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Generahzed ffow equation and kinetic coefficients in a reaction-diffusion system
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Based on Robertson s formalism, which can be applied to a system arbitrarily far from equilibruim,
generalized How and rate equations for a reaction-di6'usion system are derived in nonlinear irreversible
processes. The kinetic coeKcients of the system are studied and the coupling between diferent Aows and
rates is discussed. Equations of the Aow and rate and the kinetic coefficients obtained in the present pa-
per are memory retaining and nonlocal. In particular, we relate the kinetic coe%cients to the concrete
microscopical mechanism of reaction diA'usion. This enables us to calculate these kinetic coefticients.

PACS number(s): 05.60.+w, 82.20.—w

I. INTRQDUCTIQN

The rate of reaction and the transport coefficient in a
reaction-diffusion system are interesting problems. Some
recent investigations have considered the transport
coefficient [1—6] and the rate processes [7—9]. But the
methods in those papers mentioned above cannot be ap-
plied arbitrarily far from equilibrium to the general
reaction-diffusion system in which memory and nonlocal-
ity are retained. In this paper, based on Robertson's for-
malism [10],which can be applied to a system arbitrarily
far from equilibrium, we derive generalized Aow equa-
tions for a reaction-diffusion system with single and mul-
tiple components in nonlinear irreversible processes, and
obtain the transport coefficients and the rates of the reac-
tions. The kinetic coefficients are discussed in detail. In
particular, the kinetic coefficients can be calculated by
the formalism developed in this paper. The method is
formulated in Sec. II. The transport coefficients and the
rate constants of the reactions are given and discussed in
Sec. III. In Sec. IV, there are some remarks.

II. GENERALIZED FLOW AND RATE EQUATIONS

We consider a general reaction-difFusion system with
multiple components, in which there exist transport of
heat, diffusion of different components, and a number of
chemical reactions among different components of the
mixture. The chemical potential of different components
and the temperature depend not only on position in space
but also on time. For the system under consideration,
once the thermodynamic coordinates have been chosen,
we choose a set of time-independent, quantum-
mechanical operators corresponding to some of these
thermodynamic coordinates. Let F„(r) denote these
operators, whose expectations we wish to describe as a
function of position and time. Here n takes the values
1,2, 3, . . . , rn labeling the different operators, and these
operators, whose expectations are some of the thermo-
dynamic coord. inates of the system, depend explicitly
upon position.

A generalized differential conservation equation of
those operators of the system which have corresponding

+ f dt'g f d r'K„„.(r, t, r', t')k„(r', t'),
0

where the kernel is given by

K„„(r,t, r', t') = (F„(r,t) T(t, t') f 1 —P (t')]F„.(r', t') &,

(3)

and the symbols used here have the following definitions.
The angular brackets on the right of Eqs. (2) and (3)

are defined by

(A &, =Tr[Ao(t)]

and the bar over an operator is defined by

A = f cr(t) Ao(t) 'dx —( A &., ,
0

(4)

where 3 may be any operator and the generalized canon-
ical density operator o (t) is defined as

o(t)=
exp —g f d'r A,„(r,t)F„(r)

Tr exp —g f d r A, „(r,t)F„(r)

T(t, t') in Eq. (3) satisfies

BT(t, t') /Bt'=i T(t, t') [1 P(t')]L(t')—
with the initial condition T(t, t) =1. Here L is the Liou-
ville operator and the operator P (t) is defined as

thermodynamic coordinates (e.g., energy density, particle
density, momentum density, etc. ) can be given by [11]

F„(r,t)+V j„(r,t)=J„(r,t),
where j„(r,t) is the fiow operator corresponding to F„(r).
J„(r,t) is the source corresponding to the fiow j„(r,t)
The equation of motion of the thermodynamic coordi-
nates F„(r) is [10]
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P(t)A =g f d r tr(F„(r)A ]5o(t)/6(F„(r)), .
n

The A,„(r,t) are called the thermodynamic conjugates
of the (F„(r)),.

Insert Eq. (1) into Eq. (2) to get the exact generalized
flow equation of diffusional Ilows j„(r,t) and the exact
generalized rate equation of the reaction rates J„(r,t), re-
spectively:

Tr(p(t)j„(r, t)] =(j„(r,t)), + f dt'g f d r'K„'„(r, t, r', t') V'A.„(r',, t')
0

+ f dt'g f d r'K„'„(r, t, r', t')k„.(r', t'),
n'

(6)

where

K„'„.(r, t, r', t') = ( j„(r,t)T(t, t')[I P(t—')]j„,(r', t') ),
Kj„,~(r, t, r', t') = ( j„(r,t)T(t, t')[1 P(t')—]J„(r',t') ),

and

Trip(t)J„(r, t)j =(J„(r,t)), +f dt'g f d r'K„„(r,t,.r', t')A, „,(r', t')
0

+ f dt'g f d r'K„„.~(r, t, r', t') V'k„.(.r', t'),
n

(9)

where

K~„(r,t, r', t') =(J„(r,t)T(t, t')[I P(t')]J„(—r', t') ), ,

(10)

K„„,~(r, t, r', t') = (J„(r,t) T(t, t')[1 P(t')]j„—(r', t') ),

In deriving Eqs. (6) and (9), the condition J„(r,t)=0 at
~r~ &0, where 0 is the region of space occupied by the
system, has been used. Equations (6) and (9) are
memory-retaining and nonlocal. These equations are
coupled, nonlinear, integral equations. In fact, Eq. (6) in-
volves not only the coupling between the diffusional flows
of different components but also the coupling between the
diffusion flows of different components and the reaction
rates of difFerent reactions. Similarly, Eq. (9) involves not
only the coupling between the reaction rates of different
reactions but also the coupling between the reaction rates
of different reactions and the diffusion flows of different
components. In particular, there exist the coupling be-
tween the diffusion flows and the energy flow and the

coupling between the reaction rates and the energy flow.
If the momentum flow is considered, there exist the cou-
pling between the diffusional flows and the momentum
flow and the coupling between the reaction rates and
momentum flow. In the near-equilibrium approximation,
the correlation functions (7) and (8) and (10) and (11)
satisfy reciprocity relations. The erst terms on the right
of Eqs. (6) and (9) are called reversible terms since they
do not directly change the entropy; the time integral
terms are called irreversible terms since they do change
the entropy.

III. KINETIC COEFFICIENTS
AND THE RATE CONSTANT

If we neglect the retardations in Eqs. (6) and (9), i.e.,
assume that A,„.(r', t') change little in the attenuation time
of the correlation between the Qows, then we can take the
thermodynamic forces at time t'=t outside the integral
over the time. We then obtain a linear relation between
the thermodynamic forces and flows that are without re-
tardation, but nonlocal in character:

Tr[p(t)j„(r, t)] =(j„(r,t)), +g f d r'L„'„(r,t, r') V'A, „(r',t)+g f d r'L„'„(r,t, r')A, „(r',t),
n'

(12)

n' n'
Tr[p(t)J„(r, t)] =(J„(r,t)), +g f d r'L„„(r,t, r')k„(r', t)+g f d r'L„„'(r, t, r').V'X„(r', t), (13)
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where

L„'„(r,r', t) L„'„, (r, r', t)

L„„,(r, r', t) L„„'(r,r', t)

Idt'K„'„.(r, t, r', t') dt'K„'„, (r, t, r', t')
0 0

E Idt'K„„.(r, t, r', t') di'K„„'(r, t, r, t )
0 0

(14)

can be defined as the kinetic coefficients. If we neglect
the nonlocal character, i.e., assume that the thermo-
dynamic forces vary little over the correlation length over
which L(r, r', t) difFers appreciably from zero, then in
Eqs. (12) and (13) we can take A,„.(r', t) at the point r'=r
outside the integral over space. We get, then

can be called transport coefficients and the constants of
the rate for the diffusion and for the reaction, respective-
ly. It is clear that the transport coefficients are more gen-
eral than those of Refs. [1—3] since the operator P does
not appear in their expressions. In particular, we obtain
the generalized rate constants L„„(r,t) which obviously
depend on temperature, and in general, on time. From
Eq. (17) we can obtain the difFusional coeScients, the rate
coefficients of the reaction, and the reaction-diffusion
coefficients, respectively, in which all traces are to be cal-
culated using the local equilibrium statistical density
operator cr(t) as in Eq. (5). In linear approximation, if we
neglect the coupling between the reaction and the
diff'usion, the flows given in Eq. (6) can be reduced to
those of Ref. [1].

Tr I p( t)j „(r,t) j
= ( j„(r,t) ),+gL„'„(r,t) V'A„.(r, t,)

n'

+gL„'„(r,t)A, „,(r, t),
n'

IV. SAME REMARKS

(1) The key to solving Eqs. (6) and (9) is to deal with
the kernels in the integrals. Some methods of dealing
with the kernels have been developed [12—14]. We here
make the Markov approximation, namely,

+gL„„'(r,t) P'A, „,(r, t) (16) cr(t') =exp[iL (t —t')]o.(t),

where

L(r, t)=
LJ„.(r, t) L„'„, (r, t) t

L„„.(r, t) L„„,'(r, t)

f d r'Li„„(r,r', t) f d r'Li„, (r, r', t)

f d r'L„„(r,r', t) f d r'L„„.'(r, r', t)

Q(t')=exp[iL(t —t')]Q(t)exp[ iL (t t'—)], (l8)—

T(t, t') =exp[ iL (t —t—')],

where L is the Liouville operator, and Q(t)=1 P(t). —
For more details of the above approximations the reader
is recommended to Ref. [13]. Consider the case of steady
state characterized by the ffows j„(r) and J„(r), and in-
sert Eq. (18) into Eqs. (6) and (9) to get, respectively,

(19)

where

and

K„'„.(r, r', t') =TrI j„(r,t)Q exp[iLt']j„(r')exp[ iLt']o j, —

K~„, (r, r', t') =TrI j„(r)Q exp[iLt']J„(r')exp[ iLt']cr j, —
(20)

(21)

(22)

where

K„„(r,r', t') =Tr I j„(r)Q exp[iLt'] J„,(r')exp[ —iLt']cr j,
K„„.'(r, r', t') =TrI J„(r)Q exp[iLt']j„(r')exp[ —iLt']cr j

(23)

(24)
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It is clear that one can calculate the transport coefficients
and the rate constant of the reaction from Eqs. (19) and
(22) when the Hamiltonian and the relevant parameters
A,„(r,r) in the system are given.

(2) The method developed in the present paper can be
applied to study not only chemical reaction-diffusion sys-
tems but also various birth-death processes. In particu-
lar, we relate kinetic coefficients to the concrete micro-
scopic mechanism of reaction diffusion. This enables us
to understand the inherent rule of chemical reaction
diffusion at a deeper level, i.e., the microscopic Geld, and
to calculate kinetic coefficients and transport coefficients.

(3) Although the present formalism is exact, one must

make some approximations when dealing with the ker-
nels. In fact, expressing macroscopic phenomenological
coefficients by a microscopic formalism is the primary
difficulty in investigating dynamic processes, and also the
interest of dealing with the processes. Generally speak-
ing, it is inevitable to make approximations when dealing
with dynamic processes with memory retention and non-
locality.
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