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Hydrodynamic modes as singular eigenstates of the Liouvillian dynamics: Deterministic diffusion
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Hydrodynamic modes of diffusion and the corresponding nonequilibrium steady states are studied as an
eigenvalue problem for the Liouvillian dynamics of spatially extended suspension flows which are special
continuous-time dynamical systems including billiards defined on the basis of a mapping. The infinite spatial
extension is taken into account by spatial Fourier transforms which decompose the observables and probability
densities into sectors corresponding to the different values of the wave number. The Frobenius-Perron operator
ruling the time evolution in each wave number sector is reduced to a Frobenius-Perron operator associated with
the mapping of the suspension flow. In this theory, the dispersion relation of diffusion is given as a Pollicott-
Ruelle resonance of the Frobenius-Perron operator and the corresponding eigenstates are studied. Formulas are
derived for the diffusion and the Burnett coefficients in terms of the mapping of the suspension flow. Non-
equilibrium steady states are constructed on the basis of the eigenstates and are given by mathematical
distributions without density functions, also referred to as singular measures. The nonequilibrium steady states
are shown to obey Fick’s law and to be related to Zubarev’s local integrals of motion. The theory is applied to
the regular Lorentz gas with a finite horizon. Generalizations to the nonequilibrium steady states associated
with the other transport processes are also obtained.

PACS numbg(s): 05.40+j, 05.20.Dd, 05.45-b

[. INTRODUCTION not at the fundamental level of the exact Liouvillian equation
describing the time evolution of probability densitipsin
Hydrodynamic modes have always played a central rolphase space,
in nonequilibrium statistical mechanics and in the description
of irreversible processd4—4]. The concept of the hydrody-
namic mode establishes the interface between the description
in terms of kinetic equations such as the Boltzmann equation
and the macroscopic description in terms of the phenomenavhere ®! represents the flow induced by the Hamiltonian
logical equations such as the diffusion equation H on the energy sheli=E andP! is the Frobenius-Perron
operator.
The purpose of the present paper is to describe a theory in
wheren is the fluid density(or concentrationandD is the \c/)vr? Icg]éhlioq\qijé)gtdl(i;f]:culzl)t())/":ior’[is;llj\gg. -I;zgotrr\]:r??ésls 2? thi

diffusion coe_fficien_t. The importqnce .Of hydr(_)dynamic Frobenius-Perron operator ruling the time evolution of prob-
modes holds in their property of being eigensolutions of theability densities in phase spaf®-8§]. We extend the spectral

phen;)mer][ﬁlogical gquation.. In tge case of the diﬁUSiO'ﬁ‘Lheory of the Frobenius-Perron operator to diffusion in
equation, these modes are given by continuous-time dynamical systems which are spatially ex-
_ ; tended. The theory is developed by considering the
= k- 2 . . . :
ni(r.t) =exps)exlik-), @ continuous-time dynamical system as a so-caflespension
which describe periodic profiles of concentration characterflow, in which the flow is defined on the basis of a mapping
ized by the wave numbde. The hydrodynamic modes decay and of a return time function. The mapping may be induced

exponentially in time because the corresponding eigenvalud®/ the intersections of the trajectories with a Poindager-
are real and negative surface of section. Billiards are particular examples of sus-

pension flows because the trajectories are governed by the
s,=—DK?. (3)  so-called Birkhoff mapping, which uniquely determines the
successive elastic collisions. When the billiards are formed
Accordingly, the concentration becomes spatially uniformby a lattice of obstacles the point particle may undergo a
and approaches the thermodynamic equilibrium in the longrocess of deterministic diffusion, as is the case in the regu-
time limit (t— + ). lar Lorentz gas with a finite horizofp—12. However, we
This exponential decay to the thermodynamic equilibriumemphasize that the present theory applies to a large class of
seems apparently incompatible with the microscopic Hamil-spatially extended systems we define in the following, which
tonian dynamics which is time reversible and which, more-includes not only billiards but also Hamiltonian systems. The
over, preserves phase-space volumes. As a consequence, following work has been motivated by recent results ob-
drodynamic modes have long been considered at th&ined by the author on the hydrodynamic modes of diffusion
intermediate level of the approximate kinetic equations buin the area-preserving multibaker m@p3-16 (see also

pu(X)=Plpo(X)=po(P X)), 4)

dn=DV?n, (1)
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[17], which describes a systematic application of these remeasures may also arise when the support of the invariant or
sults to several other simple maps conditionally invariant measures are fractals of zero Le-
In the case of spatially extended systems which form desgue measure. This is the case in the chaotic-scattering
periodic lattice, spatial Fourier transforms are needed in orapproach where phase-space volumes are preserved but a
der to reduce the dynamics to an elementary cell of the latfractal repeller is formed because the phase space is noncom-
tice, also called a Wigner-Seitz cell in solid-state thefdig]. ~ Pact and sustains an escape process as recently described in
In this reduction, a wave numbkris introduced which char- detail by Gaspard and co-workers and Chernov and Markar-
acterizes the spatial periodicity of the observables and of thi&n [21-28. In the thermostatted-system approach, singular
probability densities. Each Fourier component of the prop/neasures are generated because the dynamics does not pre-
ability density evolves differently in time, which requires S€rve the volumeg27]. Here, we would like to emphasize
introduction of a new Frobenius-Perron operator dependin§at the measures we consider are singular although the dy-
explicitly on the wave numbek. Accordingly, the Pollicott- Namics preserves the volumes and the support is the plain
Ruelle resonances and the associated eigenstates also depBR&Se space of positive Lebesgue measure. This particularity
on the wave numbek, as expected for hydrodynamics Nas its origin in the property of the Frobenius-Perron opera-
modes like(2). tor of spatially extended systems to depend on a wave num-
However, an essential difference appears between the caBgrk. Therefore the corresponding elgenstafés) also de-
of the phenomenological equatigit) and the case of the pend on the wave numbe_r an_d the|r singular chara_cter comes
Frobenius-Perron equation. This fundamental differencdrom the Bloch-type quasiperiodic boundary conditi¢hg].
holds in the fact that the eigenstates corresponding to th&he eigenstates become smooth in both the stable and the
Pollicott-Ruelle resonances are mathematical distributions d¢nstable directions only for the microcanonical measure
singular measures as shown by Rugt The impossibility ~ Which is obtained at vanishing wave numtier0.
of constructing eigenstates in terms of functions has its ori- The present work is the continuation of a previous work
gin in the pointlike character of the deterministic dynamicsby Cvitanovic Eckmann, and Gaspard, who developed a
and in the property of dynamical instability. This aspect isPeriodic-orbit theory of diffusior{28]. In this context, the
closely related to th&tosszahlansataf Boltzmann accord- ~ diffusion coefficient has been obtained in terms of the un-
ing to which the deterministic Liouville equation is approxi- Stable periodic orbits of the dynamics in an elementary cell
mated by a kinetic equation of stochastic character obeyin§f the lattice. The formula was derived from the leading
anH theorem. The stochastic assumption introduces a globafollicott-Ruelle resonance given by a zero of th&unction
smoothing of the dynamics so that the eigenstates can B an appropriate Frobenius-Perron operator. We shall here
constructed in terms of functions, as is the case with thé&onsider a similar Frobenius-Perron operator, but one which
Fokker-Planck equation, for instance. However, in the ablS written explicitly for the corresponding suspension flow,
sence of global stochastic smoothing, the eigenstates must YWich allows us not only to recover the results of periodic-
general be considered as distributions or singular measure@fbit theory but also to obtain explicitly the associated eigen-
in which case their construction becomes possible at thé&tates. o
level of the deterministic Liouvillian dynamics if the under- ~ Moreover, we construct the nonequilibrium steady state
lying system is hyperbolic, as carried out here below. corresponding to a gradient of concen_tranon across the sys-
Therefore the introduction of singular measures in the statém. In the case of the phenomenological equatibnsuch
tistical description of the dynamics allows the Frobenius-Nonequilibrium steady states are given by
Perron operator to admit eigenstates corresponding to the
hydrodynamic modes of relaxation toward equilibrium. The
compatibility with time reversibility is established as fol-
lows. Hyperbolic systems have local stable and unstable
manifolds which are the directions under which the exponenwhich describes a linear profile of concentration across the
tial separation occurs under forward or backward time evosystem in the direction of the gradiegt At the level of
lutions, respectively. Therefore an eigenstaie”) which  kinetic theory, the connection between the hydrodynamic
corresponds to the relaxation toward equilibrium formodes and the nonequilibrium steady states has been the
t— +90 turns out to be smooth in the unstable direction butobject of systematic studies, in particular, by Kirkpatrick,
singular in the stable direction. Since the stable and unstabl@ohen, and Dorfmafh29]. For the model of the multibaker,
manifolds exchange their role under time reversal, the situasuch nonequilibrium steady states have recently been con-
tion is reversed for the eigenstaié ) which relaxes to equi- structed at the level of the Liouvillian dynamics by Tasaki
librium for t— —oo: this measure is smooth in the stable and Gaspard30,31]. In this construction, a new term ap-
direction but singular in the unstable direction. The smoothpears with respect to the phenomenological steady &bate
ness in the unstable direction is reminiscent of the propertyhich has its origin in the fluctuations around the average
of the Sinai-Ruelle-Bowen measures to be absolutely conlinear profile. We show below that this result also holds in
tinuous with respect to the Lebesgue measure in the unstabeeneral spatially extended suspension flows and, in particu-
direction[19]. These results hold not only for billiards but lar, in the regular Lorentz gas. In this regard, we notice that
also for general suspension flows and, as another possiblee Lorentz gas is not an Axiom-A systei®—11. The in-
example, for the Hamiltonian flow of a particle in a lattice of duced mapping has lines of discontinuities so that the fields
Yukawa potential$20]. of stable and unstable directions are not continuous, which
Here a word is in order about the comparison with otherhas for consequence that most of the global stable and un-
recent approaches involving singular measures. Singulastable sets are not manifolds but only segments of manifolds.

J
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This constitutes an important difference with respect to thedirection of the flow has been eliminated by introducing the

multibaker map, which nevertheless does not prevent th@oincarehypersurface of section. To restore this information,

construction of the nonequilibrium states on the basis of théhe current phase-space position along the trajectory can be

same principles we used in previous works. Therefore theletermined by the interval of time elapsed since the last

present generalization of our previous results shows that thgassage in the hypersurface of section. This tirtakes its

singular character of the Liouvillian hydrodynamic modes isvalues in the range € 7<T(&), where we have introduced

a general property of dynamically unstable systems. the time of first returnT (&) in the hypersurface of section,
The paper is organized as follows. Section Il describesvhich is the time between the intersectighand ¢(£) with

what we mean by suspension flows. In Sec. Ill a preliminary”2. Under these assumptions, the complete phase space can

Frobenius-Perron operator is derived for the flow by usingoe represented in the new coordinates

Fourier transforms to reduce the dynamics from the lattice to ) )

one of its elementary cells. The Frobenius-Perron operator of X=(§ 1) e70[0T(H[e 2. ®

the mapping of the suspension flow is studied in Sec. IV

together with the corresponding eigenvalue problem. Th%cribed by the following suspension flod!. We first ob-

nonequilibrium steady states are obtained in Sec. V. Th%erve that the pointg,0J) is a point belonging to the hyper-

h|gher-9rder dyffusmn coefficients are ;tudled in Sec. VI. Thesurface of section” translated to the cell As long as the
theory is applied to the Lorentz gas in Sec. VII where the

eigenvalues, the eigenstates, and the nonequilibrium steaé'me 7 is between 0 and (¢) the trajectory remains on the

states are explicitly constructed. The results are summarize _me segment attached to the p_os@cand the cell. When
and conclusions are drawn in Sec. VIII. T=T(&), the trajectory performs its next passage through the

hypersurface”’ at the pointp(£). At this next passage, the
trajectory may belong to a different céll of the lattice. We
have therefore to introduce a function taking its values in the
A. Suspension flows of infinite spatial extension Bravais latticea(¢) e 4 which is the lattice vector of the
. . Lo : jump between the cellsandl’: I’ —1=a(¢).
We consider a dynamical system of infinite spatial exten- .

L ) . At the next passage by the hypersurface of section, we
sion in a phase space defined by the coordinxtegr,s) h identi h . T | ith th .

RP, wherer e R* are the position coordinates in which the oy <. to identify the point[£,T(),I] with the point
e [¢(&),0]+a(€é)]. Inthe special coordinaté8), we note that

system forms a Bravais lattices. The coordinatess the flow is defined by the vector fieR(£, 1) = (0,1,0)[32].

»D—L . .
eR __are suppllemenfca.ry coordmgtes which are necessan, o dynamics of the suspension flow is thus controlled by
to uniquely specify the initial condition of the trajectories. A the mapping

lattice vectoll,, is centered in each cell of the Bravais lattice,
with m=(my, ..., m ) e 7. The lattice vectors are given as &= (&),
linear combinations of the basic vectors of the lattice

In this phase space, the dynamics on the lattice is de-

II. STATISTICAL MECHANICS OF SUSPENSION FLOWS

t 1=t +T(§),
(6) li+1=lj+al§), C)

By using the invariance of the lattice dynamics under spawhere{t;};"~"_.. are the successive times of passages through
tial translations, the flowb' over the whole lattice can be the hypersurface” and{lj}rf_oc the centers of the cells suc-
reduced to a flows' in one and the same elementary cell of cessively visited.

the lattice. The flowp' may be further reduced to a mapping  The time axis is divided into intervals of lengtige! ¢)
if a Poincarehypersurface of section” is considered in the  extending from T(&)+---+T(o 1) up to

Im=myl100 . oot M2lo1o. oot -+ +Milooo ... 01€ £

elementary cell T(&)+- - +T(¢ 1)+ T(¢'€) during which the position
_ _ . L remains fixed at ¢'¢ and the lattice vector at
§ri=elg) with g7, @ I+a(é)+---+a(e ~1€). The flow is thus
and dim:7=D 1. O m)=(&r+t]) for O=7+t<T(§) (10

We notice that the mapping alone does not provide a com-
plete description of the flow because the coordinate along thend

|
P& =[PE TH-T(O) =~ T(¢I 1) I+ al§)+- - +alel 1))

for O<r+t—T(&)—---—T(¢ 1O <T('§). (1D

On the other hand, for the time running backwateQ), we obtain
ol rh=[e &t +T(e O+ +T(eI&) I —ale )~ —ale 18]

for O<7—[t|+T(@ &)+ - -+ T(e 1&)<T(¢ 1¢). (12
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(I) The mappingy is piecewise symplectic.

(I) The mappingy is time-reversal symmetric.

(11 The mappingy is hyperbolic in the sense that all the
trajectories are unstable of saddle type with nonvanishing
Lyapunov exponents. We also suppose that the mapping
has the Kolmogorov propertyK( property which implies
ergodicity and mixing. Because of conditigh, ergodicity
holds with respect to the Lebesgue measuia the coordi-
nates¢ on 2. Moreover, the rate of mixing is assumed to be
sufficiently fast for functiond and g which are piecewise
Holder continuous [33]. In our context, a stretched-
exponential type of mixing may be supposed,

[(F('6)g(6),—(F)(g)./<exd ), (15

FIG. 1. Schematic representation of the suspension flow in tthhere<>V denotes the average with respectVtoj is |arge
case of a planar billiard of the type of the Lorentz gas. The base ofnough, and the constamptis such that 6 y<1. This prop-
the cylinders is the two-dimensional position space available to th%rty of fast decay of correlations is known to imply the fol-
particle. The vertical axis of the cylinders corresponds to the pro]owing central limit theorenf11], which we shall use later.
jection of the velocity tangent to the walls at collisiords= (r,v) If  is piecewise Hiler continuous and &k f—(f),, the

are the Birkhoff coordinatess(¢) is the image of the poing under following probability approaches the Gaussian error func-
the Birkhoff mappingl is the center of the cell to which the point tion asymptotically

¢ is attacheda( €) is the jump vector so that-a(£) is the center of
the cell to which the image (&) is attachedn(¢) andn(¢¢) are

~-1

the normal vectors from the centers of the cells to the points of ) nz j _ 1 y )

collisions. ¢, 1) are the coordinates of a current point of the flow lim v & 2, h(e'o) <y = exp(—x/2)dx,
n—oo opyn j=0 V2m) -

with the time coordinate in € 7<T(§&). (16)

In the following, we shall denote bg'(£,7) the flow in where the variance of fluctuations is given by the sum of the

the elementary cell at the origir=0. Thanks to the preced- autocorrelation function of h
ing definitions, we have carried out a reduction of the flow
from the infinite phase space to a reduced flow in the funda- B J.
mental domain obtained by using the translational symmetry ‘Thzj;_m (h(ON ('), (17)
on the lattice. This amounts to reducing the dynamics on the
infinite plane to the dynamics on a torus by imposing peri-
odic boundary conditions. We emphasize that the position of’
the particle in the infinite phase space can still be recovereﬁ
from the lattice vectot together with the dynamics in the
reduced phase space. n
To establish the isomorphism between the coordinates o(?
the suspension flow and the original coordinates of the sy
tem, we have to introduce the vectofé¢) which gives the
position of the point¢ of intersection with the hypersurface
2’ with respect to the centéof the currently visited cellsee
Fig. 1. At the instant of the intersection withf, the position

+ oo

hich is convergent according to (15)

Although condition(lll) is essential, conditiongl) and

I) are not necessary for most of the following consider-
ations which can be extended to dissipative systems and to
e-dimensional maps as well.

< Below, we discuss the consequences of conditibnand

(1) and we define the general Frobenius-Perron operator.
Thereafter, we describe the special case of billiards as ex-
amples of suspension flows.

in the original coordinates is thus C. Invariant measures

As a consequence of the piecewise symplectic progért
If we denote by=r the velocity of the particle given by the Jg
first derivative of the position with respect to time we obtain det—| =1, (18
the following relation for the segment of trajectory between €

the points €,0)) and[ ¢(&),0l+a(é)]: i}
P €.0) Le(&) (6)] so that volumes are preserved in the Poindaypersurface

T(® of section””. As aforementioned, the Lebesgue measure
a(§)=n(&)+ fo V(& 7)dT—n(ef), (14 ,(dg)=d¢ is invariant under mapping. The average of a
function f(£) is defined by
which is of importance for the following.

1
B. Assumption on the properties of the mapping <f>V:MJ%f(§)d§’ (19

In order to develop the theory, we need to assume several
properties for the suspension flow. where| A = [_d¢ is the volume of the hypersurface.
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Consequently, we can define the corresponding invariant
measuresu.. and . of the flows®' and ¢!, respectively, <A*(X)P(X)>,¢WZJ' Mo dX)A* (X)p(X)
with the following averages of the quantiB(X):

= | w(dédnA* (&1 )p(& 7).
<F<X>>,Lx=Juw<dX>F<X>=|§/ Ju(df drF(&71), i<

(20) (24

where The flow induces an evolution of this average according to
(AS(@X)p(X)),, = (A* (X)p(® X)),
=(A*(X)(P'D)(X)),, (25

1 T(6)
= w< f F(f,r,l)d7-> . in which the Frobenius-Perron operator is defined as
v O

1 T d7
fu(dédT)F(rf,T,lFMLdffo o FE

" () Plp(X)=p(PX). (26)

We denote by() the average over the corresponding mea. N the present work, the Frobenius-Perron operator is consid-
sure. The measure is equivalent to the Liouville measure ered as a time-dependent bilinear functional taking its values
describing the microcanonical ensemble in the energy shefi the complex numbers,

H=E. The measureu. is not normalizable because it is Ac &

defined on an infinite phgse space. However, both the mea- {A|I5‘|p}:( A) =G, (27)
suresu and v are normalizable. pe’,

in which both the observables and the densitiep belong

_ _ . . _ ~ to functional space&, and £, of smooth enough test func-
The operation of time reversal is defined by the involutiontions.

6 such that

D. Time-reversal symmetry

02=1 F. Billiards as examples of suspension flows

As mentioned in the Introduction, billiards are special
0o pof=¢ 1, cases of suspension flows satisfying the preceding condi-
tions, which we explicitly discuss in order to fix the ideas
T(06)=T(¢ *¢), with a specific example.
. Billiards are systems of hard particles in elastic collisions
a(0¢)=—ale f). (22 between themselves and with walls. Between the elastic col-
lisions, the particles are free and their motion is described by

Under assumptior{ll), the suspension flow itself is time- the free Hamiltonian

reversal symmetric under the transformation

N 2
O(&1.)=[000(8),T(§)—rl+a(§)] for 0<r<T(&), HeS 2F|:/T :%Vz,
=1 a

(28)

such that®?=1 and @cPl@ =P . (23) .
] ) ~where M, are the masses of the particles afg=M R,
This transformation corresponds to a reversal of the velocityhejr momentum, and where the simplification follows from

of the particle. Since the trajectory is followed in the re- 4o change of coordinatesv={Pa/\/M_a}N . and
a=

versed direction, the lattice vector labeling the cell is also. _ N . X .
modified (cf. Fig. 1), r={VyMsR.},_;. If the particles are hard balls in a physical

space of dimensiofi, the dimension of the position space is
F=Nf. The flow®' on the energy shel =E defines thus
a phase space of dimensién=2F—1.

The phase-space dynamics induces a time evolution on In position space, the billiard may be formed by a Bravais
the algebra of classical observables as well as on the proltattice #* of obstacles which may be hard spheres or hard
ability densities representing nonequilibrium statistical en-ellipsoids, for instance. Each collision on one of the ob-
sembles, which is known as the Liouvillian dynamics. Fromstacles is uniquely determined by the position and the veloc-
these considerations, we can study the statistical mechanidty at the impact point in the hypersurface of the obstacles.
of the system. These coordinates may be taken as fhe 1=2F—2 ca-

Let us consider an observable quan#{X) and the den- nonically conjugate Birkhoff coordinates which are the
sity p(X) of some statistical ensemble defined on the infiniteF —1 positions in the hypersurface and the-1 compo-
phase spacé8) of the suspension flow. The statistical en- nents of the velocity tangent to the hypersurface:
semble is arbitrary and may be considered as the initial ené=(r, ,v,). The flow induces the so-called Birkhoff map-
semble of a time-evolution process. The average of the olping ¢ which satisfies the above conditioflg and (Il) in
servables over the ensemble is given by these coordinates. The Birkhoff mapping may be hyperbolic

E. Liouvillian dynamics and the Frobenius-Perron operator
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and ergodic under known conditions enunciated, in particu- ~ 1 A

lar, by Bunimovich and Sindi9]. The time-reversal opera- I= %l dkEy. (34)

tion is here defined by reversing the velocity at the collision: B

0(&)=0(r.,vi)=(r,—vi). If p is a density defined on the infinite phase space, the

function E,p is quasiperiodic on the lattice
Ill. THE FROBENIUS-PERRON OPERATOR

REDUCED BY SPATIAL TRANSLATIONS Ep(& 7.1 =exp(ik-NEp(&7,0)=exp(ik-1)pp(£ 7).

In this section, we reduce the infinite system by using its (35)

symmetry under spatial translations. The observables anfhe same relation holds for the Fourier components

densities are reduced to functions defined in an elementary, (¢ 7) of an observablé\. We have therefore a decompo-

cell of the lattice thanks to Fourier transforni&4,28.  sition of each observable and each density over the infinite

_Thereafter, we construct the Frobenius-Perron operator achhase space into components defined in the reduced phase

ing on the spatial Fourier transforms. space and which depend continuously on the wave number
k.

A. Fourier transforms The averagd24) of the observablé\ over the densityp
We define a projection operator by can therefore be transformed into an integral over the Bril-

louin zone of an average over the reduced phase space

E.= > exp—ik-1)S, (29) 1
& Ao, =T | AALP (36

in terms of the spatial translation operators
The time evolution acts in a different way on each one of

é'f(g,l’)=f(§,|+l’) for I,I' e Z. (300  the components of the observables or densities as we shall

o _ show in the following section.
The projection operatof29) involves the so-called wave

numberk. This latter is defined on the Brillouin zon& of

. T~ ) ) B. Frobenius-Perron operator for Fourier components
the reciprocal lattice#” [18]. The volume of the Brillouin

Our aim is to obtain the time evolution of the different

zone is
components of the Fourier transform which is induced by the
. (2m)t Frobenius-Perron operat¢26). With this purpose, we con-
A= jﬁdk: [det(l ] I (31 sider the average of an observableat timet that we de-
' 10...00 n00.-0 compose into a Fourier transform using the projection opera-
The operatorg29) are projection operators since tors (29):
2o e A 1
EkEk/ |%)| 5(k k )Ek, (32) <A* PtP)Mx:<A*pt>Mm:MJ/dMA:pr’ (37)
which is a consequence of the relation '
1 where
— 2 explik-1)= S(k—k"). 33 oo
A2, SRk D= 2 otkk?) 33 pi(& ) =EPp(£,7,0). (39
The identity operator is recovered by integrating the pro-Using Eq.(12), the action of the Frobenius-Perron operator
jection operator over the wave number on the densityp(X) is given by
|
Po(£,7,0)=p[® Y(£7,0)]=ple & T—t+T(e 1)+ +T(¢ 18),—alp 1)~ —ale 18]

for Os7—t+T(e ')+ +T(e 1§ <T(e 1§). (39
Applying the projection operatd%k and using the property of quasiperiodici{§5), we obtain
Qo £ =EP'p(£,7,0)=exp{—ik-[a(¢ 1e)+- - +ale 1O ple &7 t+T(e 1)+ +T(¢ 18] (40

for t as in(39). Equation(40) defines a new Frobenius-Perron operator acting on the different Fourier components of the
densities as

(QWF) (&, 1) =explik-I[® (£, 7,0 ]}F[ ¢4 (&,7)], (41)
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where the vectol{ ®'(¢,7,0)] is the lattice vector corresponding to the path traveled by the point particle on the infinite phase
space from the elementary cell at the origin up to the cell reached at thé.tioeording to Eqs(10)—(12), this lattice vector
is given by

0 for O 7+t<T(§)

LPHEROI= ag) 1 a2 for 0= 74t-T(E)— - ~T(olt <T(glE),

(42

and by KE,=E_ K. 47

[d g r0)]=—a(e L) —- - —a(p ]
[ (€,7.0)] (¢ 6) (¢70) Hence the Frobenius-Perron operator of kheomponent is
for O<7—|t|+T(&)+---+T(o 1e)<T(¢ i¢). (43)  transformed according to

We emphasize that the suspension fI(_)W is defined in such a RQL:Q:}(K (48)
way that the jumps between the lattice cells occur at the

times{t;} of intersections with the hypersurface but not at . . . .
intermediate times during the free flights between the succed?Sing these symmetry properties, we obtain the relations
sive passages. This construction introduces an important

simplification in the following developments. We also point ((KA)[:Q}((Kp)k>:=<A’ikQZLp_k>M

out that the Frobenius-Perron operatdl) explicitly de- ~ .

pends on the wave numbkr =(p-k(QL A )u, (49
The time evolution of an average value is therefore de-

composed like which show how the forward and backward semigroups in

the sectors with the wave numbédrsind — k are interrelated.

~ 1 ~
W), = [ kAL, @
A IV. THE SPECIAL FROBENIUS-PERRON OPERATOR

The Frobenius-Perron operat@l) has not been much stud- OF THE SUSPENSION FLOW

ied until recently. Wherk=0, this Frobenius-Perron opera- A. From the flow to the mapping
tor reduces to the usual one for the closed system in an

. - o : Pollicott has shown how the Frobenius-Perron operator of
elementary cell with periodic boundary conditions. Since the . S .
. g a suspension flow can be simplifigg]. We are interested by
flow is assumed to be mixing, the spectrum of the operato

) . . {he analytic continuation of the time Fourier transforms of
Qp considered in the Koopman approach adrsits0 for a y

. X . . ) __correlation functions such as
unique discrete eigenvalue corresponding to the invariant

probability measure(21) [34,35. For k+#0, the spectral _ +oo . .
properties are much less well known, although several recent Caplw)= J’,w dt exp(i wt)(A(PX)B(X)),, (50)
works have been devoted to this problem, in particular, in the

multibaker[13,15 but also in the Lorentz gd28]. .
assuming tha¢A),,=(B),=0. In the presence of decay pro-

cesses, it is necessary to split the Fourier transform over the
whole time axis into two semisided Fourier transforms for
The time-reversal transformation in phase space inducggositive and negative times, in which case analytic continu-
an operation on the observables and densities which is  agtion amounts to considering Laplace transforiveth
(RF)(X)z F*(0X) (45 w=is). The I__aplace trgnsform for positive t_imes_ defines_the
' forward semigroup while the one for negative times defines
the backward semigroup.
Because the time evolution of a suspension flow is piece-
KPIK=pt. (46)  Wise defined according to Egel0)—(12) and(41)—-(43), the
integral over the time can be transformed into a sum of in-
At the level of the spatial Fourier transform, this operationtegrals over the evolution between the intersections in the
reverses the wave number as expected, hypersurface of section as

C. Time-reversal symmetry for Fourier components

and which has the effect that

J:dt exr(—st)@f(F(f,TFJOTdt exp —SHF (&, 7—t)+ >, T4 T dt exp(—st)

=1 T T+ T(e Y
n
xex;{—ik-Z ale lo|F
=1

for Res>0. Performing changes of variables, the Laplace transform is written

o et 2 T(qo—l's)} (51)
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f dt exq—st)(g‘kF(g,T):exp(—sT)f dr'exp(st )F(&7)+ 2, expl—s7)
0 0 n=1

Xex;{—sEl T(e i) —ik- 2 ale ) f (o™ dr'exp(sf')F(w”g,r'). (52
=

Equation(52) becomes

J':dt exp(—st)QLF(&T):eXF(—ST){ fOTdT,eXF(ST’)F(fyT,)'F 21 Iiﬂysfs(g)}, (53)
|
if we introduce the function <9*(|A?k,sf)) <(Rk e .
fs(&)= J'T(g)dT'eXF(ST')F(g,T’) (54 SO that
0

(Rl @) (&)=exd —s*T(&)+ik-a(&)]g(eé). (57)

and the following Frobenius-Perron operator of the mapping
¢ B. Eigenvalue problem and¢ function

(Iik,sf)(g)=exp[—sT(<p*1§)—ik.a(gp*lg)]f(gp*lg), If we consider the_ Frobenius-Perron opera@ﬁﬁ) as a
(55 transfer operator acting on smooth test functions, we can

pose an eigenvalue problem as follows. Eigenvalues are de-

This new Frobenius-Perron operator depends not only on thi“?ned as the zeros of the complex variablef the Fredholm
wave numberk but also on the complex variabewhich  geterminan{6]

will give the relaxation rate of the system. Fke=0, we

recover the Frobenius-Perron operator previously introduced Det(f— ﬁk,s)=0- (58

by Pollicott for suspension flows. When the calculation is

carried out for the Fourier transform over the whole time axislf such zeros exist, they depend parametrically on the wave
as performed by Pollicoft5], there is no extra term as for numberk. The work of Cvitanovicand co-worker$36] has

Eg. (53), in which the initial time may fall between two shown that the zeros may be obtained in terms of periodic

successive collisions. orbits. The Fredholm determinafB9) is given as a Selberg-
The adjoint of the Frobenius-Perron operatb) is de- Smale{ function which is itself a product of inverse Ruelle
fined by requiring that ¢ functions[6,28:
|
A exp(—sTp,—ik-ay) (my+1)---(my+1)
Det(l —Ry 5= H Hm N 1- |A(p1)' . 'A:)u)|A(1)ml' G =Z(s;k), (59
""" u P p

where we assumed that all the periodic orbits are of hyperbolic type in each of the directions transverse to the flow and that
the stability eigenvalues of the linearized Poiricamstion transverse to the orbit come in pafirsy’ , A" H_; with
u=(D—1)/2. The first product extends over all the prime periodic onpitsf the mappingp. The second product runs over

the integersn,, ... ,m,. The vectora, gives the distance traveled by the particle on the lattice during the prime pgjiofl

p. If ny is the number of collisions during the prime periodpoénd if §, is some initial condition, these quantities are given

by, respectively,

np—1 np-1

:%UWMaf%%M%%{(®A+O (60)

In the present context of suspension flows, the rg&dt can be derived as follows:

o0

A A A A A 1 .
Det(l —Ry s)=exp In Detl —Ry s)=exp Tr In(| —Rkys):exp( — 2 HTrRES
n=1 '

: (61)

with the trace defined by
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TrR} 5= u exp3, [Tl 18)—ik-ale 18)] o= e"E)dE. (62

The kernel of the Frobenius-Perron operator is given by a Dirac distribution which can be decomposed as follows:

S(E—¢)
S(é—@"E)= _—
¢ zzzwz |def1—9:0"(&)]]

With the previous assumption on the stability eigenvalues, the determinant in the denomin@®razfn be written as

(63

u -2 e}
_ . 1 (m+1)---(my+1)
defl—az0Mo(&)]| =11 ALY 1- 5| = : 64
|defl—d:0"r(£)]] il:[l |AR] Ag)r e .Z,mu:o [|A§)1)~ ) 'Agu)|A(pl)m1_ . 'Ai)u)mu]r (64)

where we supposed that the fixed pofnof ¢" belongs to a Assuming the existence of the eigenstaté@B), the ad-
periodic orbit of prime periodh,, which is repeated times  joint (57) of the Frobenius-Perron operator also admits an
during then=rn,, iterations. The sum over the iterations elgenstate

and over the fixed point§ can be transformed into a sum fp o~ -

over the prime periodic orbits and their repetitions according Ry s k(§) =i (£), (66)

to 2 _137-,7=2,_1Z,n,. The sum over the repetition _ _ .
number can be performed and the Taylor expansiorWthh plays the role of the left eigenstate of the Frobenius-
In(1—y)=—37_,(y"/r) used again to finally obtain the Perron operator itself whil@'/k_ is the right ejgenstate. We_
Selberg-Smalg function (59) with the characteristic quan- May also assume that both eigenstates satisfy the normaliza-

tities (60) for the periodic orbits. Q.E.D. tion condition
Let us now describe a few properties of thidunction. ~,
For the forward semigroup, no zero is expected whes iRe (kb)) =1 (67)
positive and large enough. The zeros are expected for ana-
lytic continuation toward negative values of eSeveral C. Consequences of time-reversal symmetry

kinds of singularities, such as simple zeros, multiple zeros,
or branch cuts, may be encountered. When the wave numbfﬁjr
vanishesk=0, the ¢ function admits a simple zero at=0
gfgggif:eir:r\;Zrngnstt?)Totl)satr)?lli)t(;/ng%e;gljréeg;ic\)/gr? rgle;;o (\ﬂﬂihto t orbit p, a time-reversed periodic orbitp is associated such
has a uniform density functionfy(¢)=1. Here, we are in- that
terested in the behavior of this zero when the wave numberis + _ ¢
tuned away fromk=0. We may expect that fok small o e

Time-reversal symmetry has important consequences on
e eigenvalues of the Frobenius-Perron operator, which can
rQ%e deduced thanks to thefunction (59). To each periodic

agp=—a,, AH=AY (i=1,...u)

. . ) (68
enough, there exists a zese s, and a corresponding eigen-
stateyy(§) such that Moreover, we note that all these characteristic quantities are
real. Equation(68) therefore implies that the product over
ék,sklﬁk(@ = (£). (65) periodic orbits in the functionZ(sy ;k) =0 can be rewritten

to getZ(s,; —k)=0. On the other hand, taking the complex
conjugate of thel function implies thatZ(s; ;—k)=0.
Whenk+# 0, we no longer expect that the eigenstégfeis a  Therefore the eigenvalues satisfy the relations
function. Works on the multibaker suggest that the eigenstate
is a distribution which acquires a meaning only when it is sc=S_x and sf=s*,. (69
applied to a smooth enough test functigf¢) such that
(g* ) becomes a well-defined complex number. This resulThese relations can also be obtained from @§).

has been proved for the multibakdi5,16. Here, we assume Introducing the operator
that the eigenvalus, and the eigendistributiony, can be R
differentiatedN times at small enough wave numbégswith kf(&)=1*(6&), suchthatk?=1, (70

N large enough and possibly arbitrarily large. According to

this assumption, we carry out successive differentiations othe Frobenius-Perron operator of the mapping is related to its
the eigenvalue equatio(65) to obtain the nonequilibrium adjoint by

steady state, the diffusion coefficient given by the Green- . ~

Kubo relation, Fick’s law, as well as the higher-order diffu- RRK,SR=R1KS. (71

sion coefficient§37—-39. It will become clear in the follow-

ing that the derivatives of the eigenstafg at k=0 are  Therefore the time-reversal symmetry implies that the left
distributions(singular measurgs and right eigenstates are related by
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¥ ()= (08). (72 W ([&T(6)]=exdik-a(é)]Vi(¢é,0), (82

As we mentioned in the Introduction, if the right eigenstatesin agreement with the eigenvalue equati®b). We also

are smooth along the unstable directions, the left eigenstatemtice that, sinces, <0, the eigenstaté8l) presents an ex-

are smooth along the stable directions because the stable apdnential growth which only lasts for a finite time interval

unstable directions are exchanged by the time-reversal tranafter which the exponential damping expected from E8)

formation 6. prevails. In this way, the eigenvalue problem formulated at
the level of the flow and of the mapping are interconnected.

D. Relation to the eigenvalue problem for the flow
V. FROM THE EIGENSTATES

Since the original problem concerns the flow and the
TO THE NONEQUILIBRIUM STEADY STATES

Frobenius-Perron operat@tl), we need to establish the con-

nection between the eigenst46®) and the eigenstate corre- | this section, we construct the nonequilibrium steady
sponding to the flow, namely, state starting from Eq€65)—(67) defining the left and right
~t B eigenvectors. We perform successive differentiations of
QW& 7) = expst) V(€. 7). (73 these equations with respect to the wave number. The result-
If we take the Laplace transform of both members of Eq_mg et;(pressmns are thereafter evaluated for a vanishing wave
(73) and if we use Eq(53) introducing the transfornib4) of number.
the eigenstate as
A. Mean drift
Y s(6)= fT(g)dT,eXF(ST/)Wk(g,T/), (74) Differentiating the normalization conditio(67) with re-
0 spect to the wave number, we obtain
the eigenvalue equation becomes (ﬁk?b’k‘ z/;@ﬁ(?/}ﬁ i) »=0. (83
4 . On the other hand, the normalization condition can be rewrit-
! ’ ! n 1
fo drexp(sr)Wilé, 7 Hn; RicsYks(€) ten using the eigenvalue equation as
exp(st Yy, = (IR =1, 84
_ S§5k) V(£,7) 75 (i = (Wi Rics, ) v (84)

which is also differentiated with respect to the wave number,
for 0= 7<T(¢§). to get
Using the relation

- (i ék,sk¢k> (U ék,sk‘?k'/lk> v

0 R Rk
2 RE,S:" "’S ' (76) “x -1 i -1 =
n=t I =Ris (Y[ —ascT (e "6) —iale™ "&) IR s ¥x),=0. (89
and settingr=0, we obtain The eigenvalue equatiai®5) and Eqs.(83) and(84) yield
1 =Ry ) Wi(£,0)=(5— SRy s Yk s(£). 7 e o~ -
(TRANEDZETIRDAD D g ST 0md, 1 (Trade 000,=0 o
The equalitys=s, leads to
(1= Ry ) ¥i(£,0=0, (78 or
which shows that the eigenstate of the flowrat0 may be s i (Frale o)), @7
) . . : . g WSc= — i = - )
identified with the eigenstate of the mapping defined6sy, T L0 ),
Vi£,0)= (&) (79) In the limit k=0, the mean drift is vanishing,
To determine the eigenstate of the flow for the other values
akSOIO, (88)

of 7, we differentiate Eq(75) with respect tor to get
9. ¥(§,7)=—5W(§,7), (80)  becausefy=yg =1 and(a(é)),=0.
whose solution is

B. The first derivative of the eigenstate

with respect to the wave number
Wy (¢,7)=exp(—s,) Y (£) for 0=r<T(&). (8D P

As mentioned in the Introduction, the nonequilibrium
We emphasize that Eq(81) holds for 7<T(¢). At  steady state corresponding to a constant concentration gradi-
=T(¢), the distribution ¥, acquires a phase due to the ent across the system is given by the derivative of the eigen-
jump in the lattice vector according to state with respect to the wave number and evaluated at



53 HYDRODYNAMIC MODES AS SINGULAR EIGENSTATES OF ... 4389

k=0 [cf. Eq.(5)]. In order to get the derivative of the eigen- * ,
state, we differentiate the eigenvalue equati6) directly (F(&yy(8)),= —Z (f(&g-ale '), (96)
with respect tdk to obtain =1

_ P P | & r is convergent andf (£) ¢4(£)), is therefore a finite number.
[Tl 6 —Tale gn(Rkﬁkwk)(fH(Rk'sk&kwk)(g) A similar reasoning shogws that botB2) and (93) are also

= au(£). (89) linear fur_1cti_ona_|s known as distribu;ions. N
The distribution(96) may be considered as a nonpositive
At k=0, the first derivative of the eigenvalue vanishes be-measure which is singular with respect to the Lebesgue mea-
cause 0f(88) while the eigenstate becomes the microcanoniSUr€ because its kerng}(£) is not a function as shown by
cal measurey,=1. Therefore the gradient state obeys theth€ following property.

functional equation According to the central limit theorelti6), the probabil-
ity for the sum (94) to remain in the finite interval
dpo(@ rE)—iale ™€)= diiho(£), (90 [—=n+tn]isequalto
which is one of our main results. n _ 27
Similarly, the differentiation of the adjoint eigenvalue v §:—7;<_Z galo )<+ = ———.
equation(66) leads to =1 n—=0g.aV 27N
_ _ (97)
J +ia(é)=4 . 91
<olot) (£)= Aol &) & Since this probability vanishes in the limit—o~ we may
Equations(90) and (91) admit the solutions expect that the sum remains finite only on a set of zero Le-
besgue measure. In Sec. VII, we shall see that the distribu-
- L tion (94) defining the nonequilibrium steady state may be
Itpo(§) = _'21 a(e'f), (92) represented by its cumulative function, in the particular case
. of the Lorentz gas.
o With respect to the flow dynamics, the nonequilibrium
‘?k‘;l;o(g): +iY aleld), (93)  steady state can be obtained using &84) as
i=o0
= — . = =
as can be checked directly. Nevertheless, we notice that the Fol&om) =19 4H o £,7) = 4(£) Tor O=r<T(E) (98)

solutions for the gradients of the left and right eigenstates
can be exchanged. In order to resolve this ambiguity, wesince the eigenstat¥, is quasiperiodic over the lattice, i.e.,
need to go back to the condition of forward semigroup. Thehat

eigenstatey, is obtained by successive applications of the

forward evolution operator. It corresponds to a density which W (& rh)=expik-HW (& 7,0), (99

is propagated in the future. Now, we observe that the forward

propagation involves the inverse mappipg® as shown by the nonequilibrium steady state satisfies

(55 while the backward propagation involves the direct

mappinge. Therefore the solution of90) which is consis- V(& mD)=0-1+ V(£ 7,0)=0- 1+ ¢y(€)

tent with the forward propagation must be taken@® and
not as(93). In this way, the ambiguity is resolved.

== 2, gale o), (100
C. Nonequilibrium steady states
According to Eq/(5), the nonequilibrium steady state cor- Which shows that the measure increases linearly in the direc-

responding to a gradient of concentration in the direction ofion of the gradient as expected frof§). However, we ob-
the constant vectag is given by[30,31] serve that the exact deterministic construction involves a

new term with respect t@5), which describes fluctuations

_ around the nonequilibrium steady state.

Yo €)= —ig- apo(§)=— 2, g-ale ). (94 A time-reversed nonequilibrium steady state can also be
1= defined from the adjoint eigenstagg as

0

Considered as a functiony is meaningless. However, the

assumed property of decay of correlatighs) gives a mean- ~ _ ~ _ - -
ing to (94) in the sense of a distribution acting on test func- Yy (&ET)=01+yy(é)=0 |+j20 g-a(¢'é). (101
tions f (&) which are piecewise Hder continuous. Indeed, if
f(£) is such a function we have that Using Eqgs.(13) and (14), we notice that the distribution
i . corresponding to a constant gradient of concentration is sim-
(f(Og-ale I9).l<exp—]7) (95 b given by J
for j large enough, sincg- a(£) is also a piecewise Hder .
continuous function of vanishing mean value. As a conse- ) (X)Zg-f(x)+f g-v(dX)dt, (102
quence, the sum 9 0
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wherev(®'X) is the velocity at time of the trajectory from  measures naturally generalize the equilibrium measures. A
the initial conditionX. Similarly, the time-reversed nonequi- crucial aspect is that the support of the nonequilibrium mea-

librium steady state is sures we consider here is the plain phase space of integer
N dimensionD—1 in the space” of ¢£. This is a difference

= — n . t _ w!th respect to the chaotic-scattering approgch (_:oncerned

Y ¢(X)=g-1(X) Jo g-v(@ Xt (103 with open systems where the support of the invariant mea-

sure is fractal. Nevertheless, the present measures remain

Equations(102) and (103—uwhich constitute the central re- singular and are therefore different from the measure of the
sult of the present work—give the nonequilibrium steadymicrocanonical ensemble, which is the Sinai-Bowen-Ruelle
states in terms of the continuous-time flow without referenceneasure associated with the mapping
to the mapping. We may thus conclude that E4€2) and It will be checked here below that the nonequilibrium
(103 are general expressions, which apply to general Hamilsteady states obey Fick’s law. Before reaching this result, we
tonian flows in the sense of distributions. As a corollary, theneed to determine the diffusion matrix.
singular character of the nonequilibrium states also appears
as a general result.

In contrast with the scaling theories of diffusion, the non-
equilibrium steady states are here defined at the microscopic Differentiating Eq.(86) again with respect to the wave
level of phase space. In this regard, such nonequilibriurmumber, we get

D. Diffusion matrix

- 3ka(9kﬁsk<l7;§'r(¢_l§) )~ 3ka3k<(9kﬁZET(<P_l§) )~ &kask<(7;’l:-r(¢_l§)‘9kﬁ(//k>v_ i<5k/ﬁ DN

—i(Pkaue a0, =0 (104

for @,p=1,... L. Taking the limitk=0, using Eq.(88),  the ratio of the autocorrelation function of the jump function
and o= i =1, we obtain to the average time of flight, both calculated from the stabil-
i ity eigenvalues of the mapping, i.e., from the invariant mea-
&kaé’kBSO: - —<T>V[<<9KB¢ saue1E), sure of the mapping.
+<aa(@—1§) akﬁ¢o> B (105 E. Microscopic current and Fick’s law

In order to show that our construction satisfies Fick’s law,
we need to calculate the mean current of particles passing by
an arbitrary cell when the system is in the nonequilibrium
steady state given by E¢L0O.

Solving Eq.(105 requires the knowledge @k ¢ and of its
adjoint which have been obtained in E(@32) and(93). After
substitution, we get the diffusion matrix as

1 1 +oo _ The outgoing and ingoing currents at the dedire given
Dap=— Eﬁkaﬁkﬂsfm < j :2_00 aa(§)35(¢’§)> g by, respectively,
(106 JON=3(UE NV YE D), (109
If diffusion is isotropic in the lattice, the diffusion matrix is and
diagonalD ,5=D J,4 with the diffusion coefficient W =3(v(6E, W (£,7D),, (110
+ 00

where we took the time-reversed velocity. The facjois
2L<T> E (a(é)- a(“’]g»”’ (107 required because each cell of the suspension flow contains
particles in transit between two lattice sites.
which is a discrete version of the Green-Kubo relation We first remark that the term linearly increasing wiitim
(37,38 (100 is constant in each cell of the lattice so that this term
1 [ vanishes in the mean currents. Therefdrgcan be replaced
D= _f (V(X) - v(D'X)),dt. (108 by ¢4 in Eqgs.(109 and(110. Using the definition(21) of
2L) - the invariant measure together with Eq$4) and (94), as

Equations(107) and (108 are strictly equivalent, as can be well as the time-reversal properti€®2) and (23), we get

shown by a direct calculation using E§.4). Equation(107)

is also another version of a formula obtained by Cvitanpvic jloun = = &),
Eckmann, and Gaspaf@8], which expresses the diffusion 2T),

coefficient in terms of the unstable periodic orbits and their 1

characteristic quantities appearing in théunction (59). In +—— (n(Ha-a(o L 11
this formula of Ref[28], the diffusion coefficient is given as 2(T) (n()g-ale8)), (19



53 HYDRODYNAMIC MODES AS SINGULAR EIGENSTATES OF ... 4391

_ 1 * _ sion relation of diffusion is expanded in Taylor series around
j('”>:+ﬁ JZO (a(£)g-a(¢lé)), k=0 we obtain
1 Sk:_Daﬁkakﬁ_l— Baﬁyﬁkakﬁkykﬁ_l— O(kﬁ) (114)
+ ﬁ(n(f)g- a(e '), (112 D,z is the matrix of the diffusion coefficients aml,g. s is
v the tensor containing the Burnett coefficients, which are thus
Finally, the total current is given by the fourth derivatives of the eigenvalue with respect
' to the wave number &=0.
_ 1 1= _ To simplify the calculations, we make use of a formal
jlton = jloun _j(im— _ ST D (adg-aeld), solution of the eigenvalue problem. Thereafter, we observe
(T)y 5= that takingN derivatives with respect to the wave number
- —Dg (113 leads to sums involving at mobt-time correlation functions

of the characteristic function§(¢) and a(¢) of the system

where we used the assumption that diffusion is isotropic acWith respect to the mapping. _
cording to Eq.(107). Equation(113 shows that the current ~ Here, the assumption that the mapping haskfgoperty

corresponding to the nonequilibrium steady stéttg obeys becomes essential. Indeed, Heproperty is known to imply
Fick's law. A similar result has been obtained for the multi- the K mixing [40] and, as a consequence, the property of
baker by Tasaki and Gaspai@0,31. multiple mixing that the multiple correlation functions decay

as
VI. HIGHER-ORDER DIFFUSION COEFFICIENTS (Fo(O)F (@18 Fo(@i28) . . . Fr_1(@IN-18)),

In th|§ section we investigate the hlgher-(_)rder derivatives ()l F) )y o (i), (115
of the eigenvalue and of the eigenstates with respect to the
wave number. We show that these derivatives are related tor |j,,—j,|—« forallm,n=1, ... N—1 and for piecewise
higher-order diffusion coefficients such as the Burnett coefHolder continuous function$,,. The bound(15) on the de-
ficients which appear at the fourth ord&9]. If the disper- cay of the two-time correlation functions implies that

[(fo(O)F1(@118) .. fy_1(@N-28)) |<C(fo.f1, - - Fue DMiNgcmenan—1{€Xp(—|jm—inl )}, (116)
|
if (), =0 and whereC is a positive constant. Therefore the 1= @: ),
sums of suchN-time correlation functions over the integers
jm are guaranteed to converge. Under such circumstances, ) ot ) ) )
higher-order diffusion coefficients such as the Burnett coef- = lim _:Hn exd —sT(¢'é) —ik-a(¢'§)]
ficients exist in the system. n—e ] v
= lim (expl'("), . (119
A. Formal solution to the eigenvalue problem n—oo

A formal solution of the eigenvalue equati¢ds) can be
obtained by applying successively the Frobenius-Perron oprhe derivatives of the eigenvalug can therefore be ob-

erator to the unit function to get tained by differentiating successive(§19 with respect to
n the wave number and settitkg=0.
Gi(€)= lim ,-Hl exq—_sk-l-((P—jg)_ik.a((p—jg)] The three first derivatives yield the known results that
n—oo) —
. -1
= limexpE". (117 1 2 .
= lim—H0-o— i =
n—o akaSO :m2n<T>V J;n <aa((P §)>V 01 (120)

By Egs.(69) and(72), we obtain the adjoint eigenvector as
+n—-1 +n—-1

n—-1 . . .
0@ =1im [T exif ~siT(¢8) +ik-aleig)] O, FiySo= M = 5o 20 2 (Aul@D)ag(¢0)),

n—owl=

= lim expE(" . 118
- P=k ( ) =_2Da51 (121)
The normalization condition67) becomes an eigenvalue B
equation to determing, Ik, Ik So=0. (122
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Equation(121) implies Eq.(106) because of the identity B. Burnett coefficients
An expression for the Burnett coefficient can be obtained
tn-1 +n-1 on-1 by differentiating Eq.(119 four times with respect to the

SR T : wave number. The calculation is long but straightforward. It
2 2 ci-n j= Ezn+1 (2n=lihe(@). (23 is necessary to introduce the quant&y (£) =T (&) —(T), in
order for the averag€AT), to vanish so that the property
(116 can be applied. In the calculation, the following corre-

and of the property of fast decay of correlations. lation functions appear:
|
+ oo
1 i
C=rmy 2, (ATOAT(S'D),, (124
+ o
1 i )

Ep=rry, | 2. (AT(O2u(¢'Dag(¢')),, (125

1 g . . . .
Fapro=y, | 2 LR D)3p(¢'6)a(@1Da¢"0),~(@u(£)as(¢' ) u(a) ¢ D ")),
—(a4(£)a,(¢'6)) (as(¢'£)as(¢*6)),—(au£)as(¢*€)) (as(¢'E)a, (@), ]. (126
The fourth derivatives of the eigenvalues are now given by

aka(?kﬁ(?ky(?kﬁsoz Faﬁy5+ 4C( DaBD7§+ Da‘yDBS+ DaﬁDﬁ’y)

- 2(DaﬁE75+ D.,EpstDasEgytDgyEqstDgsEqytD yﬁEaB) (127
|
and the Burnett coefficients by F(k,t)=(expk-[r(®X)=r(X)]),, (130
B = ! 12
apys™= 77 %, 5%k, IS0+ (128 which has been introduced in the study of diffusion by neu-

tron or light scattering techniqué¢4]. In the form(129), we
In the case of isochronismA(T=0), only the first term re- can recognize that the leading eigenvalue of the Frobenius-
mains in Eq.(127) and we obtain a discrete version of a Perron operator is nothing else than the dispersion relation of
known formula for the Burnett coefficief89]. However, in  diffusion. The diffusion coefficient can also be obtained from
the absence of isochronism, correlations between the jumf29), leading to the well-known Einstein formula. Similarly,
function and the return time function must also be taken intaaking four derivatives 0f129 with respect tck would give
account, which explains the presence of the extra terms witthe Burnett coefficients in terms of a known continuous-time
C andE,;z in Eq. (127). version of(126) [39].

C. Eigenvalues and the Van Hove function o .
] D. The second derivative of the eigenstate
We already mentioned that E(L19) can be used to cal- with respect to the wave number

culate the eigenvalue. If the return time functioé) pre-

sents bounded deviations around a positive and finite value, we may wonder if higher derivatives of the eigenstates
we may replace the sum over the times of flight by a givenyith respect to the wave number also exist. Taking the first
time t, and the sum over the jump vectors by the positiongerivative of the formal solutiori117), we obtain immedi-
vector traveled by the particle in the lattice over the titme ately the result(92) at the basis of the expression of the
In this way, the eigenvalue is given by the alternative expresnonequilibrium steady states. In a similar way, the second
sion[15] derivative is given by

1 1
Sc= Iim?ln(exp'k-[r((th)—r(X)]M: limHInF(k.t), ok, I, £) = lim expE " (9, akﬁawuak E&”’akﬁaﬁm).
t—o t—oo @ n—o @ @

(129 (131

in terms of the Van Hove incoherent intermediate scattering
function At k=0, we get
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are the positions of the centers of the disks. These vectors
belong to the triangular Bravais lattice' defined in terms of
the two basic vectors

d \/§d) (135

l,0=(d,0) and |01:(§,7
wherem andn are two integers. Accordingly, the reciprocal
lattice .~ introduced with the spatial Fourier transforms in
Sec. lll is also triangular with a hexagonal Brillouin zone of
area(31) given by

FIG. 2. Lorentz gas with a finite horizon showing the 12 disks to (2m?  8m?
which transitions are allowed by the geometry starting from disk |75 = m: B2 (136)
No. 0. 105loal  /3d
Between the collisions, the motion of the Lorentz gas is
” , ruled by the free-particle Hamiltonig28). The dynamics on
‘9ka‘9kﬁ‘ﬂ0(§):2Daﬁzl T(e™'8) the different energy shells only differ by a rescaling of the
= time in terms of the magnitude of the veloc|ty. Therefore

* - _ we can restrict ourselves without loss of generality to the
- aa(cp*'g)E agle '€). (132  energy shell where the velocities have a unit magnitude
=1 =1 |v|=1. On this energy shell, the phase space of the flow is
tridimensional composed of the two positions (x,y) e &
Here again, this expression is meaningless as a function band of the anglex of the velocity with respect to the axis:
may acquire a mathematical meaning as a distribution on te¢k,y,«). Accordingly, the velocity is given by
functions which are piecewise Hiter continuous and such v=|v|(cosx,sina) with a [0,27].
that(f),=0. The property of decay of multiple correlations  Let us consider a trajectoryr(t),v(t)]. In the phase
(116 guarantees the expressi@i'(g)&kaakﬁ¢0(§)>y to con-  space, the trajectory is piecewise linear between the colli-
verge. Therefore higher derivatives of the eigenstates witions. At each collisiofit;} ., the current position satis-
respect to the wave number may also be expected to exist #€s|r(t;) —I;|=1, wherel; is the center of the disk where the
distributions. collision takes place. The velocities before and afterjthe
collision are denoted, respectively, by andv{ ™). Denot-
ing the points of impact on the disks l{)yj}ff,w , the vector
normal to the disk and exterior to the disk at fltle collision

A. Definition of the dynamics is given by

VII. THE LORENTZ GAS AS A SUSPENSION FLOW

To illustrate the preceding theory, we consider the Lorentz r—1
gas where a point particle undergoes elastic collisions on n.=
hard disks which are fixed in the form of a triangular lattice

n Te plgne. Lhe dt|sks aLe :zlfsumed go have igad'ustequa][\With these definitions, the velocities before and after each
unity and we denote byt the Istance between the centers of o jision are related according to the law of geometric optics
the disks. For this system, Bunimovich and Sinai proved the

existence of a finite diffusion coefficient in the finite horizon V](+>:V1(7>_ 2nj(nj~v}’)), (139
regime when 2 d<4/4/3 (see Fig. 2[9]. In contrast, for
d>4/\3, the horizon affecting the particle as well as thewhile the trajectory between the collisions is
diffusion coefficient becomes infinite and diffusion is anoma-
lous. Ford<2, the point particle remains trapped in one of r()=rj+t—t)vi* for tj<t<t;,,. (139
the closed billiards formed at the interstices between the par-
tially overlapping disks. Here below, we consider the finite These equations define the flow in the phase space given by
horizon regime where diffusion is normg24]. the domainZ’ of the billiard and by the ranged,2=[ of the
The point particle moves in the plane and collides withvelocity angle.
fixed hard disks. The position vector is=(x,y). Elastic
collisions occur on the disks which are impenetrable so that B. Suspension flow
the allowed positions satisfy

(137)

The collision rule(138) and the trajectory equatioii39
=l >1, (133  allow us to reduce the flow of the Lorentz gas to its Birkhoff
mapping, as follows.
Each collision is uniquely characterized by the dislof
where the collision, by the arc of perimetey of the impact, and by
the anglen; between the outgoing veIociq{*) and the nor-
ln=Ml1o+ Nlg e & (134  mal at the point of impactn;:n;-v{")=cosp;=0. The
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Birkhoff coordinates (j ,v;) € 7’ are given by the aforemen-
tioned arc of perimeter; starting from thex axis and by the
velocity component; parallel to the border of the disk,

+)_

tj is a unit vector tangent to the disk at the point of impact
such that;-n;=0 and the basisn(t;) has the same orienta-
tion as the axesx(y).

The motion from a collision to the next is thus given by
the Birkhoff mappingé; 1= ¢(¢&;) which is area preserving
so that condition(l) and Eq.(18) are satisfied. Moreover,
condition(Il) holds for the mapping which is time-reversal
symmetric under the involutiod(r,v)=(r,—v) satisfying
(22).

The first return time functio(¢) is here given by the
time of flight between two successive collisions,

T(&)=1rjr1—ril, (141

which is equivalent to the length of the corresponding free

path since|v|=1. On the other hand, the jump function
a(¢) is given by a vector of the triangular Bravais lattice
(134 and(135. With these definitions, we can construct the
mapping(9), which controls the suspension flow of the Lor-
entz gas. Introducing the time coordinatbetween two suc-

cessive collisions, the complete set of coordinates of the sus-

pension flow is here explicitly given by
X=(&7)=(rv,7)

e[0,27[®]—1,+1[®[0,T({)[® . (142

PIERRE GASPARD

>

>

The original flow can be reconstructed from these coordi-

nates thanks to Eq13) where the vecton(¢) is the normal
vector (137). From the knowledge of the Birkhoff coordi-

nates and of the current disk, the position and velocity of the

particle at the collision can thus be recovered according to
n;=(cogj,sim;),
tj=(—sinr;,cos)),
ri=(cogj,sim;)+l;,
Vi =[cogr;+ 7)),sin(rj+ 7;)]
=[V1-vicog—v;sinr;,
V1-vfsinr+vjcog].
During the flights between the collisions, the isomorphism

between the coordinaté$42) and the original coordinates of
the particle is hence given by

cosy=cogr + 7)=1—v2cog —vsinr,

sina=sin(r + )= \1—v?sinr +v cog.

(143

COS + 7 COSx CoOsy

|+

S(r,v,1,h)= =(r,v),

(144

sinr + 7 sina Sina

where

(145

3n/2

n 2n
r

FIG. 3. In the coordinate§=(r,v) e[0,27[®]—1,+1[, rep-
resentation of the lines of discontinuities of the mappingeparat-
ing the subdomaingl46): (a) for d=2.3; (b) for d=2.15; (c) for
d=2.01. The integers are the labélof the disks reached at the
next collision, assuming that the particle is initially on the disk No.
0, as shown in Fig. 2.

C. Properties of the mapping

Here, we summarize some known properties of the
Birkhoff mapping of the Lorentz ga®9©-11,24.

In the case of a finite horizon, the particle on the disk at
the origin can only move to one of the 12 disks of the first
and second shells surrounding the central disde Fig. 2
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Therefore the domain of definition of the mappiggis di- The dynamical instability of the Lorentz gas can be char-

vided into 12 subdomains acterized by the largest Lyapunov exponent. For the trajec-

) - tory of initial conditionX= (¢, 7,1), this latter is obtained as
7=[02n[®]-1,+1[=U|=1, 12/7. (146

Examples of such subdomains are given in Fig. 3. On the 10T

borderso7 of these subdomains, each one of the functions AMX)= lim _f Bu(#X)dt, (147
e(£), T(§), anda(¢) defining the mapping9) is discontinu- To 4o

ous. Inside the subdomaing , these functions are smooth,

i.e., analytic. In particular, fo€E e 7}, the jump vectomr(¢)

is constant since it is given by the vector between the centershere the curvature of the expanding horocircle accompany-

of the disks 0 and. ing the trajectory(as defined in Ref[35)) is given by[10]
1
Bu(é,7)= 1 : (148
T+
2 N 1
V1-v3 1
- 2, 1
V1i-v?, 1
_ot+
2
+ .
1_U_2

where O<7<T(¢), T;=T(¢'¢), and v;=v(¢'é) with _ 1 dr dv (T(® 1
j=0,-1,—2,—3,.... Theexpanding horocircle is deter- :<Bu(§:7')>u:wf ?f T
mined by the past trajectory. Because the curvatlids) is v 0 + =
positive for all the trajectories when the horizon is finite, the By (&)
Lyapunov exponent of each trajectory is also positive and the
dynamics is hyperbolic. The first part of conditighl) is = ——(In[1+T(&)B " (&)1),, (152)
therefore satisfied. (M,

The curvatures immediately before and after the collisionyhich is a form of the Abramov formulEL9].

at ¢ are defined by, respectively, Furthermore, the tangent space of the area-preserving
(=) on 1 1 mapping ¢ can be decomposed locally into its stable and
By (§)=Bule &T(e 0], (149 |nstable directions. The unstable direction &at (r,v) is
iven by[10
BL" () =B,(£,0). (50 ° y[d]
v _
According to the ergodic property proved by Bunimovich d—ru=\/1—v [BY(rw)V1-v2+1], (152
and Sinai[9], the average Lyapunov exponent is thus given
in terms of the ergodic invariant measygeas where
1
B, (&)= . : (153
T_
) . 1
\/1_ng n 1
-2
2 N 1
Vi-v2, 1
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with the same conventions as in E{.48. On the other the unstable direction§l52) but singular along the stable
hand, the stable direction is given by directions(154). For the flow of the Lorentz gas, the non-
equilibrium steady state may be obtained from Bd)2), in

B 5 ey (+) 5 which the first term is a regular function which represents the
=—V1-vBg (r,u)Vvl-v°+1], (154  zyerage linear profile of concentration across the lattice. On
the other hand, it is the second term which is singular and
which represents the fluctuations around the nonequilibrium
steady state.

In order to give a representation to a distribution l{Rd)
we consider its cumulative function defined by applying the
distribution on the characteristic function

duvg
dr

in terms of the curvatur8(5+)(§) of the contracting horo-
circle, which is determined by an expression similati63
but for the whole future trajectorywith T_; replaced by
Tj*l andU,j by UJ)

The stable and unstable directions exist at every pooft
the domain of definition of the mapping. Nevertheless, the
stable and unstable directions have discontinuities inherited X<r,u>(§)=[
from the discontinuities of the mapping. These discontinui-

ties of the curvatures appear on a dense set of zero Lebesgue

measure because all the images or preimages of the bord&}§ich is also piecewise Hder continuous. The cumulative
of the subdomains, namely!(d7}), form discontinuities. function of the nonequilibrium steady state is therefore de-

This phenomenon is shown in Fig. 4. Because of these didined as
continuities, the dynamics is not structurally stable so that

1 for é€[0r[®]—1,0]
0 otherwise,

(155

the disk billiard is not an Axiom-A system. 7 _ :if' ,f” / ro
In spite of these differences with respect to Axiom-A sys- TN =X bg 4 odr 71dv CANE
tems, Bunimovich and Sin§®] and, more recently, Chernov (156
and co-worker$10,11] proved for the Lorentz gas the series
of ergodic properties which we require in conditigfl ). which has two components whether the gradient is inxtbe
(@) The Lorentz gas is & flow so that it isK mixing, in they direction,

mixing, and ergodig¢9].

(b) The decay of correlations with respect to the mapping * ‘
is fast of stretched exponential type so thi5) is satisfied Tx(rv)=— Z (X (Oale8),,
for piecewise Hter continuous functiongl1]. =1

(c) The central limit theoren16) and(17) holds[9-11]. .

(d) When the Lorentz gas has a finite horizon, both the p. B 5
functions T(¢) anda(¢) are bounded and the central limit ~/y(r'“>—‘j21 Xew(aye ), (157
theorem applies to them so that the diffusion coefficient is
positive and finite and the trajectories follow a standardgg that7,=g,.7x+0,7y . These functions, which are con-
Brownian process on large scalé. tinuous but nondifferentiable, are the analog for the Lorentz

_Since conditiongl)—(lll) hold for the regular Lorentz gas gas of the nonequilibrium steady state constructed by Tasaki

with a finite horizon, we can apply the spectral theory of thegnq Gaspard for the dyadic multibak@0,31.
Frobenius-Perron operator to construct the nonequilibrium  The functions(157) are depicted in Figs. 5 and 6 for two
steady states, the hydrodynamic modes, and the dispersigfifterent values of the interdisk distance. In the Lorentz gas,

relation of diffusion as a Pollicott-Ruelle resonance. the particle performs several collisions in each cell before
going to neighboring cells and diffusing. On the contrary, in
D. Nonequilibrium steady states the multibaker, the particle immediately goes to a neighbor-

In Sec. V we constructed the nonequilibrium steady stateld cell after one iteration. For this reason, the fractal nature

: . o of the curves defined by the cumulative functions is less
corresponding to a gradiegtof concentration in the form of apparent in the Lorentz aas than in the multibaker
Eqg. (94). Thanks to the results of Chern¢¥1], we obtain PP 9 )
the following theorem.

Theorem. In the triangular Lorentz gas with finite horizon, E. Diffusion and its dispersion relation
the nonequilibrium steady staig,(¢) is a distribution or In Sec. V we showed that the leading Pollicott-Ruelle
linear functional defined by Eq. (96) on piecewiseldd  resonance of the Frobenius-Perron operéiéy gives us the
continuous functions(€) defined on the domain (146) dispersion relation of diffusion. In particular, the diffusion

This result can be proved using the prope(§) of fast  coefficient is obtained from the second derivative of the ei-
decay of correlations which applies to the jump vea@f)  genvalues, with respect to the wave numberlat 0. Since
since it is bounded and piecewise Ider continuous. Con-  the triangular lattice is isotropic, the diffusion coefficient is
sidering a test functiofi(£) which is also piecewise Haer given by Eq.(107) with L=2.
continuous, the serie®6) thus converges absolutely, which = The eigenvalue itself can be obtained using the Van Hove
defines the nonequilibrium steady state as a linear functionafunction(lgo) and Eq.(129), which we used for a numerical

Q.E.D. _ evaluation of the dispersion relation depicted in Fig. 7. We
Since the forward dynamics tends to smooth out the probgpserve that the eigenvalue satisfies

ability densities along the unstable directions the correspond-
ing invariant measurejy(£) given by (94) is regular along s,=—Dk?, (158
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Tx(r,v)

0 /6 w3 w2 2n/3 0 /2 T 3n/2 2%

FIG. 5. In the Lorentz gas witll=2.3, representation of the
nonequilibrium steady states given by their cumulative functions
(157: (@) .7(r,v) for a gradient along the axis; (b) .7y(r,v) for

0 /6 /3 a gradient along thg axis. The cumulative functions are plotted in
the interval 6<r <24 for fixed values ob =—0.75,—0.5,—-0.25, 0,
T 0.25, 0.5, 0.75, and 1.
(b)

solution given by(117). As for the nonequilibrium steady

FIG. 4. In the Lorentz gas withi=2.3: (8 CurvatureB{) of  giates the distributions defining the eigenstates can also be
the unstable horocircle immediately before the collision given byrepresented by their cumulative functions as

Eq. (153 along the lineé= (r,v =0) (dots; a solid line joining the

dots is used to display the discontinuifiegb) Density plot of Zr0)= X)) v (159
B({") in the domain where €r< /3 and 0<v<1. The instability ’

is higher in the light regions than in the dark ones. The preimages ah terms of the characteristic functiofl55. The real and
the discontinuity lines appear in this plot. The first preimages arémaginary parts of these complex functions are depicted in

the discontinuities of the inverse mappipg * which are the lines Fig. 8. Expanding the eigenstate in Taylor series around
of Fig. 3 transformed by the time-reversal symmetry underk=0Q, the cumulative function becomes

(r,v)—(r,—v).

G(r,0)=(X(r.0)) vt KX (r )0 »
at small values of the wave numbkr The value of the
diffusion coefficient obtained by this method is in agreement
with the values previously obtained by other methods
[12,24). No deviation with respect t§158 has been ob-
served at small wave numbers beyond numerical errors so — M
that the Burnett coefficients should be very small. At larger A
values ofk, the eigenvalue, seems to encounter other sin- ) .
gularities down along the negative real axis which Suggestg\/e observe that the first term corresponds to the uniform

that the dispersion relation becomes either complex or ilProPability density representing the microcanonical en-
defined due to complex singularities, for instance, branc emblev for which the cumulative function is real and linear

cuts. in the coordinates € [0,27[ andv e]—1,+1[. The second

term is precisely the cumulative functigh56) and(157) of

the nonequilibrium steady state here evaluatedyfek. We

notice that the real part is determined by all the even deriva-
We have also investigated numerically the properties ofives while the imaginary part is determined by all the odd

the eigenstates, solutions of E@5), by using the formal derivatives. Therefore we have

Ekk- 2 o(k3
+2 '<X(r,v)ﬁk¢0>v+ ( )

+iTg—(r,v)+0(k?). (160

F. Cumulative functions of the eigenstates
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0.01
-0.02
-0.1 1 ( 1 .
0 T2 T 3n/2 2n -0.03 S s !

0 /2 n 3n/2 2n

FIG. 6. Same as Fig. 5 in the Lorentz gas wdtx 2.01.

FIG. 8. In the Lorentz gas withi=2.3, eigenstate}, corre-

o rfv+1) sponding to a hydrodynamic mode of wave number(0.1, 0) and

Re%((r,v)=T+O(k2), represented by its cumulative functior(r,v) given by Egs.
(159—(161): (a) real and(b) imaginary parts depicted in the inter-

val 0<r <2 for fixed values ofv =-0.75, -0.5, —0.25, 0, 0.25,

IMZ(r,0)=7gk(r,0)+0(k3), (16D 5 0.75. and 1.

in accordance with the real and imaginary parts of the eigen-

states of Fig. 8, as compared with the nonequilibrium steadjmaginary part of the eigenstate which is a numerical evi-
state of Fig. 5. This comparison illustrates that the nonequidence of the consistency of the theory.

librium steady state provides the leading contribution to the

0.002 , , VIIl. CONCLUSIONS
In this paper we constructed the hydrodynamic modes of
0d diffusion in a large class of spatially extended flows, which
includes Hamiltonian flows. The hydrodynamic modes are
e shown to be the eigenstates of the Frobenius-Perron operator
o 0002 associated with the Pollicott-Ruelle resonances. Moreover,
” we also deduced the nonequilibrium steady states corre-
0,004 sponding to uniform gradients of concentration. Under the
validity of several conditions, we showed that the nonequi-
librium steady states have a mathematical meaning as distri-
-0.006

butions thanks to the property of decay of correlations. We
prove this result for the Lorentz gas with a finite horizon in
which the required conditions are known to hold.

FIG. 7. In the Lorentz gas witd=2.3, dispersion relation of The construction is based on the Pollicott-Ruelle eigen-
diffusion s,=s(ky ,k,) given by Eq.(129) in terms of the Van Hove value problem for a special Frobenius-Perron operator of the
function. The eigenvalue is evaluated aldng(k,0) (squares, solid Mapping associated with the suspension flow. This
line); k=(0k) (crosses, dashed lingk= (k,k) (circles, solid ling. Frobenius-Perron operator is obtained by two successive re-
The three curves are consistent wij=— D (k2+k2) with the dif- ~ ductions. The first one uses a spatial Fourier transform to go
fusion coefficientD=0.25. We remark that the eigenvalsgpre-  from the lattice to one of its elementary cells while the sec-
sents a small imaginary paghot visible in the figurg due to nu- ond one uses the property that the flow is essentially con-
merical errors. trolled by a Poincarenapping:
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(&,7.1)— (& 1]k)—(&|s,k), (1620  forward semigroup defined fot>0. An antiresonance
with Rés, =0 corresponds to each Pollicott-Ruelle resonance
ﬁ)t_,(i){(_)qus, by time-reversal symmetry, which defines the backward

semigroup of application for the negative times0. The

which shows the chain of reductions. The last Frobeniuseigenstates of the forward semigroup are smooth in the un-
Perron operator is special because, on the one hand, it rétable directions but singular in the stable direction, but the
duces the dynamics of the flow to a dynamics induced by th&ituation is reversed for the backward semigroup. In this re-
mapping, while, on the other hand, it depends on the wav@ard, the present theory provides an explanation of the phe-
number associated with the modes in the infinitely extende@omenon of irreversibility at the level of the time evolution
system. of nonequilibrium statistical ensembles composed of infi-

The present work shows that this special Frobeniushitely many trajectories and represented by smooth probabil-
Perron operator may admit eigenstates corresponding to eity densitiesp. Irreversibility has here its origin in the dy-
ponential relaxation toward thermodynamic equilibrium. Annamical instability of the trajectories. This irreversibility at
explanation is here in order. Many recent works have beethe statistical level of ensemble dynamics turns out to be
concerned by relaxation in the sector of vanishing wavecompatible with the microscopic reversibility at the level of
numberk=0 which is important for the decay of correla- individual trajectories.
tions. In this sector, the leading Pollicott-Ruelle resonance On the other hand, the present construction of the non-
vanishess,=0, and corresponds to the invariant Lebesgueequilibrium steady states shows that the steady states are
measurer of the microcanonical ensemble. In this sector, thedirectly connected with the Green-Kubo relation and with
decay of correlations is controlled by the complex singulari-the validity of Fick's law. Here, we see that the nonequilib-
ties of the function (59) deeper in the comples plane rium steady states appear at the level of the first derivatives
below the leading Pollicott-Ruelle resonangg=0. These with respect to the wave number and the Green-Kubo rela-
singularities which are not known for the moment lead intion at the level of the second derivatives.

general to nonexponential decays of correlation functions in The present work extends a previous construction by
the sectok =0. Tasaki and Gasparf30,31 of the nonequilibrium steady

In contrast, we are here concerned by tleading States for the multibaker which are hence recovered. Indeed,
Pollicott-Ruelle resonance, but in the sectors with nonvanthe multibaker mapping is given by the area-preserving
ishing wave number&+0. This problem has not yet been baker map in the coordinatés=(x,y) so that the return time
systematically studied. It turns out that there exists a leadinfnction may be taken aB(¢)=1. In the multibaker, trans-
Pollicott-Ruelle resonancg which is the continuation of the POrt occurs along a sequence of squares as described by the
resonance,=0 as the wave number becomes nonvanishingfunctiona(é) =1 whether the jump is to the left or to the
This resonance characterizes an exponential relaxation to tf@ht depending on whether<Ox<<1/2 or 1/2<x<1. In this
thermodynamic equilibrium because it is negative. Sigce case, the nonequilibrium steady stat€0 is given by
is arbitrarily small ak—0, the relaxation rate becomes ar-
bitrarily long as expected for hydrodynamic modes of diffu-
sion when their wavelength increases. It is therefore not sur-
prising to find well-defined exponential behaviors at the level
of the special Frobenius-Perron operator which incorporateks cumulative function,
the wave numbek.

Whenk#0, the corresponding eigenstates are no longer __ I U R L s
absolutely continuous with respect to the Lebesgue measure To(& D)= JO dx Jo dy"¥g(x",y".1) =glxy+gxT(y),
but become singular measures or distributions defined on (164)
some smooth enough test functions. The distributions are
sufficiently regular to admit cumulative functions which we involves the so-called Takagi functiof(y), which is con-
plotted for the Lorentz gas. tinuous but nondifferentiable and has fractal properties. In

The construction of the eigenstates we propose is systenthe case of the Lorentz gas, E457) defines therefore the
atic and is not approximate so that it constitutes a construcanalog of the Takagi function in an infinitely extended bil-
tion of the hydrodynamic modes—which describe an expodiard.
nential relaxation to thermodynamic equilibrium—at the As we discussed elsewhef23,25, nonequilibrium in-
fundamental level of the Liouvillian dynamics. Moreover, variant measures with fractal supports can be used to define
our derivation of the Green-Kubo relation from the Ruelle-nonequilibrium states in the chaotic-scattering approach. In
Pollicott resonance of the Frobenius-Perron operator prothis approach, the fractal support tends to fill the whole phase
vides a fundamental justification of this famous relation inspace and becomes a plain support in the infinite-system
terms of the dynamics of relaxation to the thermodynamidimit. In this way, the nonequilibrium measures and escape-
equilibrium. The Burnett coefficients are also justified in thetime functions of the chaotic-scattering approach turn out to
same way. be related to the present nonequilibrium steady state as

In the present theory, the time evolution splits into two shown explicitly for the multibakef31].
distinct semigroups corresponding to forward and backward The simplicity of the expressiond02 and (103 of the
evolutions of nonequilibrium statistical ensembles reprenonequilibrium steady states suggests the generalization of
sented by smooth enough probability densitigs The the present results to the other transport and rate coefficients
Pollicott-Ruelle resonances with Be<0 are part of the in N-particle systems. Let us suppose that the gradient cor-

Py(6)=g1- 2 gale '6). (163



4400 PIERRE GASPARD 53

responding to the transport coefficiemtis given by the unit 0
vector g. The microscopic current corresponding to such a P(a)(X,t)ZP(“)(X,t)Jrf V. (xt+rdr, (168
process is denoted b} . A Helfand moment{( is asso- o
ciated with the microscopic current such that

357 =(d/d)) G ={G{ H}, where{ , } denotes the Pois- 4teq with the property and which obey the local conserva-

S?D“) bracke{41]. In the case of diffusiorGlng)=g-r and  {ion equationdp(®+V-j(@=0. In the case of diffusion,
Jg’=g-v wherer andv are the particle position and veloc- ,(®)— six—r(t)] and j®=v(t)5[x—r(t)] so that

ity [23]. The nonequilibrium steady state and its time-zyparev's local integral of motion turns out to be related to
reversed state are thus given in general systems by our invariant of motion(165 according to

wherep(® andj(® are the local density and current associ-

q’ga)(X):Gga)(X)+f0 Jga)((l)t)()dt, (165) \I’(gD)(I',V)=J (g-X)P(D)(X,O)d3X, (169)

(ff(“)(X)zG(”‘)(X)Jr f+mJ(a)(®tX)dt (166) as shov_vn b_y a strai_ghtfor_wa_rd c_alculation using properties of
g 9 o ¢ the derivative of Dirac distribution, as well ag0)=r and
i L . .~ Vv(0)=v. The present theory in which these invariants of
for a trajectory of initial condition at the phase-space pointyqtion are derived from the Liouville dynamics clarifies the
X={R,,P.tN_,. We should notice that the distributions interpretation of these quantities.
(165 and (166) are invariants of motion in the sense that |5 conclusion, this work brings a microscopic foundation
WI(X)=¥{I(d'X), as can be verified using the defini- of the hydrodynamic modes and of the nonequilibrium
tions of G andJ{" . This invariance is rendered compat- steady states in a large class of continuous-time systems,
ible with the presence of chaotic behaviors thanks to théncluding Hamiltonian flows. These modes which play a cen-
singular character of the states. Indeed, a theorem by Moséral role in kinetic theory turn out to be defined at the level of
asserts that there are no analytic invariant functions in thghase space in terms of mathematical distributions or,
presence of transverse homoclinic orbits as is the case heeguivalently, of singular measures. As a consequence, the
[42]. The presence of chaotic behaviors thus opens the walyydrodynamic modes and the nonequilibrium steady states
to new types of invariant of motion given by distributions. cannot be represented in general by density functions but by
The average current in the directieris given as one-half cumulative functions in the case of a Liouville dynamics.
the outgoing flux minus one-half the ingoing flux, which can The problem of the construction of the hydrodynamic modes
be calculated with the time-reversed steady state in analogyas been a major preoccupation in kinetic theory since the

with the case of diffusion treated here above, works of Boltzmann and Hilberf3,29]. This construction
(@) 1) (@) (@) 1 @) he_ls been restric_ted to th_e level of the kinetic _equations ob-
Je"=2(J" (X)W (X)) = 2(3" (X)W (X)) tained after the introduction of some stochastic approxima-
1 (4o tion which turns singular measures into regular ones. This
=-5 f <J§;V)(X)Jga)((th)>#dt: —ae-g, approximate procedure seemed until very recently to be an
- inherent limitation in nonequilibrium statistical mechanics.

(1677  However, we can see in the present work that such approxi-

mations can be avoided thanks to the recent developments in
where() , denotes the average over the equilibrium state andynamical systems theory.

where we used a change of varialble —t. This result is
obtained for an isotropic system under the condition of va-
lidity of the Green-Kubo relations. The resilt67) shows
that the average current is constant and given by the unit P.G. would like to thank Professor G. Nicolis for support
gradient multiplied by the transport coefficient in agreemeniand encouragement in this research. The author also thanks
with Fick’s and Fourier’s laws, or the laws ruling viscosity. Dr. S. Tasaki for inspiring discussions on nonequilibrium
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construct nonequilibrium steady states associated with vigProfessor J. R. Dorfman who introduced him to Helfand’s
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