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Encoding messages using chaotic synchronization
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We discuss a general approach for chaotic synchronization of dynamical systems that is based on an
active-passive decompositigAPD) of given dynamical systems. It is shown how this approach can be used
to construct high-dimensional synchronizing systems in a systematic way using low-dimensional systems as
building blocks. Furthermore, two methods for encoding messages are considered that are both based on
synchronization. Using these methods the quality of the reconstructed information signal is higher and the
encoding is more secure compared to other encryption methods based on synchronization. The main ideas are
illustrated using experimental and numerical examples based on continuous and discrete dynamical systems.

PACS numbes): 05.45:+b, 43.72:+q, 47.52:+j

[. INTRODUCTION the information signal whereas the autosynchronization ap-
proach presented in Sec. lll B may lead to implementations
Synchronization of periodic signals is a well-known phe-that are more robust with respect to noise. For both methods
nomenon in physics, engineering, and many other scientifigumerical and experimentéanalog computerexamples are
disciplines. However, even chaotic systems may be linked igiven that are based on an APD of the well-knowns&ler
a way such that their chaotic oscillations are synchronizedsystem. Section Ill C contains a comparison of the APD-
In particular the case of one directional coupling has beefased encoding methods with other encryption methods
investigated very intensely during the last yefts5] be-  based on synchronization. In Sec. IV we demonstrate how
cause of its potential application in communication system&ctive-passive decomposition may be used to construct sys-
[6—17]. There, an information signal containing a message i¢ématically high-dimensional systems with hyperchaotic at-
transmitted using a chaotic signal as a broadband carrier arftgctors that are very useful for private communication. A
the synchronization is necessary to recover the informatiofealization of the APD and the exact encoding method in the
at the receiver. Different implementations of this basic idescontext of discrete dynamical systems is given in Sec. V.
have been suggested. For example, in Rg®,11] the in-  There we use as an example a random number generator for
formation signal is added to the chaotic signal and in Refsencoding an information signal. In this case the chaotic car-
[8,10] a parametric modulation is used for the transmissiorfier is very high dimensional and difficult to decode without
of digital signals. Other approaches to use chaotic dynamictie knowledge about the dynamical system used.
for communication include controlling techniques to encode
binary message$18] and methods that make use of the [I. SYNCHRONIZATION OF CONTINUOUS SYSTEMS

quick decay of the correlation function for chaotic signals ) ] ) ]
[19]. In this section the basic concept and some terminology

In this paper we discuss a general approach for construc@'® introduced using continuous dynamical systems. The
ing synchronizing chaotic dynamical systems and two im-generalization to discrete systems is straightforward and will

proved methods for encoding messages using chaotic syR€ discussed in Sec. V.

chronization[12—16. The basic idea of the synchronization

approach consists in a decomposition of a givehaotig A. Constructing synchronizing systems by active-passive
system into an active and a passive part, where different decomposition

copies of the passive part synchronize when driven by the c,ngider an arbitrarji-dimensional(chaotig dynamical
same active component. The general description of thi§ystem

active-passive decompositioAPD) and some examples for

illustration are given in Sec. Il A. The relation of this ap- z=F(2). (1)
proach to the most important methods for controlling chaos

and for synchronization is discussed in Sec. Il B. In Sec. llIThe goal is to rewrite this autonomous system as a nonauto-
we show how synchronization may be used to encode mesromous system that possesses certain synchronization prop-
sages in a dynamical way where the information is not juserties. Formally, we may write

added to some chaotic carrier but drives the dynamical sys-

tem of the transmitter. Such a dynamical modulation yields x=F(x,s), (2)
more secure encoding and may also be used to avoid the

typical distortion errors that occur for almost all previouswherex is the new state vector correspondingztands is
communication schemes based on synchronizai®g)]. some vector valued function of time given by

Two different encoding-decoding schemes are discussed. The

method used in Sec. Il A enables an exact reconstruction of s=h(x) 3)
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or TABLE |. Examples of active-passive decompositions of the
Rossler systen{6). The conditional Lyapunov exponenks were
s=h(x,s). (4)  computed with respect to the natural logarithm.
The pair of functiond andh constitutes a decomposition of x;=2—4x;+3(x,+X3) +s A =-0.08
the original vector fieldF (see also the example that fol- X,=—x;—X3 S=X;X—3(Xp+X3) A,=-—0.08
lows). The crucial point of this decomposition is that for x;=x,+0.45; Nz=—3.39
suitable choices of the functidm any system
) )‘(1:2+X1(X274) )\1:7043
y=f(y.s) ) x,=—2x,—2xs+s S=X;+ Xp+ X3 A,=—0.52
L . X3=Xo+ 0.45 A3=-3.15
that is given by thesamenonautonomous vector field the > 2 3 3
tst?mec.jrllvmlg S, :)L:;tqg;ﬁgrer]rvErlﬁbleOS);, styncokowo'\r;llzes with =24 Xy (Xp—4) A= —0.12
e original systeng2), i.e.,||x—y||—0 for t—cc. More pre- K= — X, — X S=xs Ap= —0.22

cisely, synchronization of the pair didentica) systems(2) e _
and(5) occurs if the dynamical system describing the evolyXs= X2t 0.4% Ag=—3.20
tion of the differencee=y—x,

o 2
e=f(y,9)—f(x,9)=f(x+e,9 —f(x,9), Y1=274Y1t Y2~ Sy,

possesses a stable fixed point at the origin0. In some Y2= Y27 YstS,

cases this can be proved using stability analysis of the lin- o=y, +0.45

earized system for smad, Ya=Y2rD.4Ys.
) In this case the differential equations for the eresry—x
e=Df(x,s)-e read

or using(globa) Lyapunov functions. In general, however, e,=—4e;+ey(Xo+Yy,—S),

the stability has to be checked numerically using the fact that

synchronization occurs if all conditional Lyapunov expo- €,=—€,— €3,

nents of the nonautonomous systé are negative. In this

case systen(2) is a passive system and we call the decom- e;=e,+0.4%;.

position an active-passive decomposition of the original dy-
namical system(l). The technical notion of conditional The decompositiori7),(8) of the original differential equa-
Lyapunov exponents was introduced by Pecora and Carrofion (6) yields a stables,-e; system with complex eigenval-
[1] in order to study the synchronization of subsystems. Irnies—0.275+10.474375. Thereforeg, ande; converge to
the following we will show that the APD provides a unifying zero fort—cc and the differential equation fae; may for
and generalizing framework for their approach and othethis limit be written ase; = —4e; i.e., the difference; also
methods for synchronizing and controlling of chaotic sys-vanishes and the and they systems synchronize. Note that
tems. this proof holds for arbitrary bounded functiosét). This
Example: The Rssler systemAs an example for the feature is of importance for applications in communication
active-passive decomposition introduced above we will us¢hat will be discussed in Sec. Ill. Other APD’s of the $ter

in this paper the well-known Rsler system system that yield synchronizing chaotic systems are given in
Table I.
21=2+2,(2,—4), Instead of decomposing a given chaotic system one may
also synthesize it starting from a stable linear system
Z,=—2,— 3, (6) x=A-x given by some matriA where an appropriate non-
linear functions=h(x) is added such that the complete sys-
.23222"‘ 04&3 tem

An APD of the Rasler vector field is for example given by X=A-X+s

is chaotic[13]. It is easy to verify that in this case the error
dynamics is given by the stable systemA - e and synchro-
nization occurs for all initial conditions and arbitrary signals
s. In this way synchronized chaotic systems may be designed
with specific features for applications.

).(1:2_4)(1"' Xg_SXZ,
Xp=—Xp—X3+s, (7)

5(3: X2+ 045(3

B. Comparison with other methods for synchronizing and

with controlling of chaos

S=Xy— X3 (8) In the following we briefly discuss the relation of the APD
to other methods for synchronizing and controlling chaotic
and systems.
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be someexperimentgl system that is driven by some force

The most popular method for constructing synchronizingt- The task is to definéd such that the dynamics of this

(sub systems was introduced by Pecora and Carrd]l
They decompose a given dynamical system,

u=g(u),
into two subsystems,
V=0y(V,W),
W= gy (V,W)

with v=(uq, ...,u) and w= (U1,
shown that any second system

...,uy). It can be

W =g, (v,w’)

that is again given by the same vector figlg, the same
driving v, but different variables w' synchronizes
(|w"—w]|—0) with the originalw subsystem if the condi-
tional Lyapunov exponents of the system are all negative.
The coupling is one directional and thhesystem and thev

system are referred to as tdeve systenand theresponse

systemrespectively. It is easy to see that the APD approac

includes this scheme if we use Ed) with

S <« Vv, h < Ovs
X < w, f < g
y <« w.

system converges to some goal dynamics that is given by

v=G(V). (12)
In his work Hibler proposed to use
H=G(v)—E(V). (13)

With this choice controlling(i.e., [[u—v||—0 for t—) is
possible if the conditional Lyapunov exponents of Etfl)
are all negative. The connection betweenbléu's method
and the APD becomes more clear if we use Ed@) to re-
write Eq. (12) for the goal dynamics as

v=E(V)+H=2Z(v,H).

Then Hibler's method for controlling may be expressed in
the framework of the APD in the following way:

X <V,

y <<

sh < H,

u f < Z.

¢n his original work Hibler admits only additive controlling
orces, but this can of course be generalized to parametric
forces[21]. The main difference between Hier's method

and the APD consists in the goals: controlling a given ex-
perimental system versus encoding messages using synchro-
nized systems. For the latter we may freely choose suitable
dynamical systems and decompositions. Even more, the mes-
sage to be encoded drives thesystem(see Sec. I), which

However, in the case of Pecora-Carroll synchronization °”|3€:orresponds to a nonautonomous goal dynamics.
a finite number of possible decompositions exists, which is

bounded by the number of different

In the case of the Rasler system, for example, only the
following decomposition into a drive system,

5=X,+0.45, (9)
and a response system,
).(1=2+X1(X2_4),
: (10)
X2: —Xl—S,

leads to synchronizatiopl]. On the other hand, with the

subsystems
N(N—1)/2. In general, only a few of the possible response
subsystems possess negative conditional Lyapunov expo
nents and may be used to implement synchronizing systemg

3. The method of Pyragas

_ Finally we would like to mention the controlling method

f Pyragas [22] where some function of the type
c'(uj(y)—v,-(t)) is added to thgth component of the vector
field u=g(u) of the system to be controlled. The parameter
¢ has to be chosen suitably and the functigyt) is, for
example, a prerecorded signal from the unperturbed system
or a second identical system=g(v). The controlling force
used by Pyragas is a special case of the so-called modified
method of Fujisaka and Yamadid] that was introduced by
Brown, Rulkov, and Tracy[23]. It differs from Pyragas’
method only in the sense that not only are scalar functions
used for the driving but multidimensional couplings
A(u—vV), whereA is some coupling matrix. In general this

more general decomposition discussed in this paper mar@”d of feedback controlling method may thus be written as

different pairs of synchronizing systems may be constructed

(see, for example, Table).l Therefore, the APD may be

u=g(u)+A(u—v).

viewed as a generalization of the method of Pecora and Cafrhe relation to the APD is given by:
roll that leads to a larger variety of realizations for chaotic

synchronization.

2. The method of Hiler

The method for constructing synchronizing systems by
active-passive decomposition is also related to the control-

ling method introduced by Hiler[20]. Hibler proposed the
following scheme. Let

U=E(u)+H (11

SX < Vv,

y A u,
f(x,9) < gv)+A(v—v)=g(Vv),
fy,9) < g(u) +A(u—v).

In the previous discussion of synchronization methods, the
function s was assumed to be vector valued in general. For
the examples and in the following, however, we will consider
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only cases with scalar signadsthat are most interesting for  (a)
practical applications of synchronization in communication.

Ill. ENCODING INFORMATION SIGNALS

The synchronizing systems obtained using the APD de-
scribed in the previous section may be used to build
transmitter-receiver systems for encoding and masking infor-
mation signals. In the following we describe two methods
that possess different features that may be useful for practica
applications.

A. Exact reconstruction of the information signal

With the first method12-14 the information signal is
included in the functiorh describing the scalar signal If
h is invertible with respect to,

i=h"(x,s,s),
then the information recovered at the receiver,
iR: h_l(yysr-s)a

converges to the original informatianif the transmitter x
system and the receivery( system synchronize.

To demonstrate the proposed method for encoding mes
sages experimentally we have implemented the following de-
composition of the Rssler systent6) on an analog computer W me T
(Telefunken RAT 700D

L=—

transmitter: FIG. 1. Chaotic oscillations of a single experimentalsRer
_ system implemented on an analog comput€elefunken RAT
X1=2+X1(X,—4), 700. (a) Time seriesx;. (b) Power spectrum of the time series
shown in(a).
XZZ _Xl_X3, (14)

).(3:X2_X3+S;

tively. Note the high signal-to-noise ratio of 40 dB, indicat-
ing a good quality of the reconstruction. Figure 4 shows the

transmitted signal: experimental results for a sinusoidal signal with varying fre-
quency, i.e., drequency sweepAgain the information can-
s=1.45;+i; (15  not be detected in the transmitted sighBlg. 4(@)] or its
) power spectruniFig. 4(b)]. The quality of the reconstructed
receiver: information signali [Fig. 4(c)] is for all frequencies quite

y1=2+yi(y,—4),

Yo=—Y17 Y3, (16)
Y3=Y>—Yy3ts.

Figure Xa) shows a typical chaotic oscillation of the experi-
mentally implemented Rasler system without external infor-
mation signal (=0) and Fig. 1b) the corresponding power
spectrum. In Fig. 2 the variabbe, of the transmitter is plot-
ted versus the corresponding varialgleof the receiver for
i=0. The resulting curve lies on the diagonal indicating the
synchronization of the transmitter and the receiver. Figure 3
shows the results for a sinusoidal information signal. Neither
in the transmitted sign4Fig. 3(@] nor in its power spectrum
[Fig. 3b)] is the sinusoidal information signal easy to detect.
Only a small peak is visible in the spectrum at the frequency

good and the corresponding power spectifiig. 4(d)] dif-
fers only for high frequencies from the original spectrum

of the sine function, which is not higher than the other peaks FIG. 2. Synchronization of the two experimental Rter sys-
of the chaotic broadband spectrum. Figurés) 3nd 3d)  tems(14)-(16) without information signal. Plotted are the variables

show the recovered signig} and its power spectrum, respec- x, vsy,.
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FIG. 3. Experimental encoding and decoding of a sinusoidal information sifmalsing the systemgl4)—(16). (a) Transmitted signal
s(t) =1.455(t) +i(t). (b) Power spectrum of the transmitted sigrsét). (c) Recovered informatiomg(t) = s(t) — 1.45/5(t). (d) Power
spectrum of the recovered informatiog(t).

(not shown here Note that the spectrum of the transmitted 5<1=2—4x1+x§—sx2+i(t), 17
signal[Fig. 4(b)] is very similar to the spectrum of the single

Rossler system shown in Fig(t). An important feature of Xo=—X,— X3+,

this example is the fact that the spectrum of the information

signal[Fig. 4(d)] and the spectrum of the chaotic oscillations X3=Xp+0.455;

of the Rmsler systen{Fig. 1(b)] are located in approxi-
mately the same frequency range. Therefore, it is impossiblfansmitted signal:
to separate them using standard linear filters.

S=Xy—Xq,; (18)
receiver:

B. Information reconstruction using autosynchronization y1=2—4y;+y5—Sy,+Vs,

The second method for encoding and decoding a message Vo= —Yo—Y3+S,
using chaotic dynamical systems is basedaatosynchroni-
zation Autosynchronization means that the second dynami- y3=Y,+0.45/;, (19
cal systentthe receivermay adapt its parameters to those of
the first systentthe transmitteérusing an additional feedback y,=a(sg—5),

loop. The controlling force of the feedback loop depends on
the signals(t) from the transmitter and an analogous signalVheresr=y,—Vy1, ir=Y4, anda is a free convergence pa-
sg(t) that is derived from the state variables of the receiverfameter. For the differences=y,—x, (k=1,2,3) and
In the case of synchronizaticaft) equalssg(t) and the con- €4=Y4—1i the following differential equations hold:
trolling force becomes zero. To illustrate this method we
start from the APD(7),(8) of the Rasler system given in
Sec. Il A. The information signal’t) is injected into the first
equation of the transmitter but ot included in the trans-
mitted signals(t). The resulting communication scheme can e;=e,+0.45%;,
be summarized as follows:

Transmitter: e,=a(sg—s)—di/dt.

e1=—4e;+ey)(Xaty,—9) ey,

e=—e,—e;,
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FIG. 4. Experimental encoding and decoding of a sinusoidal information dignatith periodically varied frequencffrequency sweep
using the system@l4)—(16). (a) Transmitted signad(t) = 1.45¢(t) +i(t). (b) Power spectrum of the transmitted sigsét). (c) Recovered
informationig(t) =s(t) — 1.45/5(t). (d) Power spectrum of the recovered informatiqt).

As in example (7) the e,-e; subsystem is stable and X1=2+X1(Xy—4), (21
e,,e3—0. In the limit t—o we thus obtain a two- _
dimensional system that may be written as Xo= —X1— X3z,

X3=Xp—Xg+S+i;
e = _491_941 . .
transmitted signal:

e,=a(sg—s)—di/dt

s=1.4%5; (22)
> receiver:
é4+4é4+ae4=—4%_3_:_ (20 3./1:2+Y1(y2—4),
Y2=~Y17 Y3,
The variablee,=y,—i=ig—i describing the reconstruction Ya=Y2~YatstYa, (23
error is thus governed by the well-known differential equa- Va=a(s—sp),

tion (20) for a damped linear oscillator. If the information

signal is constantdi/dt=0) the reconstruction erra, con- ~ Wheresg=1.45/; andir=y,. Note that in contrast to the
verges exponentially to zero, oscillating with a frequencysimilar example given in Sec. Il A here the transmitted sig-
Ja—4 if a>4. The error remains small if the information nal is not a sum of a chaotic signal and the information
signal changes only slowly compared to the time scale of théignal. Therefore, if is, for example, a pure sinusoidal sig-
error dynamics. In principle the error of this example can behal there is no additional peak in the power spectruns of
estimated quantitatively using the theory of linear systems. Acompare Fig. &)]. Another difference from the method dis-
numerical example where the information signal is given bycussed in Sec. Ill A'is the fact that here the reconstructed
a triangular information signal ara= 10 is shown in Fig. 5. Signalir=Yy, follows the variations of with some delay or

This encoding method was also implemented on the analotjertia and is permanently in a transient state. This can best
computer using the following systems: e seen for a rectangular information signal as shown in Fig.

Transmitter: 6. After each change of the signigt) [Fig. 6(a)] the recon-
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(2) robust with respect to noise. A more detailed investigation of
2] this problem will be given elsewhere. Furthermore, it is pos-
0 sible to use autosynchronization to encode several informa-
s 5] tion signals using aingle chaotic carrief24].
_4 -
1 C. Comparison with other encryption methods based on

0 50 100 150 200 synchronization

The APD-based methods for encoding messages using
(b) o024 synchronization differ from previously suggested schemes
E [1,8,9,17 in the fact thathe information is not just added to

0.1 : . : :
i 3 a chaotic carrier but also drives the dynamical system con-
R OE stituting the transmitter This has some important conse-
=-0.17 guences. With the exact encoding meth@&kc. Il A) the
-io2tr—r—vr——v—r——g information can be recovered at the receiver without any
0 50 100 150 200 distortion errors. In contrast, if the information signal is just
added to a chaotic signal, the receiver can only generate an
(©) 0.01+ approximation of the original state variables of the transmit-
3 f—f— o e ter, because its dynamics is also influenced by the added
] \ | ‘ l ‘ information signal, which is not the case for the dynamics of
li—igl 10_3—5 l ’ the transmitter. The resulting distortion error vanishes only if
] the amplitude of the information signal is vefinfinitesi-
o— mally) small. If, however, the amplitude of the information
0 50 100 150 <00 signal is very small then it is in general very sensitive to any

noise in the transmission channel. Even worse, the transmit-
ted signal consists in this case mainly di@v-dimensional

FIG. 5. Numerical encoding and decoding of a triangular infor- chaotic signal that can be modeled using time delay embed-
mation signali (t) using the communication syste(t7)—(19). (a) ding and then be subtracted from the transmitted signal to
Transmitted signas(t). (b) Recovered informatiomg(t)=y,. (c)  Obtain the information signal. This can be done efficiently
Differenceli(t) —ig(t)| between the original and the recovered in- using methods for nonlinear noise reducti@3] where the
formation signal. information signal is in this case treated as noise. Of course,
such encoding is not very secure and therefore not useful for

structed informatioriFig. 6(b)] needs some time to converge Privaté communication. The synchronization and encoding
to the new value. Similar to the first example the transient i$chemes discussed in this paper try to avoid these drawbacks
approximately exponential and is given by the time scale oPecause they yieltexact reconstructions of the information
the error dynamics. In any practical application one shoulcfignal based on a transmitted signal that is more complicated
therefore use a chaotic system that oscillates with frequernd high dimensional. Note that also the decomposition of
cies that arémuch higher than the characteristic frequenciesPecora and CarroflEgs. (9) and (10)] can be used in this

of the information signal. In this case any variation of S€Nse to implement the improved encoding methods. One
y4=ir depends on many oscillations of the transmitted Sig_3|mply may add the information _S|gnal to the right-hand side
nal; i.e., the transmission becom@ery) redundant. The re- ©f EQ. (9) for example. The receiver then has to generate the
dundancy, however, can be exploited to reconstruct the infoemporal derivatives from s in order to recover the informa-
mation almost exactly and to make the communication mordiOn asir=S—y,+y,. Another possible application consists

in encoding digital(binary) informations by switching be-
tween different chaotic sources. In contrast to schemes based
on Pecora-Carroll decompositiph0], with the APD it is not
necessary to use a cascade of two subsystems in order to
verify the synchronization in the receiver. It suffices to com-
pute a new “transmitted signalSz from the state variables

of the receiver and compare it with the actually received
signals.

The practical question of robustness of the synchroniza-
tion with respect to parameter differences and additional
noise will be discussed in detail elsewhere. First simulations
yielded results that are comparable to analogous investiga-
tions for Pecora-Carroll synchronization.

IV. CASCADED SYSTEMS

FIG. 6. Experimental encoding and decoding of a rectangular For encoding messages it is desirable to use high-
information signal (t) using the communication systef@1)—(23).  dimensional chaotic carriers in order to make the decoding as
(@) Information signaii(t). (b) Recovered informationg(t) =y,. difficult as possible. In the following we describe a strategy
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transmitter

information
Slgl%“ N x4 = fa(xa,84) 4, %p = fp(xp sB) 3B, x¢c = folxe,sc) so, | s,
sq4 = ha(xa,9) sp = hg(xp,s4) s¢ = he(xc,sB)
transmitted
. signal s
recovered receiver
information
SIg?ilZR ir |Ya = falya da) <§_A Y = fBEYngB) <§_B Vo = ng}’Cng) (§_c oS
ig = hy'(ya,84) 84 = h3'(ys 3n) 88 = h3'(yosc)

FIG. 7. General scheme for constructing high-dimensional communication systems. The synchronization of the transmitter and the
receiver is based on the mutual synchronizatioithefre, threglow-dimensional chaotic systems that constitute their building blocks.

to construct systematically high-dimensional synchronizing
systems using low-dimensional building blocks. The idea is
to use the synchronization properties discussed above in a
series or cascade of systems as illustrated in Fig. 7. If all
pairs of systems fo(Xa,Sa)—fa(Ya.Sa), fe(Xg,Se)—
fe(Ys,Sg): fc(Xc,Sc)—fc(ye,Sc), etc. synchronize then the

information can be recovered at the receiver as (a)
0.5
ir=ha"(Ya,50) =ha'(Ya.hg (Vs .38)) i ol
=ha*(ya.hg'(ys.hc'(¥c . 8)) =H(y.9), 054
0 200 400
wherey=(ya,Yg,Yc) denotes the state of the complete re- t
ceiver. The low-dimensional systefigX,,Sa), fz(Xg,Sg), (b)
fc(Xc,Sc) constituting the building blocks may be different
systems or three identical copies of the same system. As an 0
example we consider here the latter case where the APD of s
the Rasler system given in the last row of Table | is used for -5
each block with ' :
0 200 . 400
Sou= h(X,Si,) = X3+ 0.25;, .
(c)
0.5
The factor 0.25 is necessary to avoid divergence of the per-
turbed Raesler systems. This problem is a special feature of ip o
the Rasler system and can be avoided by using dynamical
systems that are stable for all initial conditions. Figure 8 -0.54 . . . .
shows an example where the information signal is the spoken 0 200 400
word “24” recorded with a microphoné€l6 bit resolution, t
sampling rate 8000 HzTo verify the fact that the transmitter () 10-3
possesses a hyperchaotic attractor ifet0 we have com- a3 T
puted the (ordinary Lyapunov exponents of this nine- 10_5?
dimensional system. The result are three positive exponents [i—ig| ig_s’i
(0.112,0.082,0.080 two vanishing and four negative expo- 10_71
nents (—0.011-2.86,—2.93,—3.18). The Lyapunov di- 10_81
mension of the hyperchaotic attractor thuis=6.09. 0 ' 200 ' 400
Similar to the cascaded systems presented here it is also t

possible to use low-dimensional chaotic systems in parallel

in order to construct high-dimensional synchronizing sys- g g. Numerical simulation of a high-dimensional communi-
tems. Furthermore, the APD approach allows also to includ@ation scheme based on a cascade of three chadsisl®systems.
(lineav filters in the definition ofh in a way that the trans- (g) Information signali(t) = spoken word “24.” (b) Transmitted
mitted signals fulfills, for example, some given constraints signals(t). (c) Recovered information signag(t). (d) Difference
for the bandwidth of the transmission channel. These genefi(t)—ig(t)| between the original and the recovered information
alizations will be discussed in more detail elsewhere. signal.
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V. SYNCHRONIZATION OF DISCRETE SYSTEMS for m=1, ... N. Using the error variable=x—y the error

In this section we consider the APD of discrete dynamicaldynam'CS may be described by

systems and give two examples for encoding schemes that en(N+1)=a,(Xm(N)—Yn(n))(mod 1),
yield exact reconstructions of the information signal.
Encoding information signaidn general the communica- = apen(n)(mod 1).
tion scheme discussed in Sec. Il A can for discrete systems
be summarized as follows: Since| | <1, e,— 0. Therefore, the transmitter and the re-
Transmitter: ceiver synchronize globally, i.e., for all initial conditions. For
n—oo the information is recovered as
x(n+1)="f(x(n),s(n)); (29 .
transmitted signal: ir(N)=s(n+1)—s(n)— 21 Ym(n)(mod 1).
o

S =h(x(n),i(m); Note that for this example one can use any transformation

h for s(n+1)=h(x(n),s(n),i(n)) provided only that it can
be inverted uniquely for(n) and yields a chaotic system for
s(n+1)=h(x(n),s(n),i(n)); (25 i=0.
Example 2: Discrete variables from a finite alphabior
receiver: our second example we assume that the state variables of the
transmitter and receiver, the information signal, and the
y(n+1)="f(y(n),s(n)), (26)  transmitted signal are letters in some finite alphabet
{0,1,2 ... L—1}. The equations of the transmitter are

or

wherex(n),y(n) are N-dimensional vectors ang,,Yn,S,i
el with ICIR or 1={0,1,2 ... ,L—1}. As in the continu- xy(n+1) = s(n) (mod L),
ous case we assume the followirig. The dynamical system _

f has a finite attractor. If the scheme is used for encoding Xm(N+1) = Xm-4(n) (mod L)
information this attractor should be chaotic fer 0. (ii) The
transmitter and the receiver synchronize, ién)—x(n) for
n—oo. (iii ) The informationi can be obtained uniquely from N

the equation for s(n); i.e., there exists a function s(n+1)=ags(n)+ 2 amXm(n)+i(n)(mod L).
i(nN)=h"1(x(n),s(n),s(n+1)). If the transmitter and the m=
receiver synchronize the recovered information

for m=2,... N. The transmitted signal is given by

W|th a0—14 a,= 129 ay= 35 Ct’3—58 ap= 24 a5—119
iR(n):hil(y(n),S(n),S(n‘i‘l)) aa—_25 a7—31 ag- 55 ag—l N= 9 andL=251. The

receiver may be written as
converges to the original messaigbecause/— x.

Example 1: Continuous variablesn our first example, yi(n+1) = s(n) (mod L),
the equations of the transmitter read Ym(n+1) = yn_1(n) (mod L),
Xm(N+1)=amXm(n) + Brs(n)(mod 1) with m=2,... N and the recovered information is com-
. ) puted as follows:
for m=1,...N where the transmitted signal
s(n+1)=h(x(n),s(n),i(n)) is given by N
. ir(n)=s(n+ 1)—aos(n)—m2l amym(n)(mod L).

s(n+1)=s(n)+ >, Xpm(n)+i(n)(mod 1). o
m=1 The error dynamics is given by

The range of the modulo function (mod 1) [i§,1) and e;(n+1) = 0 (mod L),

am,Bm are parameter§eal numberssuch thaje,,| <1 and e (n+1) = e, 4(n) (modL)

B> 1. The first conditior e,y <1 assures the synchroniza- " m-t

tion between the transmitter and the receiver, while choosingor m=2, ... N and it is easy to verify that, independently

Bm>1 we construct a hyperchaotic discrete dynamical sysof the initial values of the state variables of the receiver, all
tem. In this case the transformatior(n)=h"'(x(n),  error variables equal zero aftéf time steps. As a conse-
s(n),s(n+1)) is given by quence, the recovered information sigma(n) equals the
original signali(n) for all n=N; i.e., the firstN transmitted

" digits are arbitrary. Note that in contrast to the previous ex-

H(n)=s(n+1)=s(n)- 2:1 Xm(n)(mod D). ample, here perfect synchronization is achieved after a finite
number of time steps. The main properties of this example
The equations of the receiver are are listed below:

(i) Fori=0, this model is a pseudorandom generator. The
VYm(N+1)=anym(n)+ Byrs(n)(mod 1) choice ofL and the other parameters determines the quality
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transmitter, except fows. The original informatiori(n) and
() ] the recovered messagg(n) are i
] practically uncorrelated. To
0.057 demonstrate the dependence on parameter mismatch Fig.
¢, (n) 04 9(b) showsC;; (0) versusas. The values of the cross co-
® 0 05_5 variance are very small except for the case where the param-
Rt eters of the transmitter and the receiver are exactly the same
o - 160 T 7 Ta200 (as5=119).
n (i) The initial conditions of the state variables of the
(b) transmitter and the receiver can be chosen completely at ran-
17 dom. If two initial conditions are different, then the transmit-
0.8 ter generates two different signag(n) ands,(n) for the
C.. (0) 0.6 same informatiori. Let us denote the initial conditions for
TRt 0.4 s, and s, by x}(0) and x?(0), respectively. Figure @)
Of)‘. . e shows Cy s (n) for x3(0)—x54(0)=1 and x5(0)=x2(0),
6 7 160 =200 m# 4. In general, the transmitter may form as many different
] transmitted signals for the same information as different ini-
(c) tial conditions(orbits) exist. Therefore, a given message may
0.053 be encoded in this case irl'= 251" different ways.
] Furthermore, this example may also be written as
Cslsz(n) 0
—0.05] s(n)=F(s(n—1),s(n—2), ...,s(n—=N))+i(n)
— 17—
0 100 n 200 and the receiver recovers the information then as
FIG. 9. Properties of the discrete communication scheme using  1r(N)=8(n)—F(s(n—1),s(n—2),...,s(n—N)).

variables from a finite alphabdexample 2. The values of the
nonvanishing parameters arg=14, a;=129, a,=35, a3=58,
a,=24, a5=119, ag=25, a;=31, ag=55, and ag=1 where
N=9 andL=251._The information signal(n) is given by a ran- and that is invertible with respect toi with
dom sequence of integers from the set. . .,2‘.5(}. @ Cii(n) vs i,=F_l(s(n),s(n—l),s(n—Z), ... s(n—N)) may be used
n. The values of the parameters in the receiver are the same as i this way for encoding and decoding messaiR&.

the transmitter, except farg=26. (b) C;; (0) vsas. The values of

the other parameters in the receiver are the same as in the transmit-

ter. (c) Cslsz(n) for the same information but slightly different ini- VI. CONCLUSION

tial conditions. All values of the parameters in the receiver are the
same as in the transmitter.

In general any functions(n)=F(s(n—1),s(n—-2), ...,
s(n—N),i(n)) that generates a chaotic time series ifer0

In this paper we have discussed a general method for
constructing (high-dimensional synchronized chaotic sys-
tems. Furthermore, two improved encoding-decoding
schemes were investigated that are both basettlomotig
synchronization. The first encryption method allows us to
recover the information signal exactly, and the second ap-
proach offers new features to design more robust communi-
_cation systems based on synchronization. Numerical, experi-
H’gental, and analytical examples of continuous and discrete
%ystems were presented to illustrate the basic ideas and to

parameters of the transmitter and the receiver are the S8 dicate also possible directions of future research. For the
except for one value, say,,. In this case, it is easy to see P '

that e, will never tend to zero. For an information signal (discrete} encryption methods we exp.ect.applications, for ex-

i(n) that is given by a random sequence of integers from th mple, inspread spectrum commumcat_lcﬁﬂf_i] and secret-

set{0, . . .,250 we have numerically calculated the normal- ey cryptograph_)[29]. The autosynchronization used for the

ized cross covariand®; (n) defined as _seco_nq encryption method may alsp be applied to system
iR identification and parameter estimation.

of the generator. For example, it is well known that it con-
stitutes a “good” random number generator fdf=>55,
L=2% a,=ajs=ay=ag=1, and a,=0 for m
#7,15,23,5427]. This example also belongs to the class of
linear self-synchronizing digital data scramblgts].

(ii) Synchronization in this model is very sensitive to ex
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