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Agglomerate erosion: A nonscaling solution to the fragmentation equation
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The erosion of agglomerates in viscous flows —a process proportional to surface area of the agglomerate —is
analyzed by means of fragmentation theory. An analytical solution is obtained; this solution cannot be de-

scribed by the usual scaling ansatz, nor does it have an asymptotic form. Fitting to available data is discussed.

PACS number(s): 05.40.+j, 82.20.Mj, 82.70.—y, 92.40.Gc

c/c(x, t)
Bt

= —a(x)c(x, t)+ a(y)f(x~y)c(y, t)dy, (1)

Dispersion of powdered or clustered solids in viscous
liquids —often referred to as dispersive mixing —is of con-
siderable industrial importance [1,2]. The number of funda-
mental studies is, however, small. It was, for example, only
recently [3,4] that two mechanisms —rupture and erosion—
were identified as critical, rupture referring to the breakage
of a cluster into several fragments of comparable size, and
erosion to the gradual shearing off of small fragments from
larger clusters. It was further established that erosion domi-
nates dispersion when hydrodynamic stresses are low, and
that erosion may be important to dispersion even when rup-
ture is present [5].Both mechanisms —rupture and erosion—
have been the subject of fragmentation theory; a good revie~
of this area is provided by Redner [6]. However, in spite of
its potential usefulness, fragmentation theory does not appear
to be utilized in the dispersion literature. On the other hand,
there have been relatively few attempts to develop a solution
to the fragmentation equation when the process is dominated
solely by erosion. There are therefore two interrelated objec-
tives to this paper: (i) to illustrate the use of fragmentation
theory in a problem of practical importance, where erosion is
the primary mechanism; and (ii) to demonstrate that some
aspects of fragmentation theory need further examination.

The irreversible, continuous breakup of solids in a well
mixed batch system can be described by the linear fragmen-
tation equation

1 /x~
f(xly) = —b — . (2)

The function b(r), which defines the average number of
fragments fob(r)dr, produced on a single breakup event,
obeys jorb(r)dr = 1, due to conservation of mass.

Frequently, the analysis of the fragmentation equation is
simplified by use of the scaling ansatz

c(x, t) = s~P( p) with v=-
s(t) ' (3)

where s(t) is the average cluster mass, and P is referred to
as the scaling distribution. The exponent y is required by
mass conservation to be —2. It is commonly assumed that
the scaling distribution is approached asymptotically and is
independent of the initial conditions. Hence, for long times,
fragmentation is dependent on the ratio of cluster mass to the
average cluster mass. From the scaling ansatz and the as-
sumption of homogeneous breakup kernels, general forms
may be determined for the tails of the distribution —limits of
small mass, x/s(t) (& 1, and large mass, x/s(t) &) l.

If the breakup kernels are left unspecified, only limiting
forms of the size distribution may be obtained. However, a
few solutions corresponding to specific breakup kernels have
also been studied [7—9]. Many of these solutions have a
physical basis; however, they do not seem to include erosion.
For example, a recent study by Ziff [10] obtains explicit
forms to the scaling distribution for homogeneous breakup
kernels of the form

b(r) = otqr +P(1 —q)rP (4)
where c(x, t) is the concentration of clusters of mass x at
time t; a(x) is the overall rate of fragmentation of clusters of
mass x; and f(x~y), referred to as the relative rate of
breakup, is the expected number of fragments of size x pro-
duced from the breakage of a cluster of size y. The breakup
kernels a(x) and f(x~y) determine the kinetics of the frag-
mentation process. The precise forms of a(x) and f(x~y)
depend on the specific problem under investigation. How-
ever, general conclusions may be drawn even in the absence
of the exact specification of the kernels.

Typically, homogeneous kernels are considered, in which
the overall rate of breakup is characterized by a(x)-x,
where X is known as the homogeneity index, and the relative
rate of breakup has the form

where q, a, and p are adjustable parameters. This kernel
allows for an exact solution to the full transient fragmenta-
tion equation when u= k and q = p/(p —k).

Here we consider another class of breakup kernels de-
signed to model erosion. Powell and Mason [11]and Rwei,
Manas-Zloczower, and Feke [4] note that the overall rate of
erosion is proportional to the surface area. This dependence
of the overall rate of breakup on surface area is consistent
with homogeneous kernels, and, therefore, we may use
a(x) = kx" in (1) without loss in generality. Experiments [4]
also indicate that the distribution of small fragments eroded
off clusters is a relatively narrow Gaussian distribution. Thus
we may approximate the relative rate of breakup as binary
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FIG 1. T ical evolution of cluster sizsize distribution during ero-yp
mass x, a is thesion. Here c is t e co mh ncentration of clusters o m

11 fra ments which are eroded off the larg eraverage size of the sma g
1 ters the dimensionless time 8 is (Ktla ), an

~ f
cuse

an avera e cluster size o
' '

1 distribution is log normal with an g
'

n of 5.4a. The distribution of small27a and a standard deviation o . a.
normal with afragments, h(x) [ q.[E (13)] is assumed to be log normal wit a

standard deviation of 2a.
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8(x —e) r"—[ '
( )]+ y'c(y t)dy

Bt Bx 0e

nd a cluster of size y
—a, withb eakup: a cluster of size a an a — h

y&s With this assumption the relative rate
comes

where K=ek (this equation is somewhat simt similar to a model

f(xly) = bTx —(y —e))+ ~(x —e).

=k( +e) c(x+e, t) —kx c(x, t)
Bt

+kb'(x —e) y"c(y, t)dy
3g

(6)

is the mass of the parent cluster, and a the mass of
ossible cluster [this impliesthe ultimate cluster or smallest possi e c

s of mass a; the sizeh 1 ters are made up of particles
er if s t &&a, we maydistribution is actually discrete; however, i s( )

approxirha et the distribution as a continuum. ]
Substituting (5) into (1) yields
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and therefore, the fragmentation equation becomes

FIG. 3. Fit of experimental data from Nm Neil and Bridgwater [14].
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of erosion proposed by Pandya and Spielman [12];however,
it allows for an analytical solution).

After multiplying (9) by x and substitution of
f(x, t) =x c(x,t), we find that

f(x, t) =f(zI,O) with f(rI, O) = zI c(zI,O), (10)

where zI—= [x' +(1—X)Kt]"I' i. Hence we obtain

otf(x, t) c/f(x, t)=rx' '
for x)a.

dt Bx (9)
t vl'

c(x, t) =
~

— c(zI,O) for x~a.
ix)

Here we use the fact that the erosion of large clusters is
unaffected by the concentration of size a clusters. Equation
(9) may be solved with the method of characteristics [13],
giving

From (11) and (8), we can determine the concentration of
ultimate clusters, c(x = a, t) . The cluster size distribution is,
therefore, given by

c(x, t) = &

( zI~ 'df(rI, O)
K

Jo l 8) dzI

( ~$ k

c(zI,O) for x)e,, ix)

P co

+ — ( c((,0)dx dt' for x=aej,
I-~& ) +(1 —) }K,'~'i'(' ) )

where (= (xt' I+ (1 —k)Kt') "I' "I. Here we note that the first term inside the integral with respect to time, which accounts
for the second cluster of mass e created by the erosion of a cluster of mass 2e, is negligible while s(t) &) e.

An examination of Eq. (12) reveals that the solution is essentially bimodal, with c(x, t) for large x dependent upon the
initial conditions, and c(x, t) for small x equal to the 8 distribution about x= e multiplied by a factor which allows for mass
conservation. If we assume that the distribution for large x is independent of the distribution for small x, then we may
substitute a more realistic distribution h(x) for the 8 distribution for small x. Hence we determine that the cluster size
distribution produced by erosion may be approximated by the bimodal distribution

c(x, t) = [ 1 —x+(1 ) )Kt]1/(1 —x)1 k

(13)

Here g(t) is determined via mass conservation to be

M, —fox' "([x' + (1 —X)Kt]"t' ) c([x' "+(1 —k)Kt]" ' 0)dx
g(t) =

foxh(x) dx

where M
&

is the total mass in the system. Typical evolution
of the cluster size distribution and cumulative mass is shown
in Figs. l and 2.

Experimental data of erosion processes are limited —no
experiments provide cluster size distributions suitable for
comparison with our model. Hence we fit data from the com-
parable process of attrition [14]. Neil and Bridgwater [14]
determine, by sieving, the cumulative mass fraction of clus-
ters M(l), with a characteristic length less than l. Assume
that x=(m/6) pl, where p is the density of the eroding sol-
ids, and that h(x) is log normal [12]. Figure 3 shows the
fitting to available experimental data. Deviation of the ex-
perimental data from the model is due to inefficiencies in the
sieving process, the assumed relationship between x and l,

and/or the presence of rupture. Better data are clearly needed
before hard conclusions can be drawn (concentrations would
be more enlightening than cumulative mass, and the reported
size distributions are relatively narrow). It is nevertheless
apparent that the relative constancy of M(l) with l indicates
the presence of a bimodal distribution.

This approximation of erosion highlights two important
points. First, erosion cannot be described by the usual scaling
ansatz (4). This is a result of the nonhomogeneous relative
rate of breakup. Second, the size distribution does not have
an asymptotic form, i.e., it is always dependent upon the
initial conditions.
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