
reflection plane

'x odd odd even even
'y odd even odd even
'z odd even even odd

~4.15!

D. The orthogonality relations

The difference in symmetry of these contributions
r I( x̄,t; x̄8,0;l ) has important consequences. Consider a
function f ( x̄9) which is invariant under the permutation of
the positions of the particles. It then immediately follows
that

E dx̄9r I~ x̄,t; x̄9,0! f ~ x̄9!r I~ x̄9,t; x̄8,0!

5 (
l ,l 850

3 E dx̄9r I~ x̄,t; x̄9,0;l ! f ~ x̄9!r I~ x̄9,t; x̄8,0;l 8!

5 (
l 50

3 E dx̄9r I~ x̄,t; x̄9,0;l ! f ~ x̄9!r I~ x̄9,t; x̄8,0;l !,

~4.16!

where use has been made of the different parity of the com-
ponents ofr I( x̄,t; x̄8,0) to reduce the double sum into a
single summation.

The important consequence is that it is sufficient to ana-
lyze each componentr I( x̄,t; x̄8,0;l ) with a given parity in-
dividually with respect to the interchange of the particles. It
is this property which allows us to find a diffusion process
for eachr I( x̄,t; x̄8,0;l ) separately, as discussed in the next
section.

E. The state space for many-body diffusion

We now analyze each componentr I( x̄,t; x̄8,0;l ) of the
density matrix separately. For a given value ofl this func-
tion, defined on the configuration space, can be obtained
from a transition probability density defined on the state
spaceDn

3[Dn^Dn^Dn because it is a product of the tran-
sition probabilities of three independent processes, each de-
fined on aDn . In other words, the property~4.16! for the
density matrix of free identical particles allows us to reduce
the configuration space to a much smaller state space with
independent fermion or boson processes in each direction.

Let $X̃Fl (t);t>0% be the process that generates the
sample paths for fermions moving in 3D. Then this process
is given according to the following rule:

l 50 l 51 l 52 l 53

X̃Fl ~ t !5 H X̃F~ t !

ỸF~ t !

Z̃F~ t !
H X̃F~ t !

ỸB~ t !

Z̃B~ t !
H X̃B~ t !

ỸF~ t !

Z̃B~ t !
H X̃B~ t !

ỸB~ t !

Z̃F~ t !,

~4.17!
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where X̃F(t), ỸF(t), and Z̃F(t) denote fermion diffusion
processes in thex, y, and z direction. Similarly X̃B(t),
Y˜B(t), and Z̃B(t) are boson diffusion processes in thex,
y, andz direction. For bosons the decomposition is as fol-
lows:

l 50 l 51 l 52 l 53

X̃Bl ~ t !5 H X̃B~ t !

ỸB~ t !

Z̃B~ t !
H X̃B~ t !

ỸF~ t !

Z̃F~ t !
H X̃F~ t !

ỸB~ t !

Z̃F~ t !
H X̃F~ t !

ỸF~ t !

Z̃B~ t !.
~4.18!

For example, the fermion case withl 51 is invariant un-
der even permutations$p1% of the particle coordinates. Fur-
thermore, underr ~interchange of two particles! it is anti-
symmetric in thex direction and symmetric in they and z
direction. These symmetry properties allow us to restrict the
transitions x̄8→ x̄ to a domainDn

3[Dn^Dn^Dn simulta-
neously satisfying the conditions

x P̄Dn
3⇔H x1>x2>•••>xn

y1>y2>•••>yn

z1>z2>•••>zn

~4.19!

with the boundary condition thatr I( x̄,x̄8;t;l 51) is zero if
during the transition process the boundary]Dn is hit in the
x direction, whereas it is symmetric with respect to the
boundary]Dn in the y and thez direction. This means that
ann-dimensional fermion diffusion process is required in the
x direction, and ann-dimensional boson diffusion process in
both they and thez direction.

F. The Feynman-Kac functional

The many-body process$X̃Fl (t);t>0% for fermions or
$X̃Bl (t);t>0% for bosons, defined on the state spaceDn

3 ,
can be used in the same way as$X̄(t);t>0% to take the
interaction between the identical particles into account,

K
~F,B!

~ x̄,tux̄8!5 (
l 50

3

K
~F,B!l

~ x̄,tux̄8!

K
~F,B!l

~ x̄,tux̄8!5Ex̄ 8H f @X̃~F,B!l ~t!#exp

F2
1

\E0
t

V„X̃~F,B!l ~s!…dsG J . ~4.20!

Once the propagator of the interacting system onDn
3 is

found with this prescription, the propagator on the configu-
ration space can be obtained from the permutations of the
particle indices. The functionf @X̃(F,B)l (t)# expresses again
the initial condition. By construction the propagators found
onDn

3 have the correct symmetry with respect to interchang-
ing of the particles. From the positivity of the expressions

r I( x̄,t; x̄8,0;l ) on Dn
3 it follows that K

(F,B)
( x̄,tux̄8) is also

positive on the same domain.

V. DISCUSSION AND CONCLUSIONS

The construction of a state space equipped with a diffu-
sion process to provide sample paths for the Feynman-Kac
functional of an interacting system of identical particles
takes into account their statistics by imposing for each de-
gree of freedom the appropriate boundary conditions. The
spin states are left out of the picture by assuming that there
are no spin-dependent interactions involved and therefore the
spin as an additional degree of freedom has not to be con-
sidered explicitly. Of course the spin degrees of freedom are
implicitly present because two identical particles are only
considered indistinguishable if they are in the same spin
state. The combined process for a particle to diffuse in the
configuration space and to change its spin state would re-
quire a combination of diffusion and a point process@47#.
The latter would change the number of indistinguishable par-
ticles, and hence the dimension of the state space. We have
only considered the case with a fixed number of indistin-
guishable particles in the many-body problem. Given a fixed
number of fermions or bosons that are not allowed to change
their spin degrees of freedom, a process is constructed that
takes into account their statistics. All configurations which
only differ from each other by a permutation of the coordi-
nates of a particle are represented by the same state. For
motion in 1D this leads to a fermion diffusion process
@26,27# and a boson diffusion process, on a state spaceDn
with, respectively, absorption or reflection on the boundary
]Dn .

The motion in 3D combined with the permutation sym-
metry for n identical objects induces reducible representa-
tions in the configuration space. Fortunately the quantum be-
havior of a noninteracting many-body system is known and
could be used to decompose the propagator of such a system
into independent boson and fermion processes for each or-
thogonal direction of the motion. This reduction is the main
result of our analysis because it allows us to formulate each
process in 3D as four combinations of three independent 1D
processes with boundary conditions in the appropriate state
space. It is the combination of the boundary conditions on
Dn^Dn^Dn that determines whether the process in 3D is
suited for fermions or bosons. For example, a 3D process for
fermions can contain one 1D fermion diffusion process and
two 1D boson diffusion processes. If one wants to calculate
the ground state energy of interacting fermions, the two 1D
boson processes may be replaced by a Brownian motion in
2D because the ground state energy of distinguishable par-
ticles and the boson ground state energy attain the same
value in this limit. This observation explains why we found
that the process used formerly@28,26# to study ground state
properties of interacting fermions leads to the correct ground
state energy@27# ~except when a special direction is chosen
to define the 1D state space for fermion diffusion, which
leads to an excited state for symmetry reasons!. The part of
the 3D process for fermions that embodies the three 1D
fermion diffusion processes will decay faster because the
odds to be absorbed are higher. Therefore the contribution of
this process to ground state properties should be negligible.
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In the case of bosons one may expect for the same reason—
absorption implies a faster decay—that the low temperature
properties can be deduced from the 3D process that reduces
to three 1D boson processes.

The main achievement of the present approach for bosons
is that the sample paths over the configuration space taking
into account the permutations@11,8# are replaced by sample
paths arising from three independent 1D processes with well
defined boundary conditions. For fermions the significance
of our approach is that it provides the solution of the so-
called sign problem@7#. Indeed the variance due to the fact
that the propagators are antisymmetric under interchange of
particle coordinates does not arise in our approach. On the
level of functional integration we treat bosons and fermions
with the same method. This is not the case in formerly pro-
posed approaches based on the commutation rules for bosons
and anticommutation rules for fermions@5,49#. Our approach
relies fundamentally on the application of group theoretical
concepts to processes, thereby extending previously devel-
oped methods for distributions@35# and point processes
@41,40#.

Summarizing we can say that we introduced the state
space together with the process that provides sample paths

for the Feynman-Kac functional of a many body problem
with a fixed number of identical particles in a given spin
state. The propagator over the configuration space can be
obtained by the application of permutations to a linear com-
bination of such processes. The boson and fermion diffusion
processes are fundamental processes in our approach and
their relation to the standard Brownian motion in a domain is
settled by the boundary conditions: absorption for the ferm-
ion diffusion process and reflection for the boson diffusion
process.
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