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Perturbation theories of a discrete, integrable nonlinear Schrodinger equation
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We rederive the discrete inverse-scattering transform (IST) perturbation results for the time
evolution of the parameters of a discrete nonlinear Schrodinger soliton from certain mathematical
identities that can be viewed as conserved quantities in the discrete, integrable nonlinear Schrodinger
equation in (1+1) dimension. This method significantly simplifies the derivation of the IST pertur-
bation results. We also present a specific example for which the adiabatic IST perturbation results
and the collective coordinate method results exactly coincide. This is achieved by establishing a
correct Lagrangian formalism for soliton parameters via transforming dynamical variables that obey
a deformed Poisson structure to ones that possess a canonical Poisson structure.

PACS number(s): 03.40.Kf, 63.20.Pw, 46.10.+z

I. INTRODUCTION

The discrete nonlinear Schrodinger (NLS) system
arises in diverse physical situations [1]. Understanding
its dynamics is an essential step towards illumination
of the dynamics of general, extended, nonlinear discrete
systems. The central question is how to describe nonlin-
ear coherent excitations and their associated dynamics
in discrete NLS systems. Since the NLS system in the
Ablowitz-Ladik (AL) discretization, i.e. ,

is completely integrable in (1+1) dimension [2,3], var-
ious discrete NLS equations derived from physical sys-
tems (see, e.g. , [4,5]) can be usefully viewed as the AL
NLS equation with a perturbation. Of these systems, the
perturbed discrete NLS equation

(2)

is a prototype that has a very simple structure, i.e., a
combination of the integrable and nonintegrable terms in
a tunable way, thus enabling us to emphasize the efFects
of both nonintegrability and discreteness with conceptual
simplicity [7,8]. The perturbation theory [4] based on an
inverse scattering transform (IST) is useful in the study
of the nonlinear localized structures [6] in these systems
by answering the question of how the perturbation mod-
ifies the dynamics of an AL soliton. In what follows we
will demonstrate that the IST perturbation results for the
time evolution of the parameters of an AL soliton, un-
der adiabatic approximation, can be simply derived &om
certain mathematical identities that are associated with
the conservation laws in the AL system. This method
enables us to obtain the IST perturbation results in a
significantly simplified way. Furthermore, we point out
that, for the prototypical NLS equation (2), in the adia-
batic &amework, the perturbation theories based on the

IST and based on a collective coordinate method coin-
cide exactly, which leads to an equivalent description for
an effective point particle theory for the soliton motion
in the lattice. As noted in Ref. [4), this equivalence is
qualitative rather than being exact for most systems, so
the case is particularly interesting.

II. REDERIVATION OF THE IST
PERTURBATION RESULTS

The general perturbed AL NLS equation can be writ-
ten as

@,„=sinhP sech [P(n —x)] exp [in(n —z) + io] (4)

in the adiabatic approximation can be found in Ref. [4].
Note that, for the unperturbed case e = 0, the soliton (4)
has

2sinhP
sin o., (5)

sinh P
o = 2cosncoshP+ 2asincr

and cr E [
—m, m] and P E (0, +oo) are constants. Here

we prove that the IST perturbation results can be sim-

ply derived &om some mathematical identities. Since
these identities can be viewed as conserved quantities in
the unperturbed AL system (see the Appendix), the IST
perturbation results are direct consequences of conserva-
tion laws in the AL system. We will invoke the following
three identities that hold for arbitrary real x:

where f*(@ ) = f(@*),n is a lattice index, —oo ( n (
+oo, and the scaling property of Eq. (3) allows p, to be
set to unity. A detailed account of the IST perturba-
tion theory for the evolution of the parameters of an AL
soliton
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2) sech[P(n —x)] sech[P(n + 1 —x)] =
sinh

Substituting the form of the soliton (4) for @,„and not-
ing that

) ln (1 + sinh P sech [P(n —x)]) = 2P,

) (n —x) ln (1 + sinh P sech [P(n —x)]) = 0.

(8)

1+ sinh P sech [P(n —x)]

we derive

cosh [P{n—x)]
cosh[p(n + 1 —x)] cosh[p(n —1 —x)]

', (14)

The proof of these identities is relegated to the Appendix.
Using Identities (8) and (9), we have

p = )» (i+ I@.„I'),

2 sinh P . sinh Psino. + e

x ) (n —x) cosh [P(n —x)]
cosh [P(n + 1 —x)] cosh [P(n —1 —x)]

2p*= ) nin(i+1@. „1'). xIm(f(@, , ) exp [
—i~I(n —x) —io.]) . (15)

Taking time derivatives of Eqs. (10) and (ll), we arrive
at

+ao
2P*= ) (n —*)—„ ln(i+ 1q.,„1'). (12)

2P*. = )
-0.*,.(0.*. , +0:. ,)]

2(n —x)Im[f(@.„)@:„]+e 1+ 14.,-1'

—i(n —*)[&;(@:,.+I + @.*,. 1)

Next, we invoke the adiabatic approximation, which
requires that the evolution of the parameters be con-
strained such that @, (t) [Eq. (4)] obeys the equation
of motion (3). Substituting Eq. (3) for Q, leads to

Similarly, the derivative of Eq. (10) with respect to time
leads to

cosh [P (n —x)]= e SIIlh
cosh[p(n+ 1 —x)] cosh[p(n —1 —x)]

xim( f (@.„)exp[ —in(n —x) —io.]). (i6)

To derive the equation for the time evolution of the pa-
rameter n, we proceed as follows. From identity (7), we
obtMn

2sinhPexp( —in) = ) g, „@,*„+I,

the time derivative of which yields

—2coshPP+ 2isinhPn = isinhP ) sech [P(n+ 1 —x)] f(@, ) exp [
—in(n —x) —io] (18)

i sinhP ) sech [P(—n —1 —x)] f'(Q, ) exp [in(n —x) + io] . (19)

Here the equation of motion {3) has been used again.
The real part of the above equation also leads to the
time evolution of P [Eq. (16)], while the imaginary part
yields the evolution of o;,

Ii = —e sinh P

x ) cosh[P(n —x)] tanh[P(n —x)]
cosh[P(n + 1 —x)] cosh[P(n —1 —x)]

x Re( f(@,„)exp[—ia(n —x) —io]j. (20)

Equations (15), (16), and (20) are precisely the same as

those for the evolution of the parameters of the soliton
derived in the adiabatic IST perturbation theory [4].

III. THE IST PERTURBATION THEORY AND
COLLECTIVE COORDINATE APPROACH

It is noted in Ref. [4] that, for the evolution of the
parameters of the soliton, collective coordinate methods
and the IST perturbation generally do not render the
same results. Here we present an example for which these
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two approaches are equivalent, i.e. , the equations of mo-
tion for the effective point particle are exactly the same
from both approaches. As mentioned above, the discrete,
one-dimensional Nl S equation (2) has this desired prop
erty. This equation can be derived from the Hamiltonian

'R,~ = iC+ V(x),

2sinhP
cos 0!)

(32)

(21)

4n2ssinh P
V(x) = —v ) cos(2m sx).3. 7rs'=~ P sinh

I

(34)

with the deformed Poisson brackets

(22)
(23)

(B,Cj =i ) I
(1+el@-I') .

n '9

The equation of motion is

g„= (H, g„j.

(24)

(&- @*j = i (1+el&-I') ~-
(~- ~-j = (&.' &' j = o

In general,

Hence the motion of the soliton in the perturbed system
can be viewed as a point particle described by the general
coordinates (x, n) in an effective periodic potential V(x).

Next we turn to the derivation of the above results
from an effective Lagrangian obtained &om a collective
coordinate approach. This approach will afford us a
transparent interpretation of the origin of the effective
kinetic energy of the particlelike excitation and the effec-
tive potential in which it moves. In order to use collective
coordinate method, we first should write down the La-
grangian formulation for the system (2). We need a pair
of canonical variables that obey the canonical Poisson
bracket instead of the deformed one [Eqs. (22) and (23)].
This can be achieved by the transformation

Due to the scaling property of Eq. (2), the nonlinear-
ity parameter p ) 0 can always be scaled to unity. The
dynamics of localized states in this system has been stud-
ied [7]. In the physics of localized states, an important
issue is how the motion of a localized state is affected
by the presence of the nonintegrable term —2vlg„l @„.
Treating the term —2vl@„I2@ as a perturbation to the
integrable Ablowitz-Ladik equation, within the adiabatic
approximation, we have the IST perturbation results to
the Grst order in v:

2 sinh P sin o.,

» (1+~l&-I')
s IW-I'

» (1+~l@-I')

The mapping is nonsingular and the inverse is

—1+exp(pl(p„l )

ulv -I'

(35)

(36)

(37)

8 4a2s sinh Pn = v ) 2 cos(2vrsx),
'=~ P sinh

I

(27) -1+e» (~le-I')
(38)

=0, (28)
The new variable p and p* are conjugate canonical vari-
ables that satisfy

where, for the evaluation of n, use is made of the Poisson
summation formula

(y„,p* j = ib„
y„, rp j=(y„*,p' j=o.

(3O)

(4O)

) f (n) = f dcf (c) 2 + 2 ) cos (2cccc) . (29)
—OO

—OO 8=1

Thus the Lagrangian can be written via the Legendre
transform of H as

Although Eq. (26) still has the form of Eq. (5) for the
unperturbed case, now the variable o; is no longer a con-
stant.

It is evident that this set of the equations constitutes
a Hamiltonian system

I = i ) —(j„p„*—j„*p„)—H. (41)

The collective coordinate approach postulates that the
parameters of the soliton are independent variables and
vary adiabatically. For the soliton (4),

where

0
+efF )Bo.'
0

A = — Rgff)
t9x

(31)

= e'~ ~" l+ ~ ln 1 + sinh P sech P(n —x), (42)

y„' = e ' + ln 1+ sinh Psech P(n —x)]. (43)

It is easy to evaluate that
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(44) (56)

) —[(i(n —x) —nx + o.
]

x ln 1+ sinh Psech P(n —x)
= 2Pnx —2Po. ,

(45)

(46)

) (Q~Q'+~ + @*/„+q) = —4sinhP cos n (47)

and

where we have used identities (8) and (9).
For the Hamiltonian (21), using the above soliton so-

lution as an ansatz, we derive

which is not a proper Lagrangian since @„and g* possess
a deformed Poisson structure. From this Lagrangian one
would not be able to derive the same equations of motion
as those from the IST perturbation theory.

Prom the collective coordinate approach, we readily
conclude that the term —P (@ g*+z + @*/ +q) in the
Hamiltonian is related to the kinetic energy of the effec-
tive point particle and —2v P ~@~~ is related to the ef-
fective potential in which the point particle moves. This
potential generates the Peierls-Nabarro barrier for the
translating motion of a soliton [7]. Obviously, for the
Ablowitz-Ladik system (v = 0) the point particle does
not experience any such potential barrier at all. For the
solitons with P « m, keeping only the term in s = 1,
the potential takes a simple approximate form

where

—2v) ]@„~ = U(z) + C, (48)
4vr sinh P cos (27rz) .3.sinh ~—

(57)

8~ s sinh P
U(z) = —~ ) cos(2vrsx),2. 7rs8=~ P sinh

~

(49} As expected, this barrier becomes exponentially weak as
the amplitude of a localized state becomes smaller since

and C = —4v sinh P/P. Hence the Hamiltonian is

II = —4 sinh P cos a + U(x) + Co, (50)

v ( vr'l
V ~ ——exp

/

——
/p q p) as P -+ 0. (58)

where Co ———4v(sinh P/P —P). Therefore, for the soli-
ton, the Lagrangian is

L = 2nPz —2Po + 4 sinh P cos n —U(x) —Co. (51)

The Euler-Lagrange equation for o yields

(52)

which is consistent with the conservation of the norm
JV = g„+ ln(1+ p~@ ~2) = 2P in the system (2) [7]
[see also Eq. (28)]. The other two Euler-Lagrange equa-
tions for o. and x have the forms

2sinhP
sin 0!)

1 0
(i = — U(x).

2 Bz (54)

Noticing that

V(x) = U(z),
1

the equations of motion we obtain above via this col-
lective coordinate method are exactly the same as those
derived by the IST perturbation method [see Eqs. (26)
and (27)]. We stress the importance of using the canoni-
cal variables p and p* to derive the Lagrangian for the
motion of the e8'ective point particle. It is incorrect to
use

IV. CONCI. USIONS

In the above derivation of the discrete IST perturba-
tion results, we have shown that the dynamics of a soliton
in a perturbed AL system is closely related to some con-
servation laws in the unperturbed AL system. Hence a
clear physical interpretation of the IST perturbation un-
der the adiabatic approximation emerges. Clearly, this
is a consequence of the adiabatic assumption, i.e. , a soli-
ton retains its functional form [Eq. (4)] in the presence of
perturbations. We have also presented a perturbed AL
system for which the adiabatic IST perturbation theory
and the collective coordinate method yield an equivalent
description of an effective particle theory for the dynam-
ics of a soliton in a lattice. Using this example, we have
emphasized the importance of establishing a correct La-
grangian formalism using dynamical variables that obey
the true Poisson structure rather than a deformed one.
This equivalence again has its origin in the identities we
invoked above, which can be regarded as conserved quan-
tities in the unperturbed AL system. The question still
remains open whether there is a general formal equiva-
lence between the adiabatic IST perturbation theory and
the collective coordinate method for the dynamics of a
soliton in perturbed AL systems.

APPENDIX

Here we use a very simple theorem to convert some
summations to an integral form. The theorem states
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that, if g„ f (n+ 4) is invariant under a 4 transla-
tion, i.e. , independent of A, A 6 (—oo, +oo), then

Additionally, we can compute the momentum for the
Ablowitz-Ladik soliton, which is

) f(n+ A) = j f(2.)dx
n= —oo —OO

Using this theorem and the constants of motion of the
Ablowitz-Ladik equation, we can prove the following
identities for arbitrary x:

= 4sinhP sinn.

(A7)

(A8)

) sech[P(n —x)] sech[P(n + 1 —x)] =

) ln(1+ sinh Psech [P(n —x)]) = 2P,

) (n —x) ln (1+sinh P sech [P(n —x)]) = 0.

(A2)

(A3)

(A4)

The second identity can be similarly proven using the
conserved norm of the Ablowitz-Ladik equation JV

ln (1+p~@„~ ). Hence JV = 2P for the AL soli-
ton (A5).

The proof of the third identity is more involved since
the summation is not directly related to any conserved
quantity of the Ablowitz-Ladik equation. First, it
can readily be proven that any @ (t) that solves the
Ablowitz-I. adik equation

The first identity can be proven by noticing that the
Hamiltonian for the Ablowitz-Ladik equation is

satisfies

~4. = —(0-+i + 0--i) (1+ 14-I')

Substituting the soliton solution

@„=sinh P sech[P(n —x)]
x exp [i (2t cosh P cos n + nn + Oo)] (A5)

) l (1+ ~q„~')

H = —2sinh Pcosn

x ) sech[P(n —x)] sech[P(n+ 1 —x)]. (A6)

into the Hamiltonian, where x = Vt + xo with V
(2sinhPsina)/P and xo and cro are arbitrary constants,
we obtain Second, substituting the soliton solution (A5) into the

above equation, we obtain

n ln (1 + sinh P sech [P(n —x)])

Since H is a constant of motion, we conclude that

) sech[P(n —x)] sech[P(n + 1 —x)]
) n ln (1 + sinh P sech [P(n —x)])

1 ~ 2 2

V dt

is independent of x. Using the above theorem we convert
the sum to the integral and obtain

) sech[P(n —x)] sech[P(n + 1 —x)]

1 1
dpx

P cosh(Px) coshP(x+ 1)
1 cosh[P(x + 1)]ln

P sinh P cosh Px
2

sinh P

which leads to

) nln(1+ sinh Psech [P(n —x)]) = 2Px. (All)

Note that the integral constant is zero. This can easily
be seen by setting x = 0.

Combining the identity (A3) and Eq. (All) yields the
desired result.
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