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Localization of light in three-dimensional random dielectric media
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A systematic approach to the localization of light waves in three-dimensional dielectric me-
dia is developed. A general definition of localization of electromagnetic waves is proposed and its
consequences are elaborated. A significant amount of localization of the energy density of the elec-
tromagnetic field is predicted in finite systems of randomly distributed dielectric particles modeled
by dipoles linearly coupled to the electric field of the incident wave. Although in this case it is not
possible to achieve perfect localization, the predicted phenomenon is experimentally indistinguish-
able from a complete localization. Our approach is based directly on the Maxwell equations; the
vector character of the electromagnetic waves is fully taken into account. The concepts presented in
our previous paper [M. Rusek and A. Orlowski, Phys. Rev. E 51, R2763 (1995)] are now generalized
to the three-dimensional case. Instead of using the KirchhofI' integral formula for scalar waves, we
now analyze light scattering by pointlike dielectric particles as the special case of general consid-
erations dealing with elastic scattering of electromagnetic waves by arbitrary localized charges and
currents.

PACS number(s): 42.25.Fx, 42.25.Hz, 72.1G.Fk, 78.2G.Ci

I. INTRODUCTION

Investigations of the electron transport in disordered
solid. s, usually semiconductors, led to the concept of lo-
calization of the electron wave functions [1]. This phe-
nomenon, known now as the Anderson localization, be-
came a prominent part of contemporary condensed mat-
ter physics and is still a vivid subject of theoretical and
experimental research. In such disordered media the
propagation of electrons is altered by the presence of
a random potential. The Anderson localization is com-
pletely based on the interference effects in multiple elas-
tic scattering. It is obvious, however, that interference
is a common property of all wave phenomena. It is no
wonder, therefore, that many generalizations of electron
localization to other rnatter waves (neutrons) as well as
classical waves (electromagnetic and acoustic waves) have
been proposed [2—6]. Of course, apart from remarkable
similarities, there are also striking difFerences. Very dif-
ferent is, e.g. , the long-wavelength limit of elastic scat-
tering. For electrons we have mainly s-wave scatter-
ing, which is spatially isotropic and wavelength ind. epen-
dent. For light we observe p-wave scattering. In this
case there is forward-backward symmetry but scatter-
ing is nonisotropic. In addition, in the long-wavelength
limit, the cross section for scattering of electromagnetic
waves shows the well-known A dependence. In inelas-
tic scattering electrons change their energy but their total
number is conserved. For light we have strong absorp-
tion and the intensity decreases. Moreover, electrons are
described by scalar wave functions (or two-component
spinors if the spin is included). To describe correctly lo-
calization of electromagnetic waves we need to consider,
in general, three-dimensional vector fields.

The case of electromagnetic waves is of special interest
as a variety of experimental investigations exist. One as-

pect of light localization should be emphasized, namely,
the distinction between toeak localization and strong lo-
calization. Weak localization is presently relatively well
understood theoretically [7—9]. It manifests itself as
enhanced coherent backscattering. This phenomenon
is now experimentally established beyond any doubts.
Striking coherent, back-directed. peaks of intensity su-
perimposed upon intensity of electromagnetic waves dif-
fusely scattered from random media have been observed
for difFerent systems of randomly distributed scatterers
forming three-dimensional [10—12] media. Since coherent
backscattering affects the diffusion constant describing
the propagation of electromagnetic waves in random me-
dia, the weak localization can be considered as the pre-
cursor of strong localization. The question as to whether
interference effects in strongly scattering random me-
dia can reduce the diffusion constant to zero producing
purely localized states depends on the dimension of the
sample considered. It is commonly believed that, in anal-

ogy to the Anderson localization, any amount of disorder
can produce localization of electromagnetic waves in one
and two dimensions. In three dimensions a critical level
of disorder must exist in order to localize light. From the
experimental point of view there are indeed some reason-
able indications that strong localization could be pos-
sible in three-dimensional random dielectric structures
[13—17]. There is, however, no definite experimental con-
firmation. On the other hand, despite remarkable ef-
forts no deeper insight into localization of light can be
found in the literature. It concerns especially those prob-
lems where the polarization effects have to be taken into
account. Such considerations should assume the vector
character of electromagnetic Belds from the very begin-
ning. To achieve this goal in a consistent way they should
be based directly on the Maxwell equations. On the other
hand, they should be simple enough to provide calcula-
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tions without too many too-crude approximations. In
this paper we construct explicitly such a model for the
three-dimensional localization of electromagnetic waves.
The resulting model is thoroughly analyzed and its major
consequences are elaborated.

A very common approach in investigations of the An-
derson localization in the solid-state physics is to study
a transport equation for the ensemble-averaged squared
modulus of the wave function. Under some assump-
tions such a transport equation can be converted into
a diffusion equation. Then the behavior of the diffusion
constant is used to recognize localization: if the diffu-
sion constant in the scattering medium becomes zero the
(strong) localization is achieved. This approach has also
been generalized to the electromagnetic waves. It has
some advantages. The scaling theory of localization (in-
vestigating, among others things, the scale dependence of
the diffusion constant or conductance) is well developed.
Moreover, the diffusion constant, as well as other trans-
port properties of waves in disordered samples, can be di-
rectly measurable. However, this standard approach does
not emphasize the fundamental role played by the inter-
ference effects. In this paper we would like to propose
and develop another theoretical approach based directly
on the Maxwell equations. It ensures that all interference
effects in elastic scattering are explicitly present. Also the
vector character of the electromagnetic field is automat-
ically taken into account. Instead of studying transport
properties of monochromatic electromagnetic waves, we
investigate the time-averaged energy density of the Geld
in the strongly scattering random dielectric medium. The
energy density is a very natural analog of the squared
modulus of the quantum-mechanical wave function. Also
from the experimental point of view this approach is com-
pletely justified. The recent experiment concerning lo-
calization of microwaves in the two-dimensional medium
was based just on the measurements of the energy den-
sity in the medium [18]. In close analogy with quantum
mechanics, we propose a remarkable definition of localiza-
tion as well as quasilocalization of electromagnetic waves.
Several aspects of such localization are then studied via
a simple yet realistic model: we analyze light scatter-
ing by pointlike dielectric particles as the special case of
general considerations dealing with elastic scattering of
electromagnetic waves by arbitrary localized charges and
currents. A significant amount of localization of the en-
ergy density of the electromagnetic field is predicted in
systems of randomly distributed dielectric particles mod-
eled by dipoles linearly coupled to the electric field of
the incident wave. We prove that in finite media it is
not possible to achieve perfect localization but the pre-
dicted phenomenon is practically indistinguishable from
the complete localization. Although it is known that sev-
eral mathematical problems emerge in the formulation of
interaction of pointlike dielectric particles with electro-
magnetic waves [19—21], we show that it is possible to
develop a consistent yet rather simple approach. This
treatment may be viewed as a vector-field generalization
of the results obtained in our previous paper [22], which
were based on the Kirchhoff integral formula for scalar
waves.

II. LOCALIZED WAVES

The standard approach to localization of monochro-
matic electromagnetic waves [2,23—29]

E(r, t) = Re(E'(r)e ' '),

II(r, t) = Re('R(r)e ' 'j (1b)

is based on the similarities between the Helmholtz equa-
tion for the electric field amplitude in an isotropic lossless
dielectric

V' x [V' x 8 (r)] + ko[1 —e(r)]f (r) = ko t (r)

and the time-independent Schrodinger equation

(2)

The term ko[l —c(r)] corresponds to the potential V(r)
ensuring localization of the electron wave function and
the squared wave number in vacuum ko2 ——u2/c2 plays
a role analogous to the energy eigenvalue E. It is well

This paper is organized as follows. In Sec. II a defini-
tion of localized light waves in systems of dielectric par-
ticles, motivated by analogies with quantum mechanics
as well as by the recent experiment concerning localiza-
tion in two-dimensional random media, is proposed and
its consequences are elaborated. Then we introduce the
Maxwell equations in the integral form as a very conve-
nient and effective tool for studying localization of light
in such dielectric media. Using this formalism we investi-
gate in Sec. III the general conditions imposed on the po-
larization of the lossless bounded medium, which should
be satisfied to make localization of the energy density of
the monochromatic light wave possible. It is proved that
in systems consisting of a finite number of dielectric par-
ticles, localization of light is not possible. The results
of these calculations are used later to consider localiza-
tion as a special case of the interference effects in elastic
scattering of light waves. Using the optical theorem, we
show that the polarization of the general bounded and
lossless medium is coupled to the electric field of the in-
cident wave. Prom those fundamental considerations, we
give in Sec. IV a simple derivation of the general form
of the coupling between the pointlike three-dimensional
dipole and the electric field of the light wave incident on
it in the case of the elastic scattering. Section V is de-
voted to analysis of various aspects of light localization in
systems consisting of randomly distributed dielectric par-
ticles modeled by single three-dimensional dipoles. The
concept of quasilocalization is developed. The results
of numerical investigations are presented and thoroughly
discussed. Main results of our study are summarized in
Sec. VI.
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known, however, that there are several fundamental dif-
ferences between quantum particles and electromagnetic
waves [27]. In general, the electric field vector cannot
be interpreted as the probability amplitude. The correct
equivalent of the quantum-mechanical probability den-
sity is rather the energy density of the field and not the
squared electric field. Therefore, after some introductory
remarks we would like to propose a reasonable definition
of localization of light based on the behavior of the energy
density.

Usually localization of light is studied experimentally
in microstructures consisting of dielectric spheres with
diameters and mutual distances being comparable to
the wavelength [29]. It is well known that the theory
of multiple scattering of light by dielectric particles is
tremendously simplified in the limit of point scatterers.
In principle, this approximation is justified only when
the size of the scattering particles is much smaller than
the wavelength. In practical calculations, however, many
multiple-scattering effects can be obtained qualitatively
for coupled electrical dipoles. Examples are universal
conductance fluctuations [30], enhanced backscattering
[31],dependent scattering [19],and strong localization in
two dimensions [22]. We believe that what really counts
for localization is the scattering cross section and not the
geometrical shape and real size of the scatterer. There-
fore we will represent the dielectric particles located at
the points r by single electric dipoles

with properly adjusted scattering properties. In this ap-
proximation strong localization of the scalar electromag-
netic waves in two-dimensional random dielectric media
has already been studied [22]. Since we are studying
monochromatic fields only, then in our case the polar-
ization of the medium is also the oscillatory function of
time

P(r", t) = Re('P(r)e ' ').
To investigate localization in the simple case of the

dielectric media consisting of well separated particles it
is sufhcient to study the electromagnetic field in vacuum
between those particles. It can be done very effectively
using the Maxwell equations in the integral form [32].
Introducing the complex Hertz vector

~() = ~"( )+~"( )

V7(q = V7~'l(q+ V7('l(q.

(8a)

(8b)

Now we are ready to propose a definition of localized
electromagnetic waves that resembles the definition of
localized states in quantum mechanics and makes use of
the analogy between the quantum-mechanical probabil-
ity density and the energy density of the Geld. It seems
natural to say that the monochromatic light wave is lo-
calized if the time-averaged energy density of the total
field tends to zero far from a certain region of space

~(r) =,6„EI~(r)1'+ l&(r)l') ~ «or

We used the fact that for rapidly oscillating monochro-
matic light waves (1) only time averages are measurable.
Strictly speaking, to make the notion of the limit in Eq.
(9) mathematically precise we must consider the energy
density of the field outside the arbitrarily small but finite
volumes surrounding the dipoles. In this way we avoid
some infinities introduced by the point-scatterer approx-
iination used. let us emphasize that the condition (9)
can be fulfilled only if the free field vectors Z~ l(r) and
V7~ l(r) are zero everywhere. To see this let us observe
that the localization condition (9) may be satisfied in sys-
tems (4) consisting of well separated dielectric particles
only if the polarization of the medium vanishes at infin-

ity, i.e. , P(r) ~ 0 for IrI ~ oo. Therefore, due to Eq.
(6), the radiated field F~ l(r), 'R~il(r) also tends to zero
if IrI ~ oo. Thus, if the light is localized according to
the definition (9), the free field E'~ol(r), 'R~ol (r) must also
tend to zero in this limit. But it is known &om the vec-
tor form of the KirchhofF integral formula [34] that if the
free field vanishes on a closed surface it is zero everywhere
inside this surface.

It is interesting to note that in the absence of the Bee
field the localization condition Eq. (9) is obviously ful-
filled by the Hertz dipole [34] as well as other bounded
radiating systems. However, we are interested in lossless
media only, where localization is due to interference ef-
fects in elastic scattering of light by various dipoles. It
is obvious that if the dielectric medium of the form of
(4) is lossless, then the time-averaged field energy flux
integrated over a surface surrounding arbitrary number
of dipoles should vanish:

the field radiated by the finite dielectric medium (11) can
be written in the form [33]

Z('l(rq = V x [V x Z(rq],

z(q.

(7a)

(7b)

The total field may now be considered as the sum of the
radiated field (7) and the free field E~ol(r), 'R( l(r)

ds. 8(rg = ——Re ds (t(r) x 'R*(r)) = 0. (10)4' 2

This condition immediately eliminates the above-
mentioned radiating systems. Moreover, what is more
important is that in Sec. III we will arrive at the con-
clusion that localized electromagnetic waves cannot exist
in systems (4) consisting of a finite number of dipoles.
In the case of bounded dielectric media the localization
condition (9), which implies that free field must vanish
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everywhere, is compatible with the energy conservation
condition (10) only if the total field is zero. However,
as we will show in Sec. V, in bounded systems of ran-
domly distributed dipoles there can still exist some spe-
cial monochromatic waves for which the energy density
of the field inside the medium is much larger than the
energy of the incident wave in the stationary regime.
We will call this phenomenon quasilocalization and prove
that in the limit of the infinite number of dipoles it be-
comes practically indistinguishable &om the perfect lo-
calization.

is the spatial Fourier transform of the polarization and

r
n =

is the unit vector pointing to the direction of observa-
tion. We see from Eq. (13) that for each direction of
observation the far field radiated by the localized dielec-
tric medium (11) looks like the field radiated by a certain
Hertz dipole described by the polarization

'P(r") = 'P(kp n) b(r). (16)

III. ELASTIC SCATTERINC The Poynting vector of the field radiated by the Hertz
dipole (16) in the far-field limit is given by (see, e.g. ,

Let us stress that in all experiments we can investigate
only systems confined to certain finite regions of space. It
is therefore reasonable to restrict our analysis to bounded
media consisting of a finite number of dielectric particles.
In this case the polarization (4) satisfies the condition where

1 ck4~"(r) = n — 'IP~(kpn)l'8~lr' (17)

'P(r) = 0 for lrl ) R. k [k. 'P (k) ] (18)
Note that in the above formula we have explicitly in-
troduced the characteristic length scale B, which will be
used later on.

It turns out that in the case of bounded dielectric me-
dia (11) the energy conservation condition (10) leads to
interesting restrictions imposed on the polarization 'P(r).
As we will see in the present section, the requirement
that the time-averaged total-field. energy Aux integrated
over a surface surrounding the considered bounded and
lossless medium should vanish for the arbitrary incident
wave PP1(rg, 'R~P1(r) deterxnines uniquely the form of
the dependence of the polarization of the medium on the
field. The results of those general considerations dealing
with elastic scattering by bounded dielectric media will
be used in Sec. IV to derive the explicit form of the cou-
pling between the pointlike three-dimensional dipole and
the electric field of the light wave incident on it. Then we
will be able to introduce discretized Maxwell equations
that are one of the necessary ingredients of the definition
of quasilocalized waves presented in Sec. V.

After inserting the formula (8), the expression (10)
may be split into three terms. The first term

d.-.S~'l(rq = —'-Re d.-. (Z('1(rq x A~'1 (rq) (i2)
4m 2

denotes the transverse part of the Fourier transform of
the polarization. Integrating Eq. (17) over a sphere with
radius ]rl surrounding all sources we get the final ex-
pression for the average energy radiated by the dielectric
medium (ll)

f ck4
ds 8 '

(rQ = dA]'Pz (kpn)l'.

Let us assume for a moment that in the bounded di-
electric medium (11) there exists a localized [according
to Eq. (9)] electromagnetic wave. As we have shown in'

Sec. II, the free field E'~ 1(r), 'R~P1(r) must vanish in this
case. Therefore, to check the energy conservation condi-
tion (10) we have to integrate the time-averaged Poynting
vector corresponding to the radiated field over a closed
surface surrounding the medium:

(20)

Inserting (19) into the condition (20), we see that the
transverse part of the polarization of the medium van-
ishes on the light cone

corresponds to the time-averaged energy radiated by the
medium per unit time. To obtain its explicit form, let us
observe that far from the inedium, i.e. , for lrl )) B, the
Hertz vector (6) can be approximated by

P~(k) =o f (2i)

This condition cannot be fulfilled by any system (4) con-
sisting of a finite number of dipoles. Indeed, the Fourier
transform of the polarization is in this case given by a
sum of finite number of plane waves

where
'P(k) = ) p e'"" (22)

p(lr) = f d'r 'Ir(rg e' (i4) and therefore the transverse part of it cannot vanish for
all lkl = kp. So, as already mentioned at the end of Sec.
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II, the localization condition (9) cannot be fulfilled in the
case of spatially bounded lossless media consisting of a
Gnite number of dielectric particles.

After this digression now we return again to the main
thexne of this section: elastic scattering. I et us take into
account the presence of the nonzero free Geld and calcu-
late the remaining terms in Eq. (10). The second term
describes the total time-averaged energy Aux integrated
over a closed surface for the IIree field and thus vanishes

It is now clear that Eq. (26) describes elastic scattering of
monochromatic light waves by arbitrary charges and cur-
rents. Indeed, there exist systems that can be described
by Eq. (26) but do not consist of dielectric particles. As
an example let us mention light scattering by perfectly
conducting particles. The electric Geld of the light wave
vanishes inside such particles but the polarization vector
is not equal to zero, as opposed to Eq. (27).

—'-R. d.= (8'l(q x A~'l*(q) = 0.
47t 2

(23) IV. SYSTEM OF DIPOI ES

To calculate the last interference term

—'-Re
4m 2

(24)

we use the identity (Lorentz theorem)

& (~"( ) &"( J+ ~"*( ) &"()k

= —iko 4z. P*(r).F~ ~ (r), (25)

which follows directly &om the Maxwell equations. Inte-
grating (25) over a volume containing the isolated part
of the medium under consideration and calculating the
real part we see that the Eq. (10) may be written in an
equivalent form

(26)

Thus, on average, the energy radiated by the medium
must be equal to the energy given to the medium by the
incident wave. The condition (26), together with Eq.
(19), determines the relation between polarization and
the electric Geld of the incident wave.

Note that the polarization of the dielectric medium

It is known that several mathematical problems emerge
in the formulation of interactions of pointlike dielectric
particles with electromagnetic waves [19—21]. Instead of
applying several complicated regularization procedures,
we will show that it is possible to analyze light scatter-
ing by pointlike dielectric particles as a special case of
general considerations dealing with elastic scattering of
electromagnetic waves by arbitrary charges and currents
presented in Sec. III. This treatment may be viewed as
a generalization of the results obtained in our previous
paper [22] to the case of the vector field. Previous results
corresponding to the two-dimensional case were based on
the KirchhoK integral formula for scalar waves. We are
interested in lossless media only, where localization is due
to interference effects in elastic scattering of light by vari-
ous dipoles. Therefore the time-averaged Poynting vector
integrated over a surface surrounding each dipole must
vanish for the arbitrary wave incident on this dipole. As
shown in Sec. III, this condition will be fulGlled if the
dipole moments p depend on the electric Geld of the
wave incident on them.

To obtain an explicit form of the coupling let us recall
the formula for the energy radiated on average by the
Hertz dipole

(29)

&(r) =
4

~(r) (27)

which can be found, for example, in [32]. Inserting the
above expression and Eq. (4), we may rewrite the condi-
tion (26) in the form

depends on the total field rather than on the field of the
incident wave [34]. Also in quantum mechanics the po-
tential operator acts on the full wave function. For the
given incident wave one can obtain the total Geld solv-
ing the Maxwell equations. Therefore Eq. (27) may be
written also in the form of Eq. (26). However, it is not
necessary to identify the polarization vector P with the
dielectric polarization. Together with Maxwell equations
in the integral form (7) it may be used as a convenient
mathematical tool to study the radiation of electromag-
netic waves by arbitrary sources [33]. Indeed the arbi-
trary current and charge densities obeying the continu-
ity relation may be expressed in terms of the polarization
vector

2 2

ikon + —8'(r ) = —E'(r )4 4

where the Geld acting on the ath dipole

(31)

is the sum of the Bee field and waves radiated by all other
dip oles

F (r) = —iko g(r —r ).g7,
3

j = OtP, p = —V'. P. (28) which are expressed by the Green tensor (see, e.g. , [32])
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t' 1 . 1

& (kolrl)' kolrl )
Assuming that the vector on the left-hand. side of Eq.
(30) is a function of the vector on the right-hand side
and that the dielectric particles modeled by the dipoles
are spherically symmetrical we get

(35)

and inserting Eq. (34) we obtain the explicit formula for
the total scattering cross section 0 of the ath dipole

1 —cos
koo. = 3m

2

Inserting Eq. (32) into (31), using (34), and introduc-
ing the convenient notation

g(r —rg) for a j 6
0 fora=6, (37)

we obtain Gnally the system of equations

(38)

determining the field acting on each dipole t"'(r ) for a
given free field Zl l(r ). If we solve it and calculate the
dipole moments according to Eq. (34) we are able to find
the electromagnetic Geld everywhere in space using the
Maxwell equations in the integral form. It follows from
the considerations presented in Sec. II that if the system
of dipoles (4) ensures localization of the light wave, then
the system of equations (38) has a nonzero solution for
vanishing free field Biol(r) = 0. However, as shown in
Sec. III, this may be possible only in the case of an infinite
number of dipoles.

iver ko p = —(e*~ —1)8'(r ).
2

Thus, to ensure conservation of energy, the dipole mo-
ments are coupled to the electric field of the incident
wave by complex "polarizability" (e'~ —1)/2, which can
take values from a circle on the complex plane.

Note that the case P = m corresponds to the internal
resonance of the dielectric particle described by a dipole.
The total scattering cross section takes then its maximal
value. Indeed, dividing Eq. (26) by the intensity of a
plane wave given by I32]

some monochromatic resonance waves for which the Geld
energy density inside the medium is much larger than
the energy density of the incident wave in the stationary
regime. We will call this phenomenon quasilocalization
in contrast to the prefect localization that can take place
only in infinite random media. Note that in the experi-
ment on microwave localization in two-dimensional struc-
tures I18] such quasilocalized modes have been identified
be direct measurement of the squared electric Geld. In
contrast to this simple case, in three-dimensional media
the existence of such quasilocalized modes can be proven
only by observing resonance eKects in transmission. In
this section we present the detailed analysis of the quasi-
localized waves existing in systems of a finite number of
randomly distributed three-dimensional dipoles.

Let us study eigenmodes of the system of equations
(38) determining field acting on each dipole

A. 8'(r ) = 2' (r ). (39)

for a given distribution of dipoles we can easily choose
their scattering properties P to minimize the absolute
value of a certain eigenvalue IA~ I. Indeed, in the case
of the same scattering properties of al}. dipoles (40) the
eigenvalues

A~(P) = 1 — A,'. (41)

Obviously eigenvalues A~ corresponding to eigenvectors
describing perfectly localized light waves should be equal
to zero. But it is impossible in systems (4) consisting
of a finite number of dipoles. However, in this case the
modulus of some eigenvalues can be very small. This
means that the field incident on each dipole IZl(r ) I

is

large compared to the free field IE (r )I ca.lculated at
the dipole. Thus the time-averaged energy density in the
medium under consideration can indeed be much greater
than the energy density in the surrounding free space. It
is therefore natural to call a light wave corresponding to
such an eigenvector a quasilocalized wave. Of course the
&ee Geld is not completely determined by specifying only
its values at the dipoles according to Eq. (39). However,
we believe that it may be constructed in such a way that
the time-averaged energy density of the free field will not
exhibit local minima at the dipoles, so that the energy
density outside the medium can still be much smaller
than the localized energy density inside.

The crucial point now is how each dipole should be
coupled to the electromagnetic field. It turns out that,
assuming that all dipoles are identical

(40)

V. QUASILOCALIZATION

As follows from previous considerations, the perfectly
localized states do not exist in systems (4) consisting
of a finite number of three-dimensional dipoles. Nev-
ertheless, in the case of bounded media there can exist

are expressed by eigenvalues A' of the G matrix (37) that
depend only on positions of the dipoles. Note that in this
case eigenvectors of the system (38) are simultaneously
eigenvectors of the G matrix.

As a simple example let us now consider a system of
N = 100 dipoles (4) distributed randomly in a sphere
with uniform density n = 1 per wavelength cubed. We
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have calculated and diagonalized numerically the G rna-
37 of ran xk 3 % describing this situation and

checked if a certain eigenvalue of the sys em q
o do this for each phase P we

have calculated the absolute value of each eigenvalue
(41g

and chosen the smallest one fromaccording to Eq. ~ &
an c

all eigenmodes

1.0

0.9

0.8

0.7

0.6

A(P) = min
I
A~ (P) I. (42) 0.4

0.3

The function ~p~ is p oA~y~
' lotted in Fig. 1. In close analogy

ns erfect localization iswi our nsth ur previous considerations, p
s stems ~~4~ consisting of a finite nummber o

three-dimensional dipoles. However, t e mo u us o a
all e. . in the local minimumeigenvalue can be very sma; e.g. ,

near yy —0.27 we have obtained A oc 10
that as illustrated in Fig. 1

l d
' 'd the medium occur w en consi erin one

sample and then varying P. We would now hke o x rs
e d th n look at quasilocalized waves in

ondin t ical medium. To do this we have
(37) f 10 difFll the G matrix. or

random distributions of the dipoles. For each is ri u-
l l ted the minimal absolute value oftion we have ca cu a e e m'

l &42&~as a function of the phase ~. ean eigenva ue
&
~& as

lot of the corresponding two-dimensiona pro-contour p o o e
a ll y is Iib'l t distribution is presented in ig. . is p

ed as the solid line from Fig. spr1 s read outbe consi ere as
ou h the osi-over different samples. We see that althoug e p

ndin to resonancestions of the minima in Fig. 1 correspon ing
a d t on different distributions of the
di oles, these minima still appear in the same region o

. This means that after choosing
f the random dielectric mediumalmost any realization o e

d wave. It is also interestingthere exists a quasilocalized wave.
to stress that, according to Fig. 2, th pthe hase corre-
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FIG. 2. Contour plot of the probabi i ybilit distribution of solid
Fi . 1 calculated for 10 systems of N = 100

dipoles distributed randomly in a sp ere wi
n = 1 dipoles per wavelength cubed.

u. to o timal localization is close to zero. Thusspon lng o op
the scattering cross sections of the dipo es
take their maximal values. It mean s that localization of
li ht

'
stem of dielectric particles occurs for different

t at if r are given,It follows from inspection of Fig. 1 t a i r~ g
~ ~ describing the scat-then there exists a certain p ase

tering properties o e if th dipoles for which the modulus of
l A takes a minimal possible valuea certain eigenva ue (p) a e

T fi d the osition of this sharp resonance let us
make the following observation. It follows from q. (
n f h eigenvector of the system o equations 38

e scatterin
properties of the dipoles
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for which the modulus of the correspon ing eigenvalue
Aj takes a minimal value A ~ ~ given by

0.8
I I+ ' ——' = IA (0")I & IA. (4)l (44A
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FIG. 1. Minimal modulus of the eigeei envalue A plotted as a
h h ~~ that describes scattering properties offunction of the p ase ~ a

f N = 100 dipoles. Dipoles are dzstri u ethe single system o = ' . zstrl u e
h with the density n = 1 dipoles perrandomly in a sp ere wi

wavelength cubed.

A d' to Eq. (44) we may now easily calculate the
minimal values o mo u us orf d l s for all eigenvalues and choose
the smallest one

(45)

We have repeated this proce ure for several G matri-
i oles 4 dis-ces (37) describing different systems o ip

tri ute ran om y
'

cacua e eavl l ted the average value of A . The resu p

oles n er wavelength cubed.
a ain that perfect localization is impossi e inWe see again a

s &4& of a finite number of dipoles. Howowever for asystems o a ni
tion uasilo-fixe ensi y o ea a t f th medium under consi era '

q
b t r (A~ l decreases) for the increas-calization becomes et er
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FIG. 3. Minimal possible modulus of the eigenvalue A~ ~

as a function of the total number of dipoles N for various
numbers n of dipoles per wavelength cubed. This plot has
been averaged over 10 random distributions of dipoles placed
in a sphere with uniform density.
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FIG. 4. Phase P for the single system of N = 100 dipoles
distributed randomly in a sphere as a function of the number
of dipoles n per wavelength cubed.

ing number of dipoles N.
In fact, for a fixed system of dipoles given by Eq. (34),

Eq. (45), together with Eq. (43) determining the corre-
sponding phase P~ l, defines the dependence of the scat-
tering properties of dipoles on the frequency of localized
field. In Fig. 4 we have plotted the phase P~ l ensuring
the best possible localization in a system of N = 100
dipoles distributed randomly in a sphere as a function of
the number of dipoles n per wavelength cubed. There-
fore we have constructed a model of a system of dielectric
particles with the frequency-dependent permeability e(w)
chosen to ensure the best possible localization for all fre-
quencies from some region for which e(w) can be real.
Indeed, as shown in Fig. 5, in such an abstract random
medium quasilocalization takes place practically for all
sufFiciently large densities (i.e. , n ) 1). Of course, in any

FIG. 5. Minimal possible modulus of the eigenvalue A

corresponding to the phase P~ ~ plotted in Fig. 4.

realistic experiment the dielectric particles must have a
finite diameter to provide a scattering cross section suf-.

Bciently large for localization. It imposes the practical
limit on the maximum density.

VI. SUMMARY

We developed a simple theory of elastic scattering of
electromagnetic waves by dielectric particles that is based
on the optical theorem. In our treatment the internal res-
onances of the dielectric particles are incorporated in a
united way. This treatment may be viewed as a general-
ization of the results obtained in our previous paper [22]
(which were based on the Kirchhoff integral formula for
scalar waves) to the case of the vector fields. The pre-
sented approach to localization of electromagnetic waves
in three dimensions is based on Maxwell equations in
integral form. The dielectric medium providing localiza-
tion is modeled by a system of discrete dipoles. Each
dipole, with properly adjusted scattering properties, re-
places a single dielectric particle. In this treatment the
scattering properties of the medium may be eliminated
from the considerations and the best possible localiza-
tion for a given distribution of particles can be studied.
It was shown that, in media consisting of a Gnite number
of dielectric particles, localization of light is impossible.
However, for almost any random distribution of the di-
electric particles there can exist certain monochromatic
resonance waves with energy density well localized in-
side the medium. If the total number of scattering parti-
cles tends to inanity, those resonances become localized
states. Similar eKects have been experimentally stud-
ied by direct measurement of the energy density of the
field in a two-dimensional random collection of dielectric
cylinders [18].

It was shown that in our abstract dielectric medium
with specially chosen frequency-dependent permeability,
localization of light is easier to achieve for large num-
bers of dipoles per wavelength cubed. However, in any
actual experiment the dielectric particles must have a
suKciently large diameter to provide a scattering cross
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section suitable for localization. This requirement im-
poses a practical limit on the maximal density. On the
other hand, in the limit of small wavelengths, the point-
scatterer approximation used becomes invalid. Therefore
our results agree completely with the common belief (see,
e.g. , [35,29]) that in three-dimensional media light local-
ization is possible only in a certain frequency window.

Our considerations suggest that localization of light
in three-dimensional systems consisting of randomly dis-

tributed dielectric particles occurs for ranges of parame-
ters different from the internal resonances of those parti-
cles. They also provide additional insight into the prob-
lem of localization on resonating scatterers [36,37]. It
seems that resonating scatterers do not provide localiza-
tion. It is in agreement with results based on the anal-
ysis of the dependent-scattering effects in the amplitude
Green's functions [19,20], where the essential argument
was the overlap of optical volumes of the scatterers.
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