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Multifractal scaling of moments of mean first-passage time
in the presence of Sinai disorder
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(Received 19 April 1995)

We consider mean first-passage time (MFPT) of random walks from one end to the other of
a segment of a Sinai lattice. In the limit of the length of the lattice segment going to infinity,
the distribution of MFPT over Sinai disorder has unbounded moments. We present a multifractal
characterization of the distribution. We derive an analytical expression for the fractal dimension as
a function of the strength of the disorder. We demonstrate that the multifractality of the limiting
distribution manifests itself as self-similar Huctuations of the MFPT from one disorder configuration
to the other.

PACS number(s): 05.40.+j, 05.60.+w, 61.43.Hv

I. INTRODUCTION

Distributions with unbounded moments arise in a vari-
ety of contexts, such as voltage and current fiuctuations
in random resistor networks [1], growth by diffusion lim-
ited aggregation [2], growth in random multiplicative en-
vironments [3], anomalous diffusion in disordered [4—6]
and hierarchical structures [7], random river networks [8],
ion collision cascades [9], return probabilities of simple
random walks [10], etc. , to name only some of them. A
general question we address in this paper is the relation
of such distributions to multi&actal measures. To focus
on the issue, let us consider a positive definite random
variable t, and denote its distribution by p(t, T), where T
is a scaling parameter, which is related to the system size
IiI, cf. Eq. (3). Let us consider the distribution p(t, T)
in the limit T ~ oo. The positive integer moments of
p(t, T) all diverge in this limit. Here our aim is to char-
acterize the distribution p(t, T) einploying multi&actal
formalisms.

Let M(Q, T) denote the Qth inoment, defined formally
as M(Q, T) = f~ t~p(t, T)dt. We are interested in dis-
tributions with the property

where ((Q) are the exponents characterizing the diver-
gence of the moments in the limit T —+ ao. All the
phenomena [1—10] referred to in the beginning have this
property. If ((Q) is a linear function of Q, we have a sim-
ple scaling with a single gap exponent 4 = ((Q) —((Q—
1), as occurs in critical phenomena. Various systems in-
vestigated in recent times [1—10] have lead to nonlinear
dependence of ((Q) on Q, and hence require an infinity
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of gap exponents to characterize the distributions com-
prehensively.

In this paper we derive an explicit relation between
((Q) and the multifractal exponents, normally denoted
by w(Q). This is accomplished by investigating the dis-
tribution of mean first-passage time (MFPT) of random
walks on a lattice with Sinai disorder [ll]. Such a deriva-
tion has become possible because of several simplifying
features of the model considered. First, an exact ex-
pression for the average MFPT is available in terms of
the quenched jump probabilities and the size of the lat-
tice segment. Second, the dichotomic model of the Sinai
disorder permits an exact enumeration of all the possi-
ble disorder configurations. Third, the simplicity of the
model suggests a natural choice of the scale parameter
as the largest value of MFPT, T, for which we have an
exact analytical expression. As a specific application we
show how one can calculate the &actal dimension D(0)
by considering the scaling behavior of T, and of the num-
ber of the disorder configurations as the size of the lattice
segment goes to infinity.

The paper is organized as follows. In Sec. II we de-
scribe the model system studied, which consists of ran-
dom walks on a Gnite segment of a lattice with site de-
pendent random jump probabilities that obey the Sinai
condition. We calculate the moments of the distribution
of the MFPT over the disorder and characterize their
divergence through appropriate scaling exponents, ((Q).
In Sec. III we construct a normalized partition function
and numerically estabish a scaling ansatz that gives the
inultif'ractal exponents w(Q) . We employ the multifractal
formalism [12,13] and characterize the MFPT distribu-
tion through the scaling exponents w(Q), the generalized
Renyi dimensions D(Q), and the spectrum of singulari-
ties f(n). In Sec. IV we state the relation between the
exponents ((Q) and w(Q). We consider the case with
Q = 0 and obtain an analytical expression for the &actal
dimension as a function of the strength of disorder. We
compare our analytical results with the numerical results
of an earlier study [14],and find good agreeement. In Sec.
V we demonstrate that the multi&actal character of the
distributions with unbounded moments manifests itself
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as statistically self-similar Quctuations of the randomly
sampled values of the random variable &om its distribu-
tion. In Sec. VI, we summarize brieQy the results and
the principal conclusions.
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II. RANDOM WALKS ON A SINAI LATTICE
0.3

We consider a segment of a lattice with the sites labeled
by i = 0, 1, . . . ¹ The random walk at site j can jump
to the site j + 1 with probability pz, or to the site j —1
with probability 1 —p~, in one step. At site 0, we have
the right jump probability po, and a sojourn probability
1 —pp. The site N is absorbing. (p, ; i = 0, N —1) consti-
tute a set of identically distributed independent random
variables, and the common distribution obeys the Sinai
condition [11],namely, the random variable ln[(1 —p)/p]
has zero mean and Gnite variance, the latter denoted by
o . We consider a dichotomic model of the Sinai disor-
der by prescribing p to be 2 + e with equal probabilities.
The parameter e measures the strength of disorder, and
can take values between 0 and 1/2. The larger the value
of e, the stronger is the disorder. e = 0 corresponds to
simple random walks. It is easily verified that the above
prescription for the distribution of p obeys the Sinai con-
dition.

We consider a given realization of the random lattice,
described by a fixed set (p, ; i = 0, N —1). The ran-
dom walk starts at 0, and eventually gets absorbed at
N. Let to N denote the number of steps a random walk
takes to reach the right boundary for the erst time. Let

(tp iv), where the angular brackets denote an average
over all possible random walks, for a given realization of
the quenched jump probabilities. An exact expression
for t - the MFPT, in terms of the random jump probabil-
ities can be derived, employing the generating function
technique [15—17], and it is given by

N —1 N —2 N —1

t= ). +). ).
k=o k=O i=I +X q=I +XjPI PI.

Let us denote by (t) the average MFPT. The curly brack-
ets denote the average taken over the disorder, i.e., over
all possible realizations of the set of random variables
(p;;i = O, N —1). In the asymptotic limit of N ~ oo,
(t) diverges as P~(e); see [15],where P(e) = ((1—p)/p) =
(1+4e )/(1 —4&2), for the dichotoinic model of Sinai disor-
der. The typical value of MFPT, defined as exp[(lntp N )],
however, diverges slower, as exp[o gm/2Ni~ ]; see [5].
This implies that the distribution of t over Sinai disorder
has a power-law tail; indeed, earlier studies [6,17] have
shown that asymptotically the distribution has a 1/t tail.

For the dichotomic model of the Sinai disorder we ob-
serve that given a value of N, there are 2 possible re-
alizations of the random lattice and the value of t for
each of these can be calculated exactly employing the
expression (2). It is easily seen that the largest value of t
obtains when at all the sites, the right jump probability
is 2

—~, and the left jump probability is 2 + ~. Let T
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FIG. 1. Histogram of p(t, T) in terms of the scaled variable
ln t/ ln T for e = 0.35, N = 20.

denote the largest value of t,

(1+~) N+ &(1+&)
(1-~)'

where p(e) = (1+2e)/(1 —2e) ) 1 V e ) 0. Asymp-
totically (N + oo), we see that T p~(e).

Let p(t, T) denote the distribution of MFPT over the
disorder. In Fig. 1 we show a histogram plot of Ip(t, T)
where we have binned the 2 values of t in equal intervals
of the scaled variable lnt/lnT. The figure corresponds to
N = 20 and ~ = 0.35. The distribution is broad. Previ-
ously this distribution was studied both numerically [6]
and analytically by asymptotic methods [17]. Although
there is qualitative agreement with the asymptotic pre-
diction of Ref. [17], there is a quantitative difFerence in-
dicating that the asymptotic limit is not yet reached.

We now turn our attention to the moments M(Q, T) of
p(t, T) that were defined in the Introduction. In principle
the moments could be calculated &om the asymptotic
distribution given in Ref. [17]; in practice this appears
to be a diKcult task. On the basis of results for known
examples (see, e.g. , Ref. [18]) we expect that the analysis
of the moments for fm.nite chains gives accurate predictions
for the scaling analysis.

The Grst task would be to examine the power-law de-
pendence of the moments on T, as implied in Eq. (1).
This property holds for the model under investigation, as
will be demonstrated later in the context of the partition
function. Figure 2 then depicts the exponents ((Q) that
describe the the divergence of the moments, as a function
of Q, for two cases, one with weak disorder (e = 10 ),
and the other with strong disorder (e = 0.35). We have
generalized to noninteger as well as negative values of Q.
We observe that when e is large, ((Q) varies nonlinearly
with Q; see Fig. 2(b). However, in the limit of weak
disorder, we find that ((Q) is linear in Q within the ac-
curacy of the numerical simulations; see Fig. 2(a), and
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a single gap exponent is adequate to describe the distri-
bution. The large range of the values of ( in Fig. 2(a)
stems &om the choice of a small value of e, as can be seen
from the expression for p; see Eq. (9) below. Let p(t, T)
denote the limiting distribution when T —+ oo. The aim
is to characterize the limiting distribution p(t, T m oo),
employing multi&actal formalisms, and to this we turn
our attention now.

of the disorder, with t;„& t; ( t, and —oo
Q ( +oo. Asymptotically, t; diverges linearly with
¹ Note that the minimum value of t obtains when all
the sites have right jump probabilities equal to 2 + e, and
left jump probabilities equal to 2

—~. Also t is equal
to T, which diverges exponentially with N.

To relate the moments to multi&actal analysis, we con-
sider the normalized partition function defined as

III. MULTIFRACTAL ANALYSIS

Let us de6ne a partition function as follows:

2N

Z(Q T) (Qr ) 2 N(—Q —1) (Qi )

[Z(Q = I, T)]Q [M(1,T)]&

The normalized partition function can be written as

(6)

where t; are the MFPT in the 2 difFerent realizations

1000

with the variable t; = t;/g, . t; The. reason for con-
sidering the normalized partition function now becomes
obvious: The variables t; correspond to the normalized
measures that are used in conventional muti&actal analy-
sis. Note that Z(Q = 1,T) = 1 because of normalization.
The normalized partition function exhibits the custom-
ary behavior with T for T ~ oo, namely, it goes to zero
for Q ) 1 while it diverges for Q ( 1.

We postulate that in the limit T —+ oo, the partition
function obeys a scaling relation,

Z(Q, T) T

-1000
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—4 —2 0 2 4

Figure 3 gives a log-log plot of the normalized partition
function versus T for various values of Q, where we used
e = 0.25 and N between 6 and 14. The points corre-
sponding to each value of Q fall on a straight line, ver-
ifying the scaling ansatz. Also note that the different
changes of the slope corresponding to the difFerent val-
ues of Q indicate a nontrivial dependence of the scaling
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FIG. 2. ((Q) vs Q for (a) s = 10 and (b) e = 0.36, for
%=6 to 20.

FIG. 3. Plot of the normalized partition function Z(Q, T)
vs T on a log-log scale for values of Q ranging from —6 (top)
to +6 (bottom) in units steps of 2. s = 0.25, N = 6 to 14.
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FIG. 4. ~(Q) vs Q for e = 0.17, 0.25, 0.35.

exponent on Q.
The multi&actal structures associated with the lim-

iting distribution of the MFPT are characterized [12]
through the scaling exponents, the generalized Renyi di-
Inensions, and the spectrum of singularities. The slopes
of the log-log plot of the normalized partition function
versus the system size, see Fig. 3, give the scaling ex-
ponents, 7(Q) and these are plotted in Fig. 4 for three
representative values of e. The nonlinear dependence of
w on Q, establishes unambiguously that the MFPT dis-
tribution is multi&actal. Figure 5 depicts the generalized
Renyi dimension spectra D(Q) = w(Q)/(Q —1), for the
same values of disorder. We find that D(Q) is a monoton-
ically noiuncreasing function of Q. We take the I egendre
transform of v(Q), defined as f (cx) = —w(Q) + qa, where
n is the first derivative of w with respect to Q.
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FIG. 6. Spectrum of the singularities f(n) vs n for the
same values of r as in Fig. 5.

Figure 6 depicts the f(n) spectrum. The curve is
convex with a single maximum at the value of ao
n(Q = 0), and f(no) = D(0). The different values of
f[n(Q)] are the fractal dimensions of the subsets that
contribute maximally to the normalized partition func-
tion as Q is varied from —oo to +oo. The limiting values
f [u(Q ~ +oo)], give the fractal dimensions of the dens-
est and rarest regions of the distribution. We 6nd that
f(a; ) = 0 V e, which implies that the densest re-
gion is a set of points with a &actal dimension 0. On
the other hand f (a ) is nonzero and hence the rarest
region is a &actal of dimension 0.37 for e = 0.35, and it
increases to 0.9 when e is decreased to 0.17.

The results of this section demonstrate that the stan-
dard multi&actal analysis can indeed be made when
working with the normalized moments. Bm'ther, they
demonstrate that the distributions of MFPT in diferent
realizations of the Sinai disorder constitute a multi&actal
measure.

IV. ANALYTICAL EXPRESSION
FOR THE FRACTAL DIMENSION

0.5—

0
—6 —4 —2 0 2 4.

FIG. 5. Generalized Renyi dimensions D(Q) vs Q for
e = 0.17, 0.25, 0.35.

We note that the exponent ((1) characterizing the di-
vergence of the first moment, M(1, T), is exactly known
[15] and is given by

ln P(e)
lnp(e) '

where P(e) and p(e) have been defined earlier (see Sec.
II). Comparing the definition of ((Q) Eq. (1) with Eqs.
(4,5) the relation between w(Q) and ((Q) can now be
written as

-(Q) = -((Q)+(Q- 1),„'"', + Q',"„,'
The fact that w(Q) goes like —((Q) is related to the
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observation that Z(Q, T) oo, for Q ( 1, whereas
M(Q, T) oo for Q ) 1. Also notice the difFerence
in the normalization: Z(Q = 1, T) = M(Q = O, T) = l.
The explicit forms of the Q-dependent additive terms are
specific to the phenomenon and the model under investi-
gation, and hence would be different for different physical
systems.

We immediately see that the expression for 7 (Q = 0) is
related to the divergence of the number of possible real-
izations of the Sinai lattice vis-a-vis the divergence of T,
as N -+ oo. The former diverges as 2, while the latter
diverges as p (e). Hence D(0) = —~(0) = in(2)/in[a(e)].
When p(e) is larger than 2, T diverges faster than the
number of values of t;, and hence the distribution of the
t,. 's becomes sparser and sparser, as N ~ oo, leading to
D(0) ( 1. However, when p(e) = 2, the number of possi-
ble values of t and T diverge at the same rate as N ~ oo,
and we should expect the distribution to be space fill-

ing, implying that D(0) = 1. The value of e for which
p(e, ) = 2 is 1/6. We have plotted D(0) = ln 2/ lnp(e) as
a function of e in Fig. 7. We have also shown in the same
figure the results of D(0) versus e from an earlier numer-
ical study [14], wherein the 2~ values of t were scaled
and represented as dots on a unit line segment, and the
&actal measures of the density distribution of these dots
were obtained employing conventional methods. The re-
sults of our analytical prediction agree well with the ear-
lier numerical calculations, especially for larger values of
e. The large deviation that we find for small values of e,
is due to finite-size effects in the earlier numerical work.

Thus, we observe, whenever we have distributions
whose moments are all unbounded, and if the different
moments scale differently with the scale parameter, we
can expect underlying multi&actal Buctuations. The ex-
ponents characterizing the &actal measures can in prin-
ciple be derived &om the exponents characterizing the
scaling of the moments. The fractal dimension D(0) is

obtained by observing that asymptotically (N m oo)
T ~ p, whereas the number of disorder configurations
diverges as 2

V. SELF-SIMILAR FLUCTUATIONS OF MFPT

Intuitively one associates pictures of wildly varying
probabilities with multi&actal measures, as we move from
one region of the support to regions infinitesimally close
to it. This behavior was characterized as "interwoven
sets of singularities" by Halsey et aL [13]. It appears as
if this intuitive picture is lost when considering the distri-
butions p(t, T). To reconstitute the idea of a statistical
multi&actal, we consider the set of 2 values of t; that
correspond to all the possible disorder configurations for
a given e and ¹ Note that each disorder configuration is
equally probable and the probability is 2 . We generate
a set of large, say M, number of integer random numbers
independently from a uniform distribution between 1 and
2~, and let this set be denoted by (v(i); i = 1, 2, . . .M).
We plot t ~,~

versus i, and Fig. 8 depicts one such plot
that corresponds to N = 14, and e = 0.35. The sam-
ple size is about M = 40000. We see that the value
of t Buctuates strongly &om one realization to the other
and these Buctuations constitute a statistical multi&ac-
tal. To see the statistical self-similarity of these Buctua-
tions, we have shown in the inset of Fig. 8 a portion of
these fluctuations that corresponds to i = 9000 —17000.
The part and the whole are found to be statistically self-
similar. The multi&actal scaling exponents, the general-
ized dimensions, and the spectrum of singularities help
to precisely capture the various nuances of this statistical
self-similarity, inherent in the Buctuations of t &om one
random realization to the other.
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FIG. 7. Variation of D(0) with e. Points are the numerical
results of Ref. [14], while the solid line is obtained from the
analytical expression given in Sec. IV.

FIG. 8. Plot of the random variable t„~,~ obtained from a
random sampling procedure (see text) versus the index i,. In
the inset the portion contained within the box has been blown
up to display the statistical self-similarity of the Huctuations
of t.
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VI. CONCLUSIONS

We have considered the distribution of MFPT over
Sinai disorder by employing multi&actal formalisms. We
have characterized the multi&actality of the distribution
of the MFPT over Sinai disorder through the scaling ex-
ponents, the generalized Renyi dimensions, and the spec-
trum of singularities. The presence of multi&actality in
the distributions of the MFPT is obviously a consequence
of the multiplicative structure of Eq. (2) for the individ-
ual MFPT. For the dichotomic model of the Sinai dis-
order, we find that the &actal dimension can be calcu-
lated analytically by considering the relative divergence
of the number of possible disorder configurations and of
the scale parameter as the number of lattice sites goes to
infinity.

Although in principle the exponents characterizing the

divergence of the physical moments and the multi&actal
exponents are related, derivation of the precise relation
for a general problem is not an easy task. Here, however,
we have been able to derive such a relation due the inher-
ent simplifying features of the model considered. Hence
we have been able to render transparent the nature and
the content of &actal measures associated with the dis-
tribution of MFPT, which in the limit of large system
sizes has all positive moments infinite.
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