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Generation of high-energy localized vibrational modes
in nonlinear Klein-Gordon lattices
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We study numerically the exchange of energy and momentum between colliding breathers in
nonlinear Klein-Gordon lattices as a means of obtaining localization of energy. Statistical calculations
show a clear preference of the larger breather to take energy from the smaller one in the whole energy
range of interest. Thus it represents an effective mechanism for energy localization in nonlinear
Klein-Gordon lattices, originating from the discreteness and nonintegrability of the system. To get
initial conditions for our simulations we numerically calculate exact single-frequency static breather
solutions using a technique recently discovered by Flach [Phys. Rev. E 51, 3579 (1995)].
PACS number(s): 03.40.Kf, 63.20.Pw, 46.10.+z

I. INTRODUCTION

In many physical systems spins or atoms may be con-
sidered as harmonically coupled to nearest neighbors
only, and subjected to a nonlinear external potential. In
this case the Hamiltonian of the system can be written
as

H = ) —U„+ —(U„—U„ i) + V(U„)
n

V'(0) = 0, V"(0) = ~d ) 0

where U (t) is the on-site degree of freedom (e.g. , in-
teratomic distance) and V(U ) is an external potential,
representing the combined influence of the surrounding
crystal or macromolecule and external efFects, such as an
electric or magnetic field. The parameter ug is the min-
imum frequency of the harmonic (optical) vibrations of
the chain. The equation of motion for such a system is
the discrete nonlinear Klein-Gordon (KG) equation

U„—(U„+i —2U„+ U„ i) + V'(U„) = 0

This discrete set of ordinary difFerential equations has
have been widely used in the study of physical phenom-
ena such as dislocations [1],ferroelectric domain walls [2],
ferromagnetic domain walls [3], DNA dynamics [4], and
Josephson junctions [5].

Depending on the shape of the on-site potential V(U ),
a nonlinear lattice with the Hamiltonian (1) may sus-
tain several types of nonlinear ewcitations. If V(U )
has multiple degenerate minima, as, for instance, in the
Frenkel-Kontorova model, for which V(U ) is a sinusoidal
function, topological excitations with a kink shape in-
terpolating between adjacent minima can exist. More-
over, even when V(U ) has only a single absolute mini-
mum, localized vibrational modes, sometimes called dis-
crete breathers, can exist. These local modes have been
the subject of intense research in the last few years since
the work of Sievers and Takeno [6], following an earlier

prediction of their existence in a narrower context by
Kosevich and Kovalev [7]. This interest is motivated by
the interesting properties of discrete breathers: They are
nontopological excitations without an energy threshold
for their creation; they exist in a large variety of nonlin-
ear lattices, whether nonlinearity arises from the interac-
tion [8—10] or from an on-site potential as in (1) [11—19];
their existence is associated with a localization of energy.

While physicists are familiar with disorder-induced lo-
calization, it may seem surprising that energy can stay
localized in a translationally invariant system. This is an
effect of nonlinearity that is not trivial because it also
requires the discreteness of the lattice. Except in the
specific case of the integrable sine-Gordon model [20, 21],
stable breathers do not exist in systems described by a
partial difFerential equation that is a continuous version
of Eq. (2), with the second difference replaced by a sec-
ond derivative. This has been proved for, e.g. , the contin-
uous 44 model [22]. Mackay and Aubry [19] have shown
that, on the contrary, if discreteness effects are suKcient,
breathers are exact solutions for a nonlinear lattice, i.e. ,
they are rigorously stable. Although this work has shown
mathematically the possible existence of stable nontopo-
logical local modes in a homogeneous lattice, confirming
numerous analytical and numerical investigations of ap-
proximate solutions [11—18], the question of their creation
is still open. Local modes can only be physically relevant
if there is an eKcient mechanism that can lead to their
formation. We show in this paper that such a mechanism
of self-localization of energy in a homogeneous lattice de-
scribed by Hamiltonian (1) does exist, and that discrete-
ness is not only necessary to stabilize the breathers, as
shown by Mackay and Aubry, it also provides the path-
way to their formation.

The first step toward nonlinear energy localization can
be achieved through Benjamin-Feir instability [23], i.e. ,

the spontaneous modulation of a large amplitude plane
wave, which tends to split into wave packets. Modula-
tional instability exists in a lattice as well as in a con-
tinuum medium, although discreteness may drastically
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change the conditions for instability [24, 25]. However,
the maximum energy of breathers created by this process
is bounded because each breather collects the energy of
the initial plane wave over the modulational length A, so
that its energy cannot exceed E = Ae, where e is the
energy density of the wave. One possible way of creating
breathers with energies exceeding E would be if one
breather could collect the energy from several others. It
is evident that there will be an energy exchange, as well as
radiation of phonons, when two discrete breathers collide,
due to the nonintegrability of the nonlinear KG lattice,
Eq. (2). The question is whether the exchange occurs at
random, such that on average there is no transfer of en-
ergy, or whether there is a preference for, e.g. , the larger
one to take energy from the smaller one. This question
was examined numerically by Dauxois and Peyrard [12]
and indeed a clear tendency for collisions to favor the
growth of the larger breather was observed. However, a
definite conclusion cannot be made from a few experi-
ments because the energy exchange depends on the rela-
tive phase and energy of the breathers. It is the aim of
this paper to statistically consider all possible values of
the relative phase and energy during collisions, in order
to check if a preference really exists. Moreover, we want
also to determine whether there are conditions on the
symmetry of the potential V(U„) to observe localization.

The paper is organized as follows: First we present
the specific model and formulate the numerical problem
we would like to consider: a low energy moving breather
colliding with a high energy static breather. In order to
make accurate measurements, the initial condition must
be selected carefully. The low energy moving breather
is taken as a third order semid. iscrete solution, derived
in an earlier work [26], while the high energy breather
is studied in more detail. We use a mapping technique
recently discovered by Flach [16] to derive numerically
exact single-frequency static breather solutions. The fre-
quency domain, in which such solutions exists, is also
identi6ed. Finally we present and discuss the statisti-
cal numerical calculations of the energy and momentum
transfer during collision.

II. THE MODEL AND THE FORMULATION
OF THE PROBLEM

We consider a particular physical system described by
the Hamiltonian (1), a chain of equally spaced particles
of unit mass coupled harmonically to their nearest neigh-
bors with unit elastic coeKcient and subjected to the on-
site substrate potential

V(U„) = (u~(2U„—nsU„—p4U„), U„& 1. (3)
Here U is the displacement of the particle at site n from
its equilibrium position, and wg, n, and P are real pa-
rameters. For P = 0, V becomes the nonsymmetric C

potential, which, e.g. , has been used in the study of DNA,
since it resembles the Morse potential for U & 1 [11].For
n = 0, V becomes the symmetric 4 potential, e.g. , used
in the modeling of ferroelectric domain walls [2]. In gen-
eral V can be viewed as a medium amplitude expansion
of any potential around a minimum.

The Hamiltonian energy of the chain is

II = ) X„=) —,'U„'+ —,'(U„—U„,)'

2(1U2 1U3 P1U4) (4)

where R is the Hamiltonian energy density. It gives the
equations of motion

U„—(U +j —2U„+ U„ t) +(uq(U„—nU„—PU„) = 0

The linearized equation (n = P = 0) has plane-wave
solutions, for which the frequency w and the wave number
q satisfy the dispersion relation

= M~ + 4 Sln ( 2 q) (6)

(a)

FIG. &. (a) Phonon dispersion relation,
4»n (q/2), for Eq. (5). The bandwidth D~ is finite. (b)
Phonon dispersion relation, w = u& + q, for the continuum
approximation of Eq. (5). Here the bandwidth is infinite.

10.

The phonon band has an optical shape and is shown in
Fig. 1(a). The minimum phonon frequency, sr~, is a rnea-
sure of the strength of the on-site potential, which con-
trols the discreteness. In this paper we are interested in
the case where discreteness dominates, i.e. , u& )) 1. We
have chosen w&

——10.
As indicated in the Introduction, our aim is to study

how collisions can lead to the formation of discrete
breathers with an energy beyond the maximum energy
E that can be achieved by modulational instability.
In addition we want to characterize the large amplitude
nonlinear excitations created in the process, and in par-
ticular discuss their stability. This goal determines the
first steps of the work because we must first set up appro-
priate initial conditions for the collisions and also define
criteria for stability of the discrete breathers.

We simulate collisions between small amplitude mov-
ing breathers and large amplitude static ones, and mea-
sure the change in energy and momentum of the larger
breather. The smaller breather is supposed to be ex-
cited by modulational instability. The larger breather
is also assumed to have been excited by modulational
instability, but we further assume that it has already
increased its energy through, e.g. , collisions with other
breathers. The initial condition for a simulation is de-
picted in Fig. 2, de6ning also the breather parameters.
Subscript 0 always refers to the small breather, while 1
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Amplitude

Vo

n0

FIG. 2. Parameter de6nition and setup for the simula-
tion of a collision between a small amplitude breather moving
towards a large amplitude static breather.

refers to the large one. Since we want to characterize
the energy exchange mechanism by a detailed study of
individual collisions, we must perform accurate measure-
ments. This is only possible if the breathers that collide
are good solutions with well defined parameters. In the
derivation of these solutions for a lattice, which does not
have a continuous translational-invariance symmetry, we
must consider separately the case of moving and static
breathers.

The nonlinear KG lattice, Eq. (5), has never been
solved exactly analytically. The best currently known
small amplitude moving breather solution is a third or-
der semidiscrete solution [26]. This solution is completely
defined by three parameters, the amplitude Ao, the enve-
lope velocity V~, and an internal wave number qo, which
all have upper limits for the solution to be classified as
good, i.e., to move with no significant radiation of energy
with a measured velocity and amplitude close to the pre-
dicted values. As the amplitude is increased, the width
of the breather decreases and it feels the lattice discrete-
ness more and more and can even become completely
pinned to a single site. Although it is more complicated
for breathers that have an internal degree of freedom [14]
than for kinks [27], this trapping effect has the same fun-
damental origin in both cases, the breaking of the con-
tinuous translational invariance, which introduces an ef-
fective lattice potential in which the excitation moves.
From dislocation theory this potential is known as the
Peierls-Nabarro (PN) potential [28].

Numerically the maximum amplitude, above w hich
breathers are completely pinned by the discreteness of
the lattice, was found to Ao ——0.4 for ~& ——10, and
the maximum linear group velocity

=sin(qo ")/ (u~2+4sin (qo "/2)

was found to represent the upper limit of the velocity of
breathers in the system given by Eq. (5) [26]. Here the
maximum wave number is defined as

resulting in a limiting velocity of Vo: 0 29 In our
statistical calculations we fix the wave number at qo

——0.2
and consider velocities around Vo ——0.2, and amplitudes
around Ao ——0.1 and 0.2. This assures that the solution is
good, and thus that the time of collision can be predicted.
For the explicit expression of the third order semidiscrete
solution we refer to Ref. [26].

Because of the low amplitude of the small breather
a semidiscrete multiple-scale perturbation expansion can
be applied to find good solutions, using the amplitude as
the small parameter. For the larger breather we consider
amplitudes in the range between 0.34 and 0.86, which
in general is above the limit for pinning. In this range
one has to take the full discreteness into account and
thus the semidiscrete solution cannot be used. Since we
need. solutions in this regime for our analysis we devote
a section to their numerical derivation.

III. KXACT STATIC SQI UTIQNS

There are very few methods available to calculate ex-
act high amplitude discrete solutions for excitations like
breathers, which have internal dynamics. Highly local-
ized solitary wave solutions, which can be moving or
static, have been found numerically in discrete nonlinear
Schrodinger (NLS) type equations using spectral colloca-
tion and path-following methods [29, 30]. This is possi-
ble because of the special structure of the nonlinearity in
this equation, where the frequency terms arise in a lin-
ear manner. Although the path-following technique has
been applied to many other nonintegrable lattice equa-
tions [29, 31] the use of this technique for discrete non-
linear KG lattices, where the frequency terms arise non-
linearly, seems limited and. correspondingly attempts to
apply it in this case have failed [29]. There is, however,
another numerical approach recently discovered by Flach
[16] that can be used. To implement it, it is useful to un-
derstand the role of discreteness in the stabilization of
breathers.

The comparison of the dispersion curves for a lattice
[Fig. 1(a)] and its continuum counterpart [Fig. 1(b)] al-
lows a qualitative understanding. A first condition for the
existence of local modes is that their frequency lies out-
side of the phonon band, otherwise the breathers would
lose energy by radiating nonlocalized linear plane waves.
Since the phonon band of the lattice has a finite width,

& ~&, +4 while that of the corresponding con-
tinuum system has an infinite width, u & w&, this con-
dition is obviously easier to satisfy in the discrete case.
However, for breathers with a &equency wq & ~g that
lies below the phonon band. , there are additional stabil-
ity conditions. Due to the nonlinearity of the equations
of motion (5) harmonics k" of the breather &equency
are excited and must also lie outside the phonon band to
avoid coupling to linear plane waves- The resulting bands
of nonexistence for breathers are (bands of nonexistence)

cos(qo ") = 1 + -'~„(l — 1 + 4/(v~2)
Ld" C(k&y) (Cd" +4

&
k=1&2&. . . (9)

For u& ——10 the maximum wave number is qo = 1.49,
In the continuum limit, for which the upper limit of the
phonon band extends to +oo, any frequency ~q will have



4146 OLE BANG AND MICHEL PEYRARD 53

harmonics in the phonon band and breathers cannot ex-
ist, unless there are special orthogonality relations be-
tween the higher harmonics and the plane waves as in the
sine-Gordon case [21]. The necessary condition of exis-
tence, that ~i must not correspond to one of the forbid-
den bands defined by Eq. (9), is, however, not sufficient.
It was further proven by Flach and co-workers [13] that,
provided the solution exists, it will be linearly unstable
if its frequency lies in the bands (bands of instability)

~~ & [(n/2)(u, ]' & cu„'+ 4, n = 1, 2, . . . (10)

According to Eqs. (9) and (10) such breathers can exist
and be stable.

The method discovered by Flach [16] can be used to
obtain exact single-frequency static solutions for our high
amplitude breather. However, the parameter range in
which solutions can be found depends on the form of
the potential (4 or 4 ). The idea is to start from an
expansion of U„ in a Fourier series,

It should be noticed that these existence and stability
conditions rule out breathers with two or more internal
frequencies. Such multi&equency excitations, which have
been observed in numerical simulations, cannot be stable
because some combination frequency always will lie in the
phonon band. In the present context we will restrict our-
selves to single-frequency discrete breathers with a fre-
quency lying in the gap, and fulfilling the relation (band
of consideration)

U„(t) = ) A„k exp(ikcuit)
Ic=—oo

where the Fourier components satisfy the relations

in order for the solution to be real and localized. Inserting
the expansion in the equation of motion (5) we get

pi ——max( —k „,k —k „),
qi ——min( —k „,k —p —k „),
p2 ——max(k „,k+ k „),
q2 ——min(k „,k —p+ k „) .

(16)

The technique is now to reformulate Eq. (14) and write
it as a map, which can be used to find solutions by nu-
merical iteration. This is done in two ways:

(~d —k i)A„g —(A„+i k —2A„ i + A„ i p) — ~I"„„

= 0 , (14)

where E k contains the nonlinear terms. Introducing a
finite cutoff frequency, k wi, E I, becomes

P2

E„y=n) (A„„A„g „)
P—P&

~max 92

+P ) ) (A„„A„A„i „)
P= kmax 9:9&

where the limits in the sums are given by

A„„=„~&A„„—(A„+i &
—2A„„+A„ i „)—~&E„„(map A),

(~+i) 2 (~) (~) (~) (~) 2 (~)

i

d
(18)

I 2 2
1

2 (19)

where the label indicates the corresponding map.
Maps A and B have the important property that for

a given pair (n, k) their eigenvalues are positive and in-
verse to each other, A k A I,

——1. This can be used to
construct a new map C, which is composed out of maps
A and B in an appropriate way, depending on the partic-
ular problem one wants to solve. In our case we want to
find symmetric single-&equency breather solutions cen-

where the upper label indicates the number of iteration.
Without the upper labels Eqs. (17) and (18) are iden-
tical, and thus any fix point of map A will also be a fix
point of map B, and a solution to the original Eq. (14).
An obvious fix point is the zero solution, A I,

——0 for all
(n, k). If we linearize around this ffx point and assume
that the second difference is 0, we obtain the respective
eigenvalues

tered on a lattice site, with frequencies in the band given
by Eq. (11). Thus we choose the map with eigenvalue
larger than 1 for the main frequency at the center site
(n, k) = (0, +1), while the map with eigenvalues smaller
than 1 is chosen for all other sites and frequencies

' map A for n = 0, k = *1
map B for n g 0, k = +1mapC= & mapB for k=0

, map A for ~k~ ) 2.

(20)

where only the unstable mode at (n, k) = (0, +1) is ex-
cited, we can expect to get initial growth in the direction
of this unstable mode (eigenvalue larger than 1), whereas
all other modes remain unexcited (eigenvalues less than
1).

With such a design of map C, and the initial condition

U=o) b for (n, k) = (0, +1)
0 for all other modes,
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Once the iteration yields local growth of the Fourier
coefficients of the unstable mode, we expect that the
nonlinear terms of the map, which become important
for large enough A &, will lead the iteration to a fix
point corresponding to the discrete breather solution we
are looking for. There is no guarantee for this to hap-
pen, since we have no knowledge about the Gx point,
even though we know it exists. Furthermore, we have
neglected the second difference in Gnding the eigenvalues
given by Eq. (19), from which we deterinine the design
of map C. Thus for high amplitude solutions we cannot
be sure that these eigenvalues are correct. All the design
is focused on is getting the right initial growth, namely,
local growth. The results show that this strategy works
eFiciently to give a solution.

In Fig. 3 we show the amplitude versus &equency rela-
tion for single-&equency static breather solutions to Eq.
(5), centered at site n = 0, in the frequency domain where
solutions could be found by iteration of map C. The ini-
tial excitation was chosen as b = O.l, and 51 sites and 31
&equencies ()'c „=15) were taken into account. Due to
the rapid decay of the Fourier components in both the
space and &equency domain [16] this cutoff is sufficient to
ensure a solution with no measurable imperfections (en-
ergy loss, &equency deviation, etc.). This was checked
by numerical integration. For both the C and C4 po-
tentials we see that the amplitude is a decreasing function
of &equency, which corresponds with earlier approximate
findings [ll]. We see also that the &equency domain in
which solutions can be found by the Flach technique, is
smaller for the 4 potential than the C potential. This
seems reasonable since the nonlinear corrections to the
eigenvalues for maps A and B are smallest for the 44 po-
tential. Finally we Gnd solutions below the interval given
by Eq. (11), where they should be unstable according to
Eq. (10). For times t ( 5000 we have not been able to
detect any instability of these solutions numerically.

IV. THE COLLISION PROCESS

Let us consider a typical example of a collision in the
case where the amplitude of the static breather is rela-
tively high compared with the amplitude of the moving
breather. Figure 4 shows a contour plot of the energy
density 'R, defined by Eq. (4), during such a collision.
It is important that the big breather is not destroyed by
the collision, but remains highly localized. This means
that its energy Hi and center site ni can be accurately
measured both before and after collision. Besides the fact
that an asymmetry between the two breathers is neces-
sary if we expect to see a difference in their behaviors in
the collision, the possibility to make accurate measure-
ments is a good reason to consider a large and a small
amplitude breather, and not two small ones.

To examine the process quantitatively, we define the
energy of the large breather, Hi(t), as the sum of the
energy density on the 11 sites centered around its center,
ni(t),

n1(t)+5
H, (t) =— ) R„(t),

n, (t)—5

(22)

where ni(t) is defined as the site of maximum energy
in the system at time t. As the big breather is highly
localized, the value of 11 sites is large enough to account
for almost all its energy, and small enough to separate its
energy &om that of the small breather, except during a
small time interval around the collision. We then define
the transfer of energy &om the small breather to the large
one, AHi (t), and the displacement of the large breather,
Ani(t), as

AH, (t) =— ', Ani (t) =—ni (t) —ni (0)
II, (t) —H,'

Hoo

(23)

0.7—

0.6—

0.5

Here Ho and Hz are the initial total. energies of the
small and big breather, respectively. With this defini-
tion LHi ——1 if the big breather has consumed all the
energy of the little one and LHi ——0 if no energy has

0.3
0.7 0.8

Cd I Cdd

0.9 1.0
—10
—20
—;30

400 1000
FIG. 3. Amplitude Ai vs normalized frequency, ui/uz,

for single-frequency static breather solutions to Eq. (5) found
by the Flach technique, using 51 sites. The solid curve rep-
resents the 4 potential (n, P) = (1, 0), and the dashed curve
the C potential (n, P) = (0, 1). The vertical line indicates the
bottom of the stability band defined by Eq. (11). cuq ——10,
b=01, and k „=15.

Time

FIG. 4. Collision between a moving breather (Vo = 0.2,
Ao = 0.2 no = —20) and a static breather (Ai = 0.7, ni
20). Contour plot of the energy density, 'R (t), with 30 levels
between 'R = 0.01 and 2.16. ud ——10 and (n, P) = (1,0) (4'
potential).



4a48 OLE BANG AND MICHEL PEYRARD 53

O. Z'2

0.21

0.20
400

400
Time

600

600

800
I

800

1000

1000

FIG. 5. Time dependence of the energy transfer AH&
(dashed curve) and displacement Anq (solid curve) for the
collision shown in Fig. 4. The plot in the lower right corner
shows a close-up of the decay of AHq after the collision.

been transferred. These two quantities are plotted in
Fig. 5 for the collision shown in Fig. 4.

The evolution of Anq(t) shows that the collision dis-
places the big breather by exactly 1 site, which can be
understood in the following way: As the small breather
approaches, the PN potential "felt" by the big breather
is locally altered, such as to enable it to overcome the PN
barrier. When the perturbation implied. by the presence
of the small breather is gone, the big breather again be-
comes trapped at a single site. Thus this "quantization"
of the displacement is a manifestation of the lattice dis-
creteness. The energy transfer AHq(t = 1000) = 21'%%uo is
positive, indicating that the big breather has swallowed
energy from the little one. However, as will become ap-
parent &om the following section, the process depends
on the relative phase and energy of the two breathers.
Thus we cannot conclude to energy transfer without more
systematic studies. Looking at the time evolution of
AHq(t), it might seem that it stays constant after the
collision, which would mean that a stable nonradiating
breather is obtained with a higher energy than before the
collision. However, as seen on the close-up, the energy of
the big breather is actually decaying slowly.

Figure 6, which shows the frequency spectrum of the
big breather before and after collision, explains the origin
of the decay. We see that the main frequency of the
breather decreases slightly from u~ ——2.897 before the
collision to u~ ——2.835 after. This is consistent with an
increase of the breather energy as indicated by Fig. 3.
Moreover, the spectrum changes qualitatively. Initially
the breather has only one internal frequency, but after the
collision a second frequency appears close to the bottom
of the phonon band. Et is this frequency that leads to the
radiation of energy seen in Fig. 5, through a resonance
between sum frequencies and the phonon band. Although
it is weak, this sum frequency, lying in the phonon band,
can be seen in the figure.

This result points out that a measurement of the en-
ergy of the big breather immediately after the collision
is not sufBcient to draw a conclusion about energy lo-
calization, because the emerging breather has been per-
turbed and may lose the energy gained (if AHq ) 0) in
the collision. However, in the simulations that we have
performed, the decay rate of the perturbed breather was

0 0.4
t

0.03—

I
I

0.282
I

I

0.02—
I

I

I

I

o.oo
0.0 0.2 0.4 0.6 0.8 1.0

~/~d

0.01—

1.2 1.4 1.6 1.8 2.0

0.04
0.203

0.03—

I

0. 188

0.02—

0.01—

0.00 . . h, I

00 OP. 04 06 08 10 12 14 16 18 PO
~/~d

FIG. 6. Spectrum (arbitrary units) of the oscillations of
the center amplitude of the static breather before and af-
ter the collision shown in Fig. 4. Top: Before the moving
breather is launched (—6000 & t & 0). The main frequency
is uq = 2.897. Bottom: After collision (1000 & t & 6000).
The solution is cleaned from radiation at t = 1000 by setting
U„=—0 outside the 41 center sites. Here ~q ——2.835. The
phonon band is indicated by two dashed lines. ~z ——10 and
(o, P) = (1, 0) (4 ' potential).

V. STATISTICAL NUMERICAL CALCULATIONS

The transfer of energy from the moving breather to the
static breather, AHq, and. the displacement of the static
breather, An~, during collision, depend on the relative
phase and energy diIII'erence between the two breathers.
We investigate this dependence statistically by simulat-
ing A collisions, in which the parameters of the small
moving breather are varied randomly.

From the discussion in Sec. II, we know that the small
breather is completely determined by the three parame-
ters qp, Ap, and Vp, where the internal wave number may
be fixed at qp = 0.2 for the values of the amplitude and
velocity that we consider here. Due to the setup of our
numerical simulations, the initial center site, np, is also
a determining parameter. Thus we assume a Gaussian
distribution of Ap, Vp, and np, around. the mean values
Ap, Vp, and np, with variations bAp, bVp, and bnp. The
variations have to be suKciently small to assure a good
solution.

always very small. Thus, in a lattice where temperature
Huctuations and modulational instability create a com-
plicated pattern of phonons and small amplitude moving
breathers, it seems that a big breather, once it is created,
will have plenty of time to interact again with phonons or
other breathers, before losing any signi6cant amount of
the energy it might have gained through a collision. All
the values of LHq given henceforth have been recorded
at t = 1000, i.e., sufBciently long after the collision to
include a possible decay of the perturbed high amplitude
breather.
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In Fig. 7 we depict the probability distribution of AH&
and ~n found &om N = 200 simulations of collisionsouIl oIIl

~ ~between a static breather of amplitude Aq ——0.52 at site
nq ——20, and a sInall moving breather with random pa-
I'aIIletel S 0, 0~ aIlt A, V and n . The mean values and variations
are given in the Ggure caption. The potential is the non-
symmetric C potential. We see that the energy transfer
can be negative, but that the probability for this to oc-
cur is small (here 8 in 200). Generally AHq is positive
and centered around the mean value AHq ——9%. The
displacement is quantized due to the strong discreteness
of the system (uz ——10) and the high amplitude of the
breather. It is generally negative (195 in 200) and cen-
teI'ed around the IneaIl value LAy = —1.3.

The random variation of the initial parameters of the
small moving breather covers the whole range of relative
phase differences between the breathers, but only a small
interval of the relative energy di8'erence. To explore the
whole interval of energy difFerences we vary the amplitude
A.l of the static breather, and perform a series of 200
simulations as presented in Fig. 7 for each value of A~.
Th d dence of LHq and LnI on Aq is plotted in Fig.e epen en

3 d@48. We have depicted the results for both the C an
potentials to see if the symmetry of the potential is of
importance. The resolution in Al is 0.02 and thus the
Buctuations seen in the Ggure are actual results of the
numerical calculations, and not due to lack of resolution.

From Fig. 8, we can distinguish three regions:
(i) In the limit of large Aq, the energy transfer and dis-

placement approaches 0. Although the Flach technique
does not allow as high values of Aq for the 4 poten-
tial as for the 4' potential (see Sec. III and Fig. 3), the
tendency is clear in both cases, especially for the displace-
ment. An example of a collision in this regime is shown

Fig. 9. We see that the big breather acts as an al-
most perfect reflector (a careful investigation shows that
a small amount of the energy of the small breather is still
transmitted). Investigating the spectrum of the oscilla-
tions of the center amplitude of the static breather before
and after collision reveals only one component, which is
not noticeably affected by the collision. The probability

18
15-
12

A9-
Co 6

0
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0.5 0.7
A,

0.9

—10-
—12

0.5 0.7 0.9

FIG. 8. Mean value of (left) the energy transfer, AHq(t =
1000) and (right) the displacement Any(t = 1000) found from
N = 200 simulations, as a function of Aq. The data for the
moving breather are the same as in ig.. 7n =20 u =10,
and (n, P) = (1,0) (C potential, solid curve), (n, P) = (0, 1)
(4 potential, dashed curve).

distribution of the energy transfer shows that it is 0 on
average, but that slight variations (less than 1%), both
positive an nega ive,'t d ative do occur. None of the collisions
displaces the large breather, which is not surprising be-
cause it is strongly pinned by discreteness due to its large
amplitude.

(ii) In the intermediate region 0.5 ( Aq ( 0.7 we see
that the collision begins to acct the static breather. The
energy transfer increases to about 12% for the 4 paten-
tial and 16% for the 44 potential, and the displacement
increases to up to 2 sites.

(iii) Finally, in the low amplitude limit Aq ( 0.5, the
energy transfer decreases. This is not surprising since we
expect the energy transfer to vanish when both breathers
are equivalent or when both have small amplitudes. In
the former case due to symmetry and in the latter be-
cause the dynamics of the two breathers would become
that of two NLS solitons that by definition does not ex-
change energy. Moreover, as the static breather, now
rather small, is only weakly pinned by discreteness, its
displacement in the collision increases and in some cases
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FIG. 7. Probability distribution of (left) the energy trans-
fer AHq(t = 1000) and (right) the displacement Anq(t
1000), found from N = 200 simulations. Dashed line in i-
cates the mean values AHq ——9FO and &nq —1.3. The
parameters of the moving breather all have a Gaussian dis-
tribution with average values Ap ——0.1, Vp ——0.2,V =02 n = —20
and variations bop ——0.05, bVp ——0.1, bnp = 10. A = 0.52
nq = 20, ~d ——10, and (o., P) = (1, 0) (C' potential).

FIG. 9. Left: Collision betw'een a moving breather (Ao =
0.1, Vo = 0.2, no ———21) and a static breather (Aq ——0.86,
nz = 20). Contour plot of the energy density, 'R (t), with
30 levels between 'R = 0.02 and 2.97. Right: Probability
distribution of the energy transfer EH&(t = 1000) between

= 200moving breathers and the same static breather for N =
simulations. The dashed line indicates the mean value AHq ——

0.01%. The parameters of the moving breather all have a
Gaussian distribution with average values = 0.1 V = 0.2
np ———20 and variations bop ——0.05, bVp = 0.1, np = 10.

10 and (o., P) = (0, 1) (C potential).
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FIG. 10. Collision between a moving ~reat. er,breather &Ao ——0.1,
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potential).
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the breather can start moving after the collision. A typ-
ical case is shown in Fig. 10.

It is impor an ot t t notice that the investigations of a
large number of breather collisions in the discrete lattice,
summarized in ig. , sd

' F 8 how that on average a co/Lision
atjors the growth of the Larger breather, provided that
h

' t' 1 difFerence is not too big, or t e energy
the NI.Sof both breathers is so small that they are in the

D blin the mean value and variation of the am-limit. ou ing e m
litude oF the small breather to (Ao, bAo) = (piu eo

s thisand per orming ad f '
new series of simulations, confirms

qualitative behavior.

VI. MUL'XIPLE COLLISIONS

The mechanism of energy transfer through collisions is
h sically relevant only if the small energy transfer be-

tiple collisions and create large amplitude breathers with
a reasonable lifetime. Regarding this lifetime, we have
so far considered exact single-frequency solutions for the
static breather, implying that such a stable state wit
infinite lifetime could be excited by the lattice. ow-

ever, simula ions ave1 t h shown that in most cases, a two-)

We will brieBy consider these points in this section and
show that it indeed is possible to generate exact sing e-
frequency breathers through multiple collisions.

collisions. We start out with a static single-&equency
breather with amplitude Aq —— 0.36 (lowest possi e
ampi u e 0 alnl t d bt 'nable with the Flach technique at site

= 50 and launch a breather of amplitude Ao —— . a
site no ——0, moving towards the static breather wi eh r with the

v' —0 2 At time t = 1000 we clean the solutionvelocity v'o —— . . ime
for radiation y se ingd' b tt' the amplitude to zero outside t e
51 't tered around the site of maximum energy andsi es cen
launch another small breather with the same ata as e

Figure 11 shows a contour plot of the energy ensi y

FIG. 11. Example of 20 collisions between a moving
(A —0 2 V = 0.2 n = 0) and a static breatherbreather ~Ao ——

A = 0 36 nq ——50), as detailed in the text. Contour1 i )

plot of the energy density, 'R (t) with 30 levels between

and 'jjt„"= 2.44. Bottom: (~, P) = (0, 1) (C potentia ) an
~mB.3c 3 02 2

tential, respectively. Initially the collisions displace the

No clear difference between the two cases shows up, ex-
ce t that the dynamics with the 4 potential seems to
lead to less radiation and a more stable state. This is no-
ticeable already after seven collisions. The variation o
the energy o e argef th l breather during the 20 collisions
is shown in Fig. 12.

Here we see more clearly that the dynamics in the case
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FIG. 12. Time evolution of the energy Rz de6ned zn Eq.
(22), corresponding to Fig. 11. Each clo — pclose-u shows the en-

ergy decay orf 20000 & t & 25000. The energy at t = 20000
is I top~( ) H = 2.534 and (bottom) H&(t = 20000) =

0 1Top: (n, P) = (1,0) (4 potential). Bottom: (n, P) = (, )
(4 potential). wz ——10.
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FIG. 13. Spectrum (arbitrary units) of the oscillations
of the center amplitude of the static breather after the 20
collisions shown in Fig. 11. The spectrum is calculated
from 20000 & t & 25 000 corresponding to the close-ups in
Fig. 12. The phonon band is indicated by the two dashed
lines. Top: (n, P) = (1, 0) (C' potential). The main fre-
quency is uz = 2.745. Bottom: (o, P) = (0, 1) (4 potential).
The main frequency is ~& ——2.760. ~z ——10.

VII. DISCUSSIGN

In this paper we have studied the exchange of en-
ergy and momentum during collision between breathers
in nonlinear KG lattices. The aim has been to show that
the energy exchange tends to favor the growth of the
larger breather and thus represents an inherent physi-
cal mechanism to generate highly localized large ampli-
tude excitations in nonlinear lattices. This mechanism,
which was conjectured from results obtained in a partic-
ular case [12], appears to be very general. A statistical

of the symmetric 4 potential is cleaner in the sense that
the breather obtained after each collision radiates less
energy than in the case of the nonsymmetric 4 potential.
After the 20 collisions a breather with an energy Hq(t =
20000) = 2.534 is obtained for the 4 potential, and
Hq(t = 20000) = 2.550 for the C potential. Thus this
simulation verifies that large amplitude breathers can be
created by the mechanism of energy transfer. It also
indicates that its amplitude saturates to a large value,
and further collisions cannot increase it any more.

The physically important question is then: What is
the lifetime of these breathers? The close-ups in Fig. 12
show that for the 4 potential the decay is significant,
while it is negligible for the 4 potential. As discussed
in Sec. IV this implies, respectively, a two-frequency and
single-frequency solution, which is confirmed by the spec-
tra of the two breathers shown in Fig. 13. The clean
single-frequency spectrum found for the C potential in-
dicates that multiple collisions can really create almost
exact discrete breathers in the lattice. Besides its inter-
esting consequence for the physics of nonlinear lattices,
this calculation also validates the use of single-frequency
static breathers in our calculations.

analysis based on a large number of numerical simula-
tions has been necessary to establish it unambiguously
because the results of individual collisions depend not
only on the relative energies of the colliding breathers,
but also on their relative phases. However, the simu-
lations exhibit a systematic bias toward energy transfer
from the smaller breather to the larger one, irrespective
of the symmetry of the on-site potential (@s or 44).

Our results are purely numerical. Indeed it would be
interesting to get an analytical insight into the process,
but up to now we failed. The reason is that this efFect
is intrinsically discrete and no exact solution exists, even
for a single discrete breather [26]. The Flach technique
that we used to find exact static breather solutions re-
lies on numerical iteration. This method may seem like
a "qualified lucky guess, " but its foundation includes an
important point. It is well known that localization of vi-
brational energy in lattices can be obtained around points
of symmetry breaking, such as defects [32, 33] or kinklike
distortions [33, 34]. This is exactly what this iteration
scheme does; it breaks the symmetry of the translational
invariant lattice at the center of the breather by choosing
difFerent maps. But the method cannot describe breather
interactions. Even analytical studies of the propagation
of a single discrete breather are difFicult and the predic-
tions of the pinning threshold may be oK by one order of
magnitude [17,26].

In spite of the fact that we cannot yet describe the phe-
nomenon analytically, its clear observation in the simula-
tions is interesting because it suggests that it could exist
in a large variety of discrete systems and be much more
eKcient than modulational instability to localize energy.
One remarkable characteristic of this localization process
is that it is self-regulated through diferent mechanisms.
If a system initially is excited with an assembly of small
moving breathers, then, after multiple collisions have cre-
ated rather large objects, their pinning by discreteness
traps them and prevents them from colliding. Moreover,
even if small breathers subsist (or are excited by some
energy injection mechanism), we have shown that, once
they are large enough, the discrete breathers cease to ab-
sorb energy from the small ones. These regulation pro-
cesses prevent a collapse of the energy into a single huge
excitation, which could destroy the lattice.

The type of lattice that we have considered provides
an approximate description of many physical systems
from crystals to biological molecules. In numerical sim-
ulations of such thermalized lattices, we systematically
found long-lived, highly localized excitations provided
that discreteness and temperature were sufFiciently high.
This suggests that these excitations could exist in many
physical systems. Such large amplitude localized modes
have been observed for macromolecules like DNA [35].
The question is why. Modulational instability cannot ac-
count for such highly localized excitations. The collision
mechanism discussed here provides at least a partial an-
swer. The examples of the C and C models show that it
appears to be rather general. Moreover, we have verified
its robustness in the presence of thermal fluctuations [12].
For applications in physics, its validity in a wider range
of situations remains to be demonstrated, but there are
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indications that it is the case. For instance, we have here
restricted our attention to harmonic interaction between
sites, but recent results with a sinusoidal coupling have
also exhibited examples of growth by collision although a
systematic study has not yet been performed. Extending
the same study to three-dimensional systems, which can
also sustain localized excitations due to anharmonicity
[8], would be another interesting question.
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