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Many-body diffusion and path integrals for identical particles
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For distinguishable particles it is well known that Brownian motion and a Feynman-Kac functional can be
used to calculate the path integffdr imaginary timegfor a general class of scalar potentials. In order to treat
identical particles, we exploit the fact that this method separates the problem of the potential, dealt with by the
Feynman-Kac functional, from the process which gives sample paths of a noninteracting system. For motion in
one dimension, we emphasize that the permutation symmetry of the identical particles completely determines
the domain of Brownian motion and the appropriate boundary conditions: absorption for fermions, reflection
for bosons. Further analysis of the sample paths for motion in three dimensions allows us to decompose these
paths into a superposition of one-dimensional sample paths. This reduction expresses the prémadjator
consequently the energy and other thermodynamical quahtitieerms of well-behaved one-dimensional
fermion and boson diffusion processes and the Feynman-Kac functional.

PACS numbsgs): 05.30.Fk, 03.65.Ca, 02.50.Ga, 02.70.Lq

I. INTRODUCTION which leads to the propagator of noninteracting fermions
on a line. We have argued that a three-dimensiqB8&l)

In the present paper we introduce a process that combinextension of this process consisting of fermion diffusion in
multidimensional Brownian motion on domains with appro- one direction and standard Brownian motion in the two other
priate boundary conditions to solve the many-body problendirections is sufficient to obtain the ground state energy of an
of fermions or bosons interacting through a general class ofteracting 3D fermion system. The present analysis strongly
scalar potentials. This process is a superposition of orthogsupports our previous arguments. It should be mentioned that
nal and independent fermion and boson diffusion processesur investigation was originated by Korzeniowskial. [28]
combined in a precise and prescribed way. In combinatiorand the subsequent discussions on this Wagk-31.
with the Feynman-Kac functional this approach allows us to Because of the fact that for 1D problems the stochastic
write the propagator of the many-body Sattirmger equation  approach to the many-body problem for identical particles
as an expectation over the functional along the sample patteuld be formulated in terms of a fermion or a boson diffu-
generated by this process. Our method extends the weflion process, we concentrated our attention on the reduction
known techniques for quantum models with distinguishableof the sample paths of a 3D process to three one-dimensional
particles[1-6] to guantum models with identical particles, in processes. For the multidimensional Brownian motion of dis-
such a way that the so-called “sign probleri7—1Q] for  tinguishable particles this reduction is trivial. Indeed, on the
fermions is solved, and that for bosons and fermions samplevel of the process each 3D sample path is made up by 1D
paths over configuratiorjd1-15,9 generated by the permu- Brownian motions of the components of the process vector.
tation symmetry are avoided. This opens the perspective th&ior identical particles, such a reduction is not obvious. But
with the proper algorithms this process would improve theby realizing that the knowledge of the propagator of a non-
standard approachl6—22 used in path integral Monte interacting many-body system of identical particles suffices
Carlo for fermions as well as for bosons. to study how this reduction to independent 1D processes can

Fermion diffusion and boson diffusion afemultidimen- be performed, the character of the many-body diffusion
siona) Brownian motions on amn-dimensional domain could be revealed. The analysis of this reduction is post-
D,. If X;,X,, ... X, denote the possible components of theponed until Sec. IV and constitutes the main result of the
positions of the particles on a line, the domap is defined ~ present paper. Before studying this reduction, we first sum-
by the conditionx;=x,=---=x, [23]. Brownian motion marize in Sec. Il the basic underlying concepts, borrowed
with reflection at the boundary @, has been studied in the from the stochastic approach to the quantum theory of dis-
context of traffic flow model$24,25 and will be identified tinguishable particles. In Sec. Ill the fermion and boson dif-
below with the boson diffusion process, because it leads infusion processes are derived and discussed in some detail.
deed to the propagator of noninteracting bosons on a line.
Brownian motion with absorption at the boundarylf has

. o Il. THE FEYNMAN-KAC FUNCTIONAL FOR
been identified by the present authf?§,27] as the process

DISTINGUISHABLE PARTICLES

In this section we briefly describe how the Feynman-Kac
* Also at Universiteit AntwerperfRUCA), and Technische Uni- functional and multidimensional Brownian motion can be
versiteit Eindhoven, Eindhoven, The Netherlands used to solve the Schidinger equation or to obtain the par-
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tition function of a many-body problem with distinguishable
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limW¥ (x,t)= 8(x—x"), 2.7

particles. The basic equations and the mathematical notations t10

are presented.

A. The 3D configuration space

For a free particle moving in a 3D space it is well known
that the Schidinger equation becomes a diffusion equation
if the real time variable is transformed into an imaginary
time variable. This means that the motion of the particle can

be representef#] by a procesgX(t);t=0} which can take

the realizationi(t). The probability density relating the po-

sition x(t) to a previous position<’(t,) is Gaussian and
given by

3/2 v w!\2
. m _ m(x=x')
p(X,t;X ,to)—(m) exp( 2h(t—to)>'
(2.)

The proces$X(t);t=0} is related to standard Brownian mo-

tion {B(t);t=0} in 3D with infinitesimal variance

o?=him,
(t) —dB(t).

If the particle moves in a potential(i), the solution of

(2.2

and hence replacinf{ X(t)] by a & function (2.7), one ob-
tains the propagator

K(x,t|x")= E;{ f[i(t)]exp[ - %f;vo?(s))dsﬂ :
(2.9

which solves the Schdinger equatior{2.5) and satisfies the
initial condition (2.7).

The Brownian motior(2.2) has independent increments in
thex, y, andz direction. This means that at the level of this
process there is no difference between the sample paths of
one particle moving in three dimensions, and three particles
moving each in one dimension. At the level of the potential
the difference between three 1D potentials and one 3D po-
tential is obvious. The 3D character of the potential and
hence of the problem cafat least partly be transferred to

the process by introducing a local drift vecfm[)?(t)] in the
process

dX(t)= A[X(t)]dt+ \/%dé(t) (2.9

and the corresponding modification in the Feynman-Kac

the Schradinger equation can be obtained as an average ov@finctional[33,34). But it is clear that changing the process
a Feynman-Kac functional. This average is the expectatiolecording to 2.9) only relabels the state space.

over the proces&2.2). For an arbitrary functiorf[ X(t)] of
the process, the expectation is defined 34

Ex-{f[i(s)]}:fdi'p(i,ws;;',t)f(;'). 2.3

Thus the expectation is the averagef@i] over all paths
that end in the positioﬁ at timet + s, starting at all possible

positionsx’ at timet. If the function to be averaged is de-

B. The 3n-dimensional configuration space

The generalization of the preceding stochastic description
of the evolution in the imaginary time domain of a quantum
system with three degrees of freedom to a system with 3
degrees of freedom is straightforward. A point of the con-
figuration space given by an3dimensional vectok repre-
sents now a state of the process. For convenience in the
treatment below, we use the following labelitfgr brevity

fined by an integral over time, the process is constructed iRyriting down the row vectox):

such a way that

t t N
Ex'{ f g[X(s)]dS]= f Ex{a[X(s)]}ds. (2.9
0 0

X T=(X1,Y1,20.%2,Y2:2Z25 + - - XnoYnoZn).  (2.10
The process{X_(t);tZO} with realizationx(t) at timet is a

configuration obtained according to a straightforward exten-

From the properties of the expectation and the process it ision of (2.2):

easy to show that for a large class of potentM(sZ) the
solution of the “Schrdinger equation”(in imaginary time

2

J . h R ..
hﬁ\lf(x,t)z%Vz\lf(x,t)—V(x)\If(x,t) (2.5
is given by
R R 10t .
\P(x,t)zE;[ f[X(t)]ex;{— %LV(X(S))ds ] (2.6)

Wheref[)?(t)] ensures the initial condition dﬁ()?,t). If one
wants to calculate the propagator (@f5), this initial condi-
tion is

h —
dX(t)= \/%dB(t),

where{B_(t);tzo} is the 3-dimensional Brownian motion.
The transition probability density for an incrememxt—(x")
in a time lapses for this process is given by

m 302 mx—x"]"[x—x"]
2ahs) TR T 2%is '

(2.1)

p(x,t+s;x",t)=

(2.12

The matrix product if2.12 can equally well be written
as a dot product:
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(X=X x=x"]=(x=x")-(x—x")=(x—x")?, can also be used to construct thelimensional boson diffu-
(2.13  sion process.

but the matrix notation will be more advantageous for our
purposes.

For the multidimensional proce@(_(t);tBO} the propa- Let xl_andxz be th_e coordinates o_f the first and the_ sec-
gator solution of ond particle, respectively. The configuration space is two

dimensional: ;,x,) € R?. If the particles are identical the
52 2 N configuration &4,X,) and the configurationx;,x;) should
om 2 ?—V(x))‘lf(x,t) (2.19 indicate the same state. For fermions with parallel spin, the
=1 0% antisymmetry under the interchange of the two particles is
taken into account by the propagator

A. Two particles on a line

9 o 3n
h— (Xt =

can again be written as a Feynman-Kac functional:
<X1,X2|e_tH/ﬁ|Xi,Xé)Zp(Xl,t;Xi,O)p(Xz,t;Xé,O)

R, [— 1t —
K(x,t|x")= E;{ f[X(t)]ex;{ - %fOV(X(S))dS” — (X1, X500 p(Xq,E:X4:0).
(2.15 (3.

if for f[X(t)] a dfunction is taken to impose the initial con- e consider this formula fot;=x, andx]=x}, thus for the
dition limg oK (X, t[x") = S(x—x"). _ _ position elements of the state space beirg,X,) € D, and

It is clear that a straightforward extension (@9 with a (x!,x4) € D,. The boundary oD, is defined byx; =x, and
drift vector u(X(t)) can facilitate the actual calculations, but deln’otzed byéD.,.

the formulation of the problem with or without drift is ¢ should be noted that the usual factor 1/2! in front of the
equivalent. Therefore also in the case of egrees of free- o4 qat0r defined over the configuration space does not oc-
dom, the proces2.1)) that realizes the sample paths for the ¢\, it the motion is restricted to the domay,. Moreover,
Feynman-l_(ac _functlonal does n_ot d'S““gl%'Sh _betvve@ar-_ the propagator oD, has all the properties of a transition
ticles moving in 3D or & particles moving in 1D. This  ,opapility density of a diffusion process with absorbing
situation will be different in the case of identical particles boundary conditions(i) it is positive onD,, (ii) it conserves

which will be considered below. the probability flux if the boundary state is explicitly intro-
duced 42-44], and(iii ) it has the semigroup property. These
ll. PERMUTATIONS AND PROCESSES requirements can be checked by direct calculation. The posi-

tivity of the propagator can also be understood on the basis

A striking example of how permutation symmetry can beof a simple geometrical argument: the distance between

used to simplify joint probability distributions can be found A : )
in order statistics[35]. The basic idea is that for most (x1,Xz) and (;,xp) both in DZ,'S e,llways smaller than the
samples the order in which the values are measured is irrefliStance betweerxg,x,) and K;,x;) except at the bound-
evant, which means that any permutation of the observe@y ¢D2 where both distances are equal. For a Brownian
values should have the same probability. This constrainf?otion this relation between the distances implies that the
makes the joint probability distribution symmetrically depen-Probability de,n3|,ty to go from a poinx¢,xz) in D3 to an-
dent. The dependence can be lifted by reducing the sampher point &;,x;) in D3 in a fixed time lapsé is always
space to ordered sample points: thus for an observatiof@rger than the probability density to go from the same point

X1,X2, - - - X, the sample poink y),X(), - - - X(n) is consid-  (X1,X2) to the reflected poind(,x;) outsideD in the same
ered where the observed values are ordered in such a wayne lapse. o .
thatX(1)=X(2)= - - =Xn) - Having found the diffusion process for two fermions as a

The idea of lifting the dependence implied by the permu-two-dimensional diffusion process @, with absorption on
tation symmetry through a reduction of the domain has beethe boundary—the so-called fermion diffusion process—it is
put forward before. The basic ingredient of the Bethe ansatgasy to show that similar considerations hold for two bosons,
[37] is precisely the restriction of the positions on a line in starting from the propagator
such a way that the positions remain ordered. This observa-
tion has also been used to solve the nodal plane problem for  (X1.X2l€™"*|x1,x5) = p(x1,t;x1,0)p(X2,t;X5,0)
fermions in one dimensior9]. In particle physics the
spatial-temporal distribution of bosons and fermions in
beams has been obtained using this reduction scheme applied (3.2
on point processe38—41. For a diffusion process we ap-
plied an analogous construction to obtain the propagator oAgain the propagato(3.2) is a transition probability density
interacting fermiong26]. The process used to realize the of a two-dimensional diffusion process @y, but now with
sample paths was called the “fermion diffusion process” byreflecting boundary conditions ofD,. Similarly as for fer-
the present authors. It is andimensional diffusion with the mions, the required conditions for such a transition probabil-
appropriate(absorption boundary conditions. ity density are easily verified. A nice consequence of the

We first illustrate the technique for two particles, andrestriction of the state space to the dom8ip is that (for
summarize the properties of the fermion diffusion processboth fermions and bosohthe propagator i, satisfies the
Subsequently it will be shown how this reduction schemeinitial condition

+p(X1,t;%5,00p(Xy,t;%5,0).
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im(xq,xp|€ " M |x] x5y = 8(x1—X}) 8(Xp—X5) the single-particle propagatof86]. The transition probabil-
t10 ity density to go fronx’ e D, to xe D, in a time intervat is
[ baxg)eDs oo pe(X,tX7,0)=detp(x; ,t:x],0), (3.6
(Xi vxé) € D2 '

where p(x;,t;x;,0) is the one-dimensional version of the
It is clear that(3.1) and(3.2) can be written, respectively, three-dimensional propagat(.1). In [26] it was shown that
as a determinant and a permanent pr Is a transition probability density for a Markov process on
D,. This process{X(t);t=0} can be obtained from the

p(x1,tx3,0) p(x1,8%2,0) n-dimensional proces&X(t):t=0} given by (2.11) as fol-

(%1%, e x x5) =

p(X1,1;%5,0)  p(Xz,t;%5,0) lows:
3.4 _
34 _ X(1) fort<r,p_
where = +1 refers to a permanertboson$ and é=—1 X ()= — for t> 3.7
means a determinafitermions. This observation allows us X(T(?Dn) ort=>p,.

to generalize the process for two identical particles to a pro- ) _ ] o _
cess forn identical particles moving in one dimension, be- The Markov timer,p is the first exit time of the domain
cause the form of the transition probability density will au- D,,. It should be emphasized that the algorithm described in
tomatically take the boundary conditions into account. Thg26] to realize the sample paths is based on the present for-
fact that the transition probability density has to be zero amulation of the process. Another realization of this process
the boundary implies absorption at the boundary for thecan be obtained with the rejection technid@é].
fermion problem42—44. For the boson problem the transi-  The semigroup property of the transition probability den-
tion probability density has to be an extremum at the boundsity pg follows by using the resolution of the unity operator
ary; this implies that its normal derivative at the boundary isl= [ [x){x]dx, whereas the initial condition
zero and as a consequence the boundary condition is a re- "
flection [24,43,43. (Strictly speaking, the boundaryD, limpe(x,t;x”,0)=8(x—x") (3.9
does not belong to the state sp&refor fermions. But since t/0
the propagator is zero on this boundary, there is no point in
making the distinction between the state space of fermionfllows from the corresponding property for the one-
and bosons as long as the conditions are properly taken inmensional propagators.
account)

C. The boson diffusion process

B. The fermion diffusion process Like in the case of fermions on a line, the indistinguish-

In the preceding subsection it was found that the stat@bility of bosons leads to a state spdgg defined in(3.9).
spaceD, for two indistinguishable particles is found by im- This means thatr(—1) boundary conditions have to be
posing an ordering on the configuration space, which introgiven to find a process for bosons analogous to fermions.
duces an additional boundary. The boundary condition deterfhe idea that permutation symmetry can imply an ordering
mines the boson or fermion character of the particles becauder bosons identical to that for fermions was recently put
reflection at the boundary leads to a symmetric propagator iforward [46] as a consequence of the arbitrariness of the
configuration space, whereas absorption implies an antisyngonnection between the statistics of the particles and the al-
metric propagator in configuration space. If one considers gebraic properties of the second-quantization operators. Ac-
particles, moving freely on a line, one obtains{1) extra  cepting the state spade,, the analysis oD, for bosons

boundary conditions according to the rule suggests that reflection at the boundaby, of D, leads to a
diffusion process that reflects the Bose-Einstein statistics.
X1ZXp= " =X (X1,X2, ... X)) €Dy (3.9 Let x andy be two elements oD,,, and construct the

- e . ] following permanent:
Defining a diffusion process o, with the appropriate

boundary condition, we ensure that the Feynman-Kac func- pe(X.t;y,00=permp(x; ,t;y;,0)|. (3.9
tional can be used to incorporate interactions between the L
particles[4]. Once this is realized, all attention can be given Itis clear thatpg is positive for all &,y) pairs, and that it
to the process. This means that one has to define the trangilso satisfies the required initial condition
tion probability density to go from an element bf, to an- . o o
other element oD, in one time lapse. This transition prob- limpg(X,t;y,0)= 8(X—Y). (3.10
ability density of course has to satisfy the conditions for a to
diffusion process in order to take advantage of the theor
developed for multidimensional diffusion on a dom§éb].
Knowing the transition probability density, one can construc
the sample paths using stationary and independent incr
ments.

For the fermion diffusion process, this transition probabil- f pe(X,t;y,00dy=1, (3.11
ity density is a Slater determinant, the elements of which are Dn

)ﬁurthermore, in order thghg can be used as a transition
lprobability density it has to satisfy the conservation of prob-
g_bility and the semigroup property
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f pa(X,1;Y.0)pe(y.S:Z,0)dy = pa(x,t+S.2,0). pa(X 1+52,0)= f (e "M y)(yle W [zydy
D, Dn
(3.12
. N _ _ = f pe(X,t;y,0pe(y,s;2,0)dy. (3.17)
The conservation of probability can be derived using the Dn

property that a permanent is invariant under an interchange

of two rows or columns. Hence Thereforepg(,t;y,0) is a transition probability density to

go fromy to x in a time lapsé for a system of noninteract-

E— 1 I — ing identical particles with Bose-Einstein statistics. The

fD pe(X,ty,0dy= fD H% pa(X.t;yp,0)dy boundary conditions for this process are determined by the
" " behavior of pg(x,t;y,0) at the boundarysD,. Because

1 . _ Vpe(x,t;y,0) is zero forxe dD,, pg satisfies Neumann
- ijnperrﬂp(Xi ty;,0ldy=1, boundary conditions, leading to reflection for the process at
the boundary4,24,25,42—-4}4
(3.13 In the mathematical literature the relation between the bo-

son diffusion process and Brownian motion is referred to as
where use has been made of the fact g ,t;y;,0) con-  the Skohorod equatior{24,25. An account on the relation
serves probability. between Brownian motion and diffusion on a domain with
The semigroup property follows with an analogous proce+eflecting boundary conditions can be found 24].
dure by extending the integration domain to R" using the
permutation symmetry and subsequently using the semi-

group property of the single-particle propagators IV. MANY BODY DIFFUSION: A PROCESS FOR
IDENTICAL PARTICLES MOVING IN 3D

— — — In this section we will use the known free-particle density
anpB(x,t,y,s)pB(y,s,z,O)dy matrix of n fermions and n bosons moving in a
3n-dimensional configuration space to analyze its reduction
_ 1J E — Y s70/dv to propagators on a state space in such a way that these
“nto. % Pe(X,t;Yp,S)pe(Yp,S$;2,0)dy propagators are transition probability densities for the pro-
cesses discussed in the preceding section. The starting point
1 _ of our analysis is the projection of the density matrix of
= ﬁfRnpe”ﬂPB(Xi 6Yj.9)[ X pernpg(y; ,5;2,,0)[dy distinguishable particles on a density matrix which has the
correct symmetry properties under permutation of the par-
= perm pg(X; ,t;2,0)|. (38.149 ticle positions:

In the last step, the semigroup property of the one-particle 1
propagators gives rise to identical contributions. p(X,t;x",00= —IE EPp(Xp.t;x7,0). 4.0
In order to see how the integration over two permanents n:"p
leads again to a permanent, the following argument might be
useful. Denote byy) a fully symmetrized solution of the e projection operator is a weighted average over all ele-
Schralinger equation for free bosons, properly normalizedyentsp of the permutation group. The weight is the charac-
[3]. The resolution of unity is then given by ter &P of the representation; i.ezP=1 for bosons, whereas
for fermions &+=1 for even permutationsp, and
1 &P-=—1 for odd permutationp _ .
1= HLHWXW(W- (3.19 The free-particle density matrix isot a transition prob-
ability density: it does not meet the criterion that the process
, 0 o ) . is in a single state in the limit| 0, i.e., limop;(X,t;x",0)
Denoting byH; the Hamiltonian for theth free particle, and  y5e5 not satisfy the required initial conditidiix—x’). For
by HO=S_H/ the Hamiltonian forn free noninteracting fermions there is the additional complication of the sign

bosons, a diffusion frorze D, to xe D, is given by problem becausg,(x,t;x",0) is negative in certain regions
of the configuration space. These objections against the in-
pa(Xt ;Z—,O):&re—HOtmlzj terpretation ofp,(x,t;x’,0) as a transition probability density

in the configuration space also apply for motions in one di-

1 0 — 0 — mension. We removed them in the preceding section by re-
- ~HO(t—s)/ —HO%/4 115 : ) .
n fR (xe FMy)(yle” "= z)dy. stricting the motion to the state spabg with the appropri-

" ate boundary conditions.
(3.16 The questions we have to answer for 3D motion are then

what is the appropriate state space and which boundary con-
Reduction of all identical contributions to the preceding in-ditions have to be applied? These questions require a further
tegral by permutation symmetry then leads to analysis ofp(x,t;x’,0).
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A. The permutation symmetry rO | O O
Consider a vector in the configuration spacB®", rep- 1 O O 0O
resented as if2.10 with the x, y, andz component of the lo o | o
jth particle as the (Bth, (3j+1)th, and (3+2)th compo- [r1= o ' (4.6
nent ofx. Its permutation, can be represented as -
X p=Lpl% 4.2 LO O O e
Note that£ =—1 for fermions andé'=1 for bosons.

where[p] is a 31X 3n dimensional matrix with one 833 Elementary algebra then gives
identity matrix on each block row and block column, corre-

sponding to each particle. For instance, for 2 parti¢ie$ o m_
can take one of both fornfs, ] or [ ] with Ep: § exr{a_[p]x-x

—E ex [|+f][p+]X X )

Im T R
exp 5 [ =rlp+]x-x
The density matrix for the noninteracting identical par- ) 1m
ticles takes the form +&expg — ——[| —rllpyIx-x"

1 0 O 0 0O
=10 1 0| and O=|0 0 Of.
0 0 1 0 0O

X

(4.7)

wherel denotes the B8 3n identity matrix (not to be con-
fused with the 33 identity matrixl). Since[l +r] is in-
—T]T[[p]x_—W]) (4.3  variantif any two particles are interchanged, the permutation

symmetry properties of the density matrix are determined by
those of

o m 3n/2 1
p|(X,t;X,,0):<m) m% gpex% th[[p]x

which can readily be rewritten as

-
3

coshz— E[T—r][pgx-x’ for bosons,

3n/2 m
_tht) exp( 2th(x x+x" x)) 1

SmhiE-[T_r][p*]X'X’ for fermions.
1 m
=S tPexd —[pTX- X’
X n!Ep: 13 exp(m[p]x X

pi(X,t;x",0)=

3

(4.4

Because
Tl =1 O O7
B. Projection on even permutations | | o o
We now separate the even permutatigps} from the ~
odd permutations{p_}, which can be written as [1=r]=|© © © © 4.8
{p_}={rp.}, wherer is an element of the permutation : -
group which interchanges two particles. Without loss of gen- O O O ... 0O

erality we take the first and the second parti¢lEhe same
elementr has to be used for all elemenfip_}). Using the  one readily obtains
fact that&P+~=1 for both fermions and bosons, one obtains

m
> fpexp(ﬁ—[p]xx') .
P T where§; and ¢, are the coordinates of the first and second

m particle in[p]x:
ex;{ﬁ—T[mxx')

- . (45 & Xp. 1
+§’8XP<,L—T[F][D+]W) [p Ix=| & | = )zp+,2

[ =rllp. XX =(&— &) (X;—Xp), 4.9

-3

P+

where[r] is a 31X 3n matrix whose operation is to inter-

change the coordinates of the first and the second particle. The vectorxJ indicates the usual three-dimensional posi-
Hence[r] only differs from the identity matrix in the block tion vector, in contrast ta, which is a vector of dimension
column and the block row corresponding to these particles:3n, as described above.
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C. The parity of p,(x,t;x’,0) and of its components

Parity of p,(x,t;x",0;/) for fermions

The density matrix oh three-dimensional noninteracting j,qex /=0 /=1 /=2 /=3
identical particles is given by reflection plane
m \3n2 I
p,(x_,t x",0= <— e(=m2ht(x-x+x"X)) — 1x odd odd even even
2mht n! 1y odd even odd even
1z odd even even odd
XE em/2h¢[T+r][p+W
P+
(4.195

1m . i i i
2cos Eﬁ(fl_fz)'(xl_xz)
for bosons,
X
. 1m . = i >
23'”"(5 H(gl_gz)'(xl_xz))

for fermions,

D. The orthogonality relations

The difference in symmetry of these contributions
pi(x,t;x",0;/) has important consequences. Consider a
function f(x”) which is invariant under the permutation of
the positions of the patrticles. It then immediately follows
that

which is the key result of the present analysis, which allows 8 o L
us to answer the questions above on the state space and its = dx’p;(x,t;X",0;/) f(X") py (X", t;x",0;/")

boundary conditions. Indeed, the decompositions

cosfa- b= cosha,b,costa,bycosta,b,
+ coslha,b,sinha, by sinha b,
+ sinha,b,cosha,bysinha,b,

+ sinha,b,sinha, b, costa,b,,

sinha- b= sinha,b,sinha,bysinfa,b,
+ sinha,b, cosla,b,costa,b,
+ costa,b,sinha b, costa,b,
+ costa,b,costa,bysinha,b,

pi(x,t;x",0;,=0...3),
3
Pl(X_,UW,O):IE pi(X,t;x",0;/),
=0

(4.10)

(4.12

(4.13

/,/"=0
3

:/E dx’p,(x,t;x",0;/) f(X") py (X", t;X",0;7),
=0
(4.16

where use has been made of the different parity of the com-
ponents ofp,(x,t;x",0) to reduce the double sum into a
single summation.

The important consequence is that it is sufficient to ana-
lyze each component, (x,t;x”,0;/) with a given parity in-
dividually with respect to the interchange of the particles. It
is this property which allows us to find a diffusion process
for eachp,(x,t;x’,0;/) separately, as discussed in the next
section.

E. The state space for many-body diffusion

We now analyze each componemnix,t;x’,0;/) of the

allow us to rewrite the density matrix as a sum of four termsd€nsity matrix separately. For a given value/othis func-

tion, defined on the configuration space, can be obtained
from a transition probability density defined on the state
spaceD3=D,®D,®D, because it is a product of the tran-
sition probabilities of three independent processes, each de-
fined on aD,. In other words, the propert{#.16 for the

in which by convention we associate the summation indicegensity matrix of free identical particles allows us to reduce

/ as follows with the combinations of given parity with
respect to the reflection plane orthogonal to the indicate

he configuration space to a much smaller state space with
dependent fermion or boson processes in each direction.

direction: o
_ . Let {Xg, (t);t=0} be the process that generates the
Parity of p; (x,t;x",0;) for bosons sample paths for fermions moving in 3D. Then this process
index /=0 /=1 /=2 =3 is given according to the following rule:
reflection plane ) )
/=0 /=1 /=2 /=3
1x even even odd odd v v v v
Ly even odd even odd _ EF(t) fF(t) Z(B(t) fB(t)
1z even odd odd even Xg (t)= Ye(t) Yg(t) Ye(t) Yg(t) (4.17)

(4.14)

Ze(ty (Za(t) | Zs(t) | Ze(),



4474 L. F. LEMMENS, F. BROSENS, AND J. T. DEVREESE 53

where Xg(t), Ye(t), and Zg(t) denote fermion diffusion p(X,t;x",0;/) on Dj it follows that K 1 5 OGIX) s also

processes in the, y, and z direction. Similarly Xg(t), positive on the same domain.
g(t), andZg(t) are boson diffusion processes in the
l)gwa;r?dz direction. For bosons the decomposition is as fol- V. DISCUSSION AND CONCLUSIONS
The construction of a state space equipped with a diffu-
/=0 /=1 /=2 /=3 sion process to provide sample paths for the Feynman-Kac
- - - - functional of an interacting system of identical particles
Xg(t) [ Xg(t) | Xg(t) Xe(t) takes into account their statistics by imposing for each de-
X (1) = Ya(t Yot Ya(t Ye(t gree of freedom the appropriate boundary conditions. The
8 (1 .,B( ) ~F( ) ,_B( ) .,F( ) spin states are left out of the picture by assuming that there
Zg(t) Zg(t) Zg(t) Zg(1). are no spin-dependent interactions involved and therefore the

(4.18 spin as an additional degree of freedom has not to be con-
sidered explicitly. Of course the spin degrees of freedom are
For example, the fermion case with=1 is invariant un-  implicitly present because two identical particles are only
der even permutation® . } of the particle coordinates. Fur- considered indistinguishable if they are in the same spin
thermore, under (interchange of two particlest is anti-  state. The combined process for a particle to diffuse in the
symmetric in thex direction and symmetric in thg andz  configuration space and to change its spin state would re-
direction. These symmetry properties allow us to restrict théjuire a combination of diffusion and a point procgd3].
transitionsx’—x to a domainD3=D,®D,®D, simulta- The latter would change the number of indistinguishable par-
neously satisfying the conditions ticles, and hence the dimension of the state space. We have
only considered the case with a fixed number of indistin-
guishable particles in the many-body problem. Given a fixed
X =Xp= - =Xn number of fermions or bosons that are not allowed to change
X e Dﬁ@ Yi=Yo=- -2y, (4.19  their spin degrees of freedom, a process is constructed that
takes into account their statistics. All configurations which
only differ from each other by a permutation of the coordi-
- nates of a particle are represented by the same state. For
with the boundary condition that;(x,x";7;/'=1) is zero if  motion in 1D this leads to a fermion diffusion process
dUring the transition process the bOUnda@n is hit in the [26 27_' and a boson diffusion process, on a state SMQ
x direction, whereas it is symmetric with respect to thewith, respectively, absorption or reflection on the boundary
boundarydD,, in they and thez direction. This means that sp
ann-dimensional fermion diffusion process is required in the The motion in 3D combined with the permutation sym-
x direction, and am-dimensional boson diffusion process in metry for n identical objects induces reducible representa-
both they and thez direction. tions in the configuration space. Fortunately the quantum be-
havior of a noninteracting many-body system is known and
could be used to decompose the propagator of such a system
- into independent boson and fermion processes for each or-
_The many-body proces§X,(t);t=0} for fermions or  thogonal direction of the motion. This reduction is the main
{Xg/(t);t=0} for bosons, defined on the state spazg, result of our analysis because it allows us to formulate each
can be used in the same way £%(t);t=0} to take the process in 3D as four combinations of three independent 1D
interaction between the identical particles into account,  processes with boundary conditions in the appropriate state
5 space. It is the combination of the boundary conditions on
— — D,®D,®D, that determines whether the process in 3D is
= Z K(F'B)/(x,t|x ) suited for fermions or bosons. For example, a 3D process for
fermions can contain one 1D fermion diffusion process and
two 1D boson diffusion processes. If one wants to calculate
— = ~ the ground state energy of interacting fermions, the two 1D
K(F,B)/ ' ):EX’[ fIXFm) () ]exp boson processes may be replaced by a Brownian motion in
2D because the ground state energy of distinguishable par-
ticles and the boson ground state energy attain the same
- (420 yalue in this limit. This observation explains why we found
that the process used formefl®8,26 to study ground state
properties of interacting fermions leads to the correct ground
Once the propagator of the interacting systemihis  state energy27] (except when a special direction is chosen
found with this prescription, the propagator on the configuto define the 1D state space for fermion diffusion, which
ration space can be obtained from the permutations of thiaads to an excited state for symmetry reagofbe part of
particle indices. The func’uoﬁ[x(F g)~(7)] expresses again the 3D process for fermions that embodies the three 1D
the initial condition. By construction the propagators foundfermion diffusion processes will decay faster because the
on Dﬁ have the correct symmetry with respect to interchang-odds to be absorbed are higher. Therefore the contribution of
ing of the particles. From the positivity of the expressionsthis process to ground state properties should be negligible.

71=2,=- =1,

F. The Feynman-Kac functional

(F,B)

1/t —~
[— ngV(X(F,B)/(S))dS
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In the case of bosons one may expect for the same reasonfer the Feynman-Kac functional of a many body problem
absorption implies a faster decay—that the low temperaturaiith a fixed number of identical particles in a given spin
properties can be deduced from the 3D process that reducetate. The propagator over the configuration space can be
to three 1D boson processes. obtained by the application of permutations to a linear com-
The main achievement of the present approach for bosorsination of such processes. The boson and fermion diffusion
is that the sample paths over the configuration space takingrocesses are fundamental processes in our approach and
into account the permutatio4l,8| are replaced by sample their relation to the standard Brownian motion in a domain is
paths arising from three independent 1D processes with welettled by the boundary conditions: absorption for the ferm-
defined boundary conditions. For fermions the significanceon diffusion process and reflection for the boson diffusion
of our approach is that it provides the solution of the so-process.
called sign probleni7]. Indeed the variance due to the fact
that_the propagators are antisymmetric under interchange of ACKNOWLEDGMENTS
particle coordinates does not arise in our approach. On the
level of functional integration we treat bosons and fermions The authors thank J.M.J. Van Leeuwen and W. van Saar-
with the same method. This is not the case in formerly profoos for a discussion and P. Platzman for discussions and
posed approaches based on the commutation rules for bosocsrrespondence on the fermion diffusion process. Part of this
and anticommutation rules for fermiofts,49]. Our approach work has been performed in the framework of the NFWO-
relies fundamentally on the application of group theoreticalprojects No. 2.0093.91, 2.0110.9JALPHA-project” ) and
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