PHYSICAL REVIEW E VOLUME 53, NUMBER 5 MAY 1996

Duffing equation with two periodic forcings: The phase effect
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A weak additional sinusoidal perturbation is applied to the periodically forced nonlinear oscillator to sup-
press chaos. Numerical simulations show that the phase difference between the two sinusoidal forces plays a
very important role in controlling chaos. When the frequencies of these forces deviate from the resonance
condition slightly, a different type of intermittency, alternation from regular motion to chaotic mataited
breather heng is observed. If the phase difference follows a Wiener process, conventional intermittency is
observed.

PACS numbds): 05.45+b

I. INTRODUCTION All the results in this presentation are based on numerical
simulations. Some heuristic explanations are provided for the
The presence of chaos both in nature and in man-madereather phenomenon.
devices is very common and has been extensively demon-
strated in recent decades. Quite frequently chaos is a benefi- II. PHASE EFFECT ON SUPPRESSING CHAOS
cial feature as in some chemical, heat, and transport prob-
lems [1]. However, in many other situations chaos is an In this section, we consider the problem of controlling
undesirable phenomenon leading to irregular performancehaos of the Duffing oscillator by a weak additional periodic
and possible catastrophic failures. The problem of controlperturbation,
ling chaos(converting the chaotic motion to regular motjon

has received considerable attention in recent yEar20]. X=y
The controlling methods recently developed can be roughly 2
classified into two categories: feedback and nonfeedback y=—08y—x3+B coswt+ aB cogQt+ ¢).

methods. Feedback methods-6] suppress chaos by stabi-

lizing orbits already existing in the systems. Nonfeedbackwith =0 this equation is a usual Duffing oscillat¢so-
methods]7,8] apply small driving forces, or small modula- called soft spring oscillatdr extensively investigated in non-
tions, directly to system parameters to suppress chaos; théiyiear science such as chaos, plasma oscillations, and engi-
modify the underlying dynamics and make stable solutionsieering problemg21]. § is a dissipation parameter and

appear. B coswt is the first forcing driving the system to the chaotic
A typical nonfeedback control method can be generallystate. Apart from a single force, the effect of a number of
modeled as competing external forcing frequencies on the region of

chaos in the quasiperiodically forced Duffing oscillator has
been investigatedi22,23 recently. In this paper, we study
the effect of suppressing chaos by the second weak force.
Here, « is the amplitude of the perturbation and is assumed
where the first periodic force drives the system to the chaotito be small, e.g.¢<1. For certain combinations of param-
state while the second one is a weak periodic force senseters chaotic solutions can be obtained. Figure 1 shows the
tively modifying the system dynamics. This kind of control bifurcation of the Duffing equatiofi.e., Eq.(2) with a=0]
has been investigated by many authors analytidallynu-  versus B (6=0.3, w=1; these two parameters are fixed
merically [8,11], and experimentallyj12,13. However, to throughout this paperWe have adopted a fifth-order Runge-
our knowledge, most of the previous studies of controllingKutta method to integrate E) in the computer simulation.
chaos in such nonautonomous systems simply set phag¥ata in Fig. 1 and throughout the presentation are taken on
¢=0; the role played by the phase differengdas not been the following surface of sectionx=0 andy<O0; i.e., the sur-
carefully studied to our knowledge. In this paper we will face of section is located on the negativexis. Since there
numerically investigate the effect of phase on suppressingre multiple attractors coexisting for E@) in the parameter
chaos in detail along the line suggested in R&8]. region investigated, we integrate E@) by employing the
This paper is organized as follows. In Sec. Il, we describeconventional technique that the terminal point of the orbit
the results of numerical stimulation about the effect of phaséntegrated for the former parameter is prepared as the starting
on controlling chaos by applying sinusoidal perturbation topoint of the simulation for the sequential parameter to keep
the Duffing equation. In Sec. lll we describe the phenom-uniqueness of the results.
enon of a different kind of intermittency, called breather in  In Fig. 2 we show the bifurcation with respect ¢ofor
our paper, induced by frequency detuning. In Sec. IV, weB=8.85,(0=3, ¢=0. The results show thai plays a role as
discuss briefly the phase effect in multifrequency systemsan additional relevant parameter for bifurcation and chaos.

X=F(X,B coq wt),a cOLOt+ o)), (1)
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FIG. 1. Bifurcation diagrams of Eq1) with asymptoticy plotted againsB. y=0.3, =1 (these parameters are taken in all the following
figure9, a=0. The data are taken on the surface of section located on the negatiis.

This point has been investigated in some previous papershaos, since one has to apply a large external forcing to
such as Refd.7] and[8]. An interesting point is that in the remove chaos. Without the perturbatia® cos{)t+¢) one
small « region the external control forcing prefers to sup-can also achieve the same purpose of suppressing chaos in
press chaos via inverse period-doubling bifurcation. How-the original Duffing equation by changing the parameter, say
ever, in order to reach the inverse period-doubling bifurcaB, in the same extent. By controlling, one expects that a
tion threshold, one has to vary the amplitude of the secondmall external control perturbatiofn comparison with the
forcing to a large extent, i.e., up ®=0.25 in Fig. 2. This original driving) should be able to bring the system out of the
observation is rather disappointing in the sense of controllinghaotic region; that is the main focus of this presentation.
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FIG. 2. Asymptoticy plotted against the perturbation intensityB=28.85, ¢=0, Q=3.
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FIG. 3. Asymptoticy plotted against the phagefor B=8.85, «=0.075,(0=3.

Now, let us examine how the phase difference of the twdndicates that the phase is a sensitive parameter for the
forcings influences the bifurcation of the system. In Fig. 3,system bifurcation; then one can suppress chaos by adding a
we show the bifurcation with respect o The values of the weak external forcing with a proper phase to the system. The
parameterd8 and () are the same as those in Fig. 2. It is method of controlling chaos by adjusting the phase differ-
surprising that with the perturbation amplitude fixed at aence can be termed as phase control.
rather small value the phageplays a very important role in The above phase control concept has been drawn for cer-
suppressing chaos in each case. We find a wide range ¢din isolated parameter combinations. To confirm this idea,
phase producing regular motion, which connects chaos bwe test the phase effect in wider parameter regions. First we
period doubling or inverse period doubling. This observationfix «=0.06 and(2=3 and consider the phase diagram in the

N

FIG. 4. Regular motion regiotblank) and chaotic motioriincluding periodic windowsregion(shadeglin the B-¢ plane witha=0.06;
the boundary is defined by the bifurcation lines from period 4 to period 8.
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FIG. 5. The asymptotigy plotted againsB. «=0.075, (=3, and ¢=3.53. All attractors are presented. Two attractors coexist in
6<B<13, three coexist in 883B<11.2. In the whole region frolB=6 to B=13, chaos for all attractors is completely ruled out by applying
a weak forcing.

B-¢ plane. The numerical result is shown in Fig. 4, where webution of regular and chaotic regions strongly depends on the
classify only regular motiofiperiod 1,2,4, blank regiorand  phase difference. For certain(e.g., 3.5<¢<4.5 in the fig-
chaotic motion(including period 8,16,... and other periodic ure), the chaos region completely vanishes in the erfire
windows, shaded regionin Fig. 4, the regular region, which range where chaos exists without the second foréafigios
leaves the chaotic region by inverse period bifurcation, is as entirely wiped out rather than slightly shifted aside in this
connected region. It is extremely interesting that the distriphase region It is emphasized that in Fig. 4 the forcing

0.4

0.3

0.1

0.0

FIG. 6. At ¢=0, blank region corresponds to regular states, shaded and black regions indicate chaoti@nstatiag periodic
windows. The black region is the uncontrollable region even when phase differeictaken into account. The black region considerably
shrinks from the shaded region, which demonstrates the efficiency of phase control.
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FIG. 7. Asymptoticy plotted against phase
for different frequencies of the perturbatiof@)
0=1/3, B=12.1, and «=0.065; (bh) Q=4
B=7.15, anda=0.1; (¢) =7, B=10.6, and
a=0.09. In each case, regular motion can be
found in a large interval ofy indicating that
phase control is effective for different frequencies
E b of the second forcing.
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amplitude is rather small, much smaller than the threshold iplore all attractors. We can clearly see that there are two
Fig. 2 (a=~0.25 where ¢=0 is taken. In Fig. 5, we take  attractors coexisting in6B<13 and three in 8 8B<11.2.
and () the same as in Fig. 4 and fixk=3.53 and plot the It is remarkable that only regular motions appear and the
bifurcation diagram with respect #®. Note that the way to whole chaotic region is eliminated. This figure is consider-
produce Fig. 5 is different from that for all the above figures.ably distinguished from Fig. 1 where the saferange is
Here for eachB we try different initial conditions and ex- detected. A further investigation shows that for a narrow
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FIG. 7 (Continued.

range of phase all of the three attractors together can be=0. Significant reduction of the value &fis observed a§)

controlled, while in a relatively wide range we can rule out is switched to some resonant frequencies or in their neigh-

chaos from two attractors. bor. This feature has been mentioned by several authors
In order to further demonstrate the effect of the phasd?,8]. However, the influence of the phase differencexdor

difference on controlling chaos, we have studied the phasgifferent frequencies has never been investigated to our

diagram in(a,B,¢) three-dimensional parameter space, butknowledge. For example, as we take27/3, the-() curve

plot only the projection of the results in tfBe« plane in Fig. N Fig. 8b) becomes rather different from Fig(e8. In Fig.

6. Figure 6 was produced in the following way. First we fix 8(C), we plot the\p,-Q curve, wheren,, is the leading

¢=0 and specify the bifurcation of the system in tBea Lyapunov exponent minimal with respect ¢o We find that

plane. The shaded and the black regions are chaotic regioﬁ‘s&in isdswitchetd_totrr]]eg?titve in tg; VerI_:]arg}T r;agion cont—)
(including the periodic windowswhile the blank region rep- S glre eé(cept md €p aéiulrlh =1 3 Ff)a eau ﬁan the
resents the regular state, in the sense of Fig. 4, which leav&@S!'y understood since &i= € second forcing has the

the shaded region by inverse period doubling. Then weame frequency as the first one; then the small second forc-
Ing plays only a trivial role in modifying the amplitude and

changep to obtain a minimunmw with respect top at which . . e ) .
the system can leave chaos by inverse period doubling for qucmg a phase shift in the single-frequency forcing, the

givenB. We plot the minimum for eachB by the boundary fatter effect plays no role for the'bifurca'tion_figure. There-

of the black region. Thus the blank and shaded regions to'E: the dynamics of the system is not significantly changed
gether are the projection of all regular regi@onnected to- aroundQ~o. . .

pologically) in B-a-¢ space to thé-« plane. A remarkable . .TO. end this sectlhon, we [t))regent sr:)m_e. res_ult about the
feature is that the black region is considerably contracted/cting eneigquft e pertur a“E”-TT € injecting energy Is

from the shaded region and thus the thresheldf taming  defined s, = J oxB cosut dt, E;=J oxaB cod(lt+ ¢)dt.

: Fig. 9a), we plot the injecting energy of the second forc-
ﬁshg)ksega}ﬂtgeagséﬁﬁsuch reduced when the phase dlfferen{:r%g versus phase at =4, B=7.15, ande=0.1. From nu-

In the above discussion, we consid@e=3w only. Nu- merical simulation we know that in the range €.6<4.9 the

merical simulations show that the features mentioned abovféyStem is converted to regulqr motion. It is interesting to see:
1) the absolute value of the input energy of the second forc-

are kept in the general case @f=wq/p with p andq bein N . )
some i?wcomper?sable integers. Ian?g. 7 WF; shoev the gt])ifur'-ng is considerably smaller than that of the first forciiigr

cation diagram of2=1/3 (a), 4 (b), and 7(c). In Fig. 7(a), the_: energy of the first forcing, see Fig(b®], then we can
we need to investigate only the rangeq# (0,27/3), due to adjust small energy pg_rturbatlpn to control chaos induced by
the symmetry property. From Fig. 7, it is obvious that in Iargg energy drlvm_g.(u) The Input energy .Of the.second
each case there is a wide rangegdh which chaotic motion forcing may be positive, negative, or vanishing while that of

can be converted to regular motion. Thus, phase control a{pe first forcing is definitely positive. Therefore, it may hap-

weak second forcing is rather effective and can be applie&)en that one can control c_haos without any energy cost, or
generally. even with some energy gain.

To get a general idea about the influence of the frequency
of the second forcing, we investigate the behavior of the
leading Lyapunov exponent versus perturbative frequency. In the above section, we discuss the effect of phase on
In Fig. 8@a), we show the Lyapunov exponent verddsfor  suppressing chaos under exact resonance conditions. How-

IIl. INTERMITTENCY AND BREATHER
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ever, in experiments we cannot fit the resonance exactly, sine motion is quasistatically “periodic” and stable against
there is unavoidable detuning between the two frequencies gferturbations; however, in “chaotic” segments a very small
the forcings. How a slight detuning influences the systenfluctuation will result in considerable changes of the trajec-
dynamics is an important problem from a practical point oftories. Therefore, in “regular” segments we can predict the
view; that is the main concern of this section. system state, while in “chaotic” segments we cannot do so.
First, we assumé€/w to be rational and the frequency of Though the general dynamic feature of the system repeats
the second forcingQQ=Qy+AQ has a small deviation after a “period”T, the actual trajectory does not repeat itself
AQ (|AQ|<Q) from the resonance. This detuning introducesafter the same time length. This behavior can maintain in a
an actual phase evolutiop(t) =+AQt in Eqg. (2). In Fig.  wide range ofAQ (up to AQ=1/100 in the case of Fig. 10
10, we plot the time evolution of the system Bt=8.85, Therefore, by introducing a small detuning from resonant
a=0.075,Q,=3w=3, AQ=1/3000, andp=0; data are ob- frequency we find a new stable “periodidin the sense
tained on the same surface of section as in Sec. Il. In certaistated abovebehavior with periodl =2#/AQ) that includes
time intervals the system moves “regularly” while in other both regular and chaotic motion in its time evolution. We
time segments it moves “chaotically,” and after a time lengthidentify this stable “periodic” motion as a breather. The re-
T=27/AQ, the motions are repeated. In “regular” segments,semblance of Fig. 10 with Fig. 3 is meaningful. A very small
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FIG. 8. The leading Lyapunov exponenplotted against the frequency of perturbat®® 8.85,a=0.1, (a) ¢=0; (b) ¢=27/3; (C) Amin
plotted againsf). A\, is the minimum\ with respect tap for other given parameters,,;, is almost entirely suppressed below zero except
in the small plateau around=1.
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FIG. 8 (Continued.

AQ) introduces a temporary, which varies very slowly. As whereD is the intensity of noise. Numerically, the Gaussian
time goes on, the system evolves at different quasistatic white noise 7(t) is generated by using the Box-Muller
The timet in Fig. 10 corresponds to the control parameter method[17]. In Fig. 11, we plot the time evolution of the
in Fig. 3, which underlies the resemblance of the two figuressystem withD =0.007 and all other parameters given in Fig.
It is remarkable that we find an interesting state of thelO exceptA{)=0. Now, one can still find breathers of regular
system in which chaotic motion and regular motion appeaor chaotic motiongof course, in the regular parts, some fluc-
alternatively. This intermittency has an essential differencduations naturally induced by noise are observed and high
from conventional intermittencies. In conventional intermit- periodicity is wiped by noise as wegllbut the alternative
tencies, periodic motion and chaotic motion appear irreguappearances of both motions are no longer periodic and the
larly, and their time intervals cannot be predicted. Howeverchanges from one type of motion to another occur irregu-
in our breatherlike intermittency, the time lengths of chaoticlarly. This behavior resembles conventional intermittency.
or regular motion are fixed and the time at which chaotic otHowever, the mechanism underlying this intermittency is the
regular motion appears can be rather precisely predicted. Ceffect of phase and the random walk on the phase; that is
the other hand, this motion is not quasiperiodic since thalifferent from the mechanisms of conventional intermitten-
adjacent orbits diverge exponentially in the chaotic regionscies. IfD is too large, the regular part may be hidden, and if
There are many experiments reporting controlling chaos iD is too small, the system may stay in a certain rediegu-
nonautonomous systems by applying a small second periodlar or chaoti¢ for an extremely long time.
forcing [12,14]. However, to our knowledge, none of these
experiments succeeded in stabilizing periodic orbits steadily.
On the contrary, some authors declared that the periodic or- IV. MULTIFREQUENCY SYSTEM
bits can be maintained only for a certain time length; avoid-

able shifts of the bifurcation figure always destroyed the sta- In this section we discuss briefly the effect of phase
bility of the control. Now, the reason for this instability is in controlling chaos in multifrequency systems. Specifically,

clear to us; it is due to the phase effect and the frequenCWe consider a system driven by two harmonics and sub-

detuning. Based on this understandinget &l succeeded in }écted to a sinusoidal perturbation. The system is described

stabilizing periodic orbits and suppressing chaos by usm%{cf&?ﬁt(Jrzisz\(l:v(;tguzticc??c))t;ﬂcﬁ;;)S(v(\}gr?ar?splzgegll i?]y

nonfeedback control for an arbitrarily long time, by simply comparison wittB, (i=1,2). In Fig. 12 we takeB,=B,=15
i U744 . 1— 2™ ’

matching thg pha§e of the two forcmbES]. . . w=1, w,=3, Q=5. In Fig. 12a), we show the bifurcation
In a practical situation the phase is often subject to noise &y respect to amplituder at a fixed phases=0. In the

impacts. Let us assume the phase fluctuates as given range ofx, one can see only chaotic motiof course,

o= 7(t), 3) period windows must be found by fine resolutipn$he
small perturbation cannot suppress chaos at the given phase.
where 7(t) is Gaussian white noise, which satisfies In Fig. 12b), we changep, while fixing a to @=0.9, which
is much smaller thai8,,B, and is also much smaller than
(n(1))=0, the largesiz in (a) (a=4); a wide regular region emerges in

(4) the phase range froma~1 to 3.5. In this region, the system
(n(t)n(t"))=2Ds(t—t"), leaves the chaotic region to periodic motion via inverse pe-
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FIG. 9. The injected energy of the first forcitig and second forcingb) plotted against.. =4, B=7.15, ande=0.1.

riod doubling. At even smallexr (down to «=0.4) we can gated in a number of works7—9,11,1%. In this paper we
still control chaos for certairp. Note in this case that the thoroughly studied the role played by the phase difference of
third perturbation is incomparably smaller than the two driv-the two sinusoidal forces and found that the phase term plays
ing forces. Thus the phase control of chaos seems to be ed very important role in controlling chaos. Rajasek20]
fective as well in multiharmonic systems. studied the effect of the phase difference in controlling chaos
In fact, an extension of this study to systems with moreby the Melnikov method and numerical simulations, but his
forcings where more phases can be adjusted will be of mucHiscussion focused on the cafe=w [as we stated previ-
interest. We will go further in this direction in our future ously, applying the second sinusoidal force witkr w in Eq.
works. (2) is equivalent to merely changing the amplitude and the
In conclusion, we would like to emphasize the following: initial phase of the first force, and can only shift, not change,
controlling chaos in systems similar to E@) was investi- the global bifurcation diagram of the systgrivioreover, in
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t

FIG. 10.y plotted against timeé for B=8.85,a=0.075,Q0=Q+AQ, Qy=3w=3, AQ=1/3000, andp=0. The resemblance of this figure
with Fig. 3 is remarkable.

v v Y v v T v T v
0 20000 40000 60000 80000 100000 120000

FIG. 11.y plotted against for B=8.85, «=0.075,(=3, D=0.007, andp=0.
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T . (@)

o FIG. 12. Triharmonic-forcing Duffing equa-
tion simulationsB;=15,B,=15, w;=1, w,=3.
(a) Asymptoticy plotted againstr for ¢=0 and
()=5. Chaos exists in the large region @f (b)
Asymptoticy plotted againstp for =5 and
0 — - a=0.9[much smaller than the largestin (a)].
. . o R (b}t Chaos is suppressed in a largénterval.

Y

experiments of controlling chaos in systems like E), an  mechanism underlying this instability phase shift caused by
instability of controlling was reporteffl2]. Now, based on small frequency detuning. A way to overcome this instability
the understanding of the phase effect, we can explain thdifficulty can be suggested, and proven to be effective.

[1] T. M. Ottino, Kinematics of Mixing: Stretching, Chaos and [3] E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lé#, 1196
Transport(Cambridge University Press, Cambridge, 1989 (1990.

[2] T. Shinbrot, C. Grebogi, E. Ott, and J. A. Yorke, Nat@&3 [4] E. A. Jackson, Physica B0, 341(1990.
411 (1993. [5] E. R. Hunt, Phys. Rev. Let67, 1953(1991).



53 DUFFING EQUATION WITH TWO PERIODIC FORCINGS .. 4413
[6] Z. L. Qu, G. Hu, and B. K. Ma, Phys. Lett. 278 265(1993. [15] Z. L. Qu, G. Hu, G. J. Yang, and G. R. Qing, Phys. Rev. Lett.
[7] R. Lima and M. Pettini, Phys. Rev. A1, 7269(1990. 74, 1736(1994.

[8] J. Braiman and I. Goldhrirsh, Phys. Rev. Létb, 2545(1991). [16] L. M. Pecora and T. L. Carroll, Phys. Rev. Le@4, 821
[9] T. Kapitaniak, L. J. Kocarev, and L. O. Chua, Int. J. Bifurca- (1990.

tion Chaos3, 459(1993. [17] T. Shinbrot, E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev.
[10] G. Hu and Z. L. Qu, Phys. Rev. Left2, 68 (1994). Lett. 65, 3215(1990.
[11] G. Cicoga and L. Fronzoni, Phys. Rev4F, 4585(1993. [18] R. Li et al, Science in China /88, 1464(1995.
[12] L. Fronzoni, M. Giocondo, and M. Pettini, Phys. Rev.43, [19] C. Bracikowski, R. F. Fox, and Rajarshi Roy, Phys. Re¥i5A
6483(199)). 403 (1992.
[13] A. Azvedo and S. M. Rezende, Phys. Rev. L&6 1342 [20] S. Rajasekar, Pramana J. Ph4%, 295 (1993.
(1991 [21] F. C. Moon,Chaotic Vibration(Wiley, Chichester, 1987

[14] W. X. Ding, H. Q. She, W. Huang, and C. X. Yu, Phys. Rev. [22] S. Wiggins, Phys. Lett. A24, 138(1987).
Lett. 72, 96 (1994. [23] S. Wiggins, Physica 34, 169 (1989.



